1
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
2
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
3
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
4
|
Yang S, Lin W, Jia M, Chen H. Association between ACE and ACTN3 genes polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023; 11:e14893. [PMID: 36992938 PMCID: PMC10042156 DOI: 10.7717/peerj.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/23/2023] [Indexed: 03/31/2023] Open
Abstract
Background Previous studies have shown controversial relationships between ACE I/D and ACTN3 R577x polymorphisms and athletic performance. Therefore, the aim of this study was to assess athletic performance indicators of Chinese youth male football players with different ACE and ACTN3 gene profiles. Methods and Materials This study recruited 73 elite (26 13-year-olds, 28 14-year-olds, and 19 15-year-olds) and 69 sub-elite (37 13-year-olds, 19 14-year-olds, and 13 15-year-olds) and 107 controls (63 13-year-olds, and 44 14-year olds aged 13-15 years, all participants were of Chinese Han origin. We measured height, body mass, thigh circumference, speed, explosive power, repeat sprints ability, and aerobic endurance in elite and sub-elite players. We used single nucleotide polymorphism technology to detect controls elite and sub-elite players' ACE and ACTN3 genotypes, Chi-squared (χ 2) tests were employed to test for Hardy-Weinberg equilibrium. χ 2 tests were also used to observe the association between the genotype distribution and allele frequencies between controls and elite and sub-elite players. The differences in parameters between the groups were analyzed using one-way analysis of variance and a Bonferroni's post-hoc test, with statistical significance set at p ≤ 0.05. Results (1) The genotype distribution of the ACE I/D and ACTN3 R577x polymorphisms in controls, elite and sub-elite football players were consistent with Hardy-Weinberg equilibrium, except for the ACE genotype distribution of sub-elite players. (2) The RR and DD genotypes were significantly different between elite and sub-elite players (p = 0.024 and p = 0.02, respectively). (3) Elite players were more likely to have the RR genotype and less likely to have the DD genotype compared with sub-elite players. (4) Both elite and sub-elite RR players' Yo-yo intermittent recovery level 1 (YYIR1) running distance was significantly longer than that of RX players (p = 0.05 and p = 0.025, respectively). However, there was no significantly different in YYIR1 running distance between elite and sub-elite RR players. (5) Elite XX players' VO2 max was significantly higher than that of RX and sub-elite players. Conclusion These results indicate that ACE I/D and ACTN3 R577x polymorphisms are not associated with muscle power in Chinese elite and sub-elite players. The XX genotype of ACTN3 is associated with the aerobic endurance of elite players.
Collapse
Affiliation(s)
- Shidong Yang
- Department of Physical Education, Nanjing Xiaozhuang University, Nan Jing, China
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| | - Wentao Lin
- Department of Physical Education, Zhuhai University of Science and Technology, Zhuhai, China
| | - Mengmeng Jia
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| | - Haichun Chen
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| |
Collapse
|
5
|
Konopka MJ, van den Bunder JCML, Rietjens G, Sperlich B, Zeegers MP. Genetics of long-distance runners and road cyclists-A systematic review with meta-analysis. Scand J Med Sci Sports 2022; 32:1414-1429. [PMID: 35839336 PMCID: PMC9544934 DOI: 10.1111/sms.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
The aim of this systematic review and meta-analysis was to identify the genetic variants of (inter)national competing long-distance runners and road cyclists compared with controls. The Medline and Embase databases were searched until 15 November 2021. Eligible articles included genetic epidemiological studies published in English. A homogenous group of endurance athletes competing at (inter)national level and sedentary controls were included. Pooled odds ratios based on the genotype frequency with corresponding 95% confidence intervals (95%CI) were calculated using random effects models. Heterogeneity was addressed by Q-statistics, and I2 . Sources of heterogeneity were examined by meta-regression and risk of bias was assessed with the Clark Baudouin scale. This systematic review comprised of 43 studies including a total of 3938 athletes and 10 752 controls in the pooled analysis. Of the 42 identified genetic variants, 13 were investigated in independent studies. Significant associations were found for five polymorphisms. Pooled odds ratio [95%CI] favoring athletes compared with controls was 1.42 [1.12-1.81] for ACE II (I/D), 1.66 [1.26-2.19] for ACTN3 TT (rs1815739), 1.75 [1.34-2.29] for PPARGC1A GG (rs8192678), 2.23 [1.42-3.51] for AMPD1 CC (rs17602729), and 2.85 [1.27-6.39] for HFE GG + CG (rs1799945). Risk of bias was low in 25 (58%) and unclear in 18 (42%) articles. Heterogeneity of the results was low (0%-20%) except for HFE (71%), GNB3 (80%), and NOS3 (76%). (Inter)national competing runners and cyclists have a higher probability to carry specific genetic variants compared with controls. This study confirms that (inter)national competing endurance athletes constitute a unique genetic make-up, which likely contributes to their performance level.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Gerard Rietjens
