1
|
Chen CP, Huang JP, Huang KS, Chen YY, Wu FT, Pan YT, Chiu CL, Wang W. Perinatal imaging findings of a fetus with Pfeiffer syndrome and a heterozygous c.1019A>G, p.Tyr340Cys (Y340C) mutation in FGFR2 presenting a cloverleaf skull, craniosynostosis and short limbs on prenatal ultrasound mimicking thanatophoric dysplasia type II. Taiwan J Obstet Gynecol 2024; 63:387-390. [PMID: 38802203 DOI: 10.1016/j.tjog.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE We present perinatal imaging findings of a fetus with Pfeiffer syndrome and a heterozygous c.1019A>G, p.Tyr340Cys (Y340C) mutation in FGFR2 presenting a cloverleaf skull, craniosynostosis and short limbs on prenatal ultrasound mimicking thanatophoric dysplasia type II (TD2). CASE REPORT A 37-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY. However, craniofacial anomaly was found on prenatal ultrasound at 21 weeks of gestation, which showed a cloverleaf skull with severe craniosynostosis and relatively short straight long bones. Fetal magnetic resonance imaging (MRI) analysis at 22 weeks of gestation showed a cloverleaf skull, proptosis and relatively shallowing of the sylvian fissures. Prenatal ultrasound at 24 weeks of gestation showed a fetus with a cloverleaf skull with a biparietal diameter (BPD) of 6.16 cm (equivalent to 24 weeks), an abdominal circumference (AC) of 18.89 cm (equivalent to 24 weeks) and a femur length (FL) of 3.65 cm (equivalent to 21 weeks). A tentative diagnosis of TD2 was made. The pregnancy was subsequently terminated, and a 928-g malformed fetus was delivered with severe craniosynostosis, proptosis, midface retrusion, a cloverleaf skull, broad thumbs and broad big toes. The broad thumbs were medially deviated. Whole body X-ray showed a cloverleaf skull and straight long bones. However, molecular analysis of FGFR3 on the fetus revealed no mutation in the target regions. Subsequent whole exome sequencing (WES) on the DNA extracted from umbilical cord revealed a heterozygous c.1019A>G, p.Tyr340Cys (Y340C) mutation in the FGFR2 gene. CONCLUSION Fetuses with a Y340C mutation in FGFR2 may present a cloverleaf skull on prenatal ultrasound, and WES is useful for a rapid differential diagnosis of Pfeiffer syndrome from TD2 under such a circumstance.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Jian-Pei Huang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Kun-Shuo Huang
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Department of Radiology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Yi-Yung Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Ling Chiu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Abstract
This article reviews the most common craniofacial syndromes encountered in clinical practice. Key physical features of each condition are highlighted to aid in accurate recognition and diagnosis. Optimal individualized treatment approaches are discussed.
Collapse
Affiliation(s)
- Robert J Tibesar
- Pediatric ENT and Craniofacial Surgery, Children's Hospital Minnesota, 2530 Chicago Avenue South CSC 450, Minneapolis, MN 55404, USA.
| | - Andrew R Scott
- Pediatric ENT and Craniofacial Surgery, Tufts Medical Center, Floating Building, 6th Floor, 755 Washington Street Box 850, Boston, MA 02111, USA
| |
Collapse
|
4
|
Marincak Vrankova Z, Krivanek J, Danek Z, Zelinka J, Brysova A, Izakovicova Holla L, Hartsfield JK, Borilova Linhartova P. Candidate genes for obstructive sleep apnea in non-syndromic children with craniofacial dysmorphisms - a narrative review. Front Pediatr 2023; 11:1117493. [PMID: 37441579 PMCID: PMC10334820 DOI: 10.3389/fped.2023.1117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric obstructive sleep apnea (POSA) is a complex disease with multifactorial etiopathogenesis. The presence of craniofacial dysmorphisms influencing the patency of the upper airway is considered a risk factor for POSA development. The craniofacial features associated with sleep-related breathing disorders (SRBD) - craniosynostosis, retrognathia and micrognathia, midface and maxillary hypoplasia - have high heritability and, in a less severe form, could be also found in non-syndromic children suffering from POSA. As genetic factors play a role in both POSA and craniofacial dysmorphisms, we hypothesize that some genes associated with specific craniofacial features that are involved in the development of the orofacial area may be also considered candidate genes for POSA. The genetic background of POSA in children is less explored than in adults; so far, only one genome-wide association study for POSA has been conducted; however, children with craniofacial disorders were excluded from that study. In this narrative review, we discuss syndromes that are commonly associated with severe craniofacial dysmorphisms and a high prevalence of sleep-related breathing disorders (SRBD), including POSA. We also summarized information about their genetic background and based on this, proposed 30 candidate genes for POSA affecting craniofacial development that may play a role in children with syndromes, and identified seven of these genes that were previously associated with craniofacial features risky for POSA development in non-syndromic children. The evidence-based approach supports the proposition that variants of these candidate genes could lead to POSA phenotype even in these children, and, thus, should be considered in future research in the general pediatric population.
Collapse
Affiliation(s)
- Zuzana Marincak Vrankova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Danek
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Zelinka
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alena Brysova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James K. Hartsfield
- E. Preston Hicks Professor of Orthodontics and Oral Health Research, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core, Lexington, KE, United States
| | - Petra Borilova Linhartova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
5
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
6
|
De Novo Heterozygous Mutation in FGFR2 Causing Type II Pfeiffer Syndrome. Case Rep Genet 2022; 2022:4791082. [PMID: 36212619 PMCID: PMC9537020 DOI: 10.1155/2022/4791082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Pfeiffer syndrome (PS) is an autosomal dominant disorder with three subtypes stemming from heterozygous mutations in the fibroblast growth factors FGFR1 and FGFR2. The subtypes overlap with heterogeneous clinical manifestations and variable prognosis dependent on neurological and respiratory compromise that impact short- and long-term outcomes and survival. We present a male, term infant with type II PS that was diagnostically suspected antenatally based on three-dimensional ultrasonographic findings that were confirmed postnatally by craniofacial tomography and magnetic resonance imaging. A new generation sequencing panel identified a unique de novo FGFR2, c.335 A > G p. Tyr112Cys variant, the first of its kind, and features that closely aligned with subtype II PS. Initial molecular results categorized the mutation as nonpathogenic, but it was later reclassified as pathogenic. Antenatal, multidisciplinary parental counseling about the tentative diagnosis and prognosis facilitated postnatal decisions that culminated in an informed choice for palliative care and early demise.
Collapse
|
7
|
Motch Perrine SM, Pitirri MK, Durham EL, Kawasaki M, Zheng H, Chen DZ, Kawasaki K, Richtsmeier JT. A dysmorphic mouse model reveals developmental interactions of chondrocranium and dermatocranium. eLife 2022; 11:76653. [PMID: 35704354 PMCID: PMC9259032 DOI: 10.7554/elife.76653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The cranial endo- and dermal skeletons, which comprise the vertebrate skull, evolved independently over 470 million years ago and form separately during embryogenesis. In mammals, much of the cartilaginous chondrocranium is transient, undergoing endochondral ossification or disappearing, so its role in skull morphogenesis is not well studied and it remains an enigmatic structure. We provide complete three-dimensional (3D) reconstructions of the laboratory mouse chondrocranium from embryonic day 13.5 through 17.5 using a novel methodology of uncertainty-guided segmentation of phosphotungstic enhanced 3D microcomputed tomography images with sparse annotation. We evaluate the embryonic mouse chondrocranium and dermatocranium in 3D and delineate the effects of a Fgfr2 variant on embryonic chondrocranial cartilages and on their association with forming dermal bones using the Fgfr2cC342Y/+ Crouzon syndrome mouse. We show that the dermatocranium develops outside of and in shapes that conform to the chondrocranium. Results reveal direct effects of the Fgfr2 variant on embryonic cartilage, on chondrocranium morphology, and on the association between chondrocranium and dermatocranium development. Histologically we observe a trend of relatively more chondrocytes, larger chondrocytes, and/or more matrix in the Fgfr2cC342Y/+ embryos at all timepoints before the chondrocranium begins to disintegrate at E16.5. The chondrocrania and forming dermatocrania of Fgfr2cC342Y/+ embryos are relatively large, but a contrasting trend begins at E16.5 and continues into early postnatal (P0 and P2) timepoints, with the skulls of older Fgfr2cC342Y/+ mice reduced in most dimensions compared to Fgfr2c+/+ littermates. Our findings have implications for the study and treatment of human craniofacial disease, for understanding the impact of chondrocranial morphology on skull growth, and potentially on the evolution of skull morphology.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, United States
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, United States
| |
Collapse
|
8
|
Wei X, Huang G, Gui B, Xie B, Chen S, Fan X, Chen Y. Phenotypic variability of syndromic craniosynostosis caused by c.833G > T in FGFR2: Clinical and genetic evaluation of eight patients from a five-generation family. Mol Genet Genomic Med 2022; 10:e1901. [PMID: 35235708 PMCID: PMC9000941 DOI: 10.1002/mgg3.1901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/28/2021] [Accepted: 02/02/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Craniosynostosis is the result of the early fusion of cranial sutures. Syndromic craniosynostosis includes but not limited by Crouzon syndrome and Pfeiffer syndrome. Considerable phenotypic overlap exists among these syndromes and mutations in FGFR2 may cause different syndromes. This study aims to investigate the explanation of the phenotypic variability via clinical and genetic evaluation for eight patients in a large pedigree. Methods For each patient, comprehensive physical examination, cranial plain CT scan with three‐dimensional CT reconstruction (3D‐CT), and eye examinations were conducted. Whole exome sequencing was applied for genetic diagnosis of the proband. Variants were analyzed and interpreted following the ACMG/AMP guidelines. Sanger sequencing was performed to reveal genotypes of all the family members. Results A pathogenic variant in the FGFR2 gene, c.833G > T (p.C278F), was identified and proved to be co‐segregate with the disease. Some symptoms of head, hearing, vision, mouth, teeth expressed differently by affected individuals. Nonetheless, all the eight patients manifested core symptoms of Crouzon syndrome without abnormality in the limbs, which could exclude diagnosis of Pfeiffer syndrome. Conclusion We have established clinical and genetic diagnosis of Crouzon syndrome for eight patients in a five‐generation Chinese family. Variability of clinical features among these familial patients was slighter than that in previously reported sporadic cases.
