1
|
Abstract
Multiple types of neural progenitor cells (NPCs) contribute to the development of the neocortex, a brain region responsible for our higher cognitive abilities. Proliferative capacity of NPCs varies among NPC types, developmental stages, and species. The higher proliferative capacity of NPCs in the developing human neocortex is thought to be a major contributing factor why humans have the most expanded neocortex within primates. Recent studies have shed light on the importance of cell metabolism in the neocortical NPC proliferative capacity. Specifically, glutaminolysis, a metabolic pathway that converts glutamine to glutamate and then to α-ketoglutarate, has been shown to play a critical role in human NPCs, both in apical and basal progenitors. In this review, we summarize our current knowledge of NPC metabolism, focusing especially on glutaminolysis, and discuss the role of NPC metabolism in neocortical development, evolution, and neurodevelopmental disorders, providing a broader perspective on a newly emerging research field.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE—Helsinki
Institute of Life Science, University of Helsinki, Helsinki, Finland
- Takashi Namba, Neuroscience Center, HiLIFE
— Helsinki Institute of Life Science, University of Helsinki, PO 63,
Haartmaninkatu 8, Helsinki 00014, Finland.
| |
Collapse
|
2
|
Shin S, Santi A, Huang S. Conditional Pten knockout in parvalbumin- or somatostatin-positive neurons sufficiently leads to autism-related behavioral phenotypes. Mol Brain 2021; 14:24. [PMID: 33504340 PMCID: PMC7839207 DOI: 10.1186/s13041-021-00731-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Disrupted GABAergic neurons have been extensively described in brain tissues from individuals with autism spectrum disorder (ASD) and animal models for ASD. However, the contribution of these aberrant inhibitory neurons to autism-related behavioral phenotypes is not well understood. We examined ASD-related behaviors in mice with conditional Pten knockout in parvalbumin (PV)-expressing or somatostatin (Sst)-expressing neurons, two common subtypes of GABAergic neurons. We found that mice with deletion of Pten in either PV-neurons or Sst-neurons displayed social deficits, repetitive behaviors and impaired motor coordination/learning. In addition, mice with one copy of Pten deletion in PV-neurons exhibited hyperlocomotion in novel open fields and home cages. We also examined anxiety behaviors and found that mice with Pten deletion in Sst-neurons displayed anxiety-like behaviors, while mice with Pten deletion in PV-neurons exhibited anxiolytic-like behaviors. These behavioral assessments demonstrate that Pten knockout in the subtype of inhibitory neurons sufficiently gives rise to ASD-core behaviors, providing evidence that both PV- and Sst-neurons may play a critical role in ASD symptoms.
Collapse
Affiliation(s)
- Sangyep Shin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201 USA
| | - Andrea Santi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201 USA
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201 USA
| |
Collapse
|
3
|
Mathew L, George R, Sudhakar S, Keshava SN, Fouzia NA. Clinical Profile of Overgrowth Syndromes Consistent with PROS ( PIK3CA-Related Overgrowth Syndromes)-A Case Series. Indian Dermatol Online J 2020; 11:738-746. [PMID: 33235839 PMCID: PMC7678549 DOI: 10.4103/idoj.idoj_520_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/07/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Context: PIK3CA-related overgrowth syndrome (PROS) is characterized by focal and disproportionate growth of acral body structures in a mosaic pattern with varied phenotypes. Clinical diagnostic criteria are available and testing of the mutation is recommended for diagnosis. Cutaneous features described in these conditions include epidermal nevi and vascular malformations which form part of the diagnostic criteria. Aims: To detail the clinical profile of patients with presumptive PROS. Settings and Design: We conducted a retrospective study of 15 patients with focal overgrowth of the extremities or macrocephaly who presented to the department of dermatology at a tertiary care hospital in South India. Subjects and Methods: Data were collected through electronic medical records from July 2012 to April 2018 over 70 months. The criterion proposed by Keppler-Noreuil et al. was used for classifying them as presumptive PROS in the absence of genetic studies. Statistical Analysis Used: Descriptive analysis. Results: There were nine males and six females; mean age of 12.10 years (range: 8 months to 73 years) with clinical features consistent with PROS. There was a higher frequency of vascular malformations (9/15, 60%) and of epidermal nevi (7/15, 46.6%) than that reported in the literature. Unusual features included focal acrochordons, blaschkoid hypopigmentation and linear papillomatous growths in the oral mucosa. Conclusions: This study provides data on the clinical features of patients with PROS from the Indian subcontinent. In resource-poor settings, clinical criteria may be adequate for diagnosis due to restricted accessibility of technically challenging diagnostic tests.
