1
|
Sakrajda K, Bilska K, Czerski PM, Narożna B, Dmitrzak-Węglarz M, Heilmann-Heimbach S, Brockschmidt FF, Herms S, Nöthen MM, Cichon S, Więckowska B, Rybakowski JK, Pawlak J, Szczepankiewicz A. Abelson Helper Integration Site 1 haplotypes and peripheral blood expression associates with lithium response and immunomodulation in bipolar patients. Psychopharmacology (Berl) 2024; 241:727-738. [PMID: 38036661 DOI: 10.1007/s00213-023-06505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
RATIONALE In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr M Czerski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Barbara Więckowska
- Department of Computer Sciences and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
2
|
The Transition Zone Protein AHI1 Regulates Neuronal Ciliary Trafficking of MCHR1 and Its Downstream Signaling Pathway. J Neurosci 2021; 41:3932-3943. [PMID: 33741721 DOI: 10.1523/jneurosci.2993-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
The Abelson-helper integration site 1 (AHI1) gene encodes for a ciliary transition zone localizing protein that when mutated causes the human ciliopathy, Joubert syndrome. We prepared and examined neuronal cultures derived from male and female embryonic Ahi1 +/+ and Ahi1 -/- mice (littermates) and found that the distribution of ciliary melanin-concentrating hormone receptor-1 (MchR1) was significantly reduced in Ahi1 -/- neurons; however, the total and surface expression of MchR1 on Ahi1 -/- neurons was similar to controls (Ahi1 +/+). This indicates that a pathway for MchR1 trafficking to the surface plasma membrane is intact, but the process of targeting MchR1 into cilia is impaired in Ahi1-deficient mouse neurons, indicating a role for Ahi1 in localizing MchR1 to the cilium. Mouse Ahi1 -/- neurons that fail to accumulate MchR1 in the ciliary membrane have significant decreases in two downstream MchR1 signaling pathways [cAMP and extracellular signal-regulated kinase (Erk)] on MCH stimulation. These results suggest that the ciliary localization of MchR1 is necessary and critical for MchR1 signaling, with Ahi1 participating in regulating MchR1 localization to cilia, and further supporting cilia as critical signaling centers in neurons.SIGNIFICANCE STATEMENT Our work here demonstrates that neuronal primary cilia are powerful and focused signaling centers for the G-protein-coupled receptor (GPCR), melanin-concentrating hormone receptor-1 (MCHR1), with a role for the ciliary transition zone protein, Abelson-helper integration site 1 (AHI1), in mediating ciliary trafficking of MCHR1. Moreover, our manuscript further expands the repertoire of cilia functions on neurons, a cell type that has not received significant attention in the cilia field. Lastly, our work demonstrates the significant influence of ciliary GPCR signaling in the overall signaling of neurons.
Collapse
|
3
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med 2019; 70:127-140. [DOI: 10.1016/j.mam.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
|
5
|
Sheu JJ, Yang LY, Sanotra MR, Wang ST, Lu HT, Kam RSY, Hsu IU, Kao SH, Lee CK, Shieh JCC, Lin YF. Reduction of AHI1 in the serum of Taiwanese with probable Alzheimer's disease. Clin Biochem 2019; 76:24-30. [PMID: 31786207 DOI: 10.1016/j.clinbiochem.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The development of blood-based biomarkers for early diagnosis and treatment of Alzheimer's disease (AD) is desirable. In AD model mouse brain and neuronal cells, Abelson helper integration site-1 (AHI1) protein is reduced. AHI1 facilitates intracellular amyloid precursor protein (APP) translocation to inhibit amyloidogenic pathology of AD, and thus may be an AD biomarker. METHODS This study was conducted among 32 AD patients and 54 healthy control (HC) subjects. AHI1-related protein levels from initially collected serum samples in each group were screened using Western blotting. The protein concentrations of AHI1 and amyloid-β (Aβ), peptide(s) derived from APP, from all serum samples were analyzed using ELISA. RESULTS In AD serum, AHI1 and a large truncated C-terminal APP fragment were significantly reduced. The average concentrations of serum AHI1 and Aβ in AD were significantly lower than those in HC. Notably, AHI1 concentration in HC serum was decreased in an age-dependent manner, while it was consistently low in AD serum and had no correlation with Aβ or mini-mental state examination score. The receiver operating characteristic analysis on all subjects demonstrated an area under curve (AUC) value of 0.7 for AHI1 on AD diagnosis, while the AUC increased to 0.82 on the subjects younger than 77 years old, suggesting a good diagnostic performance of serum AHI1 for AD especially at relatively young age. CONCLUSION An early event of AHI1 reduction in the body of AD patients was observed. Serum AHI1 may be valuable for early diagnosis of AD.
Collapse
Affiliation(s)
- Jau-Jiuan Sheu
- Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Yu Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Sen-Te Wang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsien-Tsung Lu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Rachel Sook Yee Kam
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
6
|
Expression of AHI1 Rescues Amyloidogenic Pathology in Alzheimer's Disease Model Cells. Mol Neurobiol 2019; 56:7572-7582. [PMID: 31062249 DOI: 10.1007/s12035-019-1587-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/27/2019] [Indexed: 01/03/2023]
Abstract
A hallmark of Alzheimer's disease (AD) pathogenesis is the accumulation of extracellular plaques mainly composed of amyloid-β (Aβ) derived from amyloid precursor protein (APP) cleavage. Recent reports suggest that transport of APP in vesicles with huntingtin-associated protein-1 (HAP1) negatively regulates Aβ production. In neurons, HAP1 forms a stable complex with Abelson helper integration site-1 (AHI1), in which mutations cause neurodevelopmental and psychiatric disorders. HAP1 and AHI1 interact with tropomyosin receptor kinases (Trks), which are also associated with APP and mediate neurotrophic signaling. In this study, we hypothesize that AHI1 participates in APP trafficking and processing to rescue AD pathology. Indeed, AHI1 was significantly reduced in mouse neuroblastoma N2a cells expressing human Swedish and Indiana APP (designed as AD model cells) and in 3xTg-AD mouse brain. The AD model cells as well as Ahi1-knockdown cells expressing wild-type APP-695 exhibited a significant reduction in viability. In addition, the AD model cells were reduced in neurite outgrowth. APP C-terminal fragment-β (CTFβ) and Aβ42 were increased in the AD cell lysates and the culture media, respectively. To investigate the mechanism how AHI1 alters APP activities, we overexpressed human AHI1 in the AD model cells. The results showed that AHI1 interacted with APP physically in mouse brain and transfected N2a cells despite APP genotypes. AHI1 expression facilitated intracellular translocation of APP and inhibited APP amyloidogenic process to reduce the level of APP-CTFβ in the total lysates of AD model cells as well as Aβ in the culture media. Consequently, AHI1-APP interactions enhanced neurotrophic signaling through Erk activation and led to restored cell survival and differentiation.
Collapse
|
7
|
Zhu L, Chen L, Yan L, Perkins BD, Li S, Li B, Xu HA, Li XJ. Mutant Ahi1 Affects Retinal Axon Projection in Zebrafish via Toxic Gain of Function. Front Cell Neurosci 2019; 13:81. [PMID: 30949029 PMCID: PMC6438259 DOI: 10.3389/fncel.2019.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 12/23/2022] Open
Abstract
Joubert syndrome (JBTS) is an inherited autosomal recessive disorder associated with cerebellum and brainstem malformation and can be caused by mutations in the Abelson helper integration site-1 (AHI1) gene. Although AHI1 mutations in humans cause abnormal cerebellar development and impaired axonal decussation in JBTS, these phenotypes are not robust or are absent in various mouse models with Ahi1 mutations. AHI1 contains an N-terminal coiled-coil domain, multiple WD40 repeats, and a C-terminal Src homology 3 (SH3) domain, suggesting that AHI1 functions as a signaling or scaffolding protein. Since most AHI1 mutations in humans can result in truncated AHI1 proteins lacking WD40 repeats and the SH3 domain, it remains unclear whether mutant AHI1 elicits toxicity via a gain-of-function mechanism by the truncated AHI1. Because Ahi1 in zebrafish and humans share a similar N-terminal region with a coiled-coil domain that is absent in mouse Ahi1, we used zebrafish as a model to investigate whether Ahi1 mutations could affect axonal decussation. Using in situ hybridization, we found that ahi1 is highly expressed in zebrafish ocular tissues, especially in retina, allowing us to examine its effect on retinal ganglion cell (RGC) projection and eye morphology. We injected a morpholino to zebrafish embryos, which can generate mutant Ahi1 lacking the intact WD40 repeats, and found RGC axon misprojection and ocular dysplasia in 4 dpf (days post-fertilization) larvae after the injection. However, ahi1 null zebrafish showed normal RGC axon projection and ocular morphology. We then used CRISPR/Cas9 to generate truncated ahi1 and also found similar defects in the RGC axon projection as seen in those injected with ahi1 morpholino. Thus, the aberrant retinal axon projection in zebrafish is caused by the presence of mutant ahi1 rather than the loss of ahi1, suggesting that mutant Ahi1 may affect axonal decussation via toxic gain of function.