- Department of Human Physiology and Sports MedicineVrije Universiteit BrusselBrusselsBelgium
| | - Billy Sperlich
- Integrative & Experimental Exercise Science & Training, Institute of Sport ScienceUniversity of WürzburgWürzburgGermany
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands,School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
6
|
Johnston K, Baker J. Sources of information used by elite distance running coaches for selection decisions. PLoS One 2022; 17:e0268554. [PMID: 35939423 PMCID: PMC9359569 DOI: 10.1371/journal.pone.0268554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Talent identification and selection are critical components of competitive sport success. Despite the time, effort, and resources invested, the accuracy of selection decisions remains generally poor. While much of the scholarship in this area has focused on the factors discriminating skilled and less-skilled individuals, limited research exists on what information is used in the decision-making process for athlete selection. The current study seeks to gain a better understanding of the information used by elite distance running coaches when forming judgements for athlete selection. Ten semi-structured interviews with elite distance running coaches from across Canada were transcribed and analyzed using inductive thematic analysis. It was interpreted that coaches mainly gather information using their coach’s eye to determine an athlete’s ‘fit’ to the team. Coaches also use more objective information such as race times and movement analyses to assess performance and judge future ‘potential’. As well, the decisions were believed to be influenced by situational considerations at the time of the selection procedure. Specifically, these considerations affecting a coach’s selection included length of time to make a decision, personal limitations in decision-making abilities, and team circumstances. Interestingly, coaches recognized limitations in their selection practices and procedures and discussed some of their personal and system-level biases, highlighting their awareness of potential selection inefficiencies/inaccuracies. Overall, distance running coaches used a variety of techniques to gather information before a selection was made, relying on both subjective and objective information for crafting judgments. Findings are discussed in relation to implications for coaches, sport organizations, and talent identification and selection programs.
Collapse
Affiliation(s)
- Kathryn Johnston
- Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Joseph Baker
- Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
8
|
Ipekoglu G, Bulbul A, Cakir HI. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J Sports Med Phys Fitness 2021; 62:795-802. [PMID: 34028240 DOI: 10.23736/s0022-4707.21.12417-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Genetics has an important role in determining the athletic ability and endurance performance potential. This study aimed to investigate the variable results obtained from endurance athletes and control participants in terms of angiotensin-converting enzyme (ACE) and peroxisome proliferator-activated receptor alpha (PPARA) polymorphism distributions. METHODS Multiple electronic databases were investigated independently by two researchers. A meta-analysis was conducted on the association of ACE insertion/deletion (I/D) polymorphism and PPARA G/C polymorphisms with endurance athletes. Odds ratios (OR) and 95% confidence intervals (CI) were estimated. Twenty-six studies were identified for the ACE I/D for 2979 endurance athletes and 10048 control participants while seven studies were identified for PPARA G/C for 901 endurance athletes and 2292 control participants. RESULTS There was a significant difference in ACE genotype distribution between endurance athletes and control (II vs. ID+DD: OR=1.48; 95% CI=0.30-2.67; p=0.001). On the other hand, there was no a significant difference in PPARA G/C polymorphism genotype distribution between endurance athletes and control (GC+CC vs. GG: OR=0.93; 95% CI=-0.46-2.32; p=0.192; GC+GG vs CC: OR=0.62; 95% CI=-1.75-2.99; p=0.604). CONCLUSIONS The results have shown that ACE I/D polymorphism may be associated with endurance performance in sports and that the predominance of the ACE II genotype in a person may play an advantageous role in being an endurance athlete. However, this effect has not been observed in PPARA G/C polymorphism.