Collapse
Affiliation(s)
- Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guori Huang
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Baoheng Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaoke Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Fan
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yujun Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Posterior Vault Distraction Outcomes in Patients with Severe Crouzon Syndrome Resulting from Ser347Cys and Ser354Cys Mutations. J Craniofac Surg 2022; 33:1545-1548. [PMID: 35275860 DOI: 10.1097/scs.0000000000008642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In this study, the authors present the outcomes of 4 patients with a severe form of Crouzon syndrome characterized by mutation of fibroblast growth factor receptor 2 (FGFR2) c.1040 C > G p.Ser347Cys or the pathogenic c.1061C > G p.Ser354Cys variant of FGFR2, who underwent posterior vault distraction osteogenesis (PVDO) to alleviate elevated intracranial pressure. METHODS Patients with diagnosed Crouzon syndrome who were found by genetic testing to have an FGFR2 c.1040 C > G p.Ser347Cys mutation or the c.1061C > G p.Ser354Cys variant were included. Outcome data and presence of hydrocephalus, Chiari Malformation type I (CMIs), and the presence/absence of a tracheostomy were recorded. RESULTS Three patients with the FGFR2 c.1040 C > G p.Ser347Cys mutation and 1 with the pathogenic FGFR2 c.1061C > G p.Ser354Cys variant were identified as having characteristics of severe Crouzon syndrome. The mean age at PVDO was 15 months and the mean posterior advancement was 20 mm. All 4 patients experienced sufficient relief of the elevated intracranial pressure from the PVDO to prevent the need for shunt placement, stabilize the ventricular dimensions (n = 2), and resolve the CMIs (n = 2). Intracranial pressure screening ruled out malignant cerebrospinal fluid volume increase. CONCLUSIONS PVDO effectively prevented hydrocephalus and resolved CMIs, successfully alleviating intracranial pressure and maximizing clinical outcomes for patients with severe Crouzon syndrome.
Collapse
|
10
|
Orbital and Periorbital Dysmorphology in Untreated Pfeiffer Syndrome. Plast Reconstr Surg 2022; 149:731e-742e. [PMID: 35171849 DOI: 10.1097/prs.0000000000008928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Visual impairment secondary to orbital and periorbital dysmorphology is frequent in Pfeiffer syndrome patients. The etiopathogenesis of this aberrancy, however, remains unclear. METHODS Untreated Pfeiffer syndrome patients (n = 31) and normal control subjects (n = 43) were compared. Craniometric and volumetric analyses related to the orbital and periorbital anatomy were performed using Materialise (Leuven, Belgium) software. RESULTS Overall, orbital cavity volume of Pfeiffer patients is reduced by 28 percent (p < 0.001), compared to normal, starting before 3 months of age (p = 0.004). Globe volume was diminished by 10 percent (p = 0.041) before 3 months of age, yet tended to catch up thereafter. However, the retrobulbar soft-tissue volume remained smaller beyond 1 year of age (17 percent, p = 0.003). Globe volume projection beyond the bony orbit increased in all observed ages (82 percent, p < 0.001). The volumes of sphenoid bone, maxilla, and mandible proportionately were restricted by 24 to 25 percent (p = 0.003 to 0.035) before 3 months of age. The volume of maxilla and mandible gradually approximate normal; however, the sphenoid bone volume in Pfeiffer patients remains less than normal (p = 0.002) into childhood. The anteroposterior length of both the zygoma and the maxilla was reduced by 14 percent (p < 0.001). Anterior positioning of the zygoma is less by 23 percent (p < 0.001) in Pfeiffer patients overall, with anterior positioning of maxilla reduced similarly by 23 percent (p < 0.001). CONCLUSIONS Pfeiffer syndrome patients develop decreased retrobulbar soft-tissue and globe volume, along with a restricted orbital cavity volume in infancy. Significant hypoplasia of the sphenoid bone is associated with more severe central facial (maxilla) retrusion, compared to lateral facial structures (zygoma). CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
|
11
|
Wang CY, Tang YA, Lee IW, Chang FM, Chien CW, Pan HA, Sun HS. Development and validation of an expanded targeted sequencing panel for non-invasive prenatal diagnosis of sporadic skeletal dysplasia. BMC Med Genomics 2021; 14:212. [PMID: 34789231 PMCID: PMC8600686 DOI: 10.1186/s12920-021-01063-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background Skeletal dysplasia (SD) is one of the most common inherited neonatal disorders worldwide, where the recurrent pathogenic mutations in the FGFR2, FGFR3, COL1A1, COL1A2 and COL2A1 genes are frequently reported in both non-lethal and lethal SD. The traditional prenatal diagnosis of SD using ultrasonography suffers from lower accuracy and performed at latter gestational stage. Therefore, it remains in desperate need of precise and accurate prenatal diagnosis of SD in early pregnancy. With the advancements of next-generation sequencing (NGS) technology and bioinformatics analysis, it is feasible to develop a NGS-based assay to detect genetic defects in association with SD in the early pregnancy. Methods An ampliseq-based targeted sequencing panel was designed to cover 87 recurrent hotspots reported in 11 common dominant SD and run on both Ion Proton and NextSeq550 instruments. Thirty-six cell-free and 23 genomic DNAs were used for assay developed. Spike-in DNA prepared from standard sample harboring known mutation and normal sample were also employed to validate the established SD workflow. Overall performances of coverage, uniformity, and on-target rate, and the detecting limitations on percentage of fetal fraction and read depth were evaluated. Results The established targeted-seq workflow enables a single-tube multiplex PCR for library construction and shows high amplification efficiency and robust reproducibility on both Ion Proton and NextSeq550 platforms. The workflow reaches 100% coverage and both uniformity and on-target rate are > 96%, indicating a high quality assay. Using spike-in DNA with different percentage of known FGFR3 mutation (c.1138 G > A), the targeted-seq workflow demonstrated the ability to detect low-frequency variant of 2.5% accurately. Finally, we obtained 100% sensitivity and 100% specificity in detecting target mutations using established SD panel. Conclusions An expanded panel for rapid and cost-effective genetic detection of SD has been developed. The established targeted-seq workflow shows high accuracy to detect both germline and low-frequency variants. In addition, the workflow is flexible to be conducted in the majority of the NGS instruments and ready for routine clinical application. Taken together, we believe the established panel provides a promising diagnostic or therapeutic strategy for prenatal genetic testing of SD in routine clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01063-1.
Collapse
Affiliation(s)
- Ching-Yuan Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.,Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - Yen-An Tang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.,Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - I-Wen Lee
- FMC Fetal Medicine Center, Tainan, Taiwan
| | | | - Chun-Wei Chien
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | | | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan. .,Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Katsuragi SY, Hirose E, Arai Y, Otsuki Y, Ohki S, Kobayashi H. Autopsy Case of Pfeiffer Syndrome Type 2, a Phenotype of Fibroblast Growth Factor Receptor-Associated Craniosynostosis Syndromes, with Tracheal Cartilage Sleeve and Abnormal Hyperplasia of Bronchial Cartilages. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932450. [PMID: 34366428 PMCID: PMC8363655 DOI: 10.12659/ajcr.932450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Pfeiffer syndrome (PS) is a fibroblast growth factor receptor (FGFR)-associated craniosynostosis syndrome, characterized by abnormally broad and medially deviated thumbs and great toes. Tracheal cartilage sleeve (TCS) is associated with several FGFR-associated craniosynostosis syndromes, including PS. TCS is an airway malformation in which the tracheal cartilage rings fuse with each other to form a sleeve of cartilage. CASE REPORT The patient was a 4-year-old girl with PS, TCS, and abnormal hyperplasia of non-fused intrapulmonary cartilages. The patient showed cranial dysplasia on prenatal ultrasonography. At birth, a cloverleaf skull in association with hydrocephalus and digital malformations was apparent. These findings were consistent with PS type 2. The diagnosis of PS type 2 was confirmed from a genetic test detecting a FGFR2 mutation (Y340C). During the clinical course, she underwent several surgeries, including ventriculoperitoneal shunts, sequential cranioplasty surgeries, and tracheotomy due to upper airway abnormalities. At 4 years old, she died of multiple organ failure following aspiration pneumonia. The autopsy revealed that the tracheal cartilages had fused with each other, resulting in a condition called TCS, in which the cartilage rings and tracheal ligaments were absent. The lungs were poorly aerated, and the dilated bronchi had thickened walls surrounded by many cartilage fragments, mainly at the hilum. These cartilages tended to overlap at both ends, did not fuse, and were greatly altered in size and shape. CONCLUSIONS We report the results of autopsy for PS with the first histopathological findings for the lungs and other visceral organs.
