1
|
Gaertner K, Tapanainen R, Saari S, Fekete Z, Goffart S, Pohjoismäki JLO, Dufour E. Exploring mitonuclear interactions in the regulation of cell physiology: Insights from interspecies cybrids. Exp Cell Res 2025; 446:114466. [PMID: 39978712 DOI: 10.1016/j.yexcr.2025.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Brown hares (Lepus europaeus) and mountain hares (Lepus timidus) frequently hybridize in regions where their range overlaps, producing fertile offspring and enabling gene flow between the species. Despite this, no hybrid species has emerged, suggesting that hybrid backcrosses may incur fitness costs. One potential mechanism for such costs involves the interactions between mitochondrial and nuclear gene products, where incompatibilities between species-specific alleles may reinforce species barriers and lead to hybrid breakdown. However, direct experimental evidence for this hypothesis remains limited. In this study, we used fibroblasts derived from skin biopsies of wild-caught hares to generate cytoplasmic hybrid (cybrid) cell lines, wherein mitochondria and mtDNA from one species were transferred to mitochondria-depleted cells of the other species, creating novel mitonuclear gene combinations while preserving the original diploid nuclear background. Employing a range of techniques - including transcriptomics, metabolomics, microscopy, and respirometry - we explored the consequences of mitochondrial transfer between these hare species. Our results reveal that in the studied species mitonuclear incompatibilities exhibit strong effects on cellular fitness but are limited to specific genotypes. We propose mechanisms of cellular-level incompatibility and their potential consequences for interspecific hybrids, offering new insights into the complexity of mitonuclear interactions.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Faculty of Medicine and Health Technology, FI-33520, Tampere University, Finland
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences, FI-80101, University of Eastern Finland, Finland
| | - Sina Saari
- Faculty of Medicine and Health Technology, FI-33520, Tampere University, Finland
| | - Zsófia Fekete
- Department of Environmental and Biological Sciences, FI-80101, University of Eastern Finland, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, FI-80101, University of Eastern Finland, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, FI-80101, University of Eastern Finland, Finland.
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33520, Tampere University, Finland.
| |
Collapse
|
2
|
Guilherme JPLF, Oliveira EM. Increased prevalence of the null allele of the p.Arg577Ter variant in the ACTN3 gene in Brazilian long-distance athletes: A retrospective study. Ann Hum Genet 2024; 88:414-422. [PMID: 38949054 DOI: 10.1111/ahg.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION The phenotypic consequences of the p.Arg577Ter variant in the α-actinin-3 (ACTN3) gene are suggestive of a trade-off between performance traits for speed and endurance sports. Although there is a consistent association of the c.1729C allele (aka R allele) with strength/power traits, there is still a debate on whether the null allele (c.1729T allele; aka X allele) influences endurance performance. The present study aimed to test the association of the ACTN3 p.Arg577Ter variant with long-distance endurance athlete status, using previously published data with the Brazilian population. METHODS Genotypic data from 203 long-distance athletes and 1724 controls were analysed in a case-control approach. RESULTS The frequency of the X allele was significantly higher in long-distance athletes than in the control group (51.5% vs. 41.4%; p = 0.000095). The R/X and X/X genotypes were overrepresented in the athlete group. Individuals with the R/X genotype instead of the R/R genotype had a 1.6 increase in the odds of being a long-distance athlete (p = 0.012), whereas individuals with the X/X genotype instead of the R/R genotype had a 2.2 increase in the odds of being a long-distance athlete (p = 0.00017). CONCLUSION The X allele, mainly the X/X genotype, was associated with long-distance athlete status in Brazilians.
Collapse
Affiliation(s)
- João Paulo Limongi França Guilherme
- Laboratory of Biochemistry and Molecular Biology of Exercise, Department of Biodynamics of Human Movement, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, Department of Biodynamics of Human Movement, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Chang X, Qu HQ, Liu Y, Glessner JT, Hakonarson H. Mitochondrial DNA Haplogroup K Is Protective Against Autism Spectrum Disorder Risk in Populations of European Ancestry. J Am Acad Child Adolesc Psychiatry 2024; 63:835-844. [PMID: 38072244 PMCID: PMC11186604 DOI: 10.1016/j.jaac.2023.09.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD. PLAIN LANGUAGE SUMMARY Increasing evidence indicates that mitochondrial dysfunction may be linked to autism spectrum disorder (ASD). This study investigated potential associations of mitochondrial DNA (mtDNA) variants in 2 European and Ashkenazi Jewish cohorts including 2,062 individuals with ASD and 4,632 healthy controls. Researchers found that the ancient mtDNA haplogroup K was linked to a reduced risk of ASD in both European and Ashkenazi Jewish populations. Additionally, specific mtDNA variants were associated with ASD risk and were shown to influence the expression of nearby genes in the brain. These findings highlight the potential involvement of mtDNA in ASD development, offering new insights into the genetic mechanisms underlying the disorder.
Collapse
Affiliation(s)
- Xiao Chang
- Children's Hospital of Philadelphia, Pennsylvania, United States; Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| | - Hui-Qi Qu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Yichuan Liu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | | | - Hakon Hakonarson
- Children's Hospital of Philadelphia, Pennsylvania, United States; The Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
El Ouali EM, Barthelemy B, Del Coso J, Hackney AC, Laher I, Govindasamy K, Mesfioui A, Granacher U, Zouhal H. A Systematic Review and Meta-analysis of the Association Between ACTN3 R577X Genotypes and Performance in Endurance Versus Power Athletes and Non-athletes. SPORTS MEDICINE - OPEN 2024; 10:37. [PMID: 38609671 PMCID: PMC11014841 DOI: 10.1186/s40798-024-00711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Previous studies reported differences in genotype frequency of the ACTN3 R577X polymorphisms (rs1815739; RR, RX and XX) in athletes and non-athletic populations. This systematic review with meta-analysis assessed ACTN3 R577X genotype frequencies in power versus endurance athletes and non-athletes. METHODS Five electronic databases (PubMed, Web of Science, Scopus, Science Direct, SPORTDiscus) were searched for research articles published until December 31st, 2022. Studies were included if they reported the frequency of the ACTN3 R577X genotypes in power athletes (e.g., weightlifters) and if they included a comparison with endurance athletes (e.g., long-distance runners) or non-athletic controls. A meta-analysis was then performed using either fixed or random-effects models. Pooled odds ratios (OR) were determined. Heterogeneity was detected using I2 and Cochran's Q tests. Publication bias and sensitivity analysis tests were computed. RESULTS After screening 476 initial registrations, 25 studies were included in the final analysis (13 different countries; 14,541 participants). In power athletes, the RX genotype was predominant over the two other genotypes: RR versus RX (OR 0.70; 95% CI 0.57-0.85, p = 0.0005), RR versus XX (OR 4.26; 95% CI 3.19-5.69, p < 0.00001), RX versus XX (OR 6.58; 95% CI 5.66-7.67, p < 0.00001). The R allele was higher than the X allele (OR 2.87; 95% CI 2.35-3.50, p < 0.00001) in power athletes. Additionally, the frequency of the RR genotype was higher in power athletes than in non-athletes (OR 1.48; 95% CI 1.25-1.75, p < 0.00001). The RX genotype was similar in both groups (OR 0.84; 95% CI 0.71-1.00, p = 0.06). The XX genotype was lower in power athletes than in controls (OR 0.73; 95% CI 0.64-0.84, p < 0.00001). Furthermore, the R allele frequency was higher in power athletes than in controls (OR 1.28; 95% CI 1.19-1.38, p < 0.00001). Conversely, a higher frequency of X allele was observed in the control group compared to power athletes (OR 0.78; 95% CI 0.73-0.84, p < 0.00001). On the other hand, the frequency of the RR genotype was higher in power athletes than in endurance athletes (OR 1.27; 95% CI 1.09-1.49, p = 0.003). The frequency of the RX genotype was similar in both groups (OR 1.07; 95% CI 0.93-1.24, p = 0.36). In contrast, the frequency of the XX genotype was lower in power athletes than in endurance athletes (OR 0.63; 95% CI 0.52-0.76, p < 0.00001). In addition, the R allele was higher in power athletes than in endurance athletes (OR 1.32; 95% CI 1.11-1.57, p = 0.002). However, the X allele was higher in endurance athletes compared to power athletes (OR 0.76; 95% CI 0.64-0.90, p = 0.002). Finally, the genotypic and allelic frequency of ACTN3 genes were similar in male and female power athletes. CONCLUSIONS The pattern of the frequencies of the ACTN3 R577X genotypes in power athletes was RX > RR > XX. However, the RR genotype and R allele were overrepresented in power athletes compared to non-athletes and endurance athletes. These data suggest that the RR genotype and R allele, which is associated with a normal expression of α-actinin-3 in fast-twitch muscle fibers, may offer some benefit in improving performance development in muscle strength and power.