Collapse
Affiliation(s)
| | - Alpay Bulbul
- Faculty of Sports Sciences, Sinop University, Sinop, Turkey
| | - Halil I Cakir
- High School of Physical Education and Sports, Recep Tayyip Erdogan University, Rize, Turkey -
| |
Collapse
|
9
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. J Sports Sci 2021; 39:200-211. [PMID: 32856541 DOI: 10.1080/02640414.2020.1812195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D polymorphisms with athlete status in football and determine which allele and/or genotypes are most likely to influence this phenotype via a meta-analysis. A comprehensive search identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between the presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38). More specifically, the ACTN3 RR genotype (OR = 1.48, 95% CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the strongest associations, respectively. These findings may be explained by the association of the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative contribution of power-orientated phenotypes to success in football. As such, the results of this review provide further evidence that individual genetic variation may contribute towards athlete status and can differentiate athletes of different competitive playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that influence athlete status in football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University , Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth , Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne , Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| |
Collapse
|
10
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
11
|
Performance prediction models based on anthropometric, genetic and psychological traits of Croatian sprinters. Biol Sport 2018; 36:17-23. [PMID: 30899135 PMCID: PMC6413579 DOI: 10.5114/biolsport.2018.78901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022] Open
Abstract
Elite athletes differ from each other in their characteristics according to their discipline. This study aimed to identify performance predictors in elite Croatian sprinters taking into consideration their anthropometric, psychological and genetic characteristics. One hundred and four elite Croatian sprinters (68 males and 36 females) participated in this study. Of them, 38 are currently competing in the 100-metre dash. The others are former sprinters. The participants underwent direct anthropometric assessment. Participants were also tested by means of the Competitive State Anxiety Inventory-2 and for ACE and ACTN3 polymorphisms. Multiple linear regression analysis was applied to identify the best model for performance prediction. Different models were developed for males and females. Anthropometric traits accounted for 44% of the variance in performance for males, 62% for females. Once other traits (psychological for females) were entered into the model, no additional contribution to the variance was observed. The most significant predictors of higher running velocity were bicristal diameter and foot dimensions in males, and leg length and clean one-repetition maximum in females. The findings suggest that performance in sprinters is associated with anthropometric characteristics, with biomechanical implications that may be used to provide a more complete evaluation of sprinters' performance.
Collapse
|
12
|
Messias LHD, Ferrari HG, Pesquero JB, Milanski M, Esteves AM, Rojas MF, Reginato A, Malavazi-Piza KC, Silva ED, Manchado-Gobatto FB. Can the elite slalom kayaker’s performance be correlated with anthropometric, nutritional, genetic, psychological as sleep traits? MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
13
|
Gronek P, Gronek J, Lulińska-Kuklik E, Spieszny M, Niewczas M, Kaczmarczyk M, Petr M, Fischerova P, Ahmetov II, Żmijewski P. Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners. J Hum Kinet 2018; 64:87-98. [PMID: 30429902 PMCID: PMC6231335 DOI: 10.1515/hukin-2017-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate individually and in combination the association between the ACE (I/D), NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val) and AMPD1 (Gln45Ter) variants with endurance performance in a large, performance-homogenous cohort of elite Polish half marathoners. The study group consisted of 180 elite half marathoners: 76 with time < 100 minutes and 104 with time > 100 minutes. DNA of the subjects was extracted from buccal cells donated by the runners and genotyping was carried out using an allelic discrimination assay with a C1000 Touch Thermal Cycler (Bio-Rad, Germany) instrument with TaqMan® probes (NOS3, UCP2, and AMPD1) and a T100™ Thermal Cycler (Bio-Rad, Germany) instrument (ACE and BDKRB2). We found that the UCP2 Ala55Val polymorphism was associated with running performance, with the subjects carrying the Val allele being overrepresented in the group of most successful runners (<100 min) compared to the >100 min group (84.2 vs. 55.8%; OR = 4.23, p < 0.0001). Next, to assess the combined impact of 4 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles (ACE I, NOS3 Glu, BDKRB2 -9, UCP2 Val) they possessed. The proportion of subjects with a high (4-7) number of 'endurance' alleles was greater in the better half marathoners group compared with the >100 min group (73.7 vs. 51.9%; OR = 2.6, p = 0.0034). These data suggest that the likelihood of becoming an elite half marathoner partly depends on the carriage of a high number of endurance-related alleles.
