1
|
Cappato S, Divizia MT, Menta L, Rosti G, Puliti A, Martinheira Da Silva JS, Santamaria G, Di Duca M, Ronchetto P, Faravelli F, Zara F, Bocciardi R. LMX1B haploinsufficiency due to variants in the 5'UTR as a cause of Nail-Patella syndrome. NPJ Genom Med 2025; 10:10. [PMID: 39939609 PMCID: PMC11822002 DOI: 10.1038/s41525-024-00460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/20/2024] [Indexed: 02/14/2025] Open
Abstract
Nail-Patella syndrome (NPS) is a rare autosomal dominant condition due to haploinsufficiency of LMX1B, caused by loss-of-function variants affecting the coding sequence, or partial/whole deletions of the gene. In here, we describe two familial cases of NPS, carrying novel variants of the LMX1B 5'UTR region (-174C>T and -226G>A). To verify their pathogenic role, we carried out a functional characterization, both by reporter gene assays in heterologous systems and in patient's derived cells. We demonstrated that both variants impair LMX1B expression at post-transcriptional level. They introduce two upstream open reading frames (uORFs), out-of-frame with the main LMX1B coding sequence, generating transcripts detected by the non-sense mediated decay (NMD). We also demonstrated that the escape of the altered mRNA from NMD, if any, may lead to the synthesis of an aberrant LMX1B protein.
Collapse
Affiliation(s)
- Serena Cappato
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Teresa Divizia
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ludovica Menta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giulia Rosti
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Aldamaria Puliti
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Joana Soraia Martinheira Da Silva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giuseppe Santamaria
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Francesca Faravelli
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Renata Bocciardi
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
2
|
Lebret T, Hatton S, Callebert J, Cormier-Daire V, Greco C. Evidence for therapeutic use of cannabidiol for nail-patella syndrome-induced pain in a real-world pilot study. Sci Rep 2024; 14:30105. [PMID: 39627343 PMCID: PMC11615274 DOI: 10.1038/s41598-024-79239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Nail-patella syndrome (NPS) is a rare genetic disease characterized by dysplastic nails, patella abnormalities, skeletal malformation, and chronic pain. Although chronic pain in NPS is mainly due to bone and musculoskeletal symptoms, it can also result from neurological dysfunction. Conventional analgesics are often insufficient to relieve NPS-associated chronic pain. Cannabinoids, which act on the serotonergic and/or noradrenergic pain systems, may therefore represent valuable non-psychoactive alternatives for managing pain in these patients. The effectiveness and safety of synthetic cannabidiol (CBD) for the management of NPS-associated pain was assessed using real-world data from a pilot cohort of patients with NPS who received a 3-month treatment with oral CBD. The treatment (median dose of 900 mg/day) was associated with a significant reduction in pain intensity (mean score of 7.04 ± 0.24 at initiation versus 4.04 ± 0.38 at 3 months, N = 28, p < 0.0001), which correlated with changes in the peripheral concentration of noradrenaline (r = 0.705, 95% CI [0.44-0.86], p < 0.0001). Health-related quality of life and other NPS-associated symptoms also improved in most patients. CBD treatment was well tolerated and no elevations in liver enzyme levels were reported. Synthetic CBD therefore appears to be a safe and effective treatment option for managing NPS-associated chronic pain.
Collapse
Affiliation(s)
- Thibaud Lebret
- Department of Pain and Palliative Care, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, France
| | - Séverine Hatton
- Department of Pain and Palliative Care, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, France
| | - Jacques Callebert
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, AP-HP, Paris, France
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Valérie Cormier-Daire
- Service de médecine génomique des maladies rares, Centre de référence des maladies osseuses constitutionnelles, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Université Paris Cité, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Céline Greco
- Department of Pain and Palliative Care, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, Paris, France.