Collapse
Affiliation(s)
- El Mokhtar El Ouali
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Benjamin Barthelemy
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Spain
| | | | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education and Sports Sciences, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Ibn Tofail University of Kenitra, Kenitra, Morocco
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| | - Hassane Zouhal
- Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Av. Charles Tillon, 35044, Rennes Cedex, France.
- Institut International des Sciences du Sport (2IS), 35850, Irodouer, France.
| |
Collapse
|
5
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
6
|
Piotrowska-Nowak A, Safranow K, Adamczyk JG, Sołtyszewski I, Cięszczyk P, Tońska K, Żekanowski C, Borzemska B. Mitochondrial Genome Variation in Polish Elite Athletes. Int J Mol Sci 2023; 24:12992. [PMID: 37629173 PMCID: PMC10454803 DOI: 10.3390/ijms241612992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Energy efficiency is one of the fundamental athletic performance-affecting features of the cell and the organism as a whole. Mitochondrial DNA (mtDNA) variants and haplogroups have been linked to the successful practice of various sports, but despite numerous studies, understanding of the correlation is far from being comprehensive. In this study, the mtDNA sequence and copy number were determined for 99 outstanding Polish male athletes performing in power (n = 52) or endurance sports (n = 47) and 100 controls. The distribution of haplogroups, single nucleotide variant association, heteroplasmy, and mtDNA copy number were analyzed in the blood and saliva. We found no correlation between any haplogroup, single nucleotide variant, especially rare or non-synonymous ones, and athletic performance. Interestingly, heteroplasmy was less frequent in the study group, especially in endurance athletes. We observed a lower mtDNA copy number in both power and endurance athletes compared to controls. This could result from an inactivity of compensatory mechanisms activated by disadvantageous variants present in the general population and indicates a favorable genetic makeup of the athletes. The results emphasize a need for a more comprehensive analysis of the involvement of the mitochondrial genome in physical performance, combining nucleotide and copy number analysis in the context of nuclear gene variants.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Jakub G. Adamczyk
- Department of Theory of Sport, Józef Piłsudski University of Physical Education, Marymoncka 34 Street, 00-968 Warszawa, Poland;
| | - Ireneusz Sołtyszewski
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1 Street, 02-007 Warszawa, Poland;
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Cezary Żekanowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Street, 02-106 Warszawa, Poland
| | - Beata Borzemska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| |
Collapse
|
7
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
8
|
Yang S, Lin W, Jia M, Chen H. Association between ACTN3 R577x and the physical performance of Chinese 13 to 15-year-old elite and sub-elite football players at different positions. Front Genet 2023; 14:1038075. [PMID: 36968581 PMCID: PMC10036392 DOI: 10.3389/fgene.2023.1038075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 03/12/2023] Open
Abstract
The purpose of this study was to investigate the prevalence of ACTN3 polymorphisms in Chinese elite and sub-elite football players aged 13–15 years at different positions. Specifically we explored whether ACTN3 genotypes were linked with athletic performance of elite and sub-elite players at different positions. The RR genotype frequency of elite defenders (p = 0.018) and midfielders (p = 0.008) was significantly higher than that of sub-elite XX genotype in elite players. Furthermore, the R allele frequency of elite defenders (p = 0.003) and midfielders (p = 0.008) was significantly higher than that of sub-elite players. In all subjects, RR players performed faster and exhibited more explosive power than RX or XX players. RR, RX and XX elite players’ 20 m/30 m sprint, 5 × 25-m repeated sprint ability (5 × 25 m RSA), and standing long jump were stronger than sub-elite players, but there was no significant different in aerobic endurance between elite and sub-elite players at different positions. In conclusion, there were significant differences in ACTN3 genotypes and alleles between elite and sub-elite players at different positions, and the RR genotype was significantly associated with power-related athletic performance in Chinese youth football players.
Collapse
Affiliation(s)
- Shidong Yang
- Department of Physical Education, Nanjing Xiaozhuang University, Najing, Jiangsu, China
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Wentao Lin
- Department of Physical Education, Zhuhai University of Science and Technology, Zhuhai, Guangdong, China
- *Correspondence: Wentao Lin,
| | - Mengmeng Jia
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Alvero-Cruz JR, Alarcón-Martín E, García-Romero J, Ruiz-Galdon M, Carrillo-Albornoz-Gil M, Polvillo R, González I, Reyes-Engel A, Royo JL. Moderate exercise reveals the influence of ACTN3 R577X and ACE I/D polymorphisms on physical performance in non-athlete active subjects. Gene 2023; 850:146958. [DOI: 10.1016/j.gene.2022.146958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
11
|
Martel-Pelletier J, Pelletier JP. Is there a mitochondrial DNA haplogroup connection between osteoarthritis and elite athletes? A narrative review. RMD Open 2022; 8:rmdopen-2022-002602. [PMID: 36113964 PMCID: PMC9486370 DOI: 10.1136/rmdopen-2022-002602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Elite athletes are at greater risk of joint injuries linked to the subsequent risk of developing osteoarthritis (OA). Genetic factors such as mitochondrial (mt) DNA haplogroups have been associated with the incidence/progression of OA and athletic performance. This review highlights an area not yet addressed: is there a common pattern in the mtDNA haplogroups for OA occurrence in individuals and elite athletes of populations of the same descent? Haplotypes J and T confer a decreased risk of OA in Caucasian/European descent, while H and U increase this risk. Both J and T haplogroups are under-represented in Caucasian/European individuals and endurance athletes with OA, but power athletes showed a greater percentage of the J haplogroup. Caucasian/European endurance athletes had a higher percentage of haplogroup H, which is associated with increased athletic performance. In a Chinese population, haplogroup G appears to increase OA susceptibility and is over-represented in Japanese endurance athletes. In contrast, in Koreans, haplogroup B had a higher frequency of individuals with OA but was under-represented in the endurance athlete population. For Caucasian endurance athletes, it would be interesting to evaluate if those carrying haplotype H would be at an increased risk of accelerated OA, as well as the haplogroup G in Chinese and Japanese endurance athletes. The reverse might be studied for the Korean descent for haplogroup B. Knowledge of such genetic data could be used as a preliminary diagnosis to identify individuals at high risk of OA, adding prognostic information and assisting in personalising the early management of both populations.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
12
|
Exe-Muscle: An Exercised Human Skeletal Muscle Gene Expression Database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148806. [PMID: 35886662 PMCID: PMC9325005 DOI: 10.3390/ijerph19148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Human muscle tissue undergoes dynamic changes in gene expression during exercise, and the dynamics of these genes are correlated with muscle adaptation to exercise. A database of gene expression changes in human muscle before and after exercise was established for data mining. A web-based searchable database, Exe-muscle, was developed using microarray sequencing data, which can help users to retrieve gene expression at different times. Search results provide a complete description of target genes or genes with specific expression patterns. We can explore the molecular mechanisms behind exercise science by studying the changes in muscle gene expression over time before and after exercise. Based on the high-throughput microarray data before and after human exercise, a human pre- and post-exercise database was created using web-based database technology, which researchers can use or share their gene expression data. The Exe-muscle database is accessible online.