Collapse
Affiliation(s)
- Shin-Ya Katsuragi
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Etsuko Hirose
- Department of Neonatology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yoshifumi Arai
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Shigeru Ohki
- Department of Neonatology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Kobayashi
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan.,Department of Pathology, Tachikawa General Hospital, Nagaoka, Niigata, Japan
| |
Collapse
|
13
|
Abstract
Importance Craniosynostosis is a fetal condition caused by premature closure of the cranial sutures. Through provider awareness, we can raise suspicion in high-risk individuals, increase prenatal detection, optimize genetic testing, perform appropriate antenatal surveillance and delivery planning, and allow for a comprehensive, multidisciplinary approach to treatment. Objective The aim of this study was to review what is currently known regarding the genetics, pathophysiology, diagnosis, and treatment of craniosynostosis for the obstetric care provider. Evidence Acquisition A comprehensive literature review was performed using the PubMed database with the search term "craniosynostosis." The search was limited to the English language. Results A total of 220 articles were identified, and a total of 53 were used in completion of this article. The results highlight the multiple factors involved with abnormal suture formation, including various genetic factors. Although rare at this time, prenatal detection can allow families to prepare and practitioners to provide appropriate clinical treatment. Both 3-dimensional sonography and magnetic resonance imaging have been identified as modalities to aid in detection for high-risk individuals. Early referral allows for less-invasive surgical outcomes with lower complication rates. Results Familiarity with craniosynostosis among obstetric providers can improve patient counseling, prenatal detection rates, and appropriate antepartum, intrapartum, and postpartum counseling.
Collapse
|
14
|
Raposo-Amaral CE, Oliveira YM, Denadai R, Raposo-Amaral CA, Ghizoni E. Severe craniolacunae and upper and lower extremity anomalies resulting from Crouzon syndrome, FGFR2 mutation, and Ser347Cys variant. Childs Nerv Syst 2021; 37:2391-2397. [PMID: 33404724 DOI: 10.1007/s00381-020-04993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Crouzon syndrome is a rare form of syndromic craniosynostosis (SC) characterized by premature fusion of the cranial and facial sutures, elevated intracranial pressure, varying degrees of ocular exposure due to exorbitism, and airway compromise caused by midface retrusion. Craniolacunae and upper and lower extremity anomalies are not frequently found in Crouzon syndrome. We present a girl with Crouzon syndrome caused by c.1040 C > G, p.Ser347Cys, a pathogenic mutation in the FGFR2 gene with atypical characteristics, including craniolacunae resembling severe Swiss cheese type of bone formation, and upper and lower extremity anomalies which are more commonly associated with Pfeiffer syndrome patients. Distinguishing between severe Crouzon syndrome patients and patients who have mild and/or moderate Pfeiffer syndrome can be challenging even for an experienced craniofacial surgeon. An accurate genotype diagnosis is essential to distinguishing between these syndromes, as it provides predictors for neurosurgical complications and facilitates appropriate family counseling related to long-term outcomes.
Collapse
Affiliation(s)
- Cassio Eduardo Raposo-Amaral
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil.
- Department of Neurology, University of Campinas (UNICAMP), São Paulo, Brazil.
| | - Yuri Moresco Oliveira
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
| | - Rafael Denadai
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
| | - Cesar Augusto Raposo-Amaral
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
| | - Enrico Ghizoni
- Institute of Plastic and Craniofacial Surgery, SOBRAPAR Hospital, Av. Adolpho Lutz, 100, Caixa Postal: 6028, Campinas, São Paulo, 13084-880, Brazil
- Department of Neurology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
15
|
Apra C, Collet C, Arnaud E, Rocco FD. Changes in FGFR2 amino-acid residue Asn549 lead to Crouzon and Pfeiffer syndrome with hydrocephalus. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.4.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractMutations in Fibroblast Growth Factor Receptor II (FGFR2) have been identified in patients with Crouzon and Pfeiffer syndrome, among which rare mutations of the intracellular tyrosine kinase domain. Correlating subtle phenotypes with each rare mutation is still in progress. In Necker-Enfants Malades Hospital, we identified three patients harboring three different pathogenic variants of the same amino acid residue Asn-549 located in this domain: in addition to a very typical crouzonoid appearance, they all developed clinically relevant hydrocephalus, which is an inconstant feature of Crouzon and Pfeiffer syndrome. Overall, FGFR2 tyrosine kinase domain mutations account for 5/67 (7.4%) cases in our hospital. We describe a novel mutation, p.Asn549Ser, and new cases of p.Asn549His and p.Asn549Thr mutations, each reported once before. Our three cases of Asn-549 mutations, alongside with rare previously reported cases, show that these patients are at higher risk of hydrocephalus. Clinical and imaging follow-up, with possible early surgery, may help prevent secondary intellectual disability.
Collapse
Affiliation(s)
- Caroline Apra
- Department of Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France–Centre de référence des dysostoses craniofaciales
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Corinne Collet
- Department of Biochemistry and Genetic Biology, Inserm 1132, Hôpital Lariboisière, Paris, France
| | - Eric Arnaud
- Department of Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France–Centre de référence des dysostoses craniofaciales
| | - Federico Di Rocco
- Department of Pediatric Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| |
Collapse
|
16
|
Barik M, Bano R, Bajpai M, Tripathy M, Das S, Dwivedi S. Novel mutation detection in craniosynostosis promotes characterization, identification, gene expression, tissue engineering and helps clinical practice and translational research. Neurol India 2021; 68:435-439. [PMID: 32415020 DOI: 10.4103/0028-3886.284349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Craniosynostosis (CS) syndrome is an autosomal dominant condition (ADC) classically combining with CS and nonsyndromic CS (NSCS) including digital anomalies of the hands and feet. The majority of cases caused by a heterozygous mutation (HM) in the third immunoglobulin-like domain (IgIII) of fibroblast growth factor receptor (FGFR) 2 mutations outside this region of the protein. Material and Methods We tried to find out the spectrum of genes involved in CS syndrome caused by the heterozygous missense mutation, the IgII and IgIII of FGFR2. FGFR3, FGFR4, TWIST, and MSX genes were performed and verified through the Indian population with CS children. Results We find out that at conserved linker region (LR), the changes occurred among the larger families. Independent genetic origins, but phenotypic similarities add to the evidence supporting the theory of selfish spermatogonial selective advantage for this rare gain-of-function FGFR2 mutation. Polygenic novel mutation in both syndromic and nonsyndromic cases of CS promotes the translational research and holds a great promise to reproduce the molecular-based therapy and treatment as well. In this article, we summarized that genes involved in CS as evidence-based approach for characterization, identification, gene expression, and tissue engineering. We also described other related genes and proteins for the CS involvement and improvement of the diseases progression. Conclusion HM again repeated the old story for both groups of syndromic CS and NSCS of Asian Indian children. Here, for the first time, we clearly reported that IgIII of FGFR2 mutations outside this region of the protein and tyrosine kinase (TK1 and TK2) responsible for both in molecular and cellular level for CS. It adds an evidence for future molecular targeting therapy to repair CS.
Collapse
Affiliation(s)
- Mayadhar Barik
- Department of Paediatric Surgery, Nuclear Medicine, Cardiac Anaesthesia and Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Rahmat Bano
- Senior Consultant in Innovation and Translational Research, ICMR Head Quarters, New Delhi, India
| | - Minu Bajpai
- Department of Paediatric Surgery, Nuclear Medicine, Cardiac Anaesthesia and Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhavi Tripathy
- Department of Paediatric Surgery, Nuclear Medicine, Cardiac Anaesthesia and Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sambhunath Das
- Department of Paediatric Surgery, Nuclear Medicine, Cardiac Anaesthesia and Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sadananda Dwivedi
- Department of Paediatric Surgery, Nuclear Medicine, Cardiac Anaesthesia and Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
17
|
Wu Y, Peng M, Chen J, Suo J, Zou S, Xu Y, Wilkie AOM, Zou W, Mu X, Wang S. A custom-designed panel sequencing study in 201 Chinese patients with craniosynostosis revealed novel variants and distinct mutation spectra. J Genet Genomics 2020; 48:167-171. [PMID: 33547006 DOI: 10.1016/j.jgg.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Meifang Peng
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jieyi Chen
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinlong Suo
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sihai Zou
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Yanqing Xu
- Forest Ridge School of the Sacred Heart, Bellevue, WA 98006, USA
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Weiguo Zou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiongzheng Mu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
18
|
Feeding, Communication, Hydrocephalus, and Intracranial Hypertension in Patients With Severe FGFR2-Associated Pfeiffer Syndrome. J Craniofac Surg 2020; 32:134-140. [DOI: 10.1097/scs.0000000000007153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Ibarra-Arce A, Almaraz-Salinas M, Martínez-Rosas V, Ortiz de Zárate-Alarcón G, Flores-Peña L, Romero-Valdovinos M, Olivo-Díaz A. Clinical study and some molecular features of Mexican patients with syndromic craniosynostosis. Mol Genet Genomic Med 2020; 8:e1266. [PMID: 32510873 PMCID: PMC7434736 DOI: 10.1002/mgg3.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/21/2019] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Craniosynostosis is one of the major genetic disorders affecting 1 in 2,100-2,500 live newborn children. Environmental and genetic factors are involved in the manifestation of this disease. The suggested genetic causes of craniosynostosis are pathogenic variants in FGFR1, FGFR2, FGFR3, and TWIST1 genes. METHODS In order to describe their major clinical characteristics and the presence of pathogenic variants, a sample of 36 Mexican patients with craniosynostosis diagnosed as: Crouzon (OMIM 123,500), Pfeiffer (OMIM 101,600), Apert (OMIM 101,200), Saethre-Chotzen (OMIM 101,400), and Muenke (OMIM 602,849) was analyzed. RESULTS In addition to craniosynostosis, most of the patients presented hypertelorism, midface hypoplasia, and abnormalities in hands and feet. To detect the pathogenic variants p.Pro252Arg FGFR1 (OMIM 136,350), p.Ser252Trp, p.Pro253Arg FGFR2 (OMIM 176,943), p.Pro250Arg, FGFR3 (OMIM 134,934), and p.Gln119Pro TWIST1 (OMIM 601,622), PCR amplification and restriction enzyme digestion were performed. Four and two patients with Apert presented the pathogenic variants p.Ser252Trp and p.Pro253Arg in FGFR2, respectively (with a frequency of 11.1% and 5.5%). The p.Pro250Arg pathogenic variant of FGFR3 was found in a patient with Muenke (with a frequency of 2.8%). The above percentages were calculated with the total number of patients. CONCLUSION The contribution of this work is discreet, since only 4 genes were analyzed and sample size is small. However, this strategy could be improved by sequencing the FGFR1, FGFR2, FGFR3, and TWIST1 genes, to determine different pathogenic variants. On the other hand, it would be important to include other genes, such as TCF12 (OMIM 600,480), MSX2 (OMIM 123,101), RAB23 (OMIM 606,144), and EFNB1 (OMIM 300,035), to determine their participation in craniosynostosis in the Mexican population.