- Université Paris Cité, INSERM UMR 1163, Institut Imagine, Paris, France.
| |
Collapse
|
3
|
Castilla‐Ibeas A, Zdral S, Oberg KC, Ros MA. The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration. Dev Dyn 2024; 253:798-814. [PMID: 38288855 PMCID: PMC11656695 DOI: 10.1002/dvdy.695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 12/20/2024] Open
Abstract
The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies-a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.
Collapse
Affiliation(s)
- Alejandro Castilla‐Ibeas
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Sofía Zdral
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Kerby C. Oberg
- Department of Pathology and Human AnatomyLoma Linda University, School of MedicineLoma LindaCaliforniaUSA
| | - Marian A. Ros
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| |
Collapse
|
4
|
Matsumoto K, Matsumoto Y, Nawachi S, Asano Y, Katayama Y, Miyawaki Y, Katsuyama T, Katsuyama E, Nasu Y, Sada KE, Wada J. The first presentation of a case of nail-patella syndrome newly diagnosed at the onset of rheumatoid arthritis: a case report. BMC Musculoskelet Disord 2024; 25:139. [PMID: 38355529 PMCID: PMC10865650 DOI: 10.1186/s12891-024-07242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Nail-patella syndrome (NPS) is a rare autosomal dominant disorder that is characterized by dysplasia of the nails, hypoplasia and/or dislocation of the patella and the presence of iliac horns. Using the CARE guidelines, we present the first reported case of NPS that was newly diagnosed at the onset of rheumatoid arthritis (RA). CASE PRESENTATION A 74-year-old man was admitted to our hospital due to an 8-month history of arthralgia in bilateral wrists, elbows and fingers. He had a past history of glaucoma and left patella dislocation that had been operatively recentered at the age of 15 years. Laboratory data showed elevated levels of serum C-reactive protein and rheumatoid factor and an elevated titer of anti-SS-A antibodies, while estimated glomerular filtration rate (eGFR), titers of other antibodies and the results of a urinary test were normal. An X-ray showed deformity of bilateral radial heads and the right elbow, and magnetic resonance imaging (MRI) of his hands showed synovitis and erosion in the multiple swollen joints of the wrists and fingers. In addition to these typical features of RA, he had bilateral thumb nail dysplasia with mild hypoplasia of bilateral patellae and iliac horns as shown by the X-ray. He was diagnosed as having autosomal dominant disorder NPS co-existing with RA and he was treated with methotrexate in combination with an oral Janus kinase (JAK) inhibitor, leading to induction of remission. CONCLUSIONS We have presented a rare case of NPS that was newly diagnosed at the onset of RA. Clinical and radiographic findings of NPS are highlighted in this case report for diagnosing NPS on the basis of typical manifestations.
Collapse
Affiliation(s)
- Kazuya Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
- Department of Rheumatology, Chugoku Central Hospital, 148-13 Kamiiwanari, Miyuki-Cho, Fukuyama, 720-0001, Japan.