Collapse
|
13
|
Castañeda V, Haro-Vinueza A, Salinas I, Caicedo A, Méndez MÁ. The MitoAging Project: Single nucleotide polymorphisms (SNPs) in mitochondrial genes and their association to longevity. Mitochondrion 2022; 66:13-26. [PMID: 35817296 DOI: 10.1016/j.mito.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Mitochondrial dysfunction is a major hallmark of aging. Mitochondrial DNA (mtDNA) mutations (inherited or acquired) may cause a malfunction of the respiratory chain (RC), and thus negatively affect cell metabolism and function. In contrast, certain mtDNA single nucleotide polymorphisms (SNPs) may be beneficial to mitochondrial electron transport chain function and the extension of cellular health as well as lifespan. The goal of the MitoAging project is to detect key physiological characteristics and mechanisms that improve mitochondrial function and use them to develop therapies to increase longevity and a healthy lifespan. We chose to perform a systematic literature review (SLR) as a tool to collect key mtDNA SNPs associated with an increase in lifespan. Then validated our results by comparing them to the MitoMap database. Next, we assessed the effect of relevant SNPs on protein stability. A total of 28 SNPs were found in protein coding regions. These SNPs were reported in Japan, China, Turkey, and India. Among the studied SNPs, the C5178A mutation in the ND2 gene of Complex I of the RC was detected in all the reviewed reports except in Uygur Chinese centenarians. Then, we found that G9055A (ATP6 gene) and A10398G (ND3 gene) polymorphisms have been associated with a protective effect against Parkinson's disease (PD). Additionally, C8414T in ATP8 was significantly associated with longevity in three Japanese reports. Interestingly, using MitoMap we found that G9055A (ATP6 gene) was the only SNP promoting longevity not associated with any pathology. The identification of SNPs associated with an increase in lifespan opens the possibility to better understand individual differences regarding a decrease in illness susceptibility and find strategies that contribute to healthy aging.
Collapse
Affiliation(s)
- Verónica Castañeda
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Ivonne Salinas
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| | - Miguel Ángel Méndez
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Politécnico, Universidad San Francisco de Quito, Quito, Ecuador.
| |
Collapse
|
14
|
Nakamichi R, Ma S, Nonoyama T, Chiba T, Kurimoto R, Ohzono H, Olmer M, Shukunami C, Fuku N, Wang G, Morrison E, Pitsiladis YP, Ozaki T, D'Lima D, Lotz M, Patapoutian A, Asahara H. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci Transl Med 2022; 14:eabj5557. [PMID: 35648809 DOI: 10.1126/scitranslmed.abj5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1, a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan.,Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Hiroki Ohzono
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry and Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1965, Japan
| | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton BN2 4AT, UK
| | - Errol Morrison
- National Commission on Science and Technology, PCJ Building, 36 Trafalgar Road, Kingston 10, Jamaica
| | - Yannis P Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre of Stress and Age-related Disease, University of Brighton, Brighton BN2 4AT, UK
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Darryl D'Lima
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
15
|
Kiiskilä JM, Hassinen IE, Kettunen J, Kytövuori L, Mikkola I, Härkönen P, Jokelainen JJ, Keinänen-Kiukaanniemi S, Perola M, Majamaa K. Association between mitochondrial DNA haplogroups J and K, serum branched-chain amino acids and lowered capability for endurance exercise. BMC Sports Sci Med Rehabil 2022; 14:95. [PMID: 35619160 PMCID: PMC9137050 DOI: 10.1186/s13102-022-00485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Background Endurance exercise training promotes the catabolism of branched-chain amino acids (BCAAs) in skeletal muscles. We have previously shown that mitochondrial DNA (mtDNA) haplogroups J and K are markers of low responders in endurance training. In this paper, we hypothesize that BCAA catabolism is a surrogate marker of lower respiratory chain activity attributed to these haplogroups. We evaluated whether exercise-induced changes in amino acid concentrations differ between subjects harbouring mtDNA haplogroups J or K and those with non-JK haplogroups. Methods Finnish male conscripts (N = 633) undertook the 12-min Cooper running test at the beginning and end of their military service. The intervention during the service mainly included endurance aerobic exercise and sports-related muscle training. Concentrations of seven amino acids were analysed in the serum using a high-throughput 1H NMR metabolomics platform. Total DNA was extracted from whole blood, and restriction fragment analysis was used to determine mtDNA haplogroups J and K. Results The concentrations of the seven amino acids were higher following the intervention, with the exception of phenylalanine; interestingly, the increase in the concentrations of three BCAAs was larger in subjects with haplogroup J or K than in subjects with non-JK haplogroups (p = 0.029). MtDNA haplogroups J and K share two common nonsynonymous variants. Structural analysis based on crystallographic data on bovine complexes I and III revealed that the Leu18 variant in cytochrome b encoded by m.14798T > C may interfere with ubiquinone binding at the Qi site in complex III. Conclusions The increase in the concentrations of serum BCAAs following exercise intervention differs between subjects harbouring mtDNA haplogroup J or K and those harbouring non-JK haplogroups. Lower response in endurance training and difference in exercise-induced increase in the concentrations of serum BCAAs suggest decreased respiratory chain activity. Haplogroups J and K share m.14798T > C in MT-CYB, which may hamper the function of complex III. Supplementary information The online version contains supplementary material available at 10.1186/s13102-022-00485-3.
Collapse
Affiliation(s)
- Jukka M Kiiskilä
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | | | - Pirjo Härkönen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Jari J Jokelainen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
16
|
Ogawa S, Darhan H, Suzuki K. Genetic and genomic analysis of oxygen consumption in mice. J Anim Breed Genet 2022; 139:596-610. [PMID: 35608337 DOI: 10.1111/jbg.12721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022]
Abstract
We estimated genetic parameters for oxygen consumption (OC), OC per metabolic body weight (OCMBW) and body weight at three through 8 weeks of age in divergently selected mice populations, with an animal model considering maternal genetic, common litter environmental and cytoplasmic inheritance effects. Cytoplasmic inheritance was considered based on maternal lineage information. With respect to OC, estimated direct heritability was moderate (0.32) and the estimated proportion of the variance of cytoplasmic inheritance effects to the phenotypic variance was very low (0.01), implying that causal genes for OC could be located on autosomes. To assess this hypothesis, we attempted to identify possible candidate causal genes through selective signature detection with the results of pooled whole-genome resequencing using pooled DNA samples from high and low OC mice. We made a list of possible candidate causal genes for OC, including those relating to electron transport chain and ATP-binding proteins (Ndufa12, Sdhc, Atp10b, etc.), Prr16 encoding Largen protein, Cry1 encoding a key component of the circadian core oscillator and so on. The results, although careful interpretation must be required, could contribute to elucidate the genetic mechanism of OC, an indicator for maintenance energy requirement, and therefore feed efficiency.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hongyu Darhan
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Abstract
Primary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient. Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.
Collapse
|
18
|
Potapova NA. Nonsense Mutations in Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:400-412. [PMID: 35790376 DOI: 10.1134/s0006297922050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Nonsense mutations are a type of mutations which results in a premature termination codon occurrence. In general, these mutations have been considered to be among the most harmful ones which lead to premature protein translation termination and result in shortened nonfunctional polypeptide. However, there is evidence that not all nonsense mutations are harmful as well as some molecular mechanisms exist which allow to avoid pathogenic effects of these mutations. This review addresses relevant information on nonsense mutations in eukaryotic genomes, characteristics of these mutations, and different molecular mechanisms preventing or mitigating harmful effects thereof.
Collapse
Affiliation(s)
- Nadezhda A Potapova
- Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Moscow, 127051, Russia.
| |
Collapse
|
19
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
20
|
Canikli A, Nursal AF, Ünver Ş, Yigit S. ACTN3 R577X variant: could it be a determinant of sports performance in elite athletes in a Turkish population? J Genet 2022. [DOI: 10.1007/s12041-022-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Engel L, Becker D, Nissen T, Russ I, Thaller G, Krattenmacher N. Mitochondrial DNA Variation Contributes to the Aptitude for Dressage and Show Jumping Ability in the Holstein Horse Breed. Animals (Basel) 2022; 12:ani12060704. [PMID: 35327102 PMCID: PMC8944467 DOI: 10.3390/ani12060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal lineages are considered an important factor in breeding. Mitochondrial DNA (mtDNA) is maternally inherited and plays an important role in energy metabolism. It has already been associated with energy consumption and performances, e.g., stamina in humans and racehorses. For now, corresponding studies are lacking for sport performance of warmblood breeds. MtDNA sequences were available for 271 Holstein mares from 75 maternal lineages. As all mares within a lineage showed identical haplotypes regarding the non-synonymous variants, we expanded our data set by also including non-sequenced mares and assigning them to the lineage-specific haplotype. This sample consisting of 6334 to 16,447 mares was used to perform mitochondrial association analyses using breeding values (EBVs) estimated on behalf of the Fédération Équestre Nationale (FN) and on behalf of the Holstein Breeding Association (HOL). The association analyses revealed 20 mitochondrial SNPs (mtSNPs) significantly associated with FN-EBVs and partly overlapping 20 mtSNPs associated with HOL-EBVs. The results indicated that mtDNA contributes to performance differences between maternal lineages. Certain mitochondrial haplogroups were associated with special talents for dressage or show jumping. The findings encourage to set up innovative genetic evaluation models that also consider information on maternal lineages.