Collapse
Affiliation(s)
- Piotr Gronek
- Laboratory of Genetics, Department of Gymnastics and Dance, University School of Physical Education in Poznań, Poznań, Poland
| | - Joanna Gronek
- Laboratory of Genetics, Department of Gymnastics and Dance, University School of Physical Education in Poznań, Poznań, Poland
| | - Ewelina Lulińska-Kuklik
- Department of Tourism and Recreation, University of Physical Education and Sport, Gdańsk, Poland
| | - Michał Spieszny
- Institute of Sports, Faculty of Physical Education and Sports, University of Physical Education, Krakow, Poland
| | - Marta Niewczas
- Faculty of Physical Education University of Rzeszów, RzeszówPoland
| | - Mariusz Kaczmarczyk
- Department of Tourism and Recreation, University of Physical Education and Sport, Gdańsk, Poland
| | - Miroslav Petr
- Department of Sport Games, Charles University in Prague, Prague, Czech Republic
| | - Patricia Fischerova
- Department of Methodology, Statistics and Informatics, J.Kukuczka Academy of Physical Education in Katowice, KatowicePoland
| | - Ildus I. Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Piotr Żmijewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
14
|
The influence of angiotensin-converting enzyme gene ID polymorphism on human physical fitness performance in European and other populations. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-016-0340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Coelho DB, Pimenta E, Rosse IC, Veneroso C, Pussieldi G, Becker LK, Carvalho MR, Silami-Garcia E. Angiotensin-converting enzyme (ACE-I/D) polymorphism frequency in Brazilian soccer players. Appl Physiol Nutr Metab 2016; 41:692-4. [PMID: 27232187 DOI: 10.1139/apnm-2015-0514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to analyze the angiotensin-converting enzyme (ACE-I/D) allelic and genotypic frequencies in Brazilian soccer players of different ages. The study group comprised 353 players from first-division clubs in the under (U)-14, U-15, U-17, U-20, and professional categories. The allelic and genotypic frequencies did not differ significantly in any of the categories between the group of players and the control group. This was the first study of ACE-I/D polymorphism in Brazilian soccer players.
Collapse
Affiliation(s)
- Daniel Barbosa Coelho
- a Sports Center, Federal University of Ouro Preto, CEP-35400-000 Minas Gerais, Brazil
| | - Eduardo Pimenta
- b Physical Education Department, School of Physical Education, Physiotherapy, and Occupational Therapy, Federal University of Minas Gerais, CEP-31270-901, Minas Gerais, Brazil
| | - Izinara Cruz Rosse
- c Laboratory of Human and Medical Genetics, Department of General Biology - Institute of Biological Sciences - CEP-31270-901, Federal University of Minas Gerais, Brazil
| | - Christiano Veneroso
- e Physical Education Department, Federal University of Maranhão, CEP-65080-805, São Luís, Brazil
| | - Guilherme Pussieldi
- d Physical Education Department, Federal University of Viçosa - Campus Florestal, CEP-35690-000 Florestal, Minas Gerais, Brazil
| | - Lenice Kapes Becker
- a Sports Center, Federal University of Ouro Preto, CEP-35400-000 Minas Gerais, Brazil
| | - Maria-Raquel Carvalho
- c Laboratory of Human and Medical Genetics, Department of General Biology - Institute of Biological Sciences - CEP-31270-901, Federal University of Minas Gerais, Brazil
| | - Emerson Silami-Garcia
- e Physical Education Department, Federal University of Maranhão, CEP-65080-805, São Luís, Brazil
| |
Collapse
|
16
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Shahmoradi S, Ahmadalipour A, Salehi M. Evaluation of ACE gene I/D polymorphism in Iranian elite athletes. Adv Biomed Res 2014; 3:207. [PMID: 25371864 PMCID: PMC4219205 DOI: 10.4103/2277-9175.143242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/14/2013] [Indexed: 11/30/2022] Open
Abstract
Background: Angiotensin converting enzyme (ACE) is an important gene, which is associated with the successful physical activity. The ACE gene has a major polymorphism (I/D) in intron 16 that determines its plasma and tissue levels. In this study, we aimed to determine whether there is an association between this polymorphism and sports performance in our studied population including elite athletes of different sports disciplines. We investigated allele frequency and genotype distribution of the ACE gene in 156 Iranian elite athletes compared to 163 healthy individuals. We also investigated this allele frequency between elite athletes in three functional groups of endurance, power, and mixed sports performances. Materials and Methods: DNA was extracted from peripheral blood, and polymerase chain reaction (PCR) method was performed on intron 16 of the ACE gene. The ACE genotype was determined for each subject. Statistical analysis was performed by SPSS 15, and results were analyzed by Chi-Square test. Results: There was a significant difference in genotype distribution and allele frequency of the ACE gene in athletes and control group (P = 0.05, P = 0.03, respectively). There was also a significant difference in allele frequency of the ACE gene in 3 groups of athletes with different sports disciplines (P = 0.045). Proportion of the ACE gene D allele was greater in elite endurance athletes (37 high-distance cyclists) than two other groups. Conclusions: Findings of the present study demonstrated that there is an association between the ACE gene I/D polymorphism and sports performance in Iranian elite athletes.