Collapse
Affiliation(s)
- Aurora Ibarra-Arce
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Manuel Almaraz-Salinas
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Víctor Martínez-Rosas
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | | | - Laura Flores-Peña
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Mirza Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Angélica Olivo-Díaz
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| |
Collapse
|
20
|
Lin M, Lu Y, Sui Y, Zhao N, Jin Y, Yi D, Jiang M. Extremely severe scoliosis, heterotopic ossification, and osteoarthritis in a three-generation family with Crouzon syndrome carrying a mutant c.799T>C FGFR2. Mol Genet Genomic Med 2019; 7:e843. [PMID: 31318164 PMCID: PMC6732274 DOI: 10.1002/mgg3.843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Background Crouzon syndrome is a rare and complex autosomal dominant craniosynostosis syndrome with a prevalence of approximately 1 in 60,000 births. The typical features are craniosynostosis, proptosis, midfacial hypoplasia, and noncranial manifestations, including deformities in the cervical spine, elbow, and fingers. Crouzon syndrome is usually caused by pathogenic variants in the fibroblast growth factor receptor 2 (FGFR2) gene. Methods We reported a three‐generation family with Crouzon syndrome; the proband showed extremely severe limb abnormalities. The clinical features were obtained by physical examination and radiographic examination. Sanger sequencing of all 18 exons of FGFR2 was conducted to identify the disease‐causing mutation. Results The proband was a 44‐year‐old man who showed characteristics of Crouzon syndrome, including craniofacial dysostosis, shallow orbits, proptosis, midface hypoplasia, beaked nose, strabismus, short superior lip, short stature, and neck injection. In addition to these typical characteristics, radiographic examination showed severe scoliosis, heterotopic ossification of the elbows, knee osteoarthritis, metacarpophalangeal joint valgus, collapse of the articular surface of the thumb metacarpal, knuckle ossification and fusion. Sanger sequencing identified a heterozygous pathogenic variant c.799T>C, p.(Ser267Pro) in exon 7 of FGFR2 in affected individuals. Conclusion Crouzon syndrome in this three‐generation family was caused by c.799T>C FGFR2, and the patient showed a different phenotypic appearance from other Crouzon patients with c.799T>C FGFR2.
Collapse
Affiliation(s)
- Meina Lin
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| | - Yongping Lu
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| | - Yu Sui
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| | - Ning Zhao
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| | - Ying Jin
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| | - Dongxu Yi
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| | - Miao Jiang
- Key Laboratory of Reproductive Health, Liaoning Province Research Institute of Family Planning, China Medical University, Huanggu District, Shenyang, China
| |
Collapse
|
21
|
Lonardo F, Lonardo MS, Acquaviva F, Della Monica M, Scarano F, Scarano G. Say-Barber-Biesecker-Young-Simpson syndrome and Genitopatellar syndrome: Lumping or splitting? Clin Genet 2019; 95:253-261. [PMID: 28857140 DOI: 10.1111/cge.13127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022]
Abstract
The Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome (SBBYSS) and Genitopatellar syndrome (GTPTS) are 2 rare but clinically well-described diseases caused by de novo heterozygous sequence variants in the KAT6B gene. Both phenotypes are characterized by significant global developmental delay/intellectual disability, hypotonia, genital abnormalities, and patellar hypoplasia/agenesis. In addition, congenital heart defects, dental abnormalities, hearing loss, and thyroid anomalies are common to both phenotypes. This broad clinical overlap led some authors to propose the concept of KAT6B spectrum disorders. On the other hand, some clinical features could help to differentiate the 2 disorders. Furthermore, it is possible to establish a genotype-phenotype correlation when considering the position of the sequence variant along the gene, supporting the notion of the 2 disorders as really distinct entities.
Collapse
Affiliation(s)
- F Lonardo
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| | - M S Lonardo
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| | - F Acquaviva
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
- Department of Translational Medical Science - Section of Pediatrics, Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - M Della Monica
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
| | - F Scarano
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| | - G Scarano
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| |
Collapse
|
22
|
Li JJ, Yan S, Pan Y, Liu Z, Liu Y, Deng Q, Tan Q, Woodward ER, Wu N. FGFR genes mutation is an independent prognostic factor and associated with lymph node metastasis in squamous non-small cell lung cancer. Cancer Biol Ther 2018; 19:1108-1116. [PMID: 30403900 DOI: 10.1080/15384047.2018.1480294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeting FGFRs is one of the most promising therapeutic strategies in squamous non-small cell lung cancer (SQCC). However, different FGFR genomic aberrations can be associated with distinct biological characteristics that result in different clinical outcomes or therapeutic consequences. Currently, the full spectrum of FGFR gene aberrations and their clinical significance in SQCC have not been comprehensively studied. Here, we used Next-generation sequencing to investigate the presence of FGFR gene mutations in 143 tumors from patients with stage I, II or III SQCC and who had not been treated with chemotherapy or radiotherapy prior to surgery. FGFR gene mutations were identified in 24 cases, resulting in an overall frequency of 16.9%. Among the mutations, 7% (10/143) were somatic mutations, and 9.8% (14/143) germline mutations. FGFR mutations were significantly associated with an increased risk of lymph node metastasis. SQCC patients with a FGFR somatic mutation had shorter OS (overall survival, log rank P = 0.005) and DFS (disease-free survival,log rank P = 0.004) compared with those without an FGFR mutation. The multivariate analysis confirmed that a somatic mutation was an independent poor prognostic factor for OS (HR: 4.26, 95% CI: 1.49-12.16, P = 0.007) and DFS (HR: 3.16, 95% CI: 1.20-8.35, P = 0.020). Our data indicate that FGFR genes mutation is an independent prognostic factor and associated with lymph node metastasis in stage I to III Chinese SQCC patients.
Collapse
Affiliation(s)
- Jing Jing Li
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Shi Yan
- b Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II , Peking University Cancer Hospital & Institute , Beijing , China
| | - Yaqi Pan
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Zhen Liu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Ying Liu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Qiuju Deng
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Qin Tan
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Emma R Woodward
- c Manchester Centre for Genomic Medicine , Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC) , Manchester , UK
| | - Nan Wu
- b Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II , Peking University Cancer Hospital & Institute , Beijing , China
| |
Collapse
|
23
|
Oussoren E, Mathijssen IMJ, Wagenmakers M, Verdijk RM, Bredero-Boelhouwer HH, van Veelen-Vincent MLC, van der Meijden JC, van den Hout JMP, Ruijter GJG, van der Ploeg AT, Langeveld M. Craniosynostosis affects the majority of mucopolysaccharidosis patients and can contribute to increased intracranial pressure. J Inherit Metab Dis 2018; 41:1247-1258. [PMID: 30083803 PMCID: PMC6326980 DOI: 10.1007/s10545-018-0212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The mucopolysaccharidoses are multisystem lysosomal storage diseases characterized by extensive skeletal deformities, including skull abnormalities. The objective of this study was to determine the incidence of craniosynostosis in the different mucopolysaccharidosis (MPS) types and its clinical consequences. METHODS In a prospective cohort study spanning 10 years, skull imaging and clinical evaluations were performed in 47 MPS patients (type I, II, VI, and VII). A total of 215 radiographs of the skull were analyzed. The presence and type of craniosynostosis, the sutures involved, progression over time, skull shape, head circumference, fundoscopy, and ventriculoperitoneal shunt (VPS) placement data were evaluated. RESULTS Craniosynostosis of at least one suture was present in 77% of all 47 MPS patients (≤ 6 years of age in 40% of all patients). In 32% of all MPS patients, premature closure of all sutures was seen (≤ 6 years of age in 13% of all patients). All patients with early closure had a more severe MPS phenotype, both in the neuronopathic (MPS I, II) and non-neuronopathic (MPS VI) patient groups. Because of symptomatic increased intracranial pressure (ICP), a VPS was placed in six patients, with craniosynostosis as a likely or certain causative factor for the increased pressure in four patients. One patient underwent cranial vault expansion because of severe craniosynostosis. CONCLUSIONS Craniosynostosis occurs in the majority of MPS patients. Since the clinical consequences can be severe and surgical intervention is possible, skull growth and signs and symptoms of increased ICP should be monitored in both neuronopathic and non-neuronopathic patients with MPS.