Collapse
Affiliation(s)
- Laura Engel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany; (G.T.); (N.K.)
- Correspondence:
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Thomas Nissen
- Verband der Züchter des Holsteiner Pferdes e.V., 24106 Kiel, Germany;
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, 85586 Grub, Germany;
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany; (G.T.); (N.K.)
| | - Nina Krattenmacher
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany; (G.T.); (N.K.)
| |
Collapse
|
22
|
Rosa PCD, Oneda G, Daros LB, Dourado AC, Sartori D, Leonel DF, Bara CL, Osiecki R. Can a genetic profile be related to performance in young talent track and field athletes? A pilot study. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220004521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Larissa B. Daros
- Universidade Estadual de Londrina, Brazil; Universidade Estadual do Centro-Oeste do Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Kiuchi Y, Makizako H, Nakai Y, Taniguchi Y, Tomioka K, Sato N, Wada A, Doi T, Kiyama R, Takenaka T. Associations of alpha-actinin-3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. Exp Gerontol 2021; 154:111525. [PMID: 34425205 DOI: 10.1016/j.exger.2021.111525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND This cross-sectional study aimed to investigate the relationship of the ACTN3 genotype with thigh muscle volume and physical performance in older adults with sarcopenia or pre-sarcopenia. METHODS Data from 64 older Japanese adults (mean age 74.4 ± 6.9 years, women 71.9%) with sarcopenia or pre-sarcopenia were analyzed. Sarcopenia and pre-sarcopenia were defined using the Asian Working Group for Sarcopenia. We collected oral mucosa samples to determine the ACTN3 genotype. Thigh muscle volumes were measured using magnetic resonance imaging. Physical performance was assessed using the usual and maximum gait speed, timed up and go test, and five-repetition sit-to-stand test. Muscle strength was assessed using grip strength. RESULT The ACTN3 genotype proportions were 20.3% for RR, 51.6% for RX, and 28.1% for XX. Participants with the RR genotype showed greater thigh muscle volume/ht2 compared to those with the RX and XX ACTN3 genotypes (p < 0.05). The multiple linear regression analysis revealed that RX (p < 0.01) and XX (p < 0.01) ACTN3 genotypes, compared to RR, were associated with lower thigh muscle volume/ht2 and with age, sex (reference; men), weight and maximum walking speed. There was no significant difference between physical performance and muscle strength between the ACTN3 genotypes. CONCLUSION The ACTN3 genotype of the X allele was associated with decreased thigh muscle volume compared to the ACTN3 genotype of RR in older adults with sarcopenia or pre-sarcopenia.
Collapse
Affiliation(s)
- Yuto Kiuchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan; Section for Health Promotion, Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan.
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Yuki Nakai
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Yoshiaki Taniguchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan; Department of Physical Therapy, Kagoshima Medical Professional College, Kagoshima 891-0133, Japan.
| | - Kazutoshi Tomioka
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan; Tarumizu Municipal Medical Center, Tarumizu Chuo Hospital, Kagoshima 891-2124, Japan.
| | - Nana Sato
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Ayumi Wada
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Takehiko Doi
- Section for Health Promotion, Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan.
| | - Ryoji Kiyama
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Toshihiro Takenaka
- Tarumizu Municipal Medical Center, Tarumizu Chuo Hospital, Kagoshima 891-2124, Japan.
| |
Collapse
|
24
|
Zanini G, De Gaetano A, Selleri V, Savino G, Cossarizza A, Pinti M, Mattioli AV, Nasi M. Mitochondrial DNA and Exercise: Implications for Health and Injuries in Sports. Cells 2021; 10:cells10102575. [PMID: 34685555 PMCID: PMC8533813 DOI: 10.3390/cells10102575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Gustavo Savino
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy;
| | - Andrea Cossarizza
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-205-5422
| |
Collapse
|
25
|
Melián Ortiz A, Laguarta-Val S, Varillas-Delgado D. Muscle Work and Its Relationship with ACE and ACTN3 Polymorphisms Are Associated with the Improvement of Explosive Strength. Genes (Basel) 2021; 12:genes12081177. [PMID: 34440352 PMCID: PMC8391250 DOI: 10.3390/genes12081177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The potential influence of genetics in athletic performance allows the search for genetic profiles associated with muscular work for the orientation of strength training and sports selection. The purpose of the study was to analyze four muscular exercises for effectiveness in improving explosive strength variables, associated to the genetics in Angiotensin Converting Enzyme (ACE) and α-actinin-3 (ACTN3) polymorphisms. Methods: A randomized controlled trial was conducted on a sample of 80 subjects allocated into four groups: concentric muscle work (CMW), eccentric muscle work (EMW), concentric-eccentric muscle (C-EMW) work and isometric muscular work (IMW), by block and gender randomization. Vertical jump, long jump, power jump, and speed were measured to study explosive strength. Genotypic frequencies of ACE (rs4646994) and ACTN3 (rs1815739) were obtained by polymerase chain reaction. Results: ACE gen showed significant improvements regarding the DD genotype in the Sargent test (p = 0.003) and sprint velocity test (p = 0.017). In the ACTN3 gene, the RR variable obtained improvement results with regard to RX and XX variables in long jump (p < 0.001), Sargent test (p < 0.001) and power jump (p = 0.004). Conclusions: The selected genes demonstrated an influence on the muscle work and the improvement in explosive strength variables with a decisive role regarding the type of muscle work performed.
Collapse
Affiliation(s)
- Alberto Melián Ortiz
- Department of Physical Therapy, FREMAP-Majadahonda Hospital, 28222 Madrid, Spain;
- Department of Health Sciences, Faculty of Nursing and Physical Therapy Salus Informorum, Pontifical University of Salamanca, 37007 Madrid, Spain
| | - Sofía Laguarta-Val
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
- Correspondence:
| | - David Varillas-Delgado
- Department of Sports Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcon, 28223 Madrid, Spain;
| |
Collapse
|
26
|
Engel L, Becker D, Nissen T, Russ I, Thaller G, Krattenmacher N. Exploring the Origin and Relatedness of Maternal Lineages Through Analysis of Mitochondrial DNA in the Holstein Horse. Front Genet 2021; 12:632500. [PMID: 34335677 PMCID: PMC8320364 DOI: 10.3389/fgene.2021.632500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Maternal lineages are important for the breeding decision in the Holstein horse breed. To investigate the genetic diversity of the maternal lineages and the relationships between founder mares, the maternal inherited mitochondrial genome (except the repetitive part of the non-coding region) of 271 mares representing 75 lineages was sequenced. The sequencing predominantly revealed complete homology in the nucleotide sequences between mares from one lineage with exceptions in 13 lineages, where differences in one to three positions are probably caused by de novo mutations or alternate fixation of heteroplasmy. We found 78 distinct haplotypes that have not yet been described in other breeds. Six of these occurred in two or three different lineages indicating a common ancestry. Haplotypes can be divided into eight clusters with all mares from one lineage belonging to the same cluster. Within a cluster, the average number of pairwise differences ranged from zero to 16.49 suggesting close maternal relationships between these mares. The results showed that the current breeding population originated from at least eight ancestral founder mares.