| | - Shoichi Nawachi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yu Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshihisa Nasu
- Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Department of Clinical Epidemiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
5
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
6
|
Monteiro C, Cardoso-Cruz H, Galhardo V. Animal models of congenital hypoalgesia: Untapped potential for assessing pain-related plasticity. Neurosci Lett 2019; 702:51-60. [DOI: 10.1016/j.neulet.2018.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Yvone GM, Zhao-Fleming HH, Udeochu JC, Chavez-Martinez CL, Wang A, Hirose-Ikeda M, Phelps PE. Disabled-1 dorsal horn spinal cord neurons co-express Lmx1b and function in nociceptive circuits. Eur J Neurosci 2017; 45:733-747. [PMID: 28083884 DOI: 10.1111/ejn.13520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
The Reelin-signaling pathway is essential for correct neuronal positioning within the central nervous system. Mutant mice with a deletion of Reelin, its lipoprotein receptors, or its intracellular adaptor protein Disabled-1 (Dab1), exhibit nociceptive abnormalities: thermal (heat) hyperalgesia and reduced mechanical sensitivity. To determine dorsal horn alterations associated with these nociceptive abnormalities, we first characterized the correctly positioned Dab1 neurons in wild-type and mispositioned neurons in Reelin-signaling pathway mutant lumbar spinal cord. Using immunofluorescence, we found that 70% of the numerous Dab1 neurons in Reln+/+ laminae I-II and 67% of those in the lateral reticulated area and lateral spinal nucleus (LSN) co-express the LIM-homeobox transcription factor 1 beta (Lmx1b), an excitatory glutamatergic neuron marker. Evidence of Dab1- and Dab1-Lmx1b neuronal positioning errors was found within the isolectin B4 terminal region of Reln-/- lamina IIinner and in the lateral reticulated area and LSN, where about 50% of the Dab1-Lmx1b neurons are missing. Importantly, Dab1-Lmx1b neurons in laminae I-II and the lateral reticulated area express Fos after noxious thermal or mechanical stimulation and thus participate in these circuits. In another pain relevant locus - the lateral cervical nucleus (LCN), we also found about a 50% loss of Dab1-Lmx1b neurons in Reln-/- mice. We suggest that extensively mispositioned Dab1 projection neurons in the lateral reticulated area, LSN, and LCN and the more subtle positioning errors of Dab1 interneurons in laminae I-II contribute to the abnormalities in pain responses found in Reelin-signaling pathway mutants.
Collapse
Affiliation(s)
- Griselda M Yvone
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Hannah H Zhao-Fleming
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Joe C Udeochu
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Carmine L Chavez-Martinez
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Austin Wang
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Megumi Hirose-Ikeda
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | - Patricia E Phelps
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Sciences Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| |
Collapse
|
8
|
Cell fate determination, neuronal maintenance and disease state: The emerging role of transcription factors Lmx1a and Lmx1b. FEBS Lett 2015; 589:3727-38. [PMID: 26526610 DOI: 10.1016/j.febslet.2015.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/28/2023]
Abstract
LIM-homeodomain (LIM-HD) proteins are evolutionary conserved developmental transcription factors. LIM-HD Lmx1a and Lmx1b orchestrate complex temporal and spatial gene expression of the dopaminergic pathway, and evidence shows they are also involved in adult neuronal homeostasis. In this review, the multiple roles played by Lmx1a and Lmx1b will be discussed. Controlled Lmx1a and Lmx1b expression and activities ensure the proper formation of critical signaling centers, including the embryonic ventral mesencephalon floor plate and sharp boundaries between lineage-specific cells. Lmx1a and Lmx1b expression persists in mature dopaminergic neurons of the substantia nigra pars compacta and the ventral tegmental area, and their role in the adult brain is beginning to be revealed. Notably, LMX1B expression was lower in brain tissue affected by Parkinson's disease. Actual and future applications of Lmx1a and Lmx1b transcription factors in stem cell production as well as in direct conversion of fibroblast into dopaminergic neurons are also discussed. A thorough understanding of the role of LMX1A and LMX1B in a number of disease states, including developmental diseases, cancer and neurodegenerative diseases, could lead to significant benefits for human healthcare.
Collapse
|
9
|
Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception. J Neurosci 2015; 35:5233-46. [PMID: 25834049 DOI: 10.1523/jneurosci.4690-14.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal cord neurons respond to peripheral noxious stimuli and relay this information to higher brain centers, but the molecules controlling the assembly of such pathways are poorly known. In this study, we use the intersection of Lmx1b and Hoxb8::Cre expression in the spinal cord to genetically define nociceptive circuits. Specifically, we show that Lmx1b, previously shown to be expressed in glutamatergic dorsal horn neurons and critical for dorsal horn development, is expressed in nociceptive dorsal horn neurons and that its deletion results in the specific loss of excitatory dorsal horn neurons by apoptosis, without any effect on inhibitory neuron numbers. To assess the behavioral consequences of Lmx1b deletion in the spinal cord, we used the brain-sparing driver Hoxb8::Cre. We show that such a deletion of Lmxb1 leads to a robust reduction in sensitivity to mechanical and thermal noxious stimulation. Furthermore, such conditional mutant mice show a loss of a subpopulation of glutamatergic dorsal horn neurons, abnormal sensory afferent innervations, and reduced spinofugal innervation of the parabrachial nucleus and the periaqueductal gray, important nociceptive structures. Together, our results demonstrate an important role for the intersection of Lmx1b and Hoxb8::cre expression in the development of nociceptive dorsal horn circuits critical for mechanical and thermal pain processing.
