1
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
2
|
Straat ME, Hoekx CA, van Velden FHP, Pereira Arias-Bouda LM, Dumont L, Blondin DP, Boon MR, Martinez-Tellez B, Rensen PCN. Stimulation of the beta-2-adrenergic receptor with salbutamol activates human brown adipose tissue. Cell Rep Med 2023; 4:100942. [PMID: 36812890 PMCID: PMC9975328 DOI: 10.1016/j.xcrm.2023.100942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
While brown adipose tissue (BAT) is activated by the beta-3-adrenergic receptor (ADRB3) in rodents, in human brown adipocytes, the ADRB2 is dominantly present and responsible for noradrenergic activation. Therefore, we performed a randomized double-blinded crossover trial in young lean men to compare the effects of single intravenous bolus of the ADRB2 agonist salbutamol without and with the ADRB1/2 antagonist propranolol on glucose uptake by BAT, assessed by dynamic 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography scan (i.e., primary outcome). Salbutamol, compared with salbutamol with propranolol, increases glucose uptake by BAT, without affecting the glucose uptake by skeletal muscle and white adipose tissue. The salbutamol-induced glucose uptake by BAT positively associates with the increase in energy expenditure. Notably, participants with high salbutamol-induced glucose uptake by BAT have lower body fat mass, waist-hip ratio, and serum LDL-cholesterol concentration. In conclusion, specific ADRB2 agonism activates human BAT, which warrants investigation of ADRB2 activation in long-term studies (EudraCT: 2020-004059-34).
Collapse
Affiliation(s)
- Maaike E Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Carlijn A Hoekx
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Floris H P van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lenka M Pereira Arias-Bouda
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lauralyne Dumont
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Physiology-Pharmacology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Medicine, Division of Neurology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
3
|
Narita K, Kudo TA, Hong G, Tominami K, Izumi S, Hayashi Y, Nakai J. Effect of Beta 2-Adrenergic Receptor Gly16Arg Polymorphism on Taste Preferences in Healthy Young Japanese Adults. Nutrients 2022; 14:1430. [PMID: 35406043 PMCID: PMC9003210 DOI: 10.3390/nu14071430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
The Gly16Arg polymorphism results in a G to C nucleotide mutation in the human beta 2-adrenergic receptor (ADRB2) gene and has a relationship with obesity; however, this substitution’s effects on food preferences are unclear. Therefore, we determined this relationship among healthy young adults (mean age, 23.4; n = 52). To evaluate food preferences, four categories of food (sweet, salty, sour, and bitter) along with high-fat foods were evaluated using a self-reporting questionnaire. Male (n = 26) and female subjects (n = 26) were genotyped for the polymorphism and further divided into three groups (two homozygous groups, GG, CC; and a heterozygous group, GC). Preference for sour foods in the GG group was higher compared with that in the CC group in females (p < 0.05). When sweet foods were classified into low- and high-fat subgroups, preference for high-fat sweet foods in the GG group was higher than that for low-fat sweet foods in all subjects (p < 0.05). The degree of preference for high-fat foods in the GG group was higher than other groups for males (p < 0.05). These results suggest that ADRB2 polymorphism is associated with food preference. Understanding the relationship of ADRB2 substitution to food preference will be valuable for designing individualized anti-obesity strategies.