Collapse
Affiliation(s)
- Laura Engel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Doreen Becker
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Thomas Nissen
- Verband der Züchter des Holsteiner Pferdes e.V., Kiel, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Nina Krattenmacher
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
27
|
Ben-Zaken S, Meckel Y, Nemet D, Kassem E, Eliakim A. Genetic Basis for the Dominance of Israeli Long-Distance Runners of Ethiopian Origin. J Strength Cond Res 2021; 35:1885-1896. [PMID: 30741858 DOI: 10.1519/jsc.0000000000002989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT Ben-Zaken, S, Meckel, Y, Nemet, D, Kassem, E, and Eliakim, A. Genetic basis for the dominance of Israeli long-distance runners of Ethiopian origin. J Strength Cond Res 35(7): 1885-1896, 2021-Israeli long-distance runners of Ethiopian origin have a major influence on the track and field long-distance record table. The aim of this study was to determine whether genetic characteristics contribute to this long-distance dominance. We assessed polymorphisms in genes related to endurance (PPARD T/C), endurance trainability (ACSL A/G), speed (ACTN3 R/X), strength (AGT T/C), and the recovery from training (MTC1 A/T and IL6 G/C) among top Israeli long-distance runners of Ethiopian origin (n = 37), Israeli non-Ethiopian origin runners of Caucasian origin (n = 76), and Israeli nonathletic controls (n = 55). Israeli runners of Ethiopian origin had a greater frequency of the PPARD CC + PARGC1A Gly/Gly polymorphism, associated with improved endurance performance, compared with Israeli runners of non-Ethiopian origins (24 vs. 3%, respectively, p < 0.01); a lower frequency of the ACSL AA polymorphism, favoring endurance trainability (8 vs. 20%, respectively, p < 0.05); a greater frequency of the ACTN3 RR polymorphism, associated with sprint performance (35 vs. 20%, respectively, p < 0.05); a greater frequency of the MCT1 AA genotype, associated with improved lactate transport (65 vs. 45%, respectively, p < 0.05); and a lower frequency of IL-6 174C carriers, associated with reduced postexercise muscle damage (27 vs. 40%, respectively, p < 0.01). There was no difference in the frequency of AGT T/C gene polymorphism between the long-distance runners of Ethiopian and non-Ethiopian origin. Frequencies of PPARD CC + PARGC1A Gly/Gly, MCT1 AA, IL-6 174C, and AGT polymorphism were significantly favorable among Ethiopian, but not among non-Ethiopian, origin runners compared with controls. Taken together, results suggest that genetically, the dominance of Israeli long-distance runners of Ethiopian origin relates not only to endurance polymorphisms but also to polymorphisms associated with enhanced speed performance and better training recovery ability.
Collapse
Affiliation(s)
- Sigal Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Netanya, Israel
| | - Yoav Meckel
- Genetics and Molecular Biology Laboratory, The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Netanya, Israel
| | - Dan Nemet
- Pediatric Department, Meir Medical Center, Child Health and Sports Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel ; and
| | - Eias Kassem
- Pediatric Department, Hilel-Yaffe Medical Center, Hadera, Israel
| | - Alon Eliakim
- Pediatric Department, Meir Medical Center, Child Health and Sports Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel ; and
| |
Collapse
|
28
|
Mohd Fazli NE, Raja Azidin RMF, Teh LK, Salleh MZ. Correlations between sports-related polygenic profiles, postural stability, power and strength performances of elite football players. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Chang X, Bakay M, Liu Y, Glessner J, Rathi KS, Hou C, Qu H, Vaksman Z, Nguyen K, Sleiman PMA, Diskin SJ, Maris JM, Hakonarson H. Mitochondrial DNA Haplogroups and Susceptibility to Neuroblastoma. J Natl Cancer Inst 2021; 112:1259-1266. [PMID: 32096864 DOI: 10.1093/jnci/djaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma is a childhood malignancy that arises from the developing sympathetic nervous system. Although mitochondrial dysfunctions have been implicated in the pathophysiology of neuroblastoma, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. METHODS A total of 2404 Caucasian children diagnosed with neuroblastoma and 9310 ancestry-matched controls were recruited at the Children's Hospital of Philadelphia. The mtDNA haplogroups were identified from SNP array data of two independent cohorts. We conducted a case-control study to explore potential associations of mtDNA haplogroups with the susceptibility of neuroblastoma. The genetic effect of neuroblastoma was measured by odds ratios (ORs) of mitochondrial haplogroups. All tests were two-sided. RESULTS Haplogroup K was statistically significantly associated with reduced risk of neuroblastoma in the discovery cohort consisting of 1474 cases and 5699 controls (OR = 0.72, 95% confidence interval [CI] = 0.57 to 0.90; P = 4.8 × 10-3). The association was replicated in an independent cohort (OR = 0.69, 95% CI = 0.53 to 0.92; P = .01) of 930 cases and 3611 controls. Pooled analysis was performed by combining the two data sets. The association remained highly statistically significant after correction for multiple testing (OR = 0.71, 95% CI = 0.59 to 0.84, P = 1.96 × 10-4, Pcorrected = .002). Further analysis focusing on neuroblastoma subtypes indicated haplogroup K was more associated with high-risk neuroblastoma (OR = 0.57, 95% CI = 0.43 to 0.76; P = 1.46 × 10-4) than low-risk and intermediate-risk neuroblastoma. CONCLUSIONS Haplogroup K is an independent genetic factor associated with reduced risk of developing neuroblastoma in European descents. These findings provide new insights into the genetic basis of neuroblastoma, implicating mitochondrial DNA encoded proteins in the etiology of neuroblastoma.
Collapse
Affiliation(s)
- Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Huiqi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
30
|
Wagle JP, Carroll KM, Cunanan AJ, Wetmore A, Taber CB, DeWeese BH, Sato K, Stuart CA, Stone MH. Preliminary Investigation Into the Effect of ACTN3 and ACE Polymorphisms on Muscle and Performance Characteristics. J Strength Cond Res 2021; 35:688-694. [PMID: 30199453 DOI: 10.1519/jsc.0000000000002809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT Wagle, JP, Carroll, KM, Cunanan, AJ, Wetmore, A, Taber, CB, DeWeese, BH, Sato, K, Stuart, CA, and Stone, MH. Preliminary investigation into the effect of ACTN3 and ACE polymorphisms on muscle and performance characteristics. J Strength Cond Res 35(3): 688-694, 2021-The purpose of this investigation was to explore the phenotypic and performance outcomes associated with ACTN3 and ACE polymorphisms. Ten trained men (age = 25.8 ± 3.0 years, height = 183.3 ± 4.1 cm, body mass = 92.3 ± 9.3 kg, and back squat to body mass ratio = 1.8 ± 0.3) participated. Blood samples were analyzed to determine ACTN3 and ACE polymorphisms. Standing ultrasonography images of the vastus lateralis (VL) were collected to determine whole muscle cross-sectional area (CSA-M), and a percutaneous muscle biopsy of the VL was collected to determine type I-specific CSA (CSA-T1), type II-specific CSA (CSA-T2), and type II to type I CSA ratio (CSA-R). Isometric squats were performed on force platforms with data used to determine peak force (IPF), allometrically scaled peak force (IPFa), and rate of force development (RFD) at various timepoints. One repetition maximum back squats were performed, whereby allometrically scaled dynamic strength (DSa) was determined. Cohen's d effect sizes revealed ACTN3 RR and ACE DD tended to result in greater CSA-M but differ in how they contribute to performance. ACTN3 RR's influence seems to be in the type II fibers, altering maximal strength, and ACE DD may influence RFD capabilities through a favorable CSA-R. Although the findings of the current investigation are limited by the sample size, the findings demonstrate the potential influence of ACTN3 and ACE polymorphisms on isometric and dynamic strength testing. This study may serve as a framework to generate hypotheses regarding the effect of genetics on performance.