Collapse
Affiliation(s)
- Louyin Zhu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Laiqiang Chen
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Lingya Yan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Brian D Perkins
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Baoming Li
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Hong A Xu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Safari MR, Komaki A, Arsang-Jang S, Taheri M, Ghafouri-Fard S. Expression Pattern of Long Non-coding RNAs in Schizophrenic Patients. Cell Mol Neurobiol 2019; 39:211-221. [PMID: 30560506 PMCID: PMC11469861 DOI: 10.1007/s10571-018-0640-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023]
Abstract
The role of long non-coding RNAs (lncRNAs) in the pathogenesis of neurological disorders including schizophrenia has been highlighted by independent studies. In the present study, we compared peripheral blood expression of seven lncRNAs between schizophrenic patients and sex- and age-matched controls using quantitative real-time PCR technique. FAS-AS1, PVT1 and TUG1 were significantly down-regulated in schizophrenic patients compared with healthy individuals (P = 0.007, 0.003 and 0.001, respectively). The association between FAS-AS1 expression and schizophrenia was significant in male subjects aged more than 50 but not in other subgroups. GAS5, NEAT1 and OIP5-AS1 expressions were not significantly different between patients and controls (P = 0.523, 0.739 and 0.267, respectively). The associations between GAS5, NEAT1 and OIP5-AS1 expressions and schizophrenia were significant in female subjects but not in male subjects. THRIL was up-regulated in schizophrenic patients compared with healthy subjects. Based on the results of bootstraped median regression, and after controlling for the effects of age and sex, the difference in its expression between cases and controls was significant (P = 0.014), while the interaction between group and sex was not significant. The expression of lncRNAs was not correlated with age in any study subgroups. In addition, we found sex-based pairwise correlations between PVT1 expression and expression levels of OIP5-AS1, THRIL and NEAT1. We also demonstrated high sensitivity and specificity of GAS5 for diagnosis of schizophrenia in female patients. The current study provides further evidence for the participation of lncRNAs in the pathogenesis of schizophrenia. Future studies are needed to confirm the suitability of lncRNAs as peripheral biomarkers for this psychiatric disorder.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Effect of chronic unpredictable stress on mice with developmental under-expression of the Ahi1 gene: behavioral manifestations and neurobiological correlates. Transl Psychiatry 2018; 8:124. [PMID: 29967406 PMCID: PMC6028478 DOI: 10.1038/s41398-018-0171-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/25/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
The Abelson helper integration site 1 (Ahi1) gene plays a pivotal role in brain development and is associated with genetic susceptibility to schizophrenia, and other neuropsychiatric disorders. Translational research in genetically modified mice may reveal the neurobiological mechanisms of such associations. Previous studies of mice heterozygous for Ahi1 knockout (Ahi1+/-) revealed an attenuated anxiety response on various relevant paradigms, in the context of a normal glucocorticoid response to caffeine and pentylenetetrazole. Resting-state fMRI showed decreased amygdalar connectivity with various limbic brain regions and altered network topology. However, it was not clear from previous studies whether stress-hyporesponsiveness reflected resilience or, conversely, a cognitive-emotional deficit. The present studies were designed to investigate the response of Ahi1+/- mice to chronic unpredictable stress (CUS) applied over 9 weeks. Wild type (Ahi1+/+) mice were significantly affected by CUS, manifesting decreased sucrose preference (p < 0.05); reduced anxiety on the elevated plus maze and light dark box and decreased thigmotaxis in the open field (p < 0.01 0.05); decreased hyperthermic response to acute stress (p < 0.05); attenuated contextual fear conditioning (p < 0.01) and increased neurogenesis (p < 0.05). In contrast, Ahi1+/- mice were indifferent to the effects of CUS assessed with the same parameters. Our findings suggest that Ahi1 under-expression during neurodevelopment, as manifested by Ahi1+/- mice, renders these mice stress hyporesponsive. Ahi1 deficiency during development may attenuate the perception and/or integration of environmental stressors as a result of impaired corticolimbic connectivity or aberrant functional wiring. These neural mechanisms may provide initial clues as to the role Ahi1 in schizophrenia and other neuropsychiatric disorders.
Collapse
|
10
|
Muñoz-Estrada J, Lora-Castellanos A, Meza I, Alarcón Elizalde S, Benítez-King G. Primary cilia formation is diminished in schizophrenia and bipolar disorder: A possible marker for these psychiatric diseases. Schizophr Res 2018; 195:412-420. [PMID: 28927861 DOI: 10.1016/j.schres.2017.08.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023]
Abstract
Primary cilium (PC) is a microtubule-rich organelle that protrudes from the plasma membrane and acts as a cellular antenna sensing extracellular signals during brain development. DISC1 (Disrupted-in-Schizophrenia-1) is involved in PC formation and is considered a risk factor for neuropsychiatric disorders. We have previously described altered subcellular distribution of DISC1 and an aberrant microtubule organization in olfactory neuronal precursors (ONP) obtained from schizophrenia (SCZ) and bipolar disorder (BD) patients. Herein, we analyzed in vitro PC formation in healthy control subjects, SCZ and BD patients. The results indicated that 66.73±4.33% of ONP from control subjects showed immunostaining for the PC marker, acetylated α-tubulin. By contrast, only a small percentage of cells in culture from paranoid SCZ and BD patients showed PC staining (SCZ, 12.8±4.43%; BD, 12.32±5.86%). However, cells from an affected proband with disorganized SCZ and a subject with BD displayed a higher percentage of cells with cilia (SCZ, 42.20%; BD, 38.59%). Additionally, cilia elongation was observed in lithium-treated ONP derived from all groups, with a more evident response in cells from the BD group. The present study provides novel evidence that the molecular pathways involved in PC formation are defective in SCZ and BD, and impairment in these processes may be involved in the physiopathology of both diseases. Our observations also suggest that ONP is a patient-derived cell model with a potential use for diagnosis and high-throughput drug screening for brain diseases.
Collapse
Affiliation(s)
- Jesús Muñoz-Estrada
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | | | - Isaura Meza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico
| | | | - Gloria Benítez-King
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Guo D, Zhang S, Sun H, Xu X, Hao Z, Mu C, Xu X, Wang G, Ren H. Tyrosine hydroxylase down-regulation after loss of Abelson helper integration site 1 (AHI1) promotes depression via the circadian clock pathway in mice. J Biol Chem 2018; 293:5090-5101. [PMID: 29449373 PMCID: PMC5892572 DOI: 10.1074/jbc.ra117.000618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1-knockout (KO) mice is responsible for Ahi1-deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1-KO mouse midbrains and Ahi1-knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erbα transcriptional regulator, is also increased in the Ahi1-KO mouse midbrains and Ahi1-knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1-KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior.
Collapse
Affiliation(s)
- Dongkai Guo
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun Zhang
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongyang Sun
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xingyun Xu
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xingshun Xu
- the Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu 215123, China, and
- the Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guanghui Wang
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China,
| | - Haigang Ren
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China,
| |
Collapse
|
12
|
Guo J, Otis JM, Higginbotham H, Monckton C, Cheng J, Asokan A, Mykytyn K, Caspary T, Stuber GD, Anton ES. Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Dev Cell 2017; 42:286-300.e4. [PMID: 28787594 DOI: 10.1016/j.devcel.2017.07.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/18/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
Appropriate growth and synaptic integration of GABAergic inhibitory interneurons are essential for functional neural circuits in the brain. Here, we demonstrate that disruption of primary cilia function following the selective loss of ciliary GTPase Arl13b in interneurons impairs interneuronal morphology and synaptic connectivity, leading to altered excitatory/inhibitory activity balance. The altered morphology and connectivity of cilia mutant interneurons and the functional deficits are rescued by either chemogenetic activation of ciliary G-protein-coupled receptor (GPCR) signaling or the selective induction of Sstr3, a ciliary GPCR, in Arl13b-deficient cilia. Our results thus define a specific requirement for primary cilia-mediated GPCR signaling in interneuronal connectivity and inhibitory circuit formation.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - James M Otis
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Holden Higginbotham
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chase Monckton
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - JrGang Cheng
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravind Asokan
- Department of Genetics and Gene Therapy Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, Neuroscience Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Garret D Stuber
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Attempts to replicate genetic associations with schizophrenia in a cohort from north India. NPJ SCHIZOPHRENIA 2017; 3:28. [PMID: 28855605 PMCID: PMC5577284 DOI: 10.1038/s41537-017-0030-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a chronic, severe, heritable disorder. Genome-wide association studies, conducted predominantly among Caucasians, have indicated > 100 risk alleles, with most significant SNPs on chromosome 6. There is growing interest as to whether these risk alleles are relevant in other ethnic groups as well. Neither an Indian genome-wide association studies nor a systematic replication of GWAS findings from other populations are reported. Thus, we analyzed 32 SNPs, including those associated in the Caucasian ancestry GWAS and other candidate gene studies, in a north Indian schizophrenia cohort (n = 1009 patients; n = 1029 controls) using a Sequenom mass array. Cognitive functioning was also assessed using the Hindi version of the Penn Computerized Neuropsychological Battery in a subset of the sample. MICB (rs6916394) a previously noted Caucasian candidate, was associated with schizophrenia at the p = 0.02 level. One SNP, rs2064430, AHI1 (6q23.3, SZ Gene database SNP) was associated at the p = 0.04 level. Other candidates had even less significance with rs6932590, intergenic (p = 0.07); rs3130615, MICB (p = 0.08); rs6916921, NFKBIL1 (p = 0.08) and rs9273012, HLA-DQA1 (p = 0.06) and haplotypic associations (p = 0.01-0.05) of 6p SNPs were detected. Of note, nominally significant associations with cognitive variables were identified, after covarying for age and diagnostic status. SNPs with p < 0.01 were: rs3130375, with working memory (p = 0.007); rs377763, with sensorimotor (p = 0.004); rs6916921, NFKBIL1 with emotion (p = 0.01). This relative lack of significant positive associations is likely influenced by the sample size and/or differences in the genetic architecture of schizophrenia across populations, encouraging population specific studies to identify shared and unique genetic risk factors for schizophrenia. POPULATION GENETICS CAUCASIANS AND INDIANS EXHIBIT GENETIC DISJUNCTION IN SCHIZOPHRENIA: A tenuous link between schizophrenia's genetic basis in Caucasians and Indians calls for more comprehensive research on the latter. Large-scale analyses of the human genome have identified over a hundred genetic variations associated with schizophrenia; however, these have focused largely on European and North American populations. Researchers led by the University of Delhi's BK Thelma, and Smita Deshpande of the Dr. Ram Manohar Lohia Hospital, India, selected 32 gene variations from past studies to look for similar associations in Indians. Many assays met limited success, though the team found significant correlations between certain variations and specific cognitive hallmarks of schizophrenia. Aside from differences in genetic architecture, the lack of adequate and comparable genetic data on schizophrenia in Indians may contribute to this apparent difference to schizophrenia in Caucasian patients. This shows a clear need for more schizophrenia genetic studies in India.