Collapse
Affiliation(s)
- Lydia Mathew
- Department of Dermatology, Venereology and Leprosy, Christian Medical College, Vellore, Tamil Nadu, India
| | - Renu George
- Department of Dermatology, Venereology and Leprosy, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sniya Sudhakar
- Department of Radiodiagnosis, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shyamkumar N Keshava
- Department of Radiodiagnosis, Christian Medical College, Vellore, Tamil Nadu, India
| | - N A Fouzia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Juarez-Carreño S, Morante J, Dominguez M. Systemic signalling and local effectors in developmental stability, body symmetry, and size. Cell Stress 2018; 2:340-361. [PMID: 31225459 PMCID: PMC6551673 DOI: 10.15698/cst2018.12.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbations and the ability of an individual to cope with them. As the left and right sides of an individual were presumed to be genetically identical, deviations of symmetry were traditionally attributed to non-genetic effects such as environmental and developmental noise. In this review, we draw attention to other possible sources of variability, especially to somatic mutations and transposons. Mutations are a major source of phenotypic variability and recent genomic data have highlighted somatic mutations as ubiquitous, even in phenotypically normal individuals. We discuss the importance of factors that are responsible for buffering and stabilizing the genome and for maintaining size robustness and quality through elimination of less-fit or damaged cells. However, the important question that arises from these studies is whether this self-correcting capacity and intrinsic organ size controls are sufficient to explain how symmetric structures can reach an identical size and shape. Indeed, recent discoveries in the fruit fly have uncovered a conserved hormone of the insulin/IGF/relaxin family, Dilp8, that is responsible for stabilizing body size and symmetry in the face of growth perturbations. Dilp8 alarm signals periphery growth status to the brain, where it acts on its receptor Lgr3. Loss of Dilp8-Lgr3 signaling renders flies incapable of detecting growth perturbations and thus maintaining a stable size and symmetry. These findings help to understand how size and symmetry of somatic tissues remain undeterred in noisy environments, after injury or illnesses, and in the presence of accumulated somatic mutations.
Collapse
Affiliation(s)
- Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| |
Collapse
|
6
|
Ghosh S, Huber C, Siour Q, Sousa SB, Wright M, Cormier-Daire V, Erneux C. Fibroblasts derived from patients with opsismodysplasia display SHIP2-specific cell migration and adhesion defects. Hum Mutat 2017; 38:1731-1739. [DOI: 10.1002/humu.23321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Somadri Ghosh
- IRIBHM; Campus Erasme; ULB Bâtiment C; Bruxelles Belgium
| | - Céline Huber
- Department of Medical Genetics; Reference Center for Skeletal Dysplasia; INSERM UMR 1163; Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia; Paris Descartes-Sorbonne Paris Cité University; AP-HP; Institut Imagine; Paris France
- Hôpital Universitaire Necker-Enfants Malades; Paris France
| | - Quentin Siour
- Department of Medical Genetics; Reference Center for Skeletal Dysplasia; INSERM UMR 1163; Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia; Paris Descartes-Sorbonne Paris Cité University; AP-HP; Institut Imagine; Paris France
- Hôpital Universitaire Necker-Enfants Malades; Paris France
| | - Sérgio B. Sousa
- Medical Genetics Unit; Hospital Pediátrico; Centro Hospitalare Universitário de Coimbra; Coimbra Portugal
| | - Michael Wright
- Northern Genetics Service; Newcastle-upon-Tyne Hospitals; Newcastle- upon-Tyne UK
| | - Valérie Cormier-Daire
- Department of Medical Genetics; Reference Center for Skeletal Dysplasia; INSERM UMR 1163; Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia; Paris Descartes-Sorbonne Paris Cité University; AP-HP; Institut Imagine; Paris France
- Hôpital Universitaire Necker-Enfants Malades; Paris France
| | | |
Collapse
|
7
|
Arts FA, Chand D, Pecquet C, Velghe AI, Constantinescu S, Hallberg B, Demoulin JB. PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib. Oncogene 2015; 35:3239-48. [PMID: 26455322 DOI: 10.1038/onc.2015.383] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/27/2015] [Accepted: 09/04/2015] [Indexed: 12/26/2022]
Abstract
Recently, germline and somatic heterozygous mutations in the platelet-derived growth factor receptor β (PDGFRB) have been associated with familial infantile myofibromatosis (IM), which is characterized by soft tissue tumors, and overgrowth syndrome, a disease that predisposes to cancer. These mutations have not been functionally characterized. In the present study, the activity of three PDGFRB mutants associated with familial IM (R561C, P660T and N666K) and one PDGFRB mutant found in patients with overgrowth syndrome (P584R) was tested in various models. The P660T mutant showed no difference with the wild-type receptor, suggesting that it might represent a polymorphic variant unrelated to the disease. By contrast, the three other mutants were constitutively active and able to transform NIH3T3 and Ba/F3 cells to different extents. In particular, the germline mutant identified in overgrowth syndrome, P584R, was a stronger oncogene than the germline R561C mutant associated with myofibromatosis. The distinct phenotypes associated with these two mutations could be related to this difference of potency. Importantly, all activated mutants were sensitive to tyrosine kinase inhibitors such as imatinib, nilotinib and ponatinib. In conclusion, the PDGFRB mutations previously identified in familial IM and overgrowth syndrome activate the receptor in the absence of ligand, supporting the hypothesis that these mutations cause the diseases. Moreover, imatinib seems to be a promising treatment for patients carrying these mutations. To our knowledge, these are the first confirmed gain-of-function point mutations of PDGFRB in human cancer.