Collapse
Affiliation(s)
- John P Wagle
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Kevin M Carroll
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Aaron J Cunanan
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Alexander Wetmore
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Christopher B Taber
- Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, Connecticut; and
| | - Brad H DeWeese
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Kimitake Sato
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| | - Charles A Stuart
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, City, Tennessee
| | - Michael H Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
31
|
Ducret V, Richards AJ, Videlier M, Scalvenzi T, Moore KA, Paszkiewicz K, Bonneaud C, Pollet N, Herrel A. Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri. BMC Genomics 2021; 22:204. [PMID: 33757428 PMCID: PMC7986297 DOI: 10.1186/s12864-021-07517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
Collapse
Affiliation(s)
- Valérie Ducret
- UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 Rue Buffon, 75005, Paris, France.
| | - Adam J Richards
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
| | - Mathieu Videlier
- Functional Ecology Lab, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Thibault Scalvenzi
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Karen A Moore
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Konrad Paszkiewicz
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Nicolas Pollet
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Anthony Herrel
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
32
|
Wei Q. The ACE and ACTN3 polymorphisms in female soccer athletes. Genes Environ 2021; 43:5. [PMID: 33602343 PMCID: PMC7890855 DOI: 10.1186/s41021-021-00177-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTS We investigated the association of ACE I/D and ACTN3 R577X polymorphisms with the performance of Chinese elite female soccer athletes for the first time. MATERIAL AND METHODS The genotype distributions of ACE I/D and ACTN3 R577X in the athlete group and the control group of Chinese females were evaluated via PCR and compared. VO2max value was tested as per standard protocol. RESULTS Regarding the distribution of ACE polymorphisms, the genotype frequency was indifferent between the athletes (II 40 %, ID 46.7 %, DD 13.3 %) and the controls (II 42 %, ID 48 %, DD 10 %). No difference in the I/D allele frequency was observed between the athlete group and the control group. Regarding the distribution of ACTN3 polymorphisms, the genotype frequency was significantly different between the athletes (XX 0 %, XR 53.3 %, RR 46.7 %) and the controls (XX 16 %, XR 44 %, RR 40 %). The allele frequency was observed no different between the athlete and the control group. The ACE ID and ACTN3 RR genotype combination was associated with higher VO2max values among defenders than among other players. According to VO2max values,The ACE and ACTN3 genotype combinations (II/ID/DD + RR/XR) significantly differed between the athletes and the controls (p < 0.05). CONCLUSION These results suggested that the Chinese elite female soccer athletes were more likely to harbor the I allele and the R allele and that the combination of ACE II/ID and ACTN3 RR/XR was a synergetic determinant of the athletic performance of females in soccer.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of General Administration of Sport of China, Hubei Olympic Center , High-tech Road No.1 of the East Lake High-tech Zone, Hubei, 430050, Wuhan, China. .,Hubei Institute of Sports Science, Hubei Olympic Center , High-tech Road No.1 of the East Lake High-tech Zone, Hubei, 430050, Wuhan, China.
| |
Collapse
|
33
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hart NH. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports (Basel) 2021; 9:22. [PMID: 33572708 PMCID: PMC7912285 DOI: 10.3390/sports9020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the angiotensin-converting enzyme (ACE) (rs4343), alpha-actinin-3 (ACTN3) (rs1815739), adrenoceptor-beta-1 (ADRB1) (rs1801253), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) (rs8192678) genes have previously been associated with elite athletic performance. This study assessed the influence of polymorphisms in these candidate genes towards endurance test performance in 46 players from a single Australian Football League (AFL) team. Each player provided saliva buccal swab samples for DNA analysis and genotyping and were required to perform two independent two-kilometre running time-trials, six weeks apart. Linear mixed models were created to account for repeated measures over time and to determine whether player genotypes are associated with overall performance in the two-kilometre time-trial. The results showed that the ADRB1 Arg389Gly CC (p = 0.034) and PPARGC1A Gly482Ser GG (p = 0.031) genotypes were significantly associated with a faster two-kilometre time-trial. This is the first study to link genetic polymorphism to an assessment of endurance performance in Australian Football and provides justification for further exploratory or confirmatory studies.
Collapse
Affiliation(s)
- Ysabel Jacob
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
| | - Ryan S. Anderton
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- School of Health Science, University of Notre Dame Australia, Perth 6160, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Jodie L. Cochrane Wilkie
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Brent Rogalski
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Simon M. Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Tania Spiteri
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Nicolas H. Hart
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- Exercise Medicine Research Institute, Edith Cowan University, Perth 6027, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
34
|
Kiiskilä J, Jokelainen J, Kytövuori L, Mikkola I, Härkönen P, Keinänen-Kiukaanniemi S, Majamaa K. Association of mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts. BMC Genomics 2021; 22:75. [PMID: 33482721 PMCID: PMC7821635 DOI: 10.1186/s12864-021-07383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background We have previously suggested that some of the mutations defining mitochondrial DNA (mtDNA) haplogroups J and K produce an uncoupling effect on oxidative phosphorylation and thus are detrimental for elite endurance performance. Here, the association between haplogroups J and K and physical performance was determined in a population-based cohort of 1036 Finnish military conscripts. Results Following a standard-dose training period, excellence in endurance performance was less frequent among subjects with haplogroups J or K than among subjects with non-JK haplogroups (p = 0.041), and this finding was more apparent among the best-performing subjects (p < 0.001). Conclusions These results suggest that mtDNA haplogroups are one of the genetic determinants explaining individual variability in the adaptive response to endurance training, and mtDNA haplogroups J and K are markers of low-responders in exercise training. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07383-x.
Collapse
Affiliation(s)
- Jukka Kiiskilä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Jari Jokelainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | | | - Pirjo Härkönen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
35
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. J Sports Sci 2021; 39:200-211. [PMID: 32856541 DOI: 10.1080/02640414.2020.1812195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D polymorphisms with athlete status in football and determine which allele and/or genotypes are most likely to influence this phenotype via a meta-analysis. A comprehensive search identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between the presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38). More specifically, the ACTN3 RR genotype (OR = 1.48, 95% CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the strongest associations, respectively. These findings may be explained by the association of the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative contribution of power-orientated phenotypes to success in football. As such, the results of this review provide further evidence that individual genetic variation may contribute towards athlete status and can differentiate athletes of different competitive playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that influence athlete status in football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University , Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth , Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne , Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| |
Collapse
|
36
|
Can Genetic Testing Predict Talent? A Case Study of 5 Elite Athletes. Int J Sports Physiol Perform 2020; 16:429-434. [PMID: 33271500 DOI: 10.1123/ijspp.2019-0543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 04/18/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The genetic influence on the attainment of elite athlete status is well established, with a number of polymorphisms found to be more common in elite athletes than in the general population. As such, there is considerable interest in understanding whether this information can be utilized to identify future elite athletes. Accordingly, the aim of this study was to compare the total genotype scores of 5 elite athletes to those of nonathletic controls, to subsequently determine whether genetic information could discriminate between these groups, and, finally, to suggest how these findings may inform debates relating to the potential for genotyping to be used as a talent-identification tool. METHODS The authors compared the total genotype scores for both endurance (68 genetic variants) and speed-power (48 genetic variants) elite athlete status of 5 elite track-and-field athletes, including an Olympic champion, to those of 503 White European nonathletic controls. RESULTS Using the speed-power total genotype score, the elite speed-power athletes scored higher than the elite endurance athletes; however, using this speed-power score, 68 nonathletic controls registered higher scores than the elite power athletes. Surprisingly, using the endurance total genotype score, the elite speed-power athletes again scored higher than the elite endurance athletes. CONCLUSIONS These results suggest that genetic information is not capable of accurately discriminating between elite athletes and nonathletic controls, illustrating that the use of such information as a talent-identification tool is currently unwarranted and ineffective.
Collapse
|
37
|
Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans. Transl Psychiatry 2020; 10:370. [PMID: 33139694 PMCID: PMC7608630 DOI: 10.1038/s41398-020-01064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Although mitochondrial dysfunction has been implicated in the pathophysiology of attention deficit and hyperactivity disorder ADHD, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. To determine whether mtDNA haplogroups influence risk of ADHD, we performed a case-control study comprising 2076 ADHD cases and 5078 healthy controls, all of whom were European decedents recruited from The Children's Hospital of Philadelphia (CHOP). Associations between eight major European mtDNA Haplogroups and ADHD risk were assessed in three independent European cohorts. Meta-analysis of the three studies indicated that mtDNA haplogroups K (odds ratio = 0.69, P = 2.24 × 10-4, Pcorrected = 1.79 × 10-3) and U (odds ratio = 0.77, P = 8.88 × 10-4, Pcorrected = 7.11 × 10-3) were significantly associated with reduced risk of ADHD. In contrast, haplogroup HHV* (odds ratio = 1.18, P = 2.32 × 10-3, Pcorrected = 0.019) was significantly associated with increased risk of ADHD. Our results provide novel insight into the genetic basis of ADHD, implicating mitochondrial mechanisms in the pathophysiology of this relatively common psychiatric disorder.
Collapse
|
38
|
Sun D, Yao S, Wu F, Deng W, Ma Y, Jin L, Wang J, Wang X. Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population. Front Genet 2020; 11:577795. [PMID: 33193696 PMCID: PMC7645148 DOI: 10.3389/fgene.2020.577795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.