Collapse
|
14
|
Tang J, Yu Y, Yang W. Long noncoding RNA and its contribution to autism spectrum disorders. CNS Neurosci Ther 2017; 23:645-656. [PMID: 28635106 PMCID: PMC6492731 DOI: 10.1111/cns.12710] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that long noncoding RNAs (lncRNAs) play important roles in multiple processes, such as epigenetic regulation, gene expression regulation, development, nutrition-related and other diseases, toxic response, and response to drugs. Although the functional roles and mechanisms of several lncRNAs have been discovered, a better understanding of the vast majority of lncRNAs remains elusive. To understand the functional roles and mechanisms of lncRNAs is critical because these transcripts represent the majority of the transcriptional output of the mammalian genome. Recent studies have also suggested that lncRNAs are more abundant in the human brain and are involved in neurodevelopment and neurodevelopmental disorders, including autism spectrum disorders (ASDs). In this study, we review several known functions of lncRNAs and the potential contribution of lncRNAs to ASDs and to other genetic syndromes that have a similar clinical presentation to ASDs, such as fragile X syndrome and Rett syndrome.
Collapse
Affiliation(s)
- Jie Tang
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Preventive MedicineSchool of Public HealthGuangzhou Medical UniversityXinzaoPanyu DistrictGuangzhouChina
| | - Yizhen Yu
- Department of Child and Women Health CareSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Nutrition and Food HygieneMOE Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Khademi E, Alehabib E, Shandiz EE, Ahmadifard A, Andarva M, Jamshidi J, Rahimi-Aliabadi S, Pouriran R, Nejad FR, Mansoori N, Shahmohammadibeni N, Taghavi S, Shokraeian P, Akhavan-Niaki H, Paisán-Ruiz C, Darvish H, Ohadi M. Support for "Disease-Only" Genotypes and Excess of Homozygosity at the CYTH4 Primate-Specific GTTT-Repeat in Schizophrenia. Genet Test Mol Biomarkers 2017; 21:485-490. [PMID: 28723299 DOI: 10.1089/gtmb.2016.0422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The role of short tandem repeats (STRs) in the control of gene expression among species is being increasingly understood following the identification of several instances in which certain STRs occur identically, or expand differentially, in primates versus nonprimates. These STRs may regulate genes that participate in characteristics that are associated with the divergence of primates from sibling orders (e.g., brain higher order functions). The CYTH4 gene contains the longest tetranucleotide STR in its core promoter, at 7-repeats, and links to the evolution of human and nonhuman primates. Allele and genotype distribution of this STR were studied in patients affected by schizophrenia (SCZ) and controls. METHODS High-resolution data were obtained on the allele and genotype distribution of the CYTH4 STR and a novel C > T single-nucleotide polymorphism (SNP) at its immediate upstream sequence in 255 patients with SCZ and 249 controls. Each sample was sequenced twice using the fluorescent dye termination method. RESULTS Novel alleles were detected at the long extreme of the GTTT-repeat, at 10- and 11-repeats, in the SCZ cases and controls. Excess of homozygosity was observed for the entire range of alleles across the GTTT-repeat and the C > T SNP in the SCZ patients in comparison with the controls (Yates corrected p < 0.011). Three genotypes consisting of the 11-repeat allele (i.e., 11/11, 10/11, and 7/11) were detected only in the SCZ patients (i.e., disease-only genotypes), and contributed to 2.3% of the SCZ genotypes (Mid p exact <0.007). The frequency of the 11-repeat allele was estimated at 0.02 and 0.006 in the SCZ patients and controls, respectively (Mid p exact <0.006). CONCLUSION This indicates that STR genotypes that are absent in the control group may be risk factors for SCZ. Future studies are warranted to test the significance of our findings.
Collapse
Affiliation(s)
- Ehteram Khademi
- 1 Cellular and Molecular Biology Research Center, Babol University of Medical Sciences , Babol, Iran
| | - Elham Alehabib
- 2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Ehsan Esmaili Shandiz
- 3 Department of Neurology, Ganjavian Hospital, Dezful University of Medical Sciences , Dezful, Iran
| | - Azadeh Ahmadifard
- 2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Monavvar Andarva
- 2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Javad Jamshidi
- 4 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences , Fasa, Iran
| | - Simin Rahimi-Aliabadi
- 2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Ramin Pouriran
- 2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Farhad Ramezani Nejad
- 5 The Charitable Institute for Protecting of Social Victims (Saray-e-Ehsan) , Tehran, Iran
| | - Nader Mansoori
- 5 The Charitable Institute for Protecting of Social Victims (Saray-e-Ehsan) , Tehran, Iran
| | - Neda Shahmohammadibeni
- 1 Cellular and Molecular Biology Research Center, Babol University of Medical Sciences , Babol, Iran
| | - Shaghyegh Taghavi
- 2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Parasto Shokraeian
- 6 Tehran Medical Sciences Branch, Islamic Azad University , Tehran, Iran
| | - Haleh Akhavan-Niaki
- 1 Cellular and Molecular Biology Research Center, Babol University of Medical Sciences , Babol, Iran
| | - Coro Paisán-Ruiz
- 7 Departments of Neurology, Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai , New York, New York.,8 Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai , New York, New York.,9 Friedman Brain Institute , Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hossein Darvish
- 1 Cellular and Molecular Biology Research Center, Babol University of Medical Sciences , Babol, Iran .,2 Department of Medical Genetics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mina Ohadi
- 10 Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences , Tehran, Iran
| |
Collapse
|
16
|
Alterations in the expression of a neurodevelopmental gene exert long-lasting effects on cognitive-emotional phenotypes and functional brain networks: translational evidence from the stress-resilient Ahi1 knockout mouse. Mol Psychiatry 2017; 22:884-899. [PMID: 27021817 PMCID: PMC5444025 DOI: 10.1038/mp.2016.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
Many psychiatric disorders are highly heritable and may represent the clinical outcome of early aberrations in the formation of neural networks. The placement of brain connectivity as an 'intermediate phenotype' renders it an attractive target for exploring its interaction with genomics and behavior. Given the complexity of genetic make up and phenotypic heterogeneity in humans, translational studies are indicated. Recently, we demonstrated that a mouse model with heterozygous knockout of the key neurodevelopmental gene Ahi1 displays a consistent stress-resilient phenotype. Extending these data, the current research describes our multi-faceted effort to link early variations in Ahi1 expression with long-term consequences for functional brain networks and cognitive-emotional phenotypes. By combining behavioral paradigms with graph-based analysis of whole-brain functional networks, and then cross-validating the data with robust neuroinformatic data sets, our research suggests that physiological variation in gene expression during neurodevelopment is eventually translated into a continuum of global network metrics that serve as intermediate phenotypes. Within this framework, we suggest that organization of functional brain networks may result, in part, from an adaptive trade-off between efficiency and resilience, ultimately culminating in a phenotypic diversity that encompasses dimensions such as emotional regulation and cognitive function.