Collapse
Affiliation(s)
- Kohei Narita
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
- Graduate Medical Education Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| | - Guang Hong
- Division of Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan;
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| |
Collapse
|
4
|
McDaniel T, Wilson DK, Coulon MS, Sweeney AM, Van Horn ML. Interaction of Neighborhood and Genetic Risk on Waist Circumference in African-American Adults: A Longitudinal Study. Ann Behav Med 2021; 55:708-719. [PMID: 32914830 DOI: 10.1093/abm/kaaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Understanding determinants of metabolic risk has become a national priority given the increasingly high prevalence rate of this condition among U.S. adults. PURPOSE This study's aim was to assess the impact of gene-by-neighborhood social environment interactions on waist circumference (WC) as a primary marker of metabolic risk in underserved African-American adults. Based on a dual-risk model, it was hypothesized that those with the highest genetic risk and who experienced negative neighborhood environment conditions would demonstrate higher WC than those with fewer risk factors. METHODS This study utilized a subsample of participants from the Positive Action for Today's Health environmental intervention to improve access and safety for walking in higher-crime neighborhoods, who were willing to provide buccal swab samples for genotyping stress-related genetic pathways. Assessments were conducted with 228 African-American adults at baseline, 12, 18, and 24 months. RESULTS Analyses indicated three significant gene-by-environment interactions on WC outcomes within the sympathetic nervous system (SNS) genetic pathway. Two interactions supported the dual-risk hypotheses, including the SNS genetic risk-by-neighborhood social life interaction (b = -0.11, t(618) = -2.02, p = .04), and SNS genetic risk-by-informal social control interaction (b = -0.51, t(618) = -1.95, p = .05) on WC outcomes. These interactions indicated that higher genetic risk and lower social-environmental supports were associated with higher WC. There was also one significant SNS genetic risk-by-neighborhood satisfaction interaction (b = 1.48, t(618) = 2.23, p = .02) on WC that was inconsistent with the dual-risk pattern. CONCLUSIONS Findings indicate that neighborhood and genetic factors dually influence metabolic risk and that these relations may be complex and warrant further study. TRIAL REGISTRATION NCT01025726.
Collapse
Affiliation(s)
- Tyler McDaniel
- Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Dawn K Wilson
- Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - M Sandra Coulon
- Department of Mental Health, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Allison M Sweeney
- Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - M Lee Van Horn
- Department of Educational Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
5
|
Gao N, Liang T, Yuan Y, Xiao X, Zhao Y, Guo Y, Li M, Pu X. Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study. Phys Chem Chem Phys 2018; 18:29412-29422. [PMID: 27735961 DOI: 10.1039/c6cp03710k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G-protein-coupled receptors (GPCRs) are important drug targets and generally activated by ligands. However, some experiments found that GPCRs also give rise to constitutive activity through some mutations (viz., CAM), which are usually associated with different kinds of diseases. However, the mechanisms of CAMs and their roles in interactions with drug-ligands are unclear in experiments. Herein, we used microsecond molecular dynamics simulations to study the effect of one important F282L mutation on β2AR in order to address the questions above. With the aid of principle component and correlation analysis, our results revealed that the F282L mutation could increase the instability of the overall structure, increase the dramatic fluctuations of NPxxY and extracellular loops, and decrease restraint of the helices through weakening interhelical H-bonding and correlations between residues, which could partly contribute to the constitutive activity reported by the experiments. The observations from the protein structure network (PSN) analysis indicate that the mutant exhibits less information flow than the wild β2AR and weakens the role of TM5 and TM6 in the signal transmission, but it enhances the impact of TM3 on the orthosteric pathway and TM4 on the allosteric one. In addition, the results from the virtual screening reveal that the mutant prefers to select agonists rather than antagonists, similar to the active state but opposite of the inactive state, further confirming that the F282L mutation advances the activation of β2AR. Our observations provide valuable information for understanding the mechanism of the mutation-caused constitutive activity of GPCR and related drug-design.
Collapse
Affiliation(s)
- Nan Gao
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Tao Liang
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Xiuchan Xiao
- Department of Architecture and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan 611730, China
| | - Yihuan Zhao
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yanzhi Guo
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Menglong Li
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Xuemei Pu
- Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| |
Collapse
|
6
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Goni L, Cuervo M, Martinez JA. Differential lipid metabolism outcomes associated with ADRB2 gene polymorphisms in response to two dietary interventions in overweight/obese subjects. Nutr Metab Cardiovasc Dis 2018; 28:165-172. [PMID: 29331538 DOI: 10.1016/j.numecd.2017.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS A precise nutrigenetic management of hypercholesterolemia involves the understanding of the interactions between the individual's genotype and dietary intake. The aim of this study was to analyze the response to two dietary energy-restricted interventions on cholesterol changes in carriers of two ADRB2 polymorphisms. METHODS AND RESULTS A 4-month nutritional intervention was conducted involving two different hypo-energetic diets based on low-fat (LF) and moderately high-protein (MHP) dietary patterns. A total of 107 unrelated overweight/obese individuals were genotyped for two ADRB2 non-synonymous polymorphisms: Arg16Gly (rs1042713) and Gln27Glu (rs1042714). Genotyping was performed by next-generation sequencing and haplotypes were phenotypically screened. Anthropometric measurements and the biochemical profile were assessed by conventional methods. Both diets induced cholesterol decreases at the end of both nutritional interventions. Interestingly, phenotypical differences were observed according to the Arg16Gly polymorphism. Within the MHP group, Gly16Gly homozygotes had lower reductions in total cholesterol (-6.5 mg/dL vs. -24.2 mg/dL, p = 0.009), LDL-c levels (-1.4 mg/dL vs. -16.5 mg/dL, p = 0.005), and non-HDL-c (-4.5 mg/dL vs. -21.5 mg/dL, p = 0.008) than Arg16 allele carriers. Conversely, within the LF group, Gly16Gly homozygotes underwent similar falls in total cholesterol (-18.5 mg/dL vs. -18.7 mg/dL, ns), LDL-c levels (-9.7 mg/dL vs. -13.1 mg/dL, ns), and non-HDL-c (-15.3 mg/dL vs. -15.7 mg/dL, ns) than Arg16 allele carriers. The Gln27Glu polymorphism and the Gly16/Glu27 haplotype showed similar, but not greater effects. CONCLUSIONS An energy-restricted LF diet could be more beneficial than a MHP diet to reduce serum cholesterol, LDL-c, and non-HDL-c among Gly16Gly genotype carriers. CLINICALTRIALS.GOV: Identifier: NCT02737267.