Collapse
Affiliation(s)
- F A Arts
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - D Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - C Pecquet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium
| | - A I Velghe
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - S Constantinescu
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium
| | - B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - J-B Demoulin
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Abstract
Disorders of brain overgrowth are significant causes of intractable epilepsy, intellectual disability, autism, and other complex neurological problems. The pathology of these disorders is sometimes striking and characteristic, as in hemimegalencephaly, but can also be subtle, as in autism. Recent genetic studies have shown that many diverse forms of brain overgrowth are caused by de novo mutations that increase activity in the receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase (PI3K)-AKT signaling pathway, a key mediator of signaling by growth factors in the developing brain, such as fibroblast growth factors. In cases where mutations arise in postzygotic embryos, brain regions exhibit mosaic pathology that reflects the distribution of mutant cells, ranging from focal cortical dysplasia to lobar or hemispheric overgrowth. In turn, the histopathology of these disorders is also remarkably varied. The common underlying mechanisms of RTK-PI3K-AKT overactivation suggest new possibilities for drugs that inhibit this pathway.
Collapse
Affiliation(s)
- Robert F. Hevner
- Departments of Neurological Surgery and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
9
|
Lacerda LDS, Alves ÚD, Zanier JFC, Machado DC, Camilo GB, Lopes AJ. Differential diagnoses of overgrowth syndromes: the most important clinical and radiological disease manifestations. Radiol Res Pract 2014; 2014:947451. [PMID: 25009745 PMCID: PMC4070411 DOI: 10.1155/2014/947451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 12/25/2022] Open
Abstract
Overgrowth syndromes comprise a heterogeneous group of diseases that are characterized by excessive tissue development. Some of these syndromes may be associated with dysfunction in the receptor tyrosine kinase (RTK)/PI3K/AKT pathway, which results in an increased expression of the insulin receptor. In the current review, four overgrowth syndromes were characterized (Proteus syndrome, Klippel-Trenaunay-Weber syndrome, Madelung's disease, and neurofibromatosis type I) and illustrated using cases from our institution. Because these syndromes have overlapping clinical manifestations and have no established genetic tests for their diagnosis, radiological methods are important contributors to the diagnosis of many of these syndromes. The correlation of genetic discoveries and molecular pathways that may contribute to the phenotypic expression is also of interest, as this may lead to potential therapeutic interventions.
Collapse
Affiliation(s)
- Letícia da Silva Lacerda
- Department of Radiology, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Úrsula David Alves
- Department of Radiology, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
| | | | - Dequitier Carvalho Machado
- Department of Radiology, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
- Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Gustavo Bittencourt Camilo
- Department of Radiology, State University of Rio de Janeiro, 20551-030 Rio de Janeiro, RJ, Brazil
- Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Agnaldo José Lopes
- Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, 20550-170 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Nakayama Y, Segawa J, Sujita K, Minagawa N, Torigoe T, Hisaoka M, Yamaguchi K. Intestinal bleeding from arteriovenous malformations of the small bowel in a patient with Cowden syndrome: report of a case. Surg Today 2013; 43:542-546. [PMID: 23247890 DOI: 10.1007/s00595-012-0460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/12/2012] [Indexed: 10/27/2022]
Abstract
This report presents the case of a patient with Cowden syndrome who had arteriovenous malformations (AVMs) at the jejunum and the ileum and experienced intestinal bleeding. A 54-year-old Japanese male presented with general fatigue and melena. Endoscopic examinations showed gastrointestinal polyposis from the esophagus to the rectum. However, the site of bleeding was not identified. There were some papules on his face and neck. He also had macrocephaly and had multiple papillomas along the gum-line. These findings indicated a clinical diagnosis of Cowden syndrome. Enhanced computed tomography (CT) and angiography analyses indicated the presence of AVMs at the jejunum and the ileum. He was treated with partial resection of the jejunum and ileum including these two AVMs. This was a rare case of two AVMs involving the small bowel in a patient with Cowden syndrome. Enhanced CT was very useful and convenient for the detection of gastrointestinal AVMs in this case.