Collapse
Affiliation(s)
- Somayeh Shahmoradi
- Department of Genetics, Medical School, Isfahan University of Medical Sciences, Semnan, Iran
| | - Ali Ahmadalipour
- Department of Physiology, Medical School, Semnan University of Medical Sciences, Semnan, Iran
| | - Mansoor Salehi
- Department of Genetics, Medical School, Isfahan University of Medical Sciences, Semnan, Iran ; Medical Genetics Center of Genome, Isfahan, Iran
| |
Collapse
|
18
|
Di Cagno A, Sapere N, Piazza M, Aquino G, Iuliano E, Intrieri M, Calcagno G. ACE and AGTR1 Polymorphisms in Elite Rhythmic Gymnastics. Genet Test Mol Biomarkers 2013; 17:99-103. [DOI: 10.1089/gtmb.2012.0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alessandra Di Cagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- Department of Health Sciences, University of Rome “Foro Italico,” Rome, Italy
| | - Nadia Sapere
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Marina Piazza
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, Florence, Italy
| | - Giovanna Aquino
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Enzo Iuliano
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
19
|
Kothari ST, Chheda P, Chatterjee L, Das BR. Molecular analysis of genetic variation in angiotensin I-converting enzyme identifies no association with sporting ability: First report from Indian population. INDIAN JOURNAL OF HUMAN GENETICS 2012; 18:62-5. [PMID: 22754223 PMCID: PMC3385181 DOI: 10.4103/0971-6866.96653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION: A polymorphism in the angiotensin-converting enzyme (ACE) gene was the first performance enhancing polymorphisms (PEPs) to be identified and correlated with athletic abilities. This polymorphism (rs. 5186) is the absence (deletion; D allele), rather than the presence (insertion, I allele) of 287bp Alu repeat element in intron 16. However, the association of ACE I/D polymorphism in sports abilities have been contradicted and debated. No study has evaluated the ACE gene polymorphism in Indian athletes so far. Hence, the genotype distribution and allelic frequency of ACE gene in selected Indian athletic and non-athletic population was studied. MATERIALS AND METHODS: A total of 147 athletes and 131 controls were genotyped for the ACE gene polymorphism using PCR. RESULTS: No significant association was observed between the allelic frequencies of ACE gene in controls and athletes on a whole, as well as after sub-categorizing the athletes based on the type of sport they played (P > 0.1). However, a higher representation of I allele was observed in the athletes. CONCLUSION: ACE genotyping studies need to focus on truly elite athletes of a single sporting discipline, to be able to find an association. The ACE I/D polymorphism may not be considered a marker for human performance, but can be further studied in combination with other potent performance enhancing polymorphisms.
Collapse
Affiliation(s)
- Sweta T Kothari
- Research and Development, Super Religare Laboratories Ltd, S. V. Road, Goregaon (W), Mumbai-62, India
| | | | | | | |
Collapse
|
20
|
Micheli ML, Gulisano M, Morucci G, Punzi T, Ruggiero M, Ceroti M, Marella M, Castellini E, Pacini S. Angiotensin-converting enzyme/vitamin D receptor gene polymorphisms and bioelectrical impedance analysis in predicting athletic performances of Italian young soccer players. J Strength Cond Res 2011; 25:2084-91. [PMID: 21747292 DOI: 10.1519/jsc.0b013e31820238aa] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We evaluated the association between 2 genetic polymorphisms known to be involved in fitness and performance, and anthropometric features, body composition, and athletic performances in young male soccer players with the goal of identifying genetic profiles that can be used to achieve maximal results from training. One hundred twenty-five medium-high-level male soccer players were genotyped for angiotensin-converting enzyme (ACE) I/D, and vitamin D receptor (VDR) FokI gene polymorphisms and scored for anthropometric measurements, body composition, and athletic performance. Body mass index, fat mass, fat-free mass, resistance, reactance, impedance, phase angle (PA), and body cell mass were measured. Athletic performance was evaluated by squat jump, countermovement jump (CMJ), 2-kg medicine ball throw, 10- and 20-m sprint time. We observed that the homozygous ff genotype of the VDR gene was significantly more represented in young soccer players than in a matched sedentary population. Values of reactance and PA were differently distributed in ACE and VDR genotypes with high mean values in subjects with DD (ACE) and FF (VDR) genotypes. No correlation was observed between ACE or VDR genotypes and 2-kg medicine ball throw, 10- and 20-m sprint times. The ID genotype of ACE was associated with the best performances in squat jump and CMJ. Our results suggest that determination of ACE and VDR genotypes might help select those young athletes harboring the most favorable genetic potential to succeed in soccer.