Collapse
Affiliation(s)
- Esmee Oussoren
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands.
| | - Irene M J Mathijssen
- Department of Plastic, Reconstructive and Hand Surgery, Dutch Craniofacial Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Margreet Wagenmakers
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Rob M Verdijk
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Hansje H Bredero-Boelhouwer
- Department of Plastic, Reconstructive and Hand Surgery, Dutch Craniofacial Centre, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jan C van der Meijden
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - George J G Ruijter
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC-Sophia Children's Hospital, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Mirjam Langeveld
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
25
|
A genotype-specific surgical approach for patients with Pfeiffer syndrome due to W290C pathogenic variant in FGFR2 is associated with improved developmental outcomes and reduced mortality. Genet Med 2018; 21:471-476. [DOI: 10.1038/s41436-018-0073-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
|
26
|
Chinese patients with p.Ala172Phe-related Pfeiffer syndrome: a case and literature review. Clin Dysmorphol 2018; 27:84-87. [PMID: 29782338 DOI: 10.1097/mcd.0000000000000225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 ( FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017; 13:1479-1488. [PMID: 29230096 PMCID: PMC5723914 DOI: 10.7150/ijbs.22373] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Craniosynostosis results from the premature fusion of cranial sutures, with an incidence of 1 in 2,100-2,500 live births. The majority of cases are non-syndromic and involve single suture fusion, whereas syndromic cases often involve complex multiple suture fusion. The fibroblast growth factor receptor 2 (FGFR2) gene is perhaps the most extensively studied gene that is mutated in various craniosynostotic syndromes including Crouzon, Apert, Pfeiffer, Antley-Bixler, Beare-Stevenson cutis gyrata, Jackson-Weiss, Bent Bone Dysplasia, and Seathre-Chotzen-like syndromes. The majority of these mutations are missense mutations that result in constitutive activation of the receptor and downstream molecular pathways. Treatment involves a multidisciplinary approach with ultimate surgical fixation of the cranial deformity to prevent further sequelae. Understanding the molecular mechanisms has allowed for the investigation of different therapeutic agents that can potentially be used to prevent the disorders. Further research efforts are need to better understand screening and effective methods of early intervention and prevention. Herein, the authors provide a comprehensive update on FGFR2-related syndromic craniosynostosis.
Collapse
Affiliation(s)
- Saïd C. Azoury
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Vivek Shukla
- TGIB, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
28
|
Egan JB, Marks DL, Hogenson TL, Vrabel AM, Sigafoos AN, Tolosa EJ, Carr RM, Safgren SL, Enriquez Hesles E, Almada LL, Romecin-Duran PA, Iguchi E, Ala’Aldeen A, Kocher JPA, Oliver GR, Prodduturi N, Mead DW, Hossain A, Huneke NE, Tagtow CM, Ailawadhi S, Ansell SM, Banck MS, Bryce AH, Carballido EM, Chanan-Khan AA, Curtis KK, Resnik E, Gawryletz CD, Go RS, Halfdanarson TR, Ho TH, Joseph RW, Kapoor P, Mansfield AS, Meurice N, Nageswara Rao AA, Nowakowski GS, Pardanani A, Parikh SA, Cheville JC, Feldman AL, Ramanathan RK, Robinson SI, Tibes R, Finnes HD, McCormick JB, McWilliams RR, Jatoi A, Patnaik MM, Silva AC, Wieben ED, McAllister TM, Rumilla KM, Kerr SE, Lazaridis KN, Farrugia G, Stewart AK, Clark KJ, Kennedy EJ, Klee EW, Borad MJ, Fernandez-Zapico ME. Molecular Modeling and Functional Analysis of Exome Sequencing–Derived Variants of Unknown Significance Identify a Novel, Constitutively Active FGFR2 Mutant in Cholangiocarcinoma. JCO Precis Oncol 2017; 2017. [PMID: 30761385 PMCID: PMC6369924 DOI: 10.1200/po.17.00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Genomic testing has increased the quantity of information available to oncologists. Unfortunately, many identified sequence alterations are variants of unknown significance (VUSs), which thus limit the clinician’s ability to use these findings to inform treatment. We applied a combination of in silico prediction and molecular modeling tools and laboratory techniques to rapidly define actionable VUSs. Materials and Methods Exome sequencing was conducted on 308 tumors from various origins. Most single nucleotide alterations within gene coding regions were VUSs. These VUSs were filtered to identify a subset of therapeutically targetable genes that were predicted with in silico tools to be altered in function by their variant sequence. A subset of receptor tyrosine kinase VUSs was characterized by laboratory comparison of each VUS versus its wild-type counterpart in terms of expression and signaling activity. Results The study identified 4,327 point mutations of which 3,833 were VUSs. Filtering for mutations in genes that were therapeutically targetable and predicted to affect protein function reduced these to 522 VUSs of interest, including a large number of kinases. Ten receptor tyrosine kinase VUSs were selected to explore in the laboratory. Of these, seven were found to be functionally altered. Three VUSs (FGFR2 F276C, FGFR4 R78H, and KDR G539R) showed increased basal or ligand-stimulated ERK phosphorylation compared with their wild-type counterparts, which suggests that they support transformation. Treatment of a patient who carried FGFR2 F276C with an FGFR inhibitor resulted in significant and sustained tumor response with clinical benefit. Conclusion The findings demonstrate the feasibility of rapid identification of the biologic relevance of somatic mutations, which thus advances clinicians’ ability to make informed treatment decisions.
Collapse
Affiliation(s)
- Jan B. Egan
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - David L. Marks
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Tara L. Hogenson
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Anne M. Vrabel
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Ashley N. Sigafoos
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Ezequiel J. Tolosa
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Ryan M. Carr
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Stephanie L. Safgren
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Elisa Enriquez Hesles
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Luciana L. Almada
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Paola A. Romecin-Duran
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Eriko Iguchi
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Aryan Ala’Aldeen
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Jean-Pierre A. Kocher
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Gavin R. Oliver
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Naresh Prodduturi
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - David W. Mead
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Asif Hossain
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Norine E. Huneke
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Colleen M. Tagtow
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Sikander Ailawadhi
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Stephen M. Ansell
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Michaela S. Banck
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Alan H. Bryce
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Estrella M. Carballido
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Asher A. Chanan-Khan
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Kelly K. Curtis
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Ernesto Resnik
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Chelsea D. Gawryletz
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Ronald S. Go
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Thorvardur R. Halfdanarson
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Thai H. Ho
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Richard W. Joseph
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Prashant Kapoor
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Aaron S. Mansfield
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Nathalie Meurice
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Amulya A. Nageswara Rao
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Grzegorz S. Nowakowski
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Animesh Pardanani
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Sameer A. Parikh
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - John C. Cheville
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Andrew L. Feldman
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Ramesh K. Ramanathan
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Steven I. Robinson
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Raoul Tibes
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Heidi D. Finnes
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Jennifer B. McCormick
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Robert R. McWilliams
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Aminah Jatoi
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Mrinal M. Patnaik
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Alvin C. Silva
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Eric D. Wieben
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | | | | | | | | | - Gianrico Farrugia
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - A. Keith Stewart
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Karl J. Clark
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Eileen J. Kennedy
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Eric W. Klee
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Mitesh J. Borad
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| | - Martin E. Fernandez-Zapico
- David L. Marks, Tara L. Hogenson, Anne M. Vrabel, Ashley N. Sigafoos, Ezequiel J. Tolosa, Ryan M. Carr, Stephanie L. Safgren, Elisa Enriquez Hesles, Luciana L. Almada, Paola A. Romecin-Duran, Eriko Iguchi, Aryan Ala’Aldeen, Jean-Pierre A. Kocher, Gavin R. Oliver, Naresh Prodduturi, David W. Mead, Asif Hossain, Norine E. Huneke, Colleen M. Tagtow, Sikander Ailawadhi, Stephen M. Ansell, Michaela S. Banck, Asher A. Chanan-Khan, Ronald S. Go, Thorvardur R. Halfdanarson, Richard W. Joseph, Prashant Kapoor,
| |
Collapse
|
29
|
Romanelli Tavares VL, Zechi-Ceide RM, Bertola DR, Gordon CT, Ferreira SG, Hsia GSP, Yamamoto GL, Ezquina SAM, Kokitsu-Nakata NM, Vendramini-Pittoli S, Freitas RS, Souza J, Raposo-Amaral CA, Zatz M, Amiel J, Guion-Almeida ML, Passos-Bueno MR. Targeted molecular investigation in patients within the clinical spectrum of Auriculocondylar syndrome. Am J Med Genet A 2017; 173:938-945. [PMID: 28328130 DOI: 10.1002/ajmg.a.38101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022]
Abstract
Auriculocondylar syndrome, mainly characterized by micrognathia, small mandibular condyle, and question mark ears, is a rare disease segregating in an autosomal dominant pattern in the majority of the families reported in the literature. So far, pathogenic variants in PLCB4, GNAI3, and EDN1 have been associated with this syndrome. It is caused by a developmental abnormality of the first and second pharyngeal arches and it is associated with great inter- and intra-familial clinical variability, with some patients not presenting the typical phenotype of the syndrome. Moreover, only a few patients of each molecular subtype of Auriculocondylar syndrome have been reported and sequenced. Therefore, the spectrum of clinical and genetic variability is still not defined. In order to address these questions, we searched for alterations in PLCB4, GNAI3, and EDN1 in patients with typical Auriculocondylar syndrome (n = 3), Pierre Robin sequence-plus (n = 3), micrognathia with additional craniofacial malformations (n = 4), or non-specific auricular dysplasia (n = 1), which could represent subtypes of Auriculocondylar syndrome. We found novel pathogenic variants in PLCB4 only in two of three index patients with typical Auriculocondylar syndrome. We also performed a detailed comparative analysis of the patients presented in this study with those previously published, which showed that the pattern of auricular abnormality and full cheeks were associated with molecularly characterized individuals with Auriculocondylar syndrome. Finally, our data contribute to a better definition of a set of parameters for clinical classification that may be used as a guidance for geneticists ordering molecular testing for Auriculocondylar syndrome. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanessa L Romanelli Tavares
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roseli M Zechi-Ceide
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Debora R Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Simone G Ferreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriella S P Hsia
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme L Yamamoto
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Suzana A M Ezquina
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Nancy M Kokitsu-Nakata
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Siulan Vendramini-Pittoli
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Josiane Souza
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Cesar A Raposo-Amaral
- Hospital de Crânio e Face, Sociedade Brasileira de Pesquisa e Assistência para Reabilitação Craniofacial (SOBRAPAR), Campinas, São Paulo, Brazil
| | - Mayana Zatz
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maria L Guion-Almeida
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Lin Y, Gao H, Ai S, Eswarakumar JV, Chen C, Zhu Y, Li T, Liu B, Liu X, Luo L, Jiang H, Li Y, Liang X, Jin C, Huang X, Lu L. C278F mutation in FGFR2 gene causes two different types of syndromic craniosynostosis in two Chinese patients. Mol Med Rep 2017; 16:5333-5337. [PMID: 28849010 PMCID: PMC5647065 DOI: 10.3892/mmr.2017.7248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The current study was performed with aim to investigate the fibroblast growth factor receptor 2 (FGFR2) gene in two Chinese families with two different forms of syndromic craniosynostosis, and to characterize their associated clinical features. Two families underwent complete ophthalmic examinations, and two patients from each family were diagnosed with craniosynostosis. Genomic DNA was extracted from leukocytes of peripheral blood collected from these two families and from 200 unrelated subjects within the same population as controls. Exons 8 and 10 of the FGFR2 gene were amplified by polymerase chain reaction and directly sequenced. Ophthalmic examinations of the two patients revealed shallow orbits and ocular proptosis, accompanied by midface hypoplasia and craniosynostosis. Case 1 had retinal detachment, abnormal limbs and hands, while case 2 exhibited normal hands and feet upon clinical examination. A heterozygous FGFR2 missense mutation c.833G>T (C278F) in exon 8 was identified in these two patients, but not in unaffected family members or the normal controls. Although FGFR2 gene mutations and polymorphisms have been studied in various ethnic groups, we report a mutation of FGFR2 in two different Chinese patients with two different types of syndromic craniosynostosis.