Collapse
Affiliation(s)
- O Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - F I Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - L Goni
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - M Cuervo
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - J A Martinez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain; Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain.
| |
Collapse
|
7
|
Gu W, Liu J, Wang Z, Liu Y, Wen S. ADRB2 polymorphisms and dyslipidemia risk in Chinese hypertensive patients. Clin Exp Hypertens 2017; 39:139-144. [PMID: 28287890 DOI: 10.1080/10641963.2016.1210625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within a β-adrenergic receptor (ADRB2) were shown to be related to lipid traits or hyperlipidemia in different ethnicities, but not in a Chinese population. We performed the present study to investigate the possible relationship between them in a Chinese hypertensive population. Seven hundred and eighty-three hypertensive subjects were enrolled in the hospital-based retrospective research. Using the TaqMan PCR method, three polymorphisms (C-47T, A46G, and C79G) of ADRB2 were detected. For the whole population, no significant statistical difference was found for all serum lipids. Similar findings were seen in men and women subgroups. Subsequently, in the case-control study, we observed that the A46G polymorphism was significantly associated with the elevated risk of hypertriglyceridemia in the dominant model (OR: 1.47, 95%CI: 1.05-2.06, P = 0.025). There are no significant differences in the other four models. With regard to C79G and C-47T, no significant association was seen in this population. In addition, haplotype analysis showed that the TAC haplotype carrying frequent alleles of the three SNPs played a reduced role in hypertriglyceridemia risk and the TGC haplotype carrying rare allele of A46G expressed a significant risk effect. In conclusion, these findings indicated that the ADRB2 SNPs might be a genetic risk factor for dyslipidemia in the Chinese hypertensive patients.
Collapse
Affiliation(s)
- Wei Gu
- a Department of Hypertension Research , Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Diseases , Beijing , China
| | - Jilin Liu
- a Department of Hypertension Research , Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Diseases , Beijing , China
| | - Zuoguang Wang
- a Department of Hypertension Research , Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Diseases , Beijing , China
| | - Ya Liu
- a Department of Hypertension Research , Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Diseases , Beijing , China
| | - Shaojun Wen
- a Department of Hypertension Research , Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Diseases , Beijing , China
| |
Collapse
|
8
|
Du S, Joyner MJ, Curry TB, Eisenach JH, Johnson CP, Schrage WG, Jensen MD. Effect of β2-adrenergic receptor polymorphisms on epinephrine and exercise-stimulated lipolysis in humans. Physiol Rep 2014; 2:2/5/e12017. [PMID: 24844639 PMCID: PMC4098745 DOI: 10.14814/phy2.12017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The β2‐adrenergic system is an important regulator of human adipose tissue lipolysis. Polymorphisms that result in amino acid substitutions in the β2‐adrenergic receptor have been reported to alter lipolysis. We hypothesized that variations in the amino acid at position 16 of the β2‐adrenergic receptor would result in different lipolytic responses to intravenous epinephrine and exercise. 