Collapse
Affiliation(s)
- Dayan Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shun Yao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Fei Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan Deng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
39
|
John R, Dhillon MS, Dhillon S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J Orthop 2020; 54:256-263. [PMID: 32399143 PMCID: PMC7205921 DOI: 10.1007/s43465-020-00056-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Modern competitive sport has evolved so much that athletes would go to great extremes to develop themselves into champions; medicine has also evolved to the point that many genetic elements have been identified to be associated with specific athletic traits, and genetic alterations are also possible. The current review examines the published literature and looks at three important factors: genetic polymorphism influencing sporting ability, gene doping and genetic tendency to injury. The ACTN3 gene has an influence on type II muscle fibres, with the R allele being advantageous to power sports like sprinting and the XX genotype being associated with lower muscle strength and sprinting ability. The ACE gene polymorphisms are associated with cardio-respiratory efficiency and could influence endurance athletes. Many other genes are being looked at, with specific focus on those that are potentially related to enhancement of athletic ability. Recognition of these specific gene polymorphisms brings into play the concept of genetic engineering in athletes, which constitutes gene doping and is outlawed. This has the potential to develop into the next big threat in elite sports; gene doping could have dangerous and even fatal outcomes, as the knowledge of gene therapy is still in its infancy. Genetic predisposition to injury is also being identified; recent publications have increased the awareness of gene polymorphisms predisposing to injuries of ligaments and tendons due to influence on collagen structure and extracellular matrix. Ongoing work is looking at identifying the same genes from different races and different sexes to see if there are quantitative racial or sexual differences. All of the above have led to serious ethical concerns; in the twenty-first century some sports associations and some countries are looking at genetic testing for their players. Unfortunately, the science is still developing, and the experience of its application is limited worldwide. Nevertheless, this field has caught the imagination of both the public and the sportsperson, and hence the concerned doctors should be aware of the potential problems and current issues involved in understanding genetic traits and polymorphisms, genetic testing and genetic engineering.
Collapse
Affiliation(s)
- Rakesh John
- Department of Trauma and Orthopaedics, Hull University Teaching Hospital, East Yorkshire, Hull, HU3 2JZ UK
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India 160012
| | | |
Collapse
|
40
|
ACTN3 R/X gene polymorphism across ethnicity: a brief review of performance gene. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-019-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Grover VK, Verma JP, Kumar A, Sharma N, Tiwari PK. A statistical model for ACTN3 genotype in elite power and speed athletes. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS 2020. [DOI: 10.1080/09720510.2020.1724624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vijmendra Kumar Grover
- Department of Exercise Physiology, Lakshmibai National Institute of Physical Education, Gwalior 474002, Madhya Pradesh, India
| | - Jai Prakash Verma
- Department of Exercise Physiology, Lakshmibai National Institute of Physical Education, Gwalior 474002, Madhya Pradesh, India,
| | - Ashish Kumar
- Department of Molecular and Human Genetics, Jiwaji University, Gwalior 474011, Madhya Pradesh, India,
| | - Nivedita Sharma
- Department of Molecular and Human Genetics, Jiwaji University, Gwalior 474011, Madhya Pradesh, India,
| | - Pramod Kumar Tiwari
- Department of Molecular and Human Genetics, Jiwaji University, Gwalior 474011, Madhya Pradesh, India,
| |
Collapse
|
42
|
Kiiskilä J, Moilanen JS, Kytövuori L, Niemi AK, Majamaa K. Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics 2019; 20:784. [PMID: 31664900 PMCID: PMC6819560 DOI: 10.1186/s12864-019-6171-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/04/2019] [Indexed: 11/15/2022] Open
Abstract
Background We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups. Results The distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1. Conclusions We propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance.
Collapse
Affiliation(s)
- Jukka Kiiskilä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Jukka S Moilanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Anna-Kaisa Niemi
- Division of Neonatology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
43
|
Papadimitriou ID, Eynon N, Yan X, Munson F, Jacques M, Kuang J, Voisin S, North KN, Bishop DJ. A "human knockout" model to investigate the influence of the α-actinin-3 protein on exercise-induced mitochondrial adaptations. Sci Rep 2019; 9:12688. [PMID: 31481717 PMCID: PMC6722100 DOI: 10.1038/s41598-019-49042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Research in α-actinin-3 knockout mice suggests a novel role for α-actinin-3 as a mediator of cell signalling. We took advantage of naturally-occurring human “knockouts” (lacking α-actinin-3 protein) to investigate the consequences of α-actinin-3 deficiency on exercise-induced changes in mitochondrial-related genes and proteins, as well as endurance training adaptations. At baseline, we observed a compensatory increase of α-actinin-2 protein in ACTN3 XX (α-actinin-3 deficient; n = 18) vs ACTN3 RR (expressing α-actinin-3; n = 19) participants but no differences between genotypes for markers of aerobic fitness or mitochondrial content and function. There was a main effect of genotype, without an interaction, for RCAN1-4 protein content (a marker of calcineurin activity). However, there was no effect of genotype on exercise-induced expression of genes associated with mitochondrial biogenesis, nor post-training physiological changes. In contrast to results in mice, loss of α-actinin-3 is not associated with higher baseline endurance-related phenotypes, or greater adaptations to endurance exercise training in humans.
Collapse
Affiliation(s)
- I D Papadimitriou
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Mahidol University, Bangkok, Thailand
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - X Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - F Munson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - M Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - J Kuang
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - K N North
- Murdoch Children's Research Institute, Melbourne, Australia
| | - D J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia. .,School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
44
|
Abstract
Athletic performance is a multifactorial phenotype influenced by environmental factors as well as multiple genetic variants. Different genetic elements have a great influence over components of athletic performance such as endurance, strength, power, flexibility, neuromuscular coordination, psychological traits and other features important in sport. The current literature review revealed that to date more than 69 genetic markers have been associated with power athlete status. For the purpose of the present review we have assigned all genetic markers described with reference to power athletes status to seven main groups: 1) markers associated with skeletal muscle structure and function, 2) markers involved in the inflammatory and repair reactions in skeletal muscle during and after exercise, 3) markers involved in blood pressure control, 4) markers involved in modulation of oxygen uptake, 5) markers that are regulators of energy metabolism and cellular homeostasis, 6) markers encoding factors that control gene expression by rearrangement of chromatin fibers and mRNA stability, and 7) markers modulating cellular signaling pathways. All data presented in the current review provide evidence to support the notion that human physical performance may be influenced by genetic profiles, especially in power sports. The current studies still represent only the first steps towards a better understanding of the genetic factors that influence power-related traits, so further analyses are necessary before implementation of research findings into practice.
Collapse
|
45
|
Moorchung N, Puri B, Bhatti V, Lahareesh BL, Singh SP, Sitaram WT. In the search of a 'fitness gene': an analysis of ACTN gene polymorphisms in serving soldiers. Med J Armed Forces India 2019; 75:246-250. [PMID: 31388225 DOI: 10.1016/j.mjafi.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/19/2015] [Indexed: 11/25/2022] Open
Abstract
Background Genetic polymorphisms in the exon 15 and exon 16 of the ACTN3 gene are believed to be associated with athletic performance. Paratroopers are some of the fittest soldiers in the Indian Armed Forces. This study was taken up to assess if there was a significant difference in the genetic profile between paratroopers and non-paratroopers. Method Polymerase chain reaction (PCR) followed by restriction length fragment polymorphism (RFLP) was used to analyse the genetic polymorphisms in the exon 15 and 16 of the ACTN3 gene. Results There was a significant difference between paratroopers and non-paratroopers in the polymorphic loci at codon 15 and 16. Conclusions The study suggests that there is a significant difference in the genotype between paratroopers and non-paratroopers. It is likely that the differences in muscle fibres as a result of these genotypic changes confer a 'survival advantage'; people with a homozygous genotype are more likely to pass the harsh probation and qualify for the Parachute Regiment.
