1
|
Brown MT, McMurray MA. Stepwise order in protein complex assembly: approaches and emerging themes. Open Biol 2025; 15:240283. [PMID: 39809320 PMCID: PMC11732423 DOI: 10.1098/rsob.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits. One aspect that is particularly understudied is assembly order, the idea that there is a stepwise order to the subunit-subunit associations that underlies the efficient assembly of the quaternary structure. Here, we integrate a review of the methodological approaches commonly used to query assembly order within a discussion of studies of the 20S proteasome core particle, septin protein complexes, and the histone octamer. We highlight shared and distinct properties of these complexes that illustrate general themes applicable to most other multisubunit assemblies.
Collapse
Affiliation(s)
- Michael T. Brown
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| |
Collapse
|
2
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. Nat Commun 2024; 15:8184. [PMID: 39294158 PMCID: PMC11410832 DOI: 10.1038/s41467-024-52513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. Here, to understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observe an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Chenyu Zhou
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Zarith Mohammad
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA
| | - Jianhua Zhao
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|
3
|
Zhang H, Zhou C, Mohammad Z, Zhao J. Structural basis of human 20S proteasome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607236. [PMID: 39211201 PMCID: PMC11361150 DOI: 10.1101/2024.08.08.607236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New proteasomes are produced to accommodate increases in cellular catabolic demand and prevent the accumulation of cytotoxic proteins. Formation of the proteasomal 20S core complex relies on the function of the five chaperones PAC1-4 and POMP. To understand how these chaperones facilitate proteasome assembly, we tagged the endogenous chaperones using CRISPR/Cas gene editing and examined the chaperone-bound complexes by cryo-EM. We observed an early α-ring intermediate subcomplex that is stabilized by PAC1-4, which transitions to β-ring assembly upon dissociation of PAC3/PAC4 and rearrangement of the PAC1 N-terminal tail. Completion of the β-ring and dimerization of half-proteasomes repositions critical lysine K33 to trigger cleavage of the β pro-peptides, leading to the concerted dissociation of POMP and PAC1/PAC2 to yield mature 20S proteasomes. This study reveals structural insights into critical points along the assembly pathway of the human proteasome and provides a molecular blueprint for 20S biogenesis.
Collapse
|
4
|
Chen PK, Chang YJ, Chou YW, Chen MY. Dysfunction of Avo3, an essential component of target of rapamycin complex 2, induces ubiquitin-proteasome-dependent downregulation of Avo2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2024; 717:150045. [PMID: 38718572 DOI: 10.1016/j.bbrc.2024.150045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.
Collapse
Affiliation(s)
- Pao-Kuang Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yu-Jung Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yu-Wen Chou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
5
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
6
|
Matias AC, Matos J, Dohmen RJ, Ramos PC. Hsp70 and Hsp110 Chaperones Promote Early Steps of Proteasome Assembly. Biomolecules 2022; 13:biom13010011. [PMID: 36671396 PMCID: PMC9855889 DOI: 10.3390/biom13010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Whereas assembly of the 20S proteasome core particle (CP) in prokaryotes apparently occurs spontaneously, the efficiency of this process in eukaryotes relies on the dedicated assembly chaperones Ump1, Pba1-Pba2, and Pba3-Pba4. For mammals, it was reported that CP assembly initiates with formation of a complete α-ring that functions as a template for β subunit incorporation. By contrast, we were not able to detect a ring composed only of a complete set of α subunits in S. cerevisiae. Instead, we found that the CP subunits α1, α2, and α4 each form independent small complexes. Purification of such complexes containing α4 revealed the presence of chaperones of the Hsp70/Ssa and Hsp110/Sse families. Consistently, certain small complexes containing α1, α2, and α4 were not formed in strains lacking these chaperones. Deletion of the SSE1 gene in combination with deletions of PRE9 (α3), PBA3, or UMP1 genes resulted in severe synthetic growth defects, high levels of ubiquitin-conjugates, and an accumulation of distinct small complexes with α subunits. Our study shows that Hsp70 and Hsp110 chaperones cooperate to promote the folding of individual α subunits and/or their assembly with other CP subunits, Ump1, and Pba1-Pba4 in subsequent steps.
Collapse
Affiliation(s)
- Ana C. Matias
- Center of Molecular Biosciences, Institute for Genetics, Department of Biology, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal
| | - Joao Matos
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal
| | - R. Jürgen Dohmen
- Center of Molecular Biosciences, Institute for Genetics, Department of Biology, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany
- Correspondence: (R.J.D.); (P.C.R.)
| | - Paula C. Ramos
- Center of Molecular Biosciences, Institute for Genetics, Department of Biology, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany
- Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-117 Faro, Portugal
- Correspondence: (R.J.D.); (P.C.R.)
| |
Collapse