17 volunteers homozygous for glycine at position 16 (Gly/Gly, nine female) and 16 volunteers homozygous for arginine at position 16 (Arg/Arg, eight female) of the β2‐adrenergic receptor participated in this study. On one study day participants received infusions of epinephrine at submaximal (5 ng kg−1 min−1) and maximal (40 ng kg−1 min−1) lipolytic doses. The other study day volunteers bicycled for 90 min at 50–60% of maximum oxygen consumption (VO2max). [9,10‐3H] Palmitate was infused both days to measure free fatty acid – palmitate kinetics. Oxygen consumption was measured using indirect calorimetry. Palmitate release rates in response to epinephrine and exercise were not different in the Gly/Gly and Arg/Arg participants. The only statistically significant difference we observed was a lesser ΔVO2 in Arg/Arg volunteers in response to the submaximal epinephrine infusion. The polymorphisms resulting in Arg/Arg and Gly/Gly at position 16 of the β2‐adrenergic receptor do not result in clinically meaningful differences in lipolysis responses to epinephrine or submaximal exercise. e12017 Some studies suggest the polymorphism in the β2‐adrenergic receptor have effects on fatty acid mobilization from adipose tissue. We measure lipolysis using tracer kinetics in volunteers selected for different genotypes at position 16 of the β2‐adrenergic receptor. We found that polymorphisms resulting in Arg/Arg and Gly/Gly at position 16 of the β2‐adrenergic receptor do not result in clinically meaningful differences in lipolysis responses to epinephrine or submaximal exercise.
Collapse
Affiliation(s)
- Shichun Du
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | - William G Schrage
- Anesthesiology Research, Mayo Clinic, Rochester, Minnesota Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
9
|
Naka I, Ohashi J, Kimura R, Inaoka T, Matsumura Y. Association of ADRB2 polymorphism with triglyceride levels in Tongans. Lipids Health Dis 2013; 12:110. [PMID: 23875540 PMCID: PMC3728115 DOI: 10.1186/1476-511x-12-110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.
Collapse
|
10
|
β-AR polymorphisms and glycemic and lipid parameters in hypertensive individuals receiving carvedilol or metoprolol. Am J Hypertens 2012; 25:920-6. [PMID: 22647787 DOI: 10.1038/ajh.2012.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND β-Blocker therapy and β-adrenergic receptor (β-AR) polymorphisms are associated with increases in glucose and lipid levels. We investigated associations of common β1 and β2-AR single-nucleotide polymorphisms (SNPs) with metabolic and lipid variables, and examined interactions with β-blocker treatment assignment to affect these parameters. METHODS This was a post hoc analysis of a double-blinded clinical trial of nondiabetic, hypertensive individuals that were randomized to receive carvedilol or metoprolol succinate. Fasting glucose, insulin, and lipid levels were measured at baseline, 3 months, and after 6 months. Genotypes for β1-AR SNPs Ser49Gly & Gly389Arg and β2-AR Arg16Gly & Gln27Glu were determined. Multivariable mixed models were used to examine associations between β-AR polymorphisms, metabolic parameters, and SNP interactions with β-blocker therapy (p(interaction)). RESULTS The 322 subjects were mean (s.d.) 51.5 (11.2) years old. After 6 months, insulin levels increased by 35.6% on metoprolol and 9.9% on carvedilol (P = 0.015). In univariate models, the Gln27Gln genotype had higher overall insulin levels with β-blockade compared to the Glu27Glu genotype (P = 0.006). Both Arg16Gly (P = 0.012) and Gln27Glu (P = 0.037) SNPs were associated with higher triglycerides levels. An interaction between the Arg16Gly SNP and treatment was identified (p(int) = 0.048). CONCLUSIONS These data suggest that insulin and triglycerides may be influenced by β2-AR polymorphisms in patients taking β blockers.