Collapse
|
10
|
He B, Ebarasi L, Zhao Z, Guo J, Ojala JRM, Hultenby K, De Val S, Betsholtz C, Tryggvason K. Lmx1b and FoxC combinatorially regulate podocin expression in podocytes. J Am Soc Nephrol 2014; 25:2764-77. [PMID: 24854274 DOI: 10.1681/asn.2012080823] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Podocin is a key protein of the kidney podocyte slit diaphragm protein complex, an important part of the glomerular filtration barrier. Mutations in the human podocin gene NPHS2 cause familial or sporadic forms of renal disease owing to the disruption of filtration barrier integrity. The exclusive expression of NPHS2 in podocytes reflects its unique function and raises interesting questions about its transcriptional regulation. Here, we further define a 2.5-kb zebrafish nphs2 promoter fragment previously described and identify a 49-bp podocyte-specific transcriptional enhancer using Tol2-mediated G0 transgenesis in zebrafish. Within this enhancer, we identified a cis-acting element composed of two adjacent DNA-binding sites (FLAT-E and forkhead) bound by transcription factors Lmx1b and FoxC. In zebrafish, double knockdown of Lmx1b and FoxC orthologs using morpholino doses that caused no or minimal phenotypic changes upon individual knockdown completely disrupted podocyte development in 40% of injected embryos. Co-overexpression of the two genes potently induced endogenous nphs2 expression in zebrafish podocytes. We found that the NPHS2 promoter also contains a cis-acting Lmx1b-FoxC motif that binds LMX1B and FoxC2. Furthermore, a genome-wide search identified several genes that carry the Lmx1b-FoxC motif in their promoter regions. Among these candidates, motif-driven podocyte enhancer activity of CCNC and MEIS2 was functionally analyzed in vivo. Our results show that podocyte expression of some genes is combinatorially regulated by two transcription factors interacting synergistically with a common enhancer. This finding provides insights into transcriptional mechanisms required for normal and pathologic podocyte functions.
Collapse
Affiliation(s)
- Bing He
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and
| | - Lwaki Ebarasi
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, and Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Zhe Zhao
- Ludwig Institute for Cancer Research, Oxford University, Oxford, United Kingdom; and
| | - Jing Guo
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and
| | - Juha R M Ojala
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Centre, Karolinska Institute, Stockholm, Sweden
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Oxford University, Oxford, United Kingdom; and
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, and Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and Cardiovascular & Metabolic Disorders Program, Duke-NUS, Singapore
| |
Collapse
|
11
|
Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:287-330. [PMID: 21377629 PMCID: PMC3159961 DOI: 10.1016/b978-0-12-384878-9.00007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual impairment and blindness is widespread across the human population, and the development of therapies for ocular pathologies is of high priority. The zebrafish represents a valuable model organism for studying human ocular disease; it is utilized in eye research to understand underlying developmental processes, to identify potential causative genes for human disorders, and to develop therapies. Zebrafish eyes are similar in morphology, physiology, gene expression, and function to human eyes. Furthermore, zebrafish are highly amenable to laboratory research. This review outlines the use of zebrafish as a model for human ocular diseases such as colobomas, glaucoma, cataracts, photoreceptor degeneration, as well as dystrophies of the cornea and retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, TX 78712 USA
- University of Texas at Austin, Institute for Cellular & Molecular Biology, Austin, TX 78712 USA
| | - Rachel K. Tittle
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, TX 78712 USA
| | - Jeffrey M. Gross
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, TX 78712 USA
- University of Texas at Austin, Institute for Cellular & Molecular Biology, Austin, TX 78712 USA
- University of Texas at Austin, Institute for Neuroscience, Austin, TX 78712 USA
| |
Collapse
|
12
|