Collapse
Affiliation(s)
- Matteo Levi Micheli
- Training Methodology and Applied Biomechanics Laboratory, Technical Division, Italian Football Federation (FIGC), Coverciano, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Massidda M, Vona G, Calò CM. Lack of association between ACE gene insertion/deletion polymorphism and elite artistic gymnastic performance of Italian gymnasts. Eur J Sport Sci 2011. [DOI: 10.1080/17461391.2010.499971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Tobina T, Michishita R, Yamasawa F, Zhang B, Sasaki H, Tanaka H, Saku K, Kiyonaga A. Association between the angiotensin I-converting enzyme gene insertion/deletion polymorphism and endurance running speed in Japanese runners. J Physiol Sci 2010; 60:325-30. [PMID: 20574690 PMCID: PMC10717577 DOI: 10.1007/s12576-010-0100-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 06/03/2010] [Indexed: 11/26/2022]
Abstract
We investigated the association between the angiotensin I-converting enzyme (ACE) gene insertion (I)/deletion (D) polymorphism and endurance running performance in Japanese elite runners, including several Olympic athletes. The frequency of the I/I genotype was not significantly higher and the frequency of the D/D genotype was not significantly lower in elite runners compared with non-athletes. However, the frequency of the I/D genotype tended to be lower in elite runners than in non-athletes. The best performance was significantly higher for runners with the D/D genotype than for those with the I/I genotype, and the average running speed was significantly higher for those with the combined D/D + I/D genotypes than for those with the I/I genotype. There were no I/I genotypes among the five fastest marathon runners. These results suggest that the D allele of the ACE gene I/D polymorphism is associated with a high level of human endurance.
Collapse
Affiliation(s)
- Takuro Tobina
- Graduate School of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 810-0180, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Boraita A, de la Rosa A, Heras ME, de la Torre AI, Canda A, Rabadán M, Díaz AE, González C, López M, Hernández M. Cardiovascular adaptation, functional capacity and Angiotensin-converting enzyme I/D polymorphism in elite athletes. Rev Esp Cardiol 2010; 63:810-9. [PMID: 20609315 DOI: 10.1016/s1885-5857(10)70166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION AND OBJECTIVES Angiotensin-converting enzyme (ACE) is associated with the development of cardiac hypertrophy and improved physical fitness. The objective of this study was to investigate the relationship between the ACE gene insertion/deletion (I/D) polymorphism and adaptation to sports training. METHODS The study included 299 elite Spanish athletes (193 men and 106 women) from 32 different sports disciplines, which were grouped according to their static and dynamic components. All participants underwent body composition analysis, Doppler echocardiography at rest, and ergospirometry. Their ACE genotype was determined using the polymerase chain reaction. RESULTS The most common genotype in both males and females was the deletion-insertion (DI) heterozygote (57.5% and 54.7%, respectively), followed by the DD homozygote (30.6% and 34.9%), and the II homozygote (11.9% and 10.4%). Differences in morphometric and functional cardiac adaptation were observed between the different sports disciplines, but there was no statistically significant relationship with the ACE I/D polymorphism. Moreover, when athletes with different genotypes were compared, the only differences observed were between the DD and DI groups in female athletes, who differed in body mass index and longitudinal right atrial dimension. CONCLUSIONS The ACE I/D polymorphism did not appear to influence cardiovascular adaptation in response to training. However, the DI genotype was the most common, probably because the sample was biased by being made up of elite athletes.