Collapse
|
11
|
Association study of the β2-adrenergic receptor gene polymorphisms and hypertension in the Northern Han Chinese. PLoS One 2011; 6:e18590. [PMID: 21483652 PMCID: PMC3071737 DOI: 10.1371/journal.pone.0018590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/10/2011] [Indexed: 01/12/2023] Open
Abstract
Background The β2-adrenergic receptor (ADRB2) gene has been widely researched as a candidate gene for essential hypertension (EH), but no consensus has been reached in different ethnicities. The aim of the present study was to evaluate the possible association between the ADRB2 gene polymorphisms and the EH risk in the Northern Han Chinese population. Methodology/Principal Findings This study included 747 hypertensive subjects and 390 healthy volunteers as control subjects in the Northern Han Chinese. Genotyping was performed to identify the C-47T, A46G and C79G polymorphisms of the ADRB2 gene. G allelic frequency of A46G polymorphism was significantly higher in hypertensive subjects (P = 0.011, OR = 1.287, 95%CI [1.059–1.565]) than that in controls. Significant association could also be found in dominant genetic model (GG+AG vs. AA, P = 0.006, OR = 1.497, 95%CI [1.121–1.998]), in homozygote comparison (GG vs. AA, P = 0.025, OR = 1.568, 95%CI [1.059–2.322]), and in additive genetic model (GG vs. AG vs. AA, P = 0.012, OR = 1.282, 95%CI [1.056–1.555]). Subgroup analyses performed by gender suggested that this association could be found in male, but not in female. Stratification analyses by obesity showed that A46G polymorphism was related to the prevalence of hypertension in the obese population (GG vs. AG vs. AA, P<0.001, OR = 1.645, 95%CI [1.258–2.151]). Significant interaction was found between A46G genotypes and body mass index on EH risk. No significant association could be found between C-47T or C79G polymorphism and EH risk. Linkage disequilibrium was detected between the C-47T, A46G and C79G polymorphisms. Haplotype analyses observed that the T-47-A46-C79 haplotype was a protective haplotype for EH, while the T-47-G46-C79 haplotype increased the risk. Conclusions/Significances We revealed that the ADRB2 A46G polymorphism might increase the risk for EH in the Northern Han Chinese population.
Collapse
|
12
|
Masuo K, Lambert GW. Relationships of adrenoceptor polymorphisms with obesity. J Obes 2011; 2011:609485. [PMID: 21603275 PMCID: PMC3092628 DOI: 10.1155/2011/609485] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/07/2011] [Indexed: 01/28/2023] Open
Abstract
Obesity, hypertension, and type 2 diabetes are rapidly growing public health problems. Heightened sympathetic nerve activity is a well-established observation in obesity, hypertension, and type 2 diabetes. Human obesity, hypertension, and diabetes have strong genetic as well as environmental determinants. Reduced energy expenditure and resting metabolic rate are predictive of weight gain, and the sympathetic nervous system participates in regulating energy balance through thermogenesis. The thermogenic effects of catecholamines in obesity are mainly mediated via the β2, and β3-adrenergic receptors in humans. Further, β2-adrenoceptors importantly influence vascular reactivity and may regulate blood pressure. β-adrenoceptor polymorphisms have also been associated with adrenoceptor desensitization, increased adiposity, insulin resistance, and enhanced sympathetic nervous activity. Many epidemiological studies have shown strong relationships between adrenoceptor polymorphisms and obesity, but the observations have been discordant. This paper will discuss the current topics involving the influence of the sympathetic nervous system and β2- and β3-adrenoceptor polymorphisms in obesity.
Collapse
Affiliation(s)
- Kazuko Masuo
- Nucleus Network, Ltd, Baker IDI Heart and Diabetes Research Institute, 89 Commercial Road, Melbourne, VIC 3004, Australia
- Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC 3004, Australia
- *Kazuko Masuo:
| | - Gavin W. Lambert
- Human Neurotransmitter Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|
13
|
Filigheddu F, Argiolas G, Degortes S, Zaninello R, Frau F, Pitzoi S, Bulla E, Bulla P, Troffa C, Glorioso N. Haplotypes of the adrenergic system predict the blood pressure response to beta-blockers in women with essential hypertension. Pharmacogenomics 2010; 11:319-25. [PMID: 20235788 DOI: 10.2217/pgs.09.158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS To analyze the association of haplotypes of the adrenergic system with essential hypertension and with the blood pressure response to beta-blockers. MATERIALS & METHODS In 1112 never-treated essential hypertension patients and 203 normotensive controls, tightly linked SNPs of beta-adrenergic receptors (ADRB1 - Ser49Gly and Arg389Gly; ADRB2 - Cys19Arg, Gly16Arg and Gln27Glu) and the G-protein beta3-subunit (GNB3 - A3882C, G5249A and C825T) were genotyped. Association of haplotypes with essential hypertension and with the blood pressure response to atenolol 50 mg twice daily in a subgroup of essential hypertension patients (n = 340) was evaluated (Haploview 3.2). RESULTS No SNPs or haplotypes were associated with essential hypertension. In females only, GNB3 SNPs and haplotypes were associated with the blood pressure response (p < 0.05). CONCLUSION Our study confirmed the sex-specific association of GNB3 with the blood pressure response to atenolol with no substantial advantage of the analysis of haplotypes over SNPs.