A spectrum of LMX1B mutations in Nail-Patella syndrome: new point mutations, deletion, and evidence of mosaicism in unaffected parents. Genet Med 2010; 12:431-9. [PMID: 20531206 DOI: 10.1097/gim.0b013e3181e21afa] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Nail-Patella syndrome (MIM 161200) is a rare autosomal dominant disorder characterized by hypoplastic or absent patellae, dystrophic nails, dysplasia of the elbows, and iliac horn. In 40% of cases, a glomerular defect is present and, less frequently, ocular damage is observed. Inter- and intrafamilial variable expressivity of the clinical phenotype is a common finding. Mutations in the human LMX1B gene have been demonstrated to be responsible for Nail-Patella syndrome in around 80% of cases. METHODS Standard polymerase chain reaction and sequencing methods were used for mutation and single nucleotide polymorphism identification and control of cloned sequences. Array-CGH (Agilent, 244A Kit) was used for detection of deletions. Standard cloning techniques and the Snapshot method were used for analysis of mosaicism. RESULTS In this study, we present the results of LMX1B screening of 20 Nail-Patella syndrome patients. The molecular defect was found in 17 patients. We report five novel mutations and a approximately 2 Mb deletion in chromosome 9q encompassing the entire LMX1B gene in a patient with a complex phenotype. We present evidence of somatic mosaicism in unaffected parents in two cases, which, to our knowledge, are the first reported cases of inheritance of a mutated LMX1B allele in Nail-Patella syndrome patients from a mosaic parent. CONCLUSION The study of the described case series provides some original observations in an "old" genetic disorder.
Collapse
|
13
|
Uhde CW, Vives J, Jaeger I, Li M. Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS One 2010; 5:e8641. [PMID: 20062813 PMCID: PMC2799666 DOI: 10.1371/journal.pone.0008641] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022] Open
Abstract
The availability of specific markers expressed in different regions of the developing nervous system provides a useful tool to illuminate their development, regulation and function. We have identified by expression profiling a putative non-coding RNA, Rmst, that exhibits prominent expression in the midbrain floor plate region, the isthmus and the roof plate of the anterior neural tube. At the developmental stage when the ventral dopaminergic neuron territory is being established, Rmst expression appears to be restricted to the presumptive dopaminergic neurons of the ventral tegmental area that lies close to the ventral midline. Thus this study presents Rmst as a novel marker for the developing dopaminergic neurons in the mesencephalic floor plate as well as a marker for the dorsal midline cells of the anterior neural tube and the isthmic organizer.
Collapse
Affiliation(s)
- Christopher W. Uhde
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joaquim Vives
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ines Jaeger
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Meng Li
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
McMahon C, Gestri G, Wilson SW, Link BA. Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Dev Biol 2009; 332:287-98. [PMID: 19500562 PMCID: PMC2716413 DOI: 10.1016/j.ydbio.2009.05.577] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/27/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
To gain insight into the mechanisms of Lmx1b function during ocular morphogenesis, we have studied the roles of lmx1b.1 and lmx1b.2 during zebrafish eye development. In situ hybridization and characterization of transgenic lines in which GFP is expressed under lmx1b.1 regulatory sequence show that these genes are expressed in periocular tissues and in a pattern conserved with other vertebrates. Anti-sense morpholinos against lmx1b.1 and lmx1b.2 result in defective migration of periocular mesenchymal cells around the eye and lead to apoptosis of these cells. These defects in the periocular mesenchyme are correlated with a failure in fusion of the choroid fissure or in some instances, more severe ventral optic cup morphogenesis phenotypes. Indeed, by blocking the death of the periocular mesenchyme in Lmx1b morphants, optic vesicle morphogenesis is largely restored. Within the retina of lmx1b morphants, Fgf activity is transiently up-regulated and these morphants show defective naso-temporal patterning. Epistasis experiments indicate that the increase in Fgf activity is partially responsible for the ocular anomalies caused by loss of Lmx1b function. Overall, we propose zebrafish lmx1b.1 and lmx1b.2 promote the survival of periocular mesenchymal cells that influence multiple signaling events required for proper ocular development.