Collapse
Affiliation(s)
- Yoshifumi Nakayama
- Department of Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kita-kyushu 807-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Nakayama Y, Kusuda S, Nagata N, Yamaguchi K. Excision of a large abdominal wall lipoma improved bowel passage in a Proteus syndrome patient. World J Gastroenterol 2009; 15:3312-3314. [PMID: 19598310 PMCID: PMC2710790 DOI: 10.3748/wjg.15.3312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/03/2009] [Accepted: 06/10/2009] [Indexed: 02/06/2023] Open
Abstract
Proteus syndrome is an extremely rare congenital disorder that produces multifocal overgrowth of tissue. This report presents a surgical case of a large lipoma in the abdominal wall of a patient with Proteus syndrome. She was diagnosed with Proteus syndrome based on certain diagnostic criteria. The neoplasm increased in size gradually, producing hemihypertrophy of her left lower extremity and trunk, and spread to her retroperitoneum and her left abdominal wall. She experienced gradually progressive constipation, nausea, vomiting, and abdominal pain. Computed tomography (CT) of the abdomen demonstrated a large mass in the subcutaneous adipose tissue of the left lower abdominal wall which measured 12 cm x 8 cm x 6 cm in diameter and encased the left colon. This mass in the abdominal wall was excised. The weight of the excised mass was 1550 g. The histopathological diagnosis of this mass was lipoma. After surgery, the encasement of the left colon was improved, and the patient was able to move her bowels twice per day. The excision of the large lipoma in the abdominal wall contributed to the improved bowel passage in this patient with Proteus syndrome.
Collapse
|
12
|
The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med 2009; 11:111-7. [PMID: 19265751 DOI: 10.1097/gim.0b013e31818fd762] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To define the prevalence of PTEN mutations in a clinical cohort of pediatric subjects with autism spectrum disorders (ASDs), developmental delay/mental retardation (DD/MR), and/or macrocephaly and to assess genotype-phenotype correlations. METHODS Medical records of patients who had clinical PTEN gene sequencing ordered through our institution between January 1, 2005 and December 31, 2007 were abstracted to confirm genetic test results and medical diagnoses. Phenotypic information related to the diagnoses, prenatal history, early developmental milestones, physical characteristics, and family history for those with a confirmed PTEN mutation was also recorded. RESULTS One hundred fourteen patients were tested during this time period for indications of ASDs (N = 60), DD/MR (N = 49), or macrocephaly only (N = 5). Eleven mutations were identified: five in patients with ASDs and six in those with DD/MR, resulting in a prevalence of 8.3% and 12.2% in these respective clinical populations. All individuals with a PTEN mutation had significant macrocephaly (>2.0 SD) CONCLUSIONS: These data illustrate that PTEN gene sequencing has a high diagnostic yield when performed in a selected population of individuals with ASDs or DD/MR and macrocephaly. Germline mutations in PTEN are an important, identifiable etiology among these patients.
Collapse
|
13
|
Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 2004; 64:7773-9. [PMID: 15520182 DOI: 10.1158/0008-5472.can-04-2487] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Somatic mutations of PTEN are found in many types of cancers including glioblastoma, the most malignant astrocytic tumor. PTEN mutation occurs in 25 to 40% of glioblastomas but is rarely observed in low-grade glial neoplasms. To determine the role of Pten in astrocytes and glial tumor formation, we inactivated Pten by a Cre-loxP approach with a GFAP-cre transgenic mouse that induced Cre-mediated recombination in astrocytes. Pten conditional knockout mice showed a striking progressive enlargement of the entire brain. Increased nuclear and soma size was observed in both astrocytes and neurons, which contributed in part to the increase in brain size. Pten-deficient astrocytes showed accelerated proliferation in vitro and aberrant ongoing proliferation in adult brains in vivo. In contrast, neurons lacking Pten did not show alterations in proliferation. This study shows cell-type dependent effects of Pten loss in the adult brain, including increased astrocyte proliferation that may render astroglial cells susceptible to neoplastic transformation or malignant progression.
Collapse
Affiliation(s)
- Melissa M Fraser
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|