Collapse
Affiliation(s)
- Araceli Boraita
- Servicio de Cardiología, Cineantropometría, Fisiología y Laboratorio Clínico, Centro de Medicina del Deporte, Consejo Superior de Deportes, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Boraita A, de la Rosa A, Heras ME, de la Torre AI, Canda A, Rabadán M, Díaz ÁE, González C, López M, Hernández M. Adaptación cardiovascular, capacidad funcional y polimorfismo inserción/deleción de la enzima de conversión de angiotensina en deportistas de élite. Rev Esp Cardiol 2010. [DOI: 10.1016/s0300-8932(10)70184-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Scott RA, Irving R, Irwin L, Morrison E, Charlton V, Austin K, Tladi D, Deason M, Headley SA, Kolkhorst FW, Yang N, North K, Pitsiladis YP. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc 2010; 42:107-12. [PMID: 20010124 DOI: 10.1249/mss.0b013e3181ae2bc0] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED The angiotensin-converting enzyme (ACE) and the alpha-actinin-3 (ACTN3) genes are two of the most studied "performance genes" and both have been associated with sprint/power phenotypes and elite performance. PURPOSE To investigate the association between the ACE and the ACTN3 genotypes and sprint athlete status in elite Jamaican and US African American sprinters. METHODS The ACTN3 R577X and the ACE I/D and A22982G (rs4363) genotype distributions of elite Jamaican (J-A; N = 116) and US sprinters (US-A; N = 114) were compared with controls from the Jamaican (J-C; N = 311) and US African American (US-C; N = 191) populations. Frequency differences between groups were assessed by exact test. RESULTS For ACTN3, the XX genotype was found to be at very low frequency in both athlete and control cohorts (J-C = 2%, J-A = 3%, US-C = 4%, US-A = 2%). Athletes did not differ from controls in ACTN3 genotype distribution (J, P = 0.87; US, P = 0.58). Similarly, neither US nor Jamaican athletes differed from controls in genotype at ACE I/D (J, P = 0.44; US, P = 0.37). Jamaican athletes did not differ from controls for A22982G genotype (P = 0.28), although US sprinters did (P = 0.029), displaying an excess of heterozygotes relative to controls but no excess of GG homozygotes (US-C = 22%, US-A = 18%). CONCLUSIONS Given that ACTN3 XX genotype is negatively associated with elite sprint athlete status, the underlying low frequency in these populations eliminates the possibility of replicating this association in Jamaican and US African American sprinters. The finding of no excess in ACE DD or GG genotypes in elite sprint athletes relative to controls suggests that ACE genotype is not a determinant of elite sprint athlete status.
Collapse
|
26
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang P, Fedoruk MN, Rupert JL. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents? Sports Med 2009; 38:1065-79. [PMID: 19026021 DOI: 10.2165/00007256-200838120-00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma activity or block the action of angiotensin II, the question is relevant to the study of ergogenic agents and to the efforts to rid sports of 'doping'. This article discusses the possibility that ACE inhibitors and ARBs, by virtue of their effects on ACE or angiotensin II function, respectively, have performance-enhancing capabilities; it also reviews the data on the effects of these medications on VO2max, muscle composition and endurance capacity in patient and non-patient populations. We conclude that, while the direct evidence supporting the hypothesis that ACE-related medications are potential doping agents is not compelling, there are insufficient data on young, athletic populations to exclude the possibility, and there is ample, albeit indirect, support from genetic studies to suggest that they should be. Unfortunately, given the history of drug experimentation in athletes and the rapid appropriation of therapeutic agents into the doping arsenal, this indirect evidence, coupled with the availability of ACE-inhibiting and ACE-receptor blocking medications may be sufficiently tempting to unscrupulous competitors looking for a shortcut to the finish line.
Collapse
Affiliation(s)
- Pei Wang
- School of Human Kinetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
28
|
Yamin C, Amir O, Sagiv M, Attias E, Meckel Y, Eynon N, Sagiv M, Amir RE. ACE ID genotype affects blood creatine kinase response to eccentric exercise. J Appl Physiol (1985) 2007; 103:2057-61. [PMID: 17885020 DOI: 10.1152/japplphysiol.00867.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unaccustomed exercise may cause muscle breakdown with marked increase in serum creatine kinase (CK) activity. The skeletal muscle renin-angiotensin system (RAS) plays an important role in exercise metabolism and tissue injury. A functional insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene (rs4646994) has been associated with ACE activity. We hypothesized that ACE ID genotype may contribute to the wide variability in individuals' CK response to a given exercise. Young individuals performed maximal eccentric contractions of the elbow flexor muscles. Pre- and postexercise CK activity was determined. ACE genotype was significantly associated with postexercise CK increase and peak CK activity. Individuals harboring one or more of the I allele had a greater increase and higher peak CK values than individuals with the DD genotype. This response was dose-dependent (mean +/- SE U/L: II, 8,882 +/- 2,362; ID, 4,454 +/- 1,105; DD, 2,937 +/- 753, ANOVA, P = 0.02; P = 0.009 for linear trend). Multivariate stepwise regression analysis, which included age, sex, body mass index, and genotype subtypes, revealed that ACE genotype was the most powerful independent determinant of peak CK activity (adjusted odds ratio 1.3, 95% confidence interval 1.03-1.64, P = 0.02). In conclusion, we indicate a positive association of the ACE ID genotype with CK response to strenuous exercise. We suggest that the II genotype imposes increased risk for developing muscle damage, whereas the DD genotype may have protective effects. These findings support the role of local RAS in the regulation of exertional muscle injury.