Collapse
Affiliation(s)
- Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Hongbin Gao
- Guangdong Laboratory Animals Monitoring Institute, Key Provincial Laboratory of Guangdong Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jacob V.P. Eswarakumar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xinhua Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
31
|
Machado RA, Ferreira SB, Martins L, Ribeiro MM, Martelli DRB, Coletta RD, Aguiar MJB, Martelli-Júnior H. A novel heterozygous mutation in FGFR2 gene causing Pfeiffer syndrome. Am J Med Genet A 2017; 173:2838-2843. [PMID: 28815901 DOI: 10.1002/ajmg.a.38389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Renato A Machado
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Shirlene B Ferreira
- Health Science Program, State University of Montes Claros, Unimontes, Minas Gerais State, Brazil
| | - Luciane Martins
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Mariana M Ribeiro
- Department of Morphology, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Daniella R B Martelli
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Marcos J B Aguiar
- Special Genetics Service, Hospital of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hercílio Martelli-Júnior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil.,Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosário Vellano, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
32
|
Buchanan EP, Xue Y, Xue AS, Olshinka A, Lam S. Multidisciplinary care of craniosynostosis. J Multidiscip Healthc 2017; 10:263-270. [PMID: 28740400 PMCID: PMC5505551 DOI: 10.2147/jmdh.s100248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The management of craniosynostosis, especially in the setting of craniofacial syndromes, is ideally done in a multidisciplinary clinic with a team focused toward comprehensive care. Craniosynostosis is a congenital disorder of the cranium, caused by the premature fusion of one or more cranial sutures. This fusion results in abnormal cranial growth due to the inability of the involved sutures to accommodate the growing brain. Skull growth occurs only at the patent sutures, resulting in an abnormal head shape. If cranial growth is severely restricted, as seen in multisuture craniosynostosis, elevation in intracranial pressure can occur. Whereas most patients treated in a multidisciplinary craniofacial clinic have non-syndromic or isolated craniosynostosis, the most challenging patients are those with syndromic craniosynostosis. The purpose of this article was to discuss the multidisciplinary team care required to treat both syndromic and non-syndromic craniosynostosis.
Collapse
Affiliation(s)
- Edward P Buchanan
- Michael E. DeBakey Department of Surgery, Division of Plastic Surgery
| | - Yunfeng Xue
- Michael E. DeBakey Department of Surgery, Division of Plastic Surgery
| | - Amy S Xue
- Michael E. DeBakey Department of Surgery, Division of Plastic Surgery
| | - Asaf Olshinka
- Michael E. DeBakey Department of Surgery, Division of Plastic Surgery
| | - Sandi Lam
- Michael E. DeBakey Department of Surgery, Division of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Chen CP, Lin SP, Liu YP, Chern SR, Chen SW, Lai ST, Wang W. Pfeiffer syndrome with FGFR2 C342R mutation presenting extreme proptosis, craniosynostosis, hearing loss, ventriculomegaly, broad great toes and thumbs, maxillary hypoplasia, and laryngomalacia. Taiwan J Obstet Gynecol 2017; 56:412-414. [PMID: 28600064 DOI: 10.1016/j.tjog.2017.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 10/19/2022] Open
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Shuan-Pei Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Early Childhood Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Peng Liu
- Department of Radiology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan; MacKay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
34
|
Graul-Neumann LM, Klopocki E, Adolphs N, Mensah MA, Kress W. Mutation c.943G>T (p.Ala315Ser) in FGFR2 Causing a Mild Phenotype of Crouzon Craniofacial Dysostosis in a Three-Generation Family. Mol Syndromol 2017; 8:93-97. [PMID: 28611549 DOI: 10.1159/000455028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2016] [Indexed: 02/03/2023] Open
Abstract
Crouzon syndrome craniofacial dysostosis type I [OMIM 123500] is caused by mutations in the gene encoding fibroblast growth factor receptor-2 (FGFR2). An overlapping phenotype with Muenke and Crouzon syndrome with acanthosis nigricans (FGFR3 mutations) is known. The clinical diagnosis can be corroborated by molecular studies in about 80-90% of the cases. No clear genotype/phenotype correlation has been identified yet. Here, we describe a second family with a mild phenotype in which the FGFR2 mutation c.943G>T leading to the amino acid substitution p.Ala315Ser was detected. Five affected family members showed craniofacial dysostosis without overt craniosynostosis. They all had midface hypoplasia. Crouzonoid appearance with mild protrusion of bulbi was only apparent in our index patient as well as obstructive sleep apnea episodes leading to reduced oxygen saturation; therefore, surgical intervention was suggested. One other affected family member additionally had iris coloboma.