Collapse
Affiliation(s)
- Nikhil Moorchung
- Assistant Director, Institute of Bioinformatics, International Tech Park, Bengaluru 560066, India
| | - Bipin Puri
- Director General Armed Forces Medical Services, O/o DGAFMS, Ministry of Defence, 'M' Block, New Delhi 110001, India
| | - Vijay Bhatti
- Director (H) AFMS, O/o DGAFMS, Ministry of Defence, New Delhi, India
| | | | - S P Singh
- DADMS, HQ CE (P) Swastik, C/o 99 APO, India
| | - Wankhede Tanaji Sitaram
- Associate Professor, Department of Physiology, Armed Forces Medical College, Pune 411040, India
| |
Collapse
|
46
|
Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion 2019; 47:125-138. [PMID: 31228565 DOI: 10.1016/j.mito.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA encodes some proteins of the oxidative phosphorylation enzymatic complex, playing an important role in aerobic ATP production; therefore, it can contribute to the ability to respond to endurance exercise training. The accumulation of mitochondrial mutations and the migratory processes of populations have given a great contribution to the development of haplogroups with a different distribution in the world. Several studies have shown the important role of gene polymorphisms in aerobic performance. In this review, some mitochondrial haplogroups and multiple rare alleles were taken into consideration and could be linked to the athlete's physical performance of different ethnic groups.
Collapse
|
47
|
Caru M, Petrykey K, Drouin S, Beaulieu P, St-Onge P, Lemay V, Bertout L, Laverdiere C, Andelfinger G, Krajinovic M, Sinnett D, Curnier D. Identification of genetic association between cardiorespiratory fitness and the trainability genes in childhood acute lymphoblastic leukemia survivors. BMC Cancer 2019; 19:443. [PMID: 31088516 PMCID: PMC6515640 DOI: 10.1186/s12885-019-5651-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/29/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The progress of treatments of childhood acute lymphoblastic leukemia (ALL) has made it possible to reach a survival rate superior to 80%. However, the treatments lead to several long-term adverse effects, including cardiac toxicity. Although studies have reported associations between genetic variants and cardiorespiratory fitness, none has been performed on childhood ALL survivors. METHODS We performed whole-exome sequencing in 239 childhood ALL survivors from the PETALE cohort. Germline variants (both common and rare) in selected set of genes (N = 238) were analyzed for an association with cardiorespiratory fitness. RESULTS Our results showed that the common variant in the TTN gene was significantly associated with a low cardiorespiratory fitness level (p = 0.0005) and that the LEPR, IGFBPI and ENO3 genes were significantly associated with a low cardiorespiratory fitness level in female survivors (p ≤ 0.002). Also, we detected an association between the low cardiorespiratory fitness level in participants that were stratified to the "high risk" prognostic group and functionally predicted rare variants in the SLC22A16 gene (p = 0.001). Positive associations between cardiorespiratory fitness level and trainability genes were mainly observed in females. CONCLUSIONS For the first time, we observed that low cardiorespiratory fitness in childhood ALL survivors can be associated with variants in genes related to subjects' trainability. These findings could allow better childhood ALL patient follow-up tailored to their genetic profile and cardiorespiratory fitness, which could help reduce at least some of the burden of long-term adverse effects of treatments.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratoire de Physiopathologie de l'EXercice (LPEX), École de Kinésiologie et des Sciences de l'Activité physique, Faculté de Médecine, Université de Montréal, CEPSUM, 2100, boulevard Édouard Montpetit, Montréal, QC, H3C 3J7, Canada. .,Department of psychology, Laboratoire EA 4430 - Clinique Psychanalyse Developpement (CliPsyD), University of Paris Nanterre, Nanterre, Ile-de-France, France. .,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.
| | - Kateryna Petrykey
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of pharmacology and physiology, University of Montreal, Montreal, Quebec, Canada
| | - Simon Drouin
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Valérie Lemay
- Laboratoire de Physiopathologie de l'EXercice (LPEX), École de Kinésiologie et des Sciences de l'Activité physique, Faculté de Médecine, Université de Montréal, CEPSUM, 2100, boulevard Édouard Montpetit, Montréal, QC, H3C 3J7, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Laurence Bertout
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Caroline Laverdiere
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Gregor Andelfinger
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of pharmacology and physiology, University of Montreal, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Curnier
- Laboratoire de Physiopathologie de l'EXercice (LPEX), École de Kinésiologie et des Sciences de l'Activité physique, Faculté de Médecine, Université de Montréal, CEPSUM, 2100, boulevard Édouard Montpetit, Montréal, QC, H3C 3J7, Canada.,Research Center, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Potocka N, Penar-Zadarko B, Skrzypa M, Braun M, Zadarko-Domaradzka M, Ozimek M, Nizioł-Babiarz E, Barabasz Z, Zawlik I, Zadarko E. Association of ACTN3 Polymorphism with Body Somatotype and Cardiorespiratory Fitness in Young Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091489. [PMID: 31035544 PMCID: PMC6540183 DOI: 10.3390/ijerph16091489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
ACTN3 encodes the protein α-actinin-3, which affects the muscle phenotype. In the present study, we examined the association of ACTN3 R577X polymorphism with body somatotype and cardiorespiratory fitness in young, healthy adults. The study group included 304 young adults, in whom cardiorespiratory fitness was evaluated and the maximum oxygen uptake was determined directly. The somatotype components were calculated according to the Heath-Carter method. Genotyping for the ACTN3 gene was performed using a polymerase chain reaction followed by high-resolution melting analysis. In the female group, a lower maximal heart rate (HRmax) was more strongly associated with the RR genotype (p = 0.0216) than with the RX and XX genotypes. In the male group, the ACTN3 RX genotype, as compared with other genotypes, tended to be associated with a lower percentage of adipose tissue (p = 0.0683), as also reflected by the body mass index (p = 0.0816). ACTN3 gene polymorphism may affect cardiorespiratory fitness. Our analysis of ACTN3 gene polymorphism does not clearly illustrate the relationships among genotype, body composition, and somatotype in young, healthy adults.
Collapse
Affiliation(s)
- Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Beata Penar-Zadarko
- Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
- Innovative Research Laboratory in Nursing, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 90-419 Lodz, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Maria Zadarko-Domaradzka
- Department of Human Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Mariusz Ozimek
- Institute of Sport-National Research Institute, 02-091 Warsaw, Poland.
| | - Edyta Nizioł-Babiarz
- Department of Health Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Zbigniew Barabasz
- Department of Health Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
- Department of Genetics, Institution of Experimental and Clinical Medicine, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Emilian Zadarko
- Department of Health Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| |
Collapse
|
49
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
50
|
Kreutzer A, Martinez CA, Kreutzer M, Stone JD, Mitchell JB, Oliver JM. Effect of ACTN3 Polymorphism on Self-reported Running Times. J Strength Cond Res 2018; 33:80-88. [PMID: 30431530 DOI: 10.1519/jsc.0000000000002949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kreutzer, A, Martinez, CA, Kreutzer, M, Stone, JD, Mitchell, JB, and Oliver, JM. Effect of ACTN3 polymorphism on self-reported running times. J Strength Cond Res 33(1): 80-88, 2019-This investigation examined the effect of ACTN3 genotype on self-reported distance running personal records (PRs). Of 94 (n = 94) recreationally active men and women, 82 (f = 42, m = 40; age: 22.6 ± 4.5 years; body mass index [BMI]: 23.5 ± 3.4 kg·m) reported 1-mile running PRs, whereas 57 (f = 33, m = 24; age: 23.4 ± 5.3 years; BMI: 22.9 ± 9.3 kg·m) reported 5K running PRs. Subjects were grouped by the presence (ACTN3) or absence (ACTN3) of α-actinin-3, as well as by individual genotype (RR, RX, and XX). Among female participants, ACTN3 reported 64.5 seconds faster (p = 0.048) 1-mile PRs compared with their ACTN3 counterparts. No differences were observed when comparing 5K PRs between genotypes. Two one-sided test equivalence testing revealed that none of the effects observed when comparing ACTN3 and ACTN3 were equivalent to zero. Our study confirms a reportedly greater prevalence of XX benefits for endurance performance in females when compared with males but fails to strongly link ACTN3 genotype to endurance performance. Practitioners should continue to be cautious when using genetic information for talent identification and sport selection.
Collapse
Affiliation(s)
- Andreas Kreutzer
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - Christopher A Martinez
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - McKensie Kreutzer
- Beutler Lab, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason D Stone
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - Joel B Mitchell
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - Jonathan M Oliver
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| |
Collapse
|