Collapse
|
17
|
Manchia M, Firinu G, Carpiniello B, Pinna F. Clinicians' adherence to clinical practice guidelines for cardiac function monitoring during antipsychotic treatment: a retrospective report on 434 patients with severe mental illness. BMC Psychiatry 2017; 17:121. [PMID: 28359306 PMCID: PMC5374645 DOI: 10.1186/s12888-017-1289-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Severe mental illness (SMI) has considerable excess morbidity and mortality, a proportion of which is explained by cardiovascular diseases, caused in part by antipsychotic (AP) induced QT-related arrhythmias and sudden death by Torsade de Point (TdP). The implementation of evidence-based recommendations for cardiac function monitoring might reduce the incidence of these AP-related adverse events. To investigate clinicians' adherence to cardiac function monitoring before and after starting AP, we performed a retrospective assessment of 434 AP-treated SMI patients longitudinally followed-up for 5 years at an academic community mental health center. METHODS We classified antipsychotics according to their risk of inducing QT-related arrhythmias and TdP (Center for Research on Therapeutics, University of Arizona). We used univariate tests and multinomial or binary logistic regression model for data analysis. RESULTS Univariate and multinomial regression analysis showed that psychiatrists were more likely to perform pre-treatment electrocardiogram (ECG) and electrolyte testing with AP carrying higher cardiovascular risk, but not on the basis of AP pharmacological class. Univariate and binomial regression analysis showed that cardiac function parameters (ECG and electrolyte balance) were more frequently monitored during treatment with second generation AP than with first generation AP. CONCLUSIONS Our data show the presence of weaknesses in the cardiac function monitoring of AP-treated SMI patients, and might guide future interventions to tackle them.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Via Liguria 13, 09127, Cagliari, Italy. .,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Giorgio Firinu
- grid.7763.5Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Via Liguria 13, 09127 Cagliari, Italy
| | - Bernardo Carpiniello
- grid.7763.5Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Via Liguria 13, 09127 Cagliari, Italy
| | - Federica Pinna
- grid.7763.5Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Via Liguria 13, 09127 Cagliari, Italy
| |
Collapse
|
18
|
Trulioff A, Ermakov A, Malashichev Y. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases. Genes (Basel) 2017; 8:genes8020048. [PMID: 28125008 PMCID: PMC5333037 DOI: 10.3390/genes8020048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Collapse
Affiliation(s)
- Andrey Trulioff
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
| | - Alexander Ermakov
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| | - Yegor Malashichev
- Department of Vertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia.
- Laboratory of Molecular Neurobiology, Department of Ecological Physiology, Institute of Experimental Medicine, ul. Akad. Pavlov, 12, Saint Petersburg 197376, Russia.
| |
Collapse
|
19
|
Abstract
Long noncoding RNAs (lncRNAs) are nonprotein coding transcripts longer than 200 nucleotides. Many of these lncRNAs have regulatory functions and have recently emerged as major players in governing fundamental biological processes. Here, we review the definition, distribution, identification, databases, analysis, classification, and functions of lncRNAs. We also discuss the potential roles of lncRNAs in the etiological processes of psychiatric disorders and the implications for clinical diagnosis and treatment.
Collapse
|
20
|
Islam MN, Takeshita Y, Yanai A, Imagawa A, Jahan MR, Wroblewski G, Nemoto J, Fujinaga R, Shinoda K. Immunohistochemical analysis of huntingtin-associated protein 1 in adult rat spinal cord and its regional relationship with androgen receptor. Neuroscience 2016; 340:201-217. [PMID: 27984179 DOI: 10.1016/j.neuroscience.2016.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yukio Takeshita
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Amami Imagawa
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Greggory Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Joe Nemoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ryutaro Fujinaga
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
21
|
Ren Z, Qiu A, Zhang A, Huang L, Rao S. A cis-eQTL in AHI1 confers risk to schizophrenia in European populations. Neurosci Lett 2016; 632:130-5. [PMID: 27585752 DOI: 10.1016/j.neulet.2016.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/21/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a devastating mental disorder, with heritability as high as 80%. Although genome-wide association studies have identified multiple promising risk variants of schizophrenia, they could only explain a small portion of the disease heritability, and other variants with low to moderate effect remain to be identified. Abelson helper integration site 1 (AHI1) is highly expressed in mammals throughout the developing brain, with lower expression continuing into adulthood. Besides, previous evidence suggested that AHI1 expression was changed in schizophrenia patients. Furthermore, association signal between AHI1 variants and schizophrenia has been reported in several European samples. In the present study, we first analyzed two expression quantitative trait loci (eQTL) datasets in healthy individuals and investigated the associations of eQTL of AHI1 with schizophrenia in independent European samples. We observed that a cis-eQTL of AHI1, rs11154801, showed significant association with AHI1 expression in both datasets (P<5E-05). Genetic evidence exhibited that rs11154801 was significantly associated with schizophrenia risk in both the discovery sample (9394 cases and 12462 controls, P=0.046, OR=0.958, 95% CI=0.918-0.999) and the replication sample (3240 cases and 14786 controls, P=0.024, OR=0.949, 95% CI=0.870-0.990). When the discovery and replication samples were pooled together, this association was further strengthened (P=0.004, OR=0.949, 95% CI=0.916-0.983). These results suggested that AHI1 is likely a risk gene for schizophrenia, at least in European populations.
Collapse
Affiliation(s)
- Zhimin Ren
- Pediatrics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Anli Qiu
- Department of respiration, Harbin Children's Hospital, Harbin, 150086, China
| | - Aiqi Zhang
- Pediatrics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lijun Huang
- Pharmacy Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
22
|
Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S, De Ronchi D, Serretti A. The influence of AHI1 variants on the diagnosis and treatment outcome in schizophrenia. Int J Mol Sci 2015; 16:2517-29. [PMID: 25622261 PMCID: PMC4346849 DOI: 10.3390/ijms16022517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to explore whether four single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with schizophrenia (SCZ) and whether they could predict the clinical outcomes in SCZ patients treated with antipsychotics. Four hundred twenty-six (426) in-patients with SCZ and 345 controls were genotyped for four AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and clinical measures for SCZ patients were assessed through the Positive and Negative Syndrome Scale (PANSS). Allelic and genotypic frequencies in SCZ subjects were compared with those of controls using the χ2 statistics. The repeated-measure ANOVA was used for the assessment of treatment outcomes measured by PANSS changes. The case-control analysis did not show any difference in the genotypic distribution of the SNPs, while in the allelic analysis, a weak association was found between the rs9647635 A allele and SCZ. Furthermore, in the haplotype analysis, three haplotypes resulted in being associated with SCZ. On the other hand, two SNPs (rs7750586 and rs9647635) were associated with clinical improvement of negative symptoms in the allelic analysis, although in the genotypic analysis, only trends of association were found for the same SNPs. Our findings suggest a possible influence of AHI1 variants on SCZ susceptibility and antipsychotic response, particularly concerning negative symptomatology. Subsequent well-designed studies would be mandatory to confirm our results due to the methodological shortcomings of the present study.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Chi-Un Pae
- Department of Psychiatry, the Catholic University of Korea College of Medicine, Seoul 137701, Korea.
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul 136701, Korea.
| | - Soo-Jung Lee
- Department of Psychiatry, the Catholic University of Korea College of Medicine, Seoul 137701, Korea.
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | - Beatrice Balzarro
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Siegfried Alberti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Diana De Ronchi
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Alessandro Serretti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| |
Collapse
|
23
|
A primate-specific functional GTTT-repeat in the core promoter of CYTH4 is linked to bipolar disorder in human. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:161-7. [PMID: 25240857 DOI: 10.1016/j.pnpbp.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
Evidence of primate-specific genes and gene regulatory mechanisms linked to bipolar disorder (BD) lend support to evolutionary/adaptive processes in the pathogenesis of this disorder. Following a genome-scale analysis of the entire protein coding genes annotated in the GeneCards database, we have recently reported that cytohesin-4 (CYTH4) contains the longest tetra-nucleotide short tandem repeat (STR) identified in a human protein-coding gene core promoter, which may be of adaptive advantage to this species. In the current study, we analyzed the evolutionary trend of this STR across evolution. We also analyzed the functional implication and distribution of this STR in a group of patients with type 1 BD (n=233) and controls (n=262). We found that this STR is exceptionally expanded in primates (Fisher exact p<0.00003). Association was observed between type I BD and the 6-repeat allele of this STR, (GTTT)₆ (Yates corrected Χ(2)=12.68, p<0.0001, OR: 1.68). This allele is the shortest length of the GTTT-repeat identified in the human subjects studied. Consistent with that finding, excess homozygosity was observed for the shorter alleles, (GTTT)₆ and (GTTT)₇, vs. the longer alleles, (GTTT)₈ and (GTTT)₉ in the BD group (Yates corrected Χ(2)=5.18, p<0.01, 1 df, OR: 1.96). Using Dual Glo luciferase system in HEK-293 cells, a trend for gene expression repression was observed from the 6- to the 9-repeat allele (p<0.003), and the GTTT-repeat significantly down-regulated gene expression, per se (p<0.0006). This is the first evidence of a link between a primate-specific STR and a major psychiatric disorder in human. It may be speculated that the CYTH4 GTTT-repeat in primates may have conferred selective advantage to this order, reflected in neural function and neurophenotypes. The role of the CYTH4 gene in the pathogenesis of type I BD remains to be clarified in the future studies.