Collapse
Affiliation(s)
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | - Martin A Mensah
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, Berlin, Würzburg, Germany
| | - Wolfram Kress
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Giancotti A, D’Ambrosio V, Marchionni E, Squarcella A, Aliberti C, La Torre R, Manganaro L, Pizzuti A. Pfeiffer syndrome: literature review of prenatal sonographic findings and genetic diagnosis. J Matern Fetal Neonatal Med 2016; 30:2225-2231. [DOI: 10.1080/14767058.2016.1243099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Antonella Giancotti
- Department of Obstetrics, Gynecology and Urologic Sciences, “Sapienza” University of Rome, Policlinico Umberto I Hospital,
| | - Valentina D’Ambrosio
- Department of Obstetrics, Gynecology and Urologic Sciences, “Sapienza” University of Rome, Policlinico Umberto I Hospital,
- Department of Experimental Medicine, “Sapienza” University of Rome, Policlinico Umberto I Hospital, and
| | - Enrica Marchionni
- Department of Experimental Medicine, “Sapienza” University of Rome, Policlinico Umberto I Hospital, and
- CSS-Mendel Laboratory, Rome, Italy
| | - Antonia Squarcella
- Department of Obstetrics, Gynecology and Urologic Sciences, “Sapienza” University of Rome, Policlinico Umberto I Hospital,
| | - Camilla Aliberti
- Department of Obstetrics, Gynecology and Urologic Sciences, “Sapienza” University of Rome, Policlinico Umberto I Hospital,
| | - Renato La Torre
- Department of Obstetrics, Gynecology and Urologic Sciences, “Sapienza” University of Rome, Policlinico Umberto I Hospital,
| | - Lucia Manganaro
- Department of Radiological, Oncological and Anatomopathological Sciences, “Sapienza” University of Rome, Policlinico Umberto I Hospital, Rome, Italy, and
| | - Antonio Pizzuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Policlinico Umberto I Hospital, and
- CSS-Mendel Laboratory, Rome, Italy
| | | |
Collapse
|
36
|
Ohishi A, Nishimura G, Kato F, Ono H, Maruwaka K, Ago M, Suzumura H, Hirose E, Uchida Y, Fukami M, Ogata T. Mutation analysis of FGFR1-3 in 11 Japanese patients with syndromic craniosynostoses. Am J Med Genet A 2016; 173:157-162. [PMID: 27683237 DOI: 10.1002/ajmg.a.37992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/18/2016] [Indexed: 01/28/2023]
Abstract
Syndromic craniosynostoses usually occur as single gene disorders. In this study, we analyzed FGFR1-3 genes in four patients with Crouzon syndrome (CS), four patients with Pfeiffer syndrome type 2 (PS-2), one patient with Jackson-Weiss syndrome (JWS), and two patients (sisters) with Muenke syndrome (MS). FGFR2 and FGFR3 mutations were identified in 10 of the 11 patients. Notably, we found a novel FGFR2 p.Asn549Thr mutation in a patient with CS, and a novel FGFR2 p.Ser347Cys mutation in a patient with JWS (thus, this patient was turned out to have an FGFR2-related PS-variant). We also identified an FGFR2 p.Ser252Leu mutation in a phenotypically normal father of a daughter with CS, and an FGFR3 p.Pro250Arg mutation in a mildly macrocephalic father of sisters with MS. These findings, together with previous data, imply that the same FGFR2 mutations can be associated with a wide range of phenotypes including clinically different forms of syndromic craniosynostosis and apparently normal phenotype, depending on other (epi)genetic and environmental factors. Thus, genetic studies are recommended not only for obviously affected individuals but also for family members with apparently normal phenotype or non-specific subtle abnormal phenotype, to allow for pertinent genetic counseling. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akira Ohishi
- Department of Regional Neonatal-Perinatal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Gen Nishimura
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Fumiko Kato
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Ono
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Maruwaka
- Department of Pediatrics, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Mako Ago
- Department of Neonatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Etsuko Hirose
- Department of Neonatology, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yuki Uchida
- Department of Plastic, Reconstructive and Anesthetic Surgery, Chiba University School of Medicine, Chiba, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
37
|
Sarabipour S, Hristova K. Pathogenic Cysteine Removal Mutations in FGFR Extracellular Domains Stabilize Receptor Dimers and Perturb the TM Dimer Structure. J Mol Biol 2016; 428:3903-3910. [PMID: 27596331 DOI: 10.1016/j.jmb.2016.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Missense mutations that introduce or remove cysteine residues in receptor tyrosine kinases are believed to cause pathologies by stabilizing the active receptor tyrosine kinase dimers. However, the magnitude of this stabilizing effect has not been measured for full-length receptors. Here, we characterize the dimer stabilities of three full-length fibroblast growth factor receptor (FGFR) mutants harboring pathogenic cysteine substitutions: the C178S FGFR1 mutant, the C342R FGFR2 mutant, and the C228R FGFR3 mutant. We find that the three mutations stabilize the FGFR dimers. We further see that the mutations alter the configuration of the FGFR transmembrane dimers. Thus, both aberrant dimerization and perturbed dimer structure likely contribute to the pathological phenotypes arising due to these mutations.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, USA.
| |
Collapse
|
38
|
Hibberd CE, Bowdin S, Arudchelvan Y, Forrest CR, Brakora KA, Marcucio RS, Gong SG. FGFR-associated craniosynostosis syndromes and gastrointestinal defects. Am J Med Genet A 2016; 170:3215-3221. [PMID: 27481450 DOI: 10.1002/ajmg.a.37862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Craniosynostosis is a relatively common birth defect characterized by the premature fusion of one or more cranial sutures. Examples of craniosynostosis syndromes include Crouzon (CS), Pfeiffer (PS), and Apert (AS) syndrome, with clinical characteristics such as midface hypoplasia, hypertelorism, and in some cases, limb defects. Mutations in Fibroblast Growth Factor Receptor-2 comprise the majority of known mutations in syndromic forms of craniosynostosis. A number of clinical reports of FGFR-associated craniosynostosis patients and mouse mutants have been linked to gastrointestinal tract (GIT) disorders, leading to the hypothesis of a direct link between FGFR-associated craniosynostosis syndromes and GIT malformations. We conducted an investigation to determine GIT symptoms in a sample of FGFR-associated craniosynostosis syndrome patients and a mouse model of CS containing a mutation (W290R) in Fgfr2. We found that, compared to the general population, the incidence of intestinal/bowel malrotation (IM) was present at a higher level in our sample population of patients with FGFR-associated craniosynostosis syndromes. We also showed that the mouse model of CS had an increased incidence of cecal displacement, suggestive of IM. These findings suggest a direct relationship between FGFR-related craniosynostosis syndromes and GIT malformations. Our study may shed further light on the potential widespread impact FGFR mutations on different developmental systems. Based on reports of GIT malformations in children with craniosynostosis syndromes and substantiation with our animal model, GIT malformations should be considered in any child with an FGFR2-associated craniosynostosis syndrome. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Sarah Bowdin
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | | | - Christopher R Forrest
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Katherine A Brakora
- Department of Orthopaedic Surgery, San Francisco General Hospital, Trauma Institute, School of Medicine, The University of California at San Francisco, San Francisco, California
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Trauma Institute, School of Medicine, The University of California at San Francisco, San Francisco, California
| | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
40
|
Mutational patterns in oncogenes and tumour suppressors. Biochem Soc Trans 2016; 44:925-31. [DOI: 10.1042/bst20160001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/24/2022]
Abstract
All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer.
Collapse
|
41
|
Tracheal cartilaginous sleeves in children with syndromic craniosynostosis. Genet Med 2016; 19:62-68. [PMID: 27228464 DOI: 10.1038/gim.2016.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Because a tracheal cartilaginous sleeve (TCS) confers a significant mortality risk that can be mitigated with appropriate intervention, we sought to describe the prevalence and associated genotypes in a large cohort of children with syndromic craniosynostosis. METHODS Chart review of patients with syndromic craniosynostosis across two institutions. RESULTS In a cohort of 86 patients with syndromic craniosynostosis, 31 required airway evaluation under anesthesia. TCS was found in 19, for an overall prevalence of 22%. FGFR2, TWIST1, and FGFR3 mutations were identified in children with TCS. All five children with a W290C mutation in FGFR2 had TCS, and most previously reported children with W290C had identification of TCS or early death. In contrast, TCS was not associated with other mutations at residue 290. CONCLUSION There is an association between TCS and syndromic craniosynostosis, and it appears to be particularly high in individuals with the W290C mutation in FGFR2. Referral to a pediatric otolaryngologist and consideration of operative airway evaluation (i.e., bronchoscopy or rigid endoscopy) in all patients with syndromic craniosynostosis should be considered to evaluate for TCS. Results from genetic testing may help providers weigh the risks and benefits of early airway evaluation and intervention in children with higher-risk genotypes.Genet Med 19 1, 62-68.
Collapse
|
42
|
Fernandes MBL, Maximino LP, Perosa GB, Abramides DVM, Passos-Bueno MR, Yacubian-Fernandes A. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects. Am J Med Genet A 2016; 170:1532-7. [PMID: 27028366 DOI: 10.1002/ajmg.a.37640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 03/13/2016] [Indexed: 12/27/2022]
Abstract
Apert and Crouzon are the most common craniosynostosis syndromes associated with mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. We conducted a study to examine the molecular biology, brain abnormalities, and cognitive development of individuals with these syndromes. A retrospective longitudinal review of 14 patients with Apert and Crouzon syndromes seen at the outpatient Craniofacial Surgery Hospital for Rehabilitation of Craniofacial Anomalies in Brazil from January 1999 through August 2010 was performed. Patients between 11 and 36 years of age (mean 18.29 ± 5.80), received cognitive evaluations, cerebral magnetic resonance imaging, and molecular DNA analyses. Eight patients with Apert syndrome (AS) had full scale intelligence quotients (FSIQs) that ranged from 47 to 108 (mean 76.9 ± 20.2), and structural brain abnormalities were identified in five of eight patients. Six patients presented with a gain-of-function mutation (p.Ser252Trp) in FGFR2 and FSIQs in those patients ranged from 47 to78 (mean 67.2 ± 10.7). One patient with a gain-of-function mutation (p.Pro253Arg) had a FSIQ of 108 and another patient with an atypical splice mutation (940-2A →G) had a FSIQ of 104. Six patients with Crouzon syndrome had with mutations in exons IIIa and IIIc of FGFR2 and their FSIQs ranged from 82 to 102 (mean 93.5 ± 6.7). These reveal that molecular aspects are another factor that can be considered in studies of global and cognitive development of patients with Apert and Crouzon syndrome (CS). © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Gimol B Perosa
- Departamento de Neurologia, Psicologia e Psiquiatria, UNESP, Botucatu, SP, Brazil
| | | | | | - Adriano Yacubian-Fernandes
- Departamento de Fonoaudiologia, FOB-USP, Bauru, SP, Brazil.,Departamento de Neurologia, Psicologia e Psiquiatria, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
43
|
Collet C, Arnaud E, Di Rocco F, Apra C. Changes in <em>FGFR2</em> amino-acid residue Asn549 lead to Crouzon and Pfeiffer syndrome with hydrocephalus. AIMS GENETICS 2016. [DOI: 10.3934/genet.2016.3.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
A Patient With Pansynostosis and Williams-Beuren Syndrome. J Craniofac Surg 2015; 27:e4-6. [PMID: 26703032 DOI: 10.1097/scs.0000000000002207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Williams-Beuren syndrome (WBS) is a multisystemic genetic disorder caused by a gene deletion at gene locus 7q11.23. This article presents the first described case of a patient with WBS and simultaneous pansynostosis. CASE PRESENTATION This article presents the management of this young Caucasian boy from birth until the age of 12 years and provides an overview of previously described manifestations of WBS in the craniofacial region. CONCLUSIONS This case demonstrates the surgical treatment of pansynostosis in a child with WBS and might provide interesting aspects in the diagnostics and management of this rare malformation.