Collapse
Affiliation(s)
- Carrie McMahon
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, BSB 431, Milwaukee, WI 53226, USA
| | - Gaia Gestri
- Department of Cell & Developmental Biology, UCL, Gower Street, London 6BT WC1, UK
| | - Stephen W. Wilson
- Department of Cell & Developmental Biology, UCL, Gower Street, London 6BT WC1, UK
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, BSB 431, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Dai JX, Johnson RL, Ding YQ. Manifold functions of the Nail-Patella Syndrome gene Lmx1b in vertebrate development. Dev Growth Differ 2009; 51:241-50. [PMID: 19222527 DOI: 10.1111/j.1440-169x.2008.01083.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The LIM (Lin-1, Isl-1 and Mec-3)-homeodomain transcription factor 1 beta (Lmx1b) is widely expressed in vertebrate embryos, and is implicated in the development of diverse structures such as limbs, kidneys, eyes and brains. LMX1B mutations in humans cause an autosomal dominant inherited disease called nail-patella syndrome (NPS), which is characterized by abnormalities of the arms and legs as well as kidney disease and glaucoma. Expression of Lmx1b in the dorsal compartment of growing limb buds is critical for specification of dorsal limb cell fates and consequently dorsoventral patterning of limbs. In addition, Lmx1b is involved in the differentiation of anterior eye structures, formation of the glomerular basement membrane in kidneys and development of the skeleton, especially calvarial bones. In the central nervous system, Lmx1b controls the inductive activity of isthmic organizer, differentiation and maintenance of central serotonergic neurons, as well as the differentiation and migration of spinal dorsal horn neurons. Although details of the genetic programs involved in these developmental events are largely unknown, it is suggested that Lmx1b plays central roles in fate determination or cell differentiation in these tissues. Sustained expression of Lmx1b in the postnatal and mature mouse brain suggests that it also plays important roles in brain maturation and in the regulation of normal brain functions. This review aims to highlight recent insights into the many activities of Lmx1b in vertebrates.
Collapse
Affiliation(s)
- Jin-Xia Dai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
16
|
Zou HL, Su CJ, Shi M, Zhao GY, Li ZY, Guo C, Ding YQ. Expression of the LIM-homeodomain gene Lmx1a in the postnatal mouse central nervous system. Brain Res Bull 2008; 78:306-12. [PMID: 19111912 DOI: 10.1016/j.brainresbull.2008.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
The LIM-homeodomain transcription factor Lmx1a plays critical roles in roof plate formation as well as in the cell fate determination of midbrain dopaminergic neurons during embryonic development, but its function in the adult brain remains unknown. In the present study, as the first step in exploring its function in adult brain, we examined the expression of Lmx1a in the mouse central nervous system (CNS) from birth to adulthood by in situ hybridization. Lmx1a was expressed at high levels in the posterior hypothalamic area, supremammillary nucleus, ventral premammillary nucleus, subthalamic nucleus, ventral tegmental area, compact part of the substantia nigra and parabrachial nucleus from birth to adulthood, and co-localized with its paralogue Lmx1b in these regions. On the other hand, Lmx1a expression in the cochlear nuclei, medial cerebellar nucleus and superior vestibular nucleus was only observed until postnatal day (P) 30 and showed no colocalization with Lmx1b. Lmx1a-expressing neurons in the ventral midbrain were dopaminergic as evidenced by co-expression with tyrosine hydroxylase in these regions. Furthermore, Lmx1a expression was also found in the choroid plexuses and ependymal cells, although its expression was only detected during the first two postnatal weeks. These results suggest that Lmx1a may be involved in postnatal development as well as in maintenance of some aspects of normal brain function.