Collapse
Affiliation(s)
- Chen Yamin
- Department of Genetics and Molecular Biology, The Zinman College of Physical Education and Sport Sciences at the Wingate Institute, Netanya, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Amir O, Amir R, Yamin C, Attias E, Eynon N, Sagiv M, Sagiv M, Meckel Y. TheACEdeletion allele is associated with Israeli elite endurance athletes. Exp Physiol 2007; 92:881-6. [PMID: 17631516 DOI: 10.1113/expphysiol.2007.038711] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An Alu insertion (I)/deletion (D) polymorphism in the angiotensin I converting enzyme (ACE) gene has been associated with ACE activity. Opposing effects on elite athletic performance have been proposed for the I and D alleles; while the D allele favours improved endurance ability, the I allele promotes more power-orientated events. We tested this hypothesis by determining the frequency of ACE ID alleles amongst 121 Israeli top-level athletes classified by their sporting discipline (marathon runners or sprinters). Genotyping for ACE ID was performed using polymerase chain reaction on DNA from leucocytes. The ACE genotype and allele frequencies were compared with those of 247 healthy individuals. Allele and genotype frequencies differed significantly between the groups. The frequency of the D allele was 0.77 in the marathon runners, 0.66 in the control subjects (P = 0.01) and 0.57 in the sprinters (P = 0.002). The ACE DD genotype was more prevalent among the endurance athletes (0.62) than among the control subjects (0.43, P = 0.004) and the power athletes (0.34, P = 0.004). In the group of elite athletes, the odds ratio of ACE DD genotype being an endurance athlete was 3.26 (95% confidence interval 1.49-7.11), and of ACE II genotype was 0.41 (95% confidence interval 0.14-1.19). We conclude that in Israeli elite marathon runners the frequency of the ACE D allele and ACE DD genotype seems to be higher than in sprinters, suggesting a positive association between the D allele and the likelihood of being an elite endurance athlete in some ethnic groups.
Collapse
Affiliation(s)
- Offer Amir
- Heart Failure Service, Lin Medical Center, Department of Cardiology, Lady Davis Carmel Medical Center, Michal 7 Street, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rankinen T, Bray MS, Hagberg JM, Pérusse L, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc 2007; 38:1863-88. [PMID: 17095919 DOI: 10.1249/01.mss.0000233789.01164.4f] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed, but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, in the early version of the gene map, 29 loci were depicted. In contrast, the 2005 human gene map for physical performance and health-related phenotypes includes 165 autosomal gene entries and QTL, plus five others on the X chromosome. Moreover, there are 17 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes. Thus, the map is growing in complexity. Unfortunately, progress is slow in the field of genetics of fitness and performance, primarily because the number of laboratories and scientists focused on the role of genes and sequence variations in exercise-related traits continues to be quite limited.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc 2004; 36:1451-69. [PMID: 15354024 DOI: 10.1249/01.mss.0000139902.42385.5f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents the 2003 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2003 and includes association studies with candidate genes, genome-wide scans with polymorphic markers, and single-gene defects causing exercise intolerance to variable degrees. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in sedentary or active people, in adaptation to acute exercise, or for training-induced changes are positioned on the genetic map of all autosomes and the X chromosome. Negative studies are reviewed but a gene or locus must be supported by at least one positive study before being inserted on the map. By the end of 2000, 29 loci were depicted on the first edition of the map. In contrast, the 2003 human gene map for physical performance and health-related phenotypes includes 109 autosomal gene entries and QTL, plus two on the X chromosome. Moreover, there are 15 mitochondrial genes in which sequence variants have been shown to influence relevant fitness and performance phenotypes.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA.
| | | | | | | | | | | |
Collapse
|