Collapse
Affiliation(s)
- Fabiana Filigheddu
- Chair of Emergency, University of Sassari Medical School and Hypertension & Cardiovascular Prevention Center, Viale S Pietro 8, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kulminski AM, Culminskaya I, Ukraintseva SV, Arbeev KG, Land KC, Yashin AI. Beta2-adrenergic receptor gene polymorphisms as systemic determinants of healthy aging in an evolutionary context. Mech Ageing Dev 2010; 131:338-45. [PMID: 20399803 PMCID: PMC2895994 DOI: 10.1016/j.mad.2010.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/25/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
The Gln(27)Glu polymorphism but not the Arg(16)Gly polymorphism of the beta2-adrenergic receptor (ADRB2) gene appears to be associated with a broad range of aging-associated phenotypes, including cancers at different sites, myocardial infarction (MI), intermittent claudication (IC), and overall/healthy longevity in the Framingham Heart Study Offspring cohort. The Gln(27)Gln genotype increases risks of cancer, MI and IC, whereas the Glu(27) allele or, equivalently, the Gly(16)Glu(27) haplotype tends to be protective against these diseases. Genetic associations with longevity are of opposite nature at young-old and oldest-old ages highlighting the phenomenon of antagonistic pleiotropy. The mechanism of antagonistic pleiotropy is associated with an evolutionary-driven advantage of carriers of a derived Gln(27) allele at younger ages and their survival disadvantage at older ages as a result of increased risks of cancer, MI and IC. The ADRB2 gene can play an important systemic role in healthy aging in evolutionary context that warrants exploration in other populations.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Center for Population Health and Aging, Duke University Population Research Institute, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Chang MH, Yesupriya A, Ned RM, Mueller PW, Dowling NF. Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey. BMC MEDICAL GENETICS 2010; 11:62. [PMID: 20406466 PMCID: PMC2876148 DOI: 10.1186/1471-2350-11-62] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 04/20/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND The identification of genetic variants related to blood lipid levels within a large, population-based and nationally representative study might lead to a better understanding of the genetic contribution to serum lipid levels in the major race/ethnic groups in the U.S. population. METHODS Using data from the second phase (1991-1994) of the Third National Health and Nutrition Examination Survey (NHANES III), we examined associations between 22 polymorphisms in 13 candidate genes and four serum lipids: high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG). Univariate and multivariable linear regression and within-gene haplotype trend regression were used to test for genetic associations assuming an additive mode of inheritance for each of the three major race/ethnic groups in the United States (non-Hispanic white, non-Hispanic black, and Mexican American). RESULTS Variants within APOE (rs7412, rs429358), PON1 (rs854560), ITGB3 (rs5918), and NOS3 (rs2070744) were found to be associated with one or more blood lipids in at least one race/ethnic group in crude and adjusted analyses. In non-Hispanic whites, no individual polymorphisms were associated with any lipid trait. However, the PON1 A-G haplotype was significantly associated with LDL-C and TC. In non-Hispanic blacks, APOE variant rs7412 and haplotype T-T were strongly associated with LDL-C and TC; whereas, rs5918 of ITGB3 was significantly associated with TG. Several variants and haplotypes of three genes were significantly related to lipids in Mexican Americans: PON1 in relation to HDL-C; APOE and NOS3 in relation to LDL-C; and APOE in relation to TC. CONCLUSIONS We report the significant associations of blood lipids with variants and haplotypes in APOE, ITGB3, NOS3, and PON1 in the three main race/ethnic groups in the U.S. population using a large, nationally representative and population-based sample survey. Results from our study contribute to a growing body of literature identifying key determinants of plasma lipoprotein concentrations and could provide insight into the biological mechanisms underlying serum lipid and cholesterol concentrations.