Collapse
|
45
|
Moosa S, Wollnik B. Altered FGF signalling in congenital craniofacial and skeletal disorders. Semin Cell Dev Biol 2015; 53:115-25. [PMID: 26686047 DOI: 10.1016/j.semcdb.2015.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The fibroblast growth factor (FGF) signalling pathway has been the focus of intense genetic and functional research for several decades. The emerging data implicate FGF signalling in diverse regulatory processes, both in the developing embryo as well as in the adult organism. Alterations in this tightly regulated pathway can lead to a number of pathological conditions, ranging from well-recognized congenital disorders to cancer. In order to mediate their cellular processes, FGFs signal through a subfamily of tyrosine kinase receptors, called FGF receptors (FGFRs). In humans, four FGFRs are described, and, to date, mutations in FGFR1, FGFR2, and FGFR3 have been shown to underlie human developmental disorders. FGFs/FGFRs are known to be key players in both endochondral and intramembranous bone development. In this review, we focus on the major developmental craniofacial and skeletal disorders which result from altered FGF signalling.
Collapse
Affiliation(s)
- Shahida Moosa
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany; Institute of Human Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Lu C, Huguley S, Cui C, Cabaniss LB, Waite PD, Sarver DM, Mamaeva OA, MacDougall M. Effects of FGFR Signaling on Cell Proliferation and Differentiation of Apert Dental Cells. Cells Tissues Organs 2015; 201:26-37. [DOI: 10.1159/000441349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
The Apert syndrome is a rare congenital disorder most often arising from S252W or P253R mutations in fibroblast growth factor receptor (FGFR2). Numerous studies have focused on the regulatory role of Apert FGFR2 signaling in bone formation, whereas its functional role in tooth development is largely unknown. To investigate the role of FGFR signaling in cell proliferation and odontogenic differentiation of human dental cells in vitro, we isolated dental pulp and enamel organ epithelia (EOE) tissues from an Apert patient carrying the S252W FGFR2 mutation. Apert primary pulp and EOE cells were established and shown to exhibit normal morphology and express alkaline phosphatase under differentiation conditions. Similar to control cells, Apert dental pulp and EOE cells expressed all FGFRs, with highest levels of FGFR1 followed by FGFR2 and low levels of FGFR3 and FGFR4. However, Apert cells had increased cell growth compared with control cells. Distinct from previous findings in osteoblast cells, gain-of-function S252W FGFR2 mutation did not upregulate the expression of epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFRα), but elevated extracellular signal-regulated kinase (ERK) signaling in cells after EGF stimulation. Unexpectedly, there was little effect of the S252W mutation on odontogenic gene expression in dental pulp and EOE cells. However, after inhibition of total FGFR signaling or ERK signaling, the expression of odontogenic genes was upregulated in both dental cell types, indicating the negative effect of whole FGFR signaling on odontogenic differentiation. This study provides novel insights on FGFR signaling and a common Apert FGFR2 mutation in the regulation of odontogenic differentiation of dental mesenchymal and epithelial cells.
Collapse
|
47
|
Bagheri-Fam S, Ono M, Li L, Zhao L, Ryan J, Lai R, Katsura Y, Rossello FJ, Koopman P, Scherer G, Bartsch O, Eswarakumar JVP, Harley VR. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum Mol Genet 2015; 24:6699-710. [PMID: 26362256 DOI: 10.1093/hmg/ddv374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Patients with 46,XY gonadal dysgenesis (GD) exhibit genital anomalies, which range from hypospadias to complete male-to-female sex reversal. However, a molecular diagnosis is made in only 30% of cases. Heterozygous mutations in the human FGFR2 gene cause various craniosynostosis syndromes including Crouzon and Pfeiffer, but testicular defects were not reported. Here, we describe a patient whose features we would suggest represent a new FGFR2-related syndrome, craniosynostosis with XY male-to-female sex reversal or CSR. The craniosynostosis patient was chromosomally XY, but presented as a phenotypic female due to complete GD. DNA sequencing identified the FGFR2c heterozygous missense mutation, c.1025G>C (p.Cys342Ser). Substitution of Cys342 by Ser or other amino acids (Arg/Phe/Try/Tyr) has been previously reported in Crouzon and Pfeiffer syndrome. We show that the 'knock-in' Crouzon mouse model Fgfr2c(C342Y/C342Y) carrying a Cys342Tyr substitution displays XY gonadal sex reversal with variable expressivity. We also show that despite FGFR2c-Cys342Tyr being widely considered a gain-of-function mutation, Cys342Tyr substitution in the gonad leads to loss of function, as demonstrated by sex reversal in Fgfr2c(C342Y/-) mice carrying the knock-in allele on a null background. The rarity of our patient suggests the influence of modifier genes which exacerbated the testicular phenotype. Indeed, patient whole exome analysis revealed several potential modifiers expressed in Sertoli cells at the time of testis determination in mice. In summary, this study identifies the first FGFR2 mutation in a 46,XY GD patient. We conclude that, in certain rare genetic contexts, maintaining normal levels of FGFR2 signaling is important for human testis determination.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia, Department of Anatomy and Developmental Biology,
| | - Makoto Ono
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Li Li
- Department of Orthopedics and Rehabilitation, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janelle Ryan
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Raymond Lai
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yukako Katsura
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerd Scherer
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany and
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Jacob V P Eswarakumar
- Department of Orthopedics and Rehabilitation, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Vincent R Harley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia, Department of Anatomy and Developmental Biology,
| |
Collapse
|
48
|
Twigg SRF, Wilkie AOM. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015; 97:359-77. [PMID: 26340332 PMCID: PMC4564941 DOI: 10.1016/j.ajhg.2015.07.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures of the skull, provides a paradigm for investigating the interplay of genetic and environmental factors leading to malformation. Over the past 20 years molecular genetic techniques have provided a new approach to dissect the underlying causes; success has mostly come from investigation of clinical samples, and recent advances in high-throughput DNA sequencing have dramatically enhanced the study of the human as the preferred "model organism." In parallel, however, we need a pathogenetic classification to describe the pathways and processes that lead to cranial suture fusion. Given the prenatal onset of most craniosynostosis, investigation of mechanisms requires more conventional model organisms; principally the mouse, because of similarities in cranial suture development. We present a framework for classifying genetic causes of craniosynostosis based on current understanding of cranial suture biology and molecular and developmental pathogenesis. Of note, few pathologies result from complete loss of gene function. Instead, biochemical mechanisms involving haploinsufficiency, dominant gain-of-function and recessive hypomorphic mutations, and an unusual X-linked cellular interference process have all been implicated. Although few of the genes involved could have been predicted based on expression patterns alone (because the genes play much wider roles in embryonic development or cellular homeostasis), we argue that they fit into a limited number of functional modules active at different stages of cranial suture development. This provides a useful approach both when defining the potential role of new candidate genes in craniosynostosis and, potentially, for devising pharmacological approaches to therapy.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
49
|
Bessenyei B, Nagy A, Szakszon K, Mokánszki A, Balogh E, Ujfalusi A, Tihanyi M, Novák L, Bognár L, Oláh É. Clinical and genetic characteristics of craniosynostosis in Hungary. Am J Med Genet A 2015; 167A:2985-91. [PMID: 26289989 DOI: 10.1002/ajmg.a.37298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/06/2015] [Indexed: 11/08/2022]
Abstract
Craniosynostosis, the premature closure of cranial sutures, is a common craniofacial disorder with heterogeneous etiology and appearance. The purpose of this study was to investigate the clinical and molecular characteristics of craniosynostoses in Hungary, including the classification of patients and the genetic analysis of the syndromic forms. Between 2006 and 2012, 200 patients with craniosynostosis were studied. Classification was based on the suture(s) involved and the associated clinical features. In syndromic cases, genetic analyses, including mutational screening of the hotspot regions of the FGFR1, FGFR2, FGFR3, and TWIST1 genes, karyotyping and FISH study of TWIST1, were performed. The majority (88%) of all patients with craniosynostosis were nonsyndromic. The sagittal suture was most commonly involved, followed by the coronal, metopic, and lambdoid sutures. Male, twin gestation, and very low birth weight were risk factors for craniosynostosis. Syndromic craniosynostosis was detected in 24 patients. In 17 of these patients, Apert, Crouzon, Pfeiffer, Muenke, or Saethre-Chotzen syndromes were identified. In one patient, multiple-suture craniosynostosis was associated with achondroplasia. Clinical signs were not typical for any particular syndrome in six patients. Genetic abnormalities were detected in 18 syndromic patients and in 8 relatives. In addition to 10 different, known mutations in FGFR1,FGFR2 or FGFR3, one novel missense mutation, c.528C>G(p.Ser176Arg), was detected in the TWIST1 gene of a patient with Saethre-Chotzen syndrome. Our results indicate that detailed clinical assessment is of paramount importance in the classification of patients and allows indication of targeted molecular testing with the highest possible diagnostic yield.
Collapse
Affiliation(s)
- Beáta Bessenyei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Nagy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Szakszon
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Erzsébet Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Tihanyi
- Genetic Laboratory, Hospital of Zala County, Zalaegerszeg, Hungary
| | - László Novák
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Oláh
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
50
|
Flöttmann R, Knaus A, Zemojtel T, Robinson PN, Mundlos S, Horn D, Spielmann M. FGFR2 mutation in a patient without typical features of Pfeiffer syndrome – The emerging role of combined NGS and phenotype based strategies. Eur J Med Genet 2015; 58:376-80. [DOI: 10.1016/j.ejmg.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/31/2015] [Indexed: 02/02/2023]
|