Collapse
|
24
|
Genomic assortative mating in marriages in the United States. PLoS One 2014; 9:e112322. [PMID: 25384046 PMCID: PMC4226554 DOI: 10.1371/journal.pone.0112322] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
Assortative mating in phenotype in human marriages has been widely observed. Using genome-wide genotype data from the Framingham Heart study (FHS; number of married couples = 989) and Health Retirement Survey (HRS; number of married couples = 3,474), this study investigates genomic assortative mating in human marriages. Two types of genomic marital correlations are calculated. The first is a correlation specific to a single married couple "averaged" over all available autosomal single-nucleotide polymorphism (SNPs). In FHS, the average married-couple correlation is 0.0018 with p = 3 × 10(-5); in HRS, it is 0.0017 with p = 7.13 × 10(-13). The marital correlation among the positively assorting SNPs is 0.001 (p = .0043) in FHS and 0.015 (p = 1.66 × 10(-24)) in HRS. The sizes of these estimates in FHS and HRS are consistent with what are suggested by the distribution of the allelic combination. The study also estimated SNP-specific correlation "averaged" over all married couples. Suggestive evidence is reported. Future studies need to consider a more general form of genomic assortment, in which different allelic forms in homologous genes and non-homologous genes result in the same phenotype.
Collapse
|
25
|
Lotan A, Fenckova M, Bralten J, Alttoa A, Dixson L, Williams RW, van der Voet M. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 2014; 8:331. [PMID: 25414627 PMCID: PMC4222236 DOI: 10.3389/fnins.2014.00331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022] Open
Abstract
Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders-attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10(-5)). 22% of genes overlapped two or more disorders. The most widely shared subset of genes-common to five of six disorders-included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20-30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Amit Lotan
- Department of Adult Psychiatry and the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Janita Bralten
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Aet Alttoa
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Neurobiology Program, University of Würzburg Würzburg, Germany
| | - Luanna Dixson
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg Mannheim, Germany
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Monique van der Voet
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
26
|
Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S, De Ronchi D, Serretti A. Abelson helper integration site-1 gene variants on major depressive disorder and bipolar disorder. Psychiatry Investig 2014; 11:481-6. [PMID: 25395981 PMCID: PMC4225214 DOI: 10.4306/pi.2014.11.4.481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present study aimed to explore whether 4 single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with major depressive disorder (MD) and bipolar disorder (BD), and whether they could predict clinical outcomes in mood disorders. METHODS One hundred and eighty-four (184) patients with MD, 170 patients with BD and 170 healthy controls were genotyped for 4 AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and final clinical measures for MD patients were assessed through the Hamilton Rating Scale for Depression (HAM-D). Allelic and genotypic frequencies in MD and BD subjects were compared with those of each disorder and healthy group using the χ(2) statistics. Repeated measures ANOVA was used to test possible influences of SNPs on treatment efficacy. RESULTS The rs9647635 A/A was more represented in subjects with BD as compared with MD and healthy subjects together. The rs9647635 A/A was also more presented in patients with MD than in healthy subjects. With regard to the allelic analysis, rs9647635 A allele was more represented in subjects with BD compared with healthy subjects, while it was not observed between patients with MD and healthy subjects. CONCLUSION Our findings provide potential evidence of an association between some variants of AHI1 and mood disorders susceptibility but not with clinical outcomes. However, we will need to do more adequately-powered and advanced association studies to draw any conclusion due to clear limitations.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A. Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Beatrice Balzarro
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Siegfried Alberti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Ren L, Qian X, Zhai L, Sun M, Miao Z, Li J, Xu X. Loss of Ahi1 impairs neurotransmitter release and causes depressive behaviors in mice. PLoS One 2014; 9:e93640. [PMID: 24691070 PMCID: PMC3972168 DOI: 10.1371/journal.pone.0093640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 11/27/2022] Open
Abstract
Major depression is becoming one of the most prevalent forms of psychiatric disorders. However, the mechanisms of major depression are still not well-understood. Most antidepressants are only effective in some patients and produce some serious side effects. Animal models of depression are therefore essential to unravel the mechanisms of depression and to develop novel therapeutic strategies. Our previous studies showed that Abelson helper integration site-1 (Ahi1) deficiency causes depression-like behaviors in mice. In this study, we characterized the biochemical and behavioral changes in Ahi1 knockout (KO) mice. In Ahi1 KO mice, neurotransmitters including serotonin and dopamine were significantly decreased in different brain regions. However, glutamate and GABA levels were not affected by Ahi1 deficiency. The antidepressant imipramine attenuated depressive behaviors and partially restored brain serotonin level in Ahi1 KO mice. Our findings suggest that Ahi1 KO mice can be used for studying the mechanisms of depression and screening therapeutic targets.
Collapse
Affiliation(s)
- Liyan Ren
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Xuanchen Qian
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Lijing Zhai
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Miao Sun
- The Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, Suzhou City, Jiangsu Province, China
| | - Xingshun Xu
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
- The Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
28
|
Ozdemir V, Endrenyi L, Aynacıoğlu S, Bragazzi NL, Dandara C, Dove ES, Ferguson LR, Geraci CJ, Hafen E, Kesim BE, Kolker E, Lee EJD, Llerena A, Nacak M, Shimoda K, Someya T, Srivastava S, Tomlinson B, Vayena E, Warnich L, Yaşar U. Bernard Lerer: recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine (Pacific Rim Association for Clinical Pharmacogenetics). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:211-21. [PMID: 24649998 DOI: 10.1089/omi.2014.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article announces the recipient of the 2014 inaugural Werner Kalow Responsible Innovation Prize in Global Omics and Personalized Medicine by the Pacific Rim Association for Clinical Pharmacogenetics (PRACP): Bernard Lerer, professor of psychiatry and director of the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. The Werner Kalow Responsible Innovation Prize is given to an exceptional interdisciplinary scholar who has made highly innovative and enduring contributions to global omics science and personalized medicine, with both vertical and horizontal (transdisciplinary) impacts. The prize is established in memory of a beloved colleague, mentor, and friend, the late Professor Werner Kalow, who cultivated the idea and practice of pharmacogenetics in modern therapeutics commencing in the 1950s. PRACP, the prize's sponsor, is one of the longest standing learned societies in the Asia-Pacific region, and was founded by Kalow and colleagues more than two decades ago in the then-emerging field of pharmacogenetics. In announcing this inaugural prize and its winner, we seek to highlight the works of prize winner, Professor Lerer. Additionally, we contextualize the significance of the prize by recalling the life and works of Professor Kalow and providing a brief socio-technical history of the rise of pharmacogenetics and personalized medicine as a veritable form of 21(st) century scientific practice. The article also fills a void in previous social science analyses of pharmacogenetics, by bringing to the fore the works of Kalow from 1995 to 2008, when he presciently noted the rise of yet another field of postgenomics inquiry--pharmacoepigenetics--that railed against genetic determinism and underscored the temporal and spatial plasticity of genetic components of drug response, with invention of the repeated drug administration (RDA) method that estimates the dynamic heritabilities of drug response. The prize goes a long way to cultivate transgenerational capacity and broader cognizance of the concept and practice of responsible innovation as an important criterion of 21(st) century omics science and personalized medicine. A new call is presently in place for the 2016 PRACP Werner Kalow prize. Nominations can be made in support of an exceptional individual interdisciplinary scholar, or alternatively, an entire research team, from any region in the world with a record of highly innovative contributions to global omics science and/or personalized medicine, in the spirit of responsible innovation. The application process is straightforward, requiring a signed, 1500-word nomination letter (by the applicant or sponsor) submitted not later than May 31, 2015.
Collapse
Affiliation(s)
- Vural Ozdemir
- 1 Pacific Rim Association for Clinical Pharmacogenetics, Associate Member Society of the International Union of Basic and Clinical Pharmacology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S, Fellig Y, Cohen H, Lory O, Goelman G, Lerer B. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19:243-52. [PMID: 24042478 DOI: 10.1038/mp.2013.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- A Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - T Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Slonimsky
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E C Broner
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - L Greenbaum
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Abedat
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beersheba, Israel
| | - O Lory
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - G Goelman
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - B Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
30
|
Tsioras K, Papastefanaki F, Politis PK, Matsas R, Gaitanou M. Functional Interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells. PLoS One 2013; 8:e82172. [PMID: 24312406 PMCID: PMC3842983 DOI: 10.1371/journal.pone.0082172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
31
|
Loss of Ahi1 affects early development by impairing BM88/Cend1-mediated neuronal differentiation. J Neurosci 2013; 33:8172-84. [PMID: 23658157 DOI: 10.1523/jneurosci.0119-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutations in the Abelson helper integration site-1 (AHI1) gene result in N-terminal Ahi1 fragments and cause Joubert syndrome, an autosomal recessive brain malformation disorder associated with delayed development. How AHI1 mutations lead to delayed development remains unclear. Here we report that full-length, but not N-terminal, Ahi1 binds Hap1, a huntingtin-associated protein that is essential for the postnatal survival of mice and that this binding is regulated during neuronal differentiation by nerve growth factor. Nerve growth factor induces dephosphorylation of Hap1A and decreases its association with Ahi1, correlating with increased Hap1A distribution in neurite tips. Consistently, Ahi1 associates with phosphorylated Hap1A in cytosolic, but not in synaptosomal, fractions isolated from mouse brain, suggesting that Ahi1 functions mainly in the soma of neurons. Mass spectrometry analysis of cytosolic Ahi1 immunoprecipitates reveals that Ahi1 also binds Cend1 (cell cycle exit and neuronal differentiation protein 1)/BM88, a neuronal protein that mediates neuronal differentiation and is highly expressed in postnatal mouse brain. Loss of Ahi1 reduces the levels of Cend1 in the hypothalamus of Ahi1 KO mice, which show retarded growth during postnatal days. Overexpressed Ahi1 can stabilize Cend1 in cultured cells. Furthermore, overexpression of Cend1 can rescue the neurite extension defects of hypothalamic neurons from Ahi1 KO mice. Our findings suggest that Cend1 is involved in Ahi1-associated hypothalamic neuronal differentiation in early development, giving us fresh insight into the mechanism behind the delayed development in Joubert syndrome.