Collapse
Affiliation(s)
- Hui-Li Zou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Rascle A, Neumann T, Raschta AS, Neumann A, Heining E, Kastner J, Witzgall R. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes. Exp Cell Res 2008; 315:76-96. [PMID: 18996370 DOI: 10.1016/j.yexcr.2008.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022]
Abstract
LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-kappaB target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-kappaB activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-kappaB activity by TNF-alpha synergizes induction of NF-kappaB target genes by LMX1B. Chromatin immunoprecipitation demonstrated that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized kappaB site, and that LMX1B recruitment correlates with increased NF-kappaB DNA association. IL-6 promoter-reporter assays showed that the kappaB site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-kappaB target genes is affected in the kidney of Lmx1b(-/-) knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-kappaB target genes in cooperation with nuclear p50/p65 NF-kappaB.
Collapse
Affiliation(s)
- Anne Rascle
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Krawchuk D, Kania A. Identification of genes controlled by LMX1B in the developing mouse limb bud. Dev Dyn 2008; 237:1183-92. [PMID: 18351676 DOI: 10.1002/dvdy.21514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the developing limb, dorsal-ventral patterning is controlled by the transcription factor LMX1B, expressed in the dorsal mesenchyme. Loss of Lmx1b function in mice or humans results in the loss of dorsal limb structures and Nail-Patella syndrome, but the effectors through which LMX1B controls limb patterning are virtually unknown. Using microarrays to analyze the differential expression of mRNAs in wild-type vs. Lmx1b(-/-) limb buds, we have identified hundreds of genes as putative LMX1B targets. Analysis of a subset of these candidates by in situ mRNA localization has identified eight genes previously unknown to require Lmx1b for their dorsal-ventral restriction of expression in the limb. Furthermore, our results suggest that LMX1B controls different targets along the proximal-distal axis of the limb, and suggest the existence of a dorsal proximal limb region that is rich in mRNAs requiring Lmx1b for their expression.
Collapse
Affiliation(s)
- Dayana Krawchuk
- Laboratory of Neural Circuit Development, Institut de recherches cliniques de Montréal (IRCM), QC, Canada
| | | |
Collapse
|
19
|
McIntosh I, Dunston JA, Liu L, Hoover-Fong JE, Sweeney E. Nail patella syndrome revisited: 50 years after linkage. Ann Hum Genet 2006; 69:349-63. [PMID: 15996164 DOI: 10.1111/j.1529-8817.2005.00191.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nail Patella Syndrome (NPS; OMIM #161200) is a pleiotropic condition, with a classical clinical tetrad of involvement of the nails, knees, elbows and the presence of iliac horns. Kidney disease and glaucoma are now recognised as part of the syndrome. Fifty years ago, James Renwick chose NPS to develop methods of linkage analysis in humans and revealed the third linkage group identified in man--that between NPS and the ABO blood group loci. After a fallow period of some forty years, the gene mutated in NPS has been identified (LMX1B) and the condition serves as a model for understanding the complex relationships between disease loci, modifier genes and the resultant clinical phenotype.
Collapse
Affiliation(s)
- I McIntosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway/BRB 407, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
20
|
Bongers EMHF, van Kampen A, van Bokhoven H, Knoers NVAM. Human syndromes with congenital patellar anomalies and the underlying gene defects. Clin Genet 2005; 68:302-19. [PMID: 16143015 DOI: 10.1111/j.1399-0004.2005.00508.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic disorders characterized by congenital patellar aplasia or hypoplasia belong to a clinically diverse and genetically heterogeneous group of lower limb malformations. Patella development involves different molecular and cellular mechanisms regulating dorso-ventral patterning, cartilage and bone formation along endochondral ossification pathways, and growth. Several human genes that are important for patella development have been uncovered by the study of human limb malformation syndromes, yet causative genes for many more such disorders await to be identified and their complex interactions in the developmental pathways deciphered. Mutant animal models of congenital patellar aplasia or hypoplasia are certainly instrumental to create more insight into this aspect of limb development. Moreover, investigation of the complete phenotype of human syndromes and animal models may reveal novel insights into the pleiotropic roles of the responsible genes in the normal developmental of other organ systems. In this review, the phenotype and gene defects of syndromes with congenital patellar aplasia or hypoplasia will be discussed, including the nail patella syndrome, small patella syndrome, isolated patella aplasia hypoplasia, Meier-Gorlin syndrome, RAPADILINO syndrome, and genitopatellar syndrome.