Collapse
Affiliation(s)
- Man-huei Chang
- National Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
16
|
Jensen MK, Nielsen M, Koefoed P, Nielsen HB, Ullum H, Haastrup E, Romner B, Moltke FB, Olsen NV. Haplotype structure of the β2-adrenergic receptor gene in 814 Danish Caucasian subjects and association with body mass index. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:801-8. [DOI: 10.3109/00365510903301536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
CHIKUNI K, HORIUCHI A, IDE H, SHIBATA M, HAYASHI T, NAKAJIMA I, OE M, MUROYA S. Nucleotide sequence polymorphisms of beta1-, beta2-, and beta3-adrenergic receptor genes on Jinhua, Meishan, Duroc and Landrace pigs. Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2008.00578.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Kao WT, Yen YC, Lung FW. The effects of beta2 adrenergic receptor gene polymorphism in lipid profiles. Lipids Health Dis 2008; 7:20. [PMID: 18492292 PMCID: PMC2430561 DOI: 10.1186/1476-511x-7-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/21/2008] [Indexed: 11/23/2022] Open
Abstract
Background Explore the interaction between apolipoprotein E (Apo E), phospholipase A2 (PLA2) and β2 adrenergic receptor (β2-AR) gene polymorphisms and lipid profiles in an elderly Chinese population. Methods Five hundred subjects aged 65 to 74 years were randomly selected from a community in southern Taiwan to assess the relationship between Apo E, PLA2 and β2-AR gene polymorphisms and lipid profiles. Two hundred sixty-seven participants agreed to have venous blood drawn for DNA studies. Results Two statistically significant differences were noted in TC and LDL-C in the Gln27Glu of the β2-AR gene polymorphism (P = 0.007, P = 0.022). The low-income group had a higher HDL-C level (p = 0.076). The Gln27Glu polymorphism Glu/Glu or Gln/Glu subjects had lower TC levels compared to the Gln27Glu polymorphism Gln/Gln subjects (p = 0.092). Lower TC levels (p = 0.082) and lower LDL-C levels (p = 0.045) in subjects with the Cys19Arg16Glu27 haplotype. Lower TC levels (p = 0.06) were also noted in subjects with the Cys19Gly 16Glu27 haplotype. On the other hand, higher VLDL-C levels (p = 0.185) and higher triglyceride (TG) levels (p = 0.190) were noted in subjects with the Cys19Gly 16Gln27 haplotype. The ε2 allele combined with low income had a positive effect on HDL-C (p = 0.0011), after adding the income factor in this study. Conclusion When the effects of Apo E and PLA2 on lipid profiles were included in this study, β2-AR gene polymorphisms reduced significant effect on lipid profiles. Similarly, low income increased effect on HDL-C. This study appeared that the results of gene-gene and gene-environment interaction, it should be considered in further studies for lipid profiles.
Collapse
Affiliation(s)
- Wei-Tsung Kao
- Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
19
|
Yu JT, Tan L, Ou JR, Zhu JX, Liu K, Song JH, Sun YP. Polymorphisms at the β2-adrenergic receptor gene influence Alzheimer's disease susceptibility. Brain Res 2008; 1210:216-22. [DOI: 10.1016/j.brainres.2008.03.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/26/2022]
|
20
|
Taylor MRG. Pharmacogenetics of the human beta-adrenergic receptors. THE PHARMACOGENOMICS JOURNAL 2006; 7:29-37. [PMID: 16636683 DOI: 10.1038/sj.tpj.6500393] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The beta-adrenergic receptors (ADRBs) are cell surface receptors that play central roles in the sympathetic nervous system. Pharmacological targeting of two of these receptors, ADRB1 and ADRB2, represents a widely used therapeutic approach for common and important diseases including asthma, hypertension and heart failure. Genetic variation in both ADRB1 and ADRB2 has been linked to both in vitro and clinical disease phenotypes. More recently, interest has shifted to studies that explore potential interaction between variation in ADRBs and medications directed at these important receptors. This paper reviews the current state of knowledge and understanding of ADRB genetic variation and explores the likely direction of future studies in this area.
Collapse
MESH Headings
- Humans
- Pharmacogenetics
- Polymorphism, Genetic/genetics
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/genetics
Collapse
Affiliation(s)
- M R G Taylor
- Adult Medical Genetics Program, University of Colorado at Denver and Health Sciences, Aurora, CO 80045, USA.
| |
Collapse
|