Collapse
|
32
|
Crespi B. Developmental heterochrony and the evolution of autistic perception, cognition and behavior. BMC Med 2013; 11:119. [PMID: 23639054 PMCID: PMC3649927 DOI: 10.1186/1741-7015-11-119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/22/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly represent simple delays or non-completion of typical childhood developmental trajectories is evaluated. DISCUSSION A comprehensive review of the literature indicates that, with regard to the four phenotypes of (1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the differences between autistic individuals and typically developing individuals closely parallel the differences between younger and older children. SUMMARY The results of this study are concordant with a model of 'developmental heterochrony', and suggest that evolutionary extension of child development along the human lineage has potentiated and structured genetic risk for autism and the expression of autistic perception, cognition and behavior.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
33
|
Esmailzadeh S, Jiang X. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders. Oncotarget 2012; 2:918-34. [PMID: 22248740 PMCID: PMC3282096 DOI: 10.18632/oncotarget.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of diseases. Ultimately, this knowledge will set the stage for translation into new and more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sharmin Esmailzadeh
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
34
|
Abstract
It is well accepted that schizophrenia has a strong genetic component. Several genome-wide association studies (GWASs) of schizophrenia have been published in recent years; most of them population based with a case-control design. Nevertheless, identifying the specific genetic variants which contribute to susceptibility to the disorder remains a challenging task. A family-based GWAS strategy may be helpful in the identification of schizophrenia susceptibility genes since it is protected against population stratification, enables better accounting for genotyping errors and is more sensitive for identification of rare variants which have a very low frequency in the general population. In this project we implemented a family-based GWAS of schizophrenia in a sample of 107 Jewish-Israeli families. We found one genome-wide significant association in the intron of the DOCK4 gene (rs2074127, p value=1.134×10⁻⁷) and six additional nominally significant association signals with p<1×10⁻⁵. One of the top single nucleotide polymorphisms (p<1×10⁻⁵) which is located in the predicted intron of the CEACAM21 gene was significantly replicated in independent family-based sample of Arab-Israeli origin (rs4803480: p value=0.002; combined p value=9.61×10⁻⁸), surviving correction for multiple testing. Both DOCK4 and CEACAM21 are biologically reasonable candidate genes for schizophrenia although generalizability of the association of DOCK4 with schizophrenia should be investigated in further studies. In addition, gene-wide significant associations were found within three schizophrenia candidate genes: PGBD1, RELN and PRODH, replicating previously reported associations. By application of a family-based strategy to GWAS, our study revealed new schizophrenia susceptibility loci in the Jewish-Israeli population.
Collapse
|
35
|
Oxytocin and vasopressin genes are significantly associated with schizophrenia in a large Arab-Israeli pedigree. Int J Neuropsychopharmacol 2012; 15:309-19. [PMID: 21899794 DOI: 10.1017/s1461145711001374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously studied the genetics of schizophrenia in a large inbred Arab-Israeli pedigree and found evidence for linkage on chromosome 20p13. This locus harbours four strong candidate genes for schizophrenia: atractin (ATRN), pantonate-kinase2 (PANK2), oxytocin (OXT) and arginine-vasopressin (AVP). In this study we further explored the association of these genes with schizophrenia in the pedigree and searched for the disease-causing variants. A mutation screening of affected individuals from the pedigree was performed by using intensive sequencing in these four genes of interest. Then, we studied the prevalence of the identified variants in all family members (n=56) as well as in Arab-Israeli nuclear families (n=276) and a Jewish case-control sample (n=545). We also studied the possible functional role of these variants by examining their association with gene expression in the brain (n=104). We identified seven genetic variants in the OXT-AVP cluster in affected individuals from the pedigree. Three of these variants were significantly associated with schizophrenia in this pedigree. A 7-SNP haplotype was also significantly associated with disease. We found significant association of some of these variants in the two samples from the general population. Expression data analysis showed a possible functional role of two of these variants in regulation of gene expression. Involvement of OXT and AVP in the aetiology of schizophrenia has been suggested in the past. This study demonstrates, for the first time, a significant genetic association of these neuropeptides with schizophrenia and strongly supports this hypothesis.
Collapse
|
36
|
Characterization of the "sporadically lurking HAP1-immunoreactive (SLH) cells" in the hippocampus, with special reference to the expression of steroid receptors, GABA, and progenitor cell markers. Neuroscience 2012; 210:67-81. [PMID: 22421101 DOI: 10.1016/j.neuroscience.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/29/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor that is widely expressed as a core molecule of the stigmoid body (a neurocytoplasmic inclusion) in the limbic and hypothalamic regions and has putative protective functions against some neurodegenerative diseases (HAP1 protection hypothesis). Although HAP1 has been reported to be intimately associated with several steroid receptors, HAP1-immunoreactive (HAP1-ir) cells remain to be identified in the hippocampus, which is one of the major steroidal targets. In this study, we determined the distribution of hippocampal HAP1-ir cells in light and fluorescence microscopy and characterized their morphological relationships with steroid receptors, markers of adult neurogenesis, and the GABAergic system in adult male and female Wistar rats. HAP1-ir cells, which were sporadically distributed particularly in the subgranular zone (SGZ) of the dentate gyrus and in the interface between the stratum lacunosum-moleculare and stratum radiatum of Ammon's horn, were identified as the "sporadically lurking HAP1-ir (SLH)" cells. The SLH cells showed no clear association with neural progenitor/proliferating or migrating cell markers of adult neurogenesis, such as Ki-67, proliferating cell nuclear antigen, doublecortin, and glial fibrillary acidic protein in the SGZ, whereas all the SLH cells expressed a neuronal specific nuclear protein (NeuN). More than 90% of the SLH cells expressed nuclear estrogen receptor (ER) α but neither ERβ nor the androgen receptor, whereas glucocorticoid receptor was differently stained in the SLH cells depending on the antibodies. More than 60% of them exhibited GABA immunoreactivity in the SGZ, suggestive of basket cells, but they were distinct from the ones expressing cholecystokinin or parvalbumin. We conclude that SLH cells, which should be stable against apoptosis due to putative HAP1 protectivity, might be involved in estrogen-dependent maturation, remodeling and activation of hippocampal memory and learning functions via ERα and partly through GABAergic regulation.
Collapse
|
37
|
Association of the type 2 diabetes mellitus susceptibility gene, TCF7L2, with schizophrenia in an Arab-Israeli family sample. PLoS One 2012; 7:e29228. [PMID: 22247771 PMCID: PMC3256145 DOI: 10.1371/journal.pone.0029228] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 11/22/2011] [Indexed: 11/20/2022] Open
Abstract
Many reports in different populations have demonstrated linkage of the 10q24-q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24-q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10⁻⁶) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10⁻⁶) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required.
Collapse
|
38
|
Alkelai A, Lupoli S, Greenbaum L, Giegling I, Kohn Y, Sarner-Kanyas K, Ben-Asher E, Lancet D, Rujescu D, Macciardi F, Lerer B. Identification of new schizophrenia susceptibility loci in an ethnically homogeneous, family-based, Arab-Israeli sample. FASEB J 2011; 25:4011-23. [PMID: 21795503 DOI: 10.1096/fj.11-184937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While the use of population-based samples is a common strategy in genome-wide association studies (GWASs), family-based samples have considerable advantages, such as robustness against population stratification and false-positive associations, better quality control, and the possibility to check for both linkage and association. In a genome-wide linkage study of schizophrenia in Arab-Israeli families with multiple affected individuals, we previously reported significant evidence for a susceptibility locus at chromosome 6q23.2-q24.1 and suggestive evidence at chromosomes 10q22.3-26.3, 2q36.1-37.3 and 7p21.1-22.3. To identify schizophrenia susceptibility genes, we applied a family-based GWAS strategy in an enlarged, ethnically homogeneous, Arab-Israeli family sample. We performed genome-wide single nucleotide polymorphism (SNP) genotyping and single SNP transmission disequilibrium test association analysis and found genome-wide significant association (best value of P=1.22×10(-11)) for 8 SNPs within or near highly reasonable functional candidate genes for schizophrenia. Of particular interest are a group of SNPs within and flanking the transcriptional factor LRRFIP1 gene. To determine replicability of the significant associations beyond the Arab-Israeli population, we studied the association of the significant SNPs in a German case-control validation sample and found replication of associations near the UGT1 subfamily and EFHD1 genes. Applying an exploratory homozygosity mapping approach as a complementary strategy to identify schizophrenia susceptibility genes in our Arab Israeli sample, we identified 8 putative disease loci. Overall, this GWAS, which emphasizes the important contribution of family based studies, identifies promising candidate genes for schizophrenia.
Collapse
Affiliation(s)
- Anna Alkelai
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 2011; 211:136-64. [PMID: 21821099 DOI: 10.1016/j.neuroscience.2011.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 01/31/2023]
Abstract
Schizophrenia is one of the most common psychiatric disorders, but despite progress in identifying the genetic factors implicated in its development, the mechanisms underlying its etiology and pathogenesis remain poorly understood. Development of mouse models is critical for expanding our understanding of the causes of schizophrenia. However, translation of disease pathology into mouse models has proven to be challenging, primarily due to the complex genetic architecture of schizophrenia and the difficulties in the re-creation of susceptibility alleles in the mouse genome. In this review we highlight current research on models of major susceptibility loci and the information accrued from their analysis. We describe and compare the different approaches that are necessitated by diverse susceptibility alleles, and discuss their advantages and drawbacks. Finally, we discuss emerging mouse models, such as second-generation pathophysiology models based on innovative approaches that are facilitated by the information gathered from the current genetic mouse models.
Collapse
Affiliation(s)
- M Kvajo
- Department of Physiology and Cellular Biophysics, College of Physicians & Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
40
|
Hansen T, Ingason A, Djurovic S, Melle I, Fenger M, Gustafsson O, Jakobsen KD, Rasmussen HB, Tosato S, Rietschel M, Frank J, Owen M, Bonetto C, Suvisaari J, Thygesen JH, Pétursson H, Lönnqvist J, Sigurdsson E, Giegling I, Craddock N, O'Donovan MC, Ruggeri M, Cichon S, Ophoff RA, Pietiläinen O, Peltonen L, Nöthen MM, Rujescu D, St Clair D, Collier DA, Andreassen OA, Werge T. At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. Biol Psychiatry 2011; 70:59-63. [PMID: 21414605 DOI: 10.1016/j.biopsych.2011.01.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 12/21/2010] [Accepted: 01/19/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Schizophrenia is associated with increased risk of type II diabetes and metabolic disorders. However, it is unclear whether this comorbidity reflects shared genetic risk factors, at-risk lifestyle, or side effects of antipsychotic medication. METHODS Eleven known risk variants of type II diabetes were genotyped in patients with schizophrenia in a sample of 410 Danish patients, each matched with two healthy control subjects on sex, birth year, and month. Replication was carried out in a large multinational European sample of 4089 patients with schizophrenia and 17,597 controls (SGENE+) using Mantel-Haenszel test. RESULTS One type II diabetes at-risk allele located in TCF7L2, rs7903146 [T], was associated with schizophrenia in the discovery sample (p = .0052) and in the replication with an odds ratio of 1.07 (95% confidence interval 1.01-1.14, p = .033). CONCLUSION The association reported here with a well-known diabetes variant suggests that the observed comorbidity is partially caused by genetic risk variants. This study also demonstrates how genetic studies can successfully examine an epidemiologically derived hypothesis of comorbidity.
Collapse
Affiliation(s)
- Thomas Hansen
- Mental Health Centre Sct. Hans, Copenhagen University Hospital, Research Institute of Biological Psychiatry, Roskilde, Denmark; Copenhagen University, Center for Pharmacogenomics, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Intracellular colocalization of HAP1/STBs with steroid hormone receptors and its enhancement by a proteasome inhibitor. Exp Cell Res 2011; 317:1689-700. [PMID: 21609716 DOI: 10.1016/j.yexcr.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 01/09/2023]
Abstract
The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.
Collapse
|
42
|
Neuronal Abelson helper integration site-1 (Ahi1) deficiency in mice alters TrkB signaling with a depressive phenotype. Proc Natl Acad Sci U S A 2010; 107:19126-31. [PMID: 20956301 DOI: 10.1073/pnas.1013032107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that the human Abelson helper integration site-1 (AHI1) gene on chromosome 6 is associated with susceptibility to schizophrenia and autism, two common neuropsychological disorders with depression symptoms. Mouse Ahi1 protein is abundant in the hypothalamus and amygdala, which are important brain regions for controlling emotion. However, the neuronal function of Ahi1 remains unclear. With the Cre-loxP system, we created a mouse model that selectively reduces Ahi1 expression in neuronal cells. Mice with neuronal Ahi1 deficiency show reduced TrkB level in the brain and depressive phenotypes, which can be alleviated by antidepressant drugs or by overexpression of TrkB in the amygdala. Ahi1 deficiency promotes the degradation of endocytic TrkB and reduces TrkB signaling in neuronal cells. Our findings suggest that impaired endocytic sorting and increased degradation of TrkB can induce depression and that this impaired pathway may serve as a previously uncharacterized therapeutic target for depression.
Collapse
|
43
|
Abstract
This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders.
Collapse
|
44
|
Rivero O, Reif A, Sanjuán J, Moltó MD, Kittel-Schneider S, Nájera C, Töpner T, Lesch KP. Impact of the AHI1 gene on the vulnerability to schizophrenia: a case-control association study. PLoS One 2010; 5:e12254. [PMID: 20805890 PMCID: PMC2923617 DOI: 10.1371/journal.pone.0012254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/15/2010] [Indexed: 01/13/2023] Open
Abstract
Background The Abelson helper integration-1 (AHI1) gene is required for both cerebellar and cortical development in humans. While the accelerated evolution of AHI1 in the human lineage indicates a role in cognitive (dys)function, a linkage scan in large pedigrees identified AHI1 as a positional candidate for schizophrenia. To further investigate the contribution of AHI1 to the susceptibility of schizophrenia, we evaluated the effect of AHI1 variation on the vulnerability to psychosis in two samples from Spain and Germany. Methodology/Principal Findings 29 single-nucleotide polymorphisms (SNPs) located in a genomic region including the AHI1 gene were genotyped in two samples from Spain (280 patients with psychotic disorders; 348 controls) and Germany (247 patients with schizophrenic disorders; 360 controls). Allelic, genotypic and haplotype frequencies were compared between cases and controls in both samples separately, as well as in the combined sample. The effect of genotype on several psychopathological measures (BPRS, KGV, PANSS) assessed in a Spanish subsample was also evaluated. We found several significant associations in the Spanish sample. Particularly, rs7750586 and rs911507, both located upstream of the AHI1 coding region, were found to be associated with schizophrenia in the analysis of genotypic (p = 0.0033, and 0.031, respectively) and allelic frequencies (p = 0.001 in both cases). Moreover, several other risk and protective haplotypes were detected (0.006<p<0.036). Joint analysis also supported the association of rs7750586 and rs911507 with the risk for schizophrenia. The analysis of clinical measures also revealed an effect on symptom severity (minimum P value = 0.0037). Conclusions/Significance Our data support, in agreement with previous reports, an effect of AHI1 variation on the susceptibility to schizophrenia in central and southern European populations.
Collapse
Affiliation(s)
- Olga Rivero
- Unit of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Prior MJ, Foletta VC, Jowett JB, Segal DH, Carless MA, Curran JE, Dyer TD, Moses EK, McAinch AJ, Konstantopoulos N, Bozaoglu K, Collier GR, Cameron-Smith D, Blangero J, Walder KR. The characterization of Abelson helper integration site-1 in skeletal muscle and its links to the metabolic syndrome. Metabolism 2010; 59:1057-64. [PMID: 20045148 PMCID: PMC3249385 DOI: 10.1016/j.metabol.2009.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/17/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
The human Abelson helper integration site-1 (AHI1) gene is associated with both neurologic and hematologic disorders; however, it is also located in a chromosomal region linked to metabolic syndrome phenotypes and was identified as a type 2 diabetes mellitus susceptibility gene from a genomewide association study. To further define a possible role in type 2 diabetes mellitus development, AHI1 messenger RNA expression levels were investigated in a range of tissues and found to be highly expressed in skeletal muscle as well as displaying elevated levels in brain regions and gonad tissues. Further analysis in a rodent polygenic animal model of obesity and type 2 diabetes mellitus identified increased Ahi-1 messenger RNA levels in red gastrocnemius muscle from fasted impaired glucose-tolerant and diabetic rodents compared with healthy animals (P < .002). Moreover, elevated gene expression levels were confirmed in skeletal muscle from fasted obese and type 2 diabetes mellitus human subjects (P < .02). RNAi-mediated suppression of Ahi-1 resulted in increased glucose transport in rat L6 myotubes in both the basal and insulin-stimulated states (P < .01). Finally, single nucleotide polymorphism association studies identified 2 novel AHI1 genetic variants linked with fasting blood glucose levels in Mexican American subjects (P < .037). These findings indicate a novel role for AHI1 in skeletal muscle and identify additional genetic links with metabolic syndrome phenotypes suggesting an involvement of AHI1 in the maintenance of glucose homeostasis and type 2 diabetes mellitus progression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport
- Animals
- Blood Glucose/metabolism
- Blotting, Western
- Body Weight/physiology
- Cells, Cultured
- Cohort Studies
- Deoxyglucose/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Genotype
- Glucose/metabolism
- Humans
- Insulin/blood
- Insulin Resistance/genetics
- Metabolic Syndrome/genetics
- Metabolic Syndrome/metabolism
- Mexican Americans
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Obesity/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
Collapse
Affiliation(s)
- Matthew J. Prior
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Victoria C. Foletta
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jeremy B. Jowett
- The Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - David H. Segal
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Tom D. Dyer
- Southwest Foundation for Biomedical Research, San Antonio, USA
| | - Eric K. Moses
- Southwest Foundation for Biomedical Research, San Antonio, USA
| | - Andrew J. McAinch
- School of Biomedical and Health Sciences, Victoria University, Melbourne, 8001, Australia
| | | | - Kiymet Bozaoglu
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | - David Cameron-Smith
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - John Blangero
- Southwest Foundation for Biomedical Research, San Antonio, USA
| | - Ken R. Walder
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Verva Pharmaceuticals Ltd, Geelong, Australia
- Corresponding author. , Telephone: + 61-3-5227 2883, Facsimilie: + 61-3-5227 2170
| |
Collapse
|
46
|
Lymphoblast and brain expression of AHI1 and the novel primate-specific gene, C6orf217, in schizophrenia and bipolar disorder. Schizophr Res 2010; 120:159-66. [PMID: 20452750 DOI: 10.1016/j.schres.2010.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
Association with schizophrenia of the Abelson Helper Integration Site 1 (AHI1) gene on chromosome 6q23 and the adjacent primate-specific gene, C6orf217, was demonstrated in an inbred, Arab Israeli family sample and replicated in an Icelandic case control sample. Further support was provided by a second replication in a large European sample and a meta-analysis that supported association with schizophrenia of all seven alleles overtransmitted to affected subjects in the original study. We examined constitutive expression of AHI1 and C6orf217 in immortalized lymphoblasts of patients from the Arab Israeli family sample in which the association with schizophrenia was originally discovered and population-matched normal controls, and in post-mortem brain of patients with schizophrenia and bipolar (BP) disorder and control subjects from the Stanley Medical Research Institute Collection. We found a significant effect of diagnostic group in the lymphoblast sample (F=5.72; df=2,39; p=0.006). Patients with early age of onset had higher AHI1 expression than controls and later onset patients (p=0.002; 0.03 respectively). C6orf217 expression in lymphoblasts was too low to measure. We found no difference in brain expression of AHI1 in schizophrenia or BP patients compared to controls. However, there was a genotypic difference in AHI1 expression for SNP rs9321501, which was strongly associated with schizophrenia in the original study. Genotypes that included the undertransmitted C allele (CC/AC) showed lower expression than the homozygous AA genotype (F=4.73, df=2,83; p=0.028). There was no significant difference in brain expression of C6orf217 between patients and controls and no genotypic effect. This study provides further evidence for involvement of AHI1 in susceptibility to schizophrenia.
Collapse
|
47
|
|
48
|
Torri F, Akelai A, Lupoli S, Sironi M, Amann-Zalcenstein D, Fumagalli M, Dal Fiume C, Ben-Asher E, Kanyas K, Cagliani R, Cozzi P, Trombetti G, Strik Lievers L, Salvi E, Orro A, Beckmann JS, Lancet D, Kohn Y, Milanesi L, Ebstein RB, Lerer B, Macciardi F. Fine mapping of AHI1 as a schizophrenia susceptibility gene: from association to evolutionary evidence. FASEB J 2010; 24:3066-82. [PMID: 20371615 DOI: 10.1096/fj.09-152611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In previous studies, we identified a locus for schizophrenia on 6q23.3 and proposed the Abelson helper integration site 1 (AHI1) as the candidate gene. AHI1 is expressed in the brain and plays a key role in neurodevelopment, is involved in Joubert syndrome, and has been recently associated with autism. The neurodevelopmental role of AHI1 fits with etiological hypotheses of schizophrenia. To definitively confirm our hypothesis, we searched for associations using a dense map of the region. Our strongest findings lay within the AHI1 gene: single-nucleotide polymorphisms rs11154801 and rs7759971 showed significant associations (P=6.23E-06; P=0.84E-06) and haplotypes gave P values in the 10E-8 to 10E-10 range. The second highest significant region maps close to AHI1 and includes the intergenic region between BC040979 and PDE7B (rs2038549 at P=9.70E-06 and rs1475069 at P=6.97E-06), and PDE7B and MAP7. Using a sample of Palestinian Arab families to confirm these findings, we found isolated signals. While these results did not retain their significance after correction for multiple testing, the joint analysis across the 2 samples supports the role of AHI1, despite the presence of heterogeneity. Given the hypothesis of positive selection of schizophrenia genes, we resequenced a 11 kb region within AHI1 in ethnically defined populations and found evidence for a selective sweep. Network analysis indicates 2 haplotype clades, with schizophrenia-susceptibility haplotypes clustering within the major clade. In conclusion, our data support the role of AHI1 as a susceptibility gene for schizophrenia and confirm it has been subjected to positive selection, also shedding light on new possible candidate genes, MAP7 and PDE7B.
Collapse
Affiliation(s)
- Federica Torri
- Genomics and Bioinformatics Unit, University of Milan-Fondazione Filarete, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ingason A, Giegling I, Cichon S, Hansen T, Rasmussen HB, Nielsen J, Jürgens G, Muglia P, Hartmann AM, Strengman E, Vasilescu C, Mühleisen TW, Djurovic S, Melle I, Lerer B, Möller HJ, Francks C, Pietiläinen OPH, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Walshe M, Vassos E, Di Forti M, Murray R, Bonetto C, Tosato S, Cantor RM, Rietschel M, Craddock N, Owen MJ, Peltonen L, Andreassen OA, Nöthen MM, St Clair D, Ophoff RA, O'Donovan MC, Collier DA, Werge T, Rujescu D. A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Hum Mol Genet 2010; 19:1379-86. [PMID: 20071346 PMCID: PMC2838541 DOI: 10.1093/hmg/ddq009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/11/2010] [Indexed: 01/01/2023] Open
Abstract
The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample. Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both the replication study of new samples and the meta-analysis show evidence for significant overrepresentation of all tested alleles in patients compared with controls (meta-analysis; P = 8.2 x 10(-5)-1.7 x 10(-3), common OR = 1.09-1.11). The region contains two genes, AHI1 and C6orf217, and both genes-as well as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia.
Collapse
Affiliation(s)
- Andrés Ingason
- Research Institute of Biological Psychiatry, Copenhagen University Hospital, Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, Yamanouchi Y, Kinoshita Y, Hashimoto R, Williams HJ, Takeda M, Nakamura J, Nabeshima T, Owen MJ, O'Donovan MC, Honda H, Arinami T, Ozaki N, Iwata N. Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 2010; 67:263-9. [PMID: 19850283 DOI: 10.1016/j.biopsych.2009.08.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/29/2009] [Accepted: 08/19/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pharmacogenomic approaches based on genomewide sets of single nucleotide polymorphisms (SNPs) are now feasible and offer the potential to uncover variants that influence drug response. METHODS To detect potential predictor gene variants for risperidone response in schizophrenic subjects, we performed a convergent analysis based on 1) a genomewide (100K SNP) SNP pharmacogenetic study of risperidone response and 2) a global transcriptome study of genes with mRNA levels influenced by risperidone exposure in mouse prefrontal cortex. RESULTS Fourteen genes were highlighted as of potential relevance to risperidone activity in both studies: ATP2B2, HS3ST2, UNC5C, BAG3, PDE7B, PAICS, PTGFRN, NR3C2, ZBTB20, ST6GAL2, PIP5K1B, EPHA6, KCNH5, and AJAP1. The SNPs related to these genes that were associated in the pharmacogenetic study were further assessed for evidence for association with schizophrenia in up to three case-control series comprising 1564 cases and 3862 controls in total (Japanese [JPN] 1st and 2nd samples and UK sample). Of 14 SNPs tested, one (rs9389370) in PDE7B showed significant evidence for association with schizophrenia in a discovery sample (p(allele) = .026 in JPN_1st, two-tailed). This finding replicated in a joint analysis of two independent case-control samples (p(JPN_2nd+UK) = .008, one-tailed, uncorrected) and in all combined data sets (p(all) = .0014, two-tailed, uncorrected and p(all) = .018, two-tailed, Bonferroni correction). CONCLUSIONS We identified novel candidate genes for treatment response to risperidone and provide evidence that one of these additionally may confer susceptibility to schizophrenia. Specifically, PDE7B is an attractive candidate gene, although evidence from integrated methodology, including pharmacogenomics, pharmacotranscriptomic, and case-control association approaches.
Collapse
Affiliation(s)
- Masashi Ikeda
- MRC, Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|