Collapse
Affiliation(s)
- E M H F Bongers
- Department of Human Genetics, Radbound University Nijmegen Medical Center, The Netherlands
| | | | | | | |
Collapse
|
21
|
Marini M, Giacopelli F, Seri M, Ravazzolo R. Interaction of the LMX1B and PAX2 gene products suggests possible molecular basis of differential phenotypes in Nail-Patella syndrome. Eur J Hum Genet 2005; 13:789-92. [PMID: 15785774 DOI: 10.1038/sj.ejhg.5201405] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The LMX1B gene, encoding a protein involved in limb, kidney and eye development, is mutated in patients affected by Nail-Patella syndrome. Inter- and intrafamilial variability is common in this disorder for skeletal abnormalities, presence and severity of nephropathy and ocular anomalies. Phenotypic variability might depend on interactions of the LMX1B causative gene with other genes during development of both kidney and eye, which might act as modifier genes. Results are presented on the interaction between LMX1B and PAX2 proteins, obtained by both direct yeast two-hybrid assay and coimmunoprecipitation. Such interaction provides support to further studies on pathways underlying important developmental processes.
Collapse
Affiliation(s)
- Monica Marini
- Laboratory of Molecular Genetics, G Gaslini Institute, Genova, Italy
| | | | | | | |
Collapse
|
22
|
Bongers EMHF, Huysmans FT, Levtchenko E, de Rooy JW, Blickman JG, Admiraal RJC, Huygen PLM, Cruysberg JRM, Toolens PAMP, Prins JB, Krabbe PFM, Borm GF, Schoots J, van Bokhoven H, van Remortele AMF, Hoefsloot LH, van Kampen A, Knoers NVAM. Genotype–phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur J Hum Genet 2005; 13:935-46. [PMID: 15928687 DOI: 10.1038/sj.ejhg.5201446] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nail-patella syndrome (NPS) is characterized by developmental defects of dorsal limb structures, nephropathy, and glaucoma and is caused by heterozygous mutations in the LIM homeodomain transcription factor LMX1B. In order to identify possible genotype-phenotype correlations, we performed LMX1B mutation analysis and comprehensive investigations of limb, renal, ocular, and audiological characteristics in 106 subjects from 32 NPS families. Remarkable phenotypic variability at the individual, intrafamilial, and interfamilial level was observed for different NPS manifestations. Quantitative urinanalysis revealed proteinuria in 21.3% of individuals. Microalbuminuria was detected in 21.7% of subjects without overt proteinuria. Interestingly, nephropathy appeared significantly more frequent in females. A significant association was established between the presence of clinically relevant renal involvement in an NPS patient and a positive family history of nephropathy. We identified normal-tension glaucoma (NTG) and sensorineural hearing impairment as new symptoms associated with NPS. Sequencing of LMX1B revealed 18 different mutations, including six novel variants, in 28 families. Individuals with an LMX1B mutation located in the homeodomain showed significantly more frequent and higher values of proteinuria compared to subjects carrying mutations in the LIM domains. No clear genotype-phenotype association was apparent for extrarenal manifestations. This is the first study indicating that family history of nephropathy and mutation location might be important in precipitating individual risks for developing NPS renal disease. We suggest that the NPS phenotype is broader than previously described and that NTG and hearing impairment are part of NPS. Further studies on modifier factors are needed to understand the mechanisms underlying phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ernie M H F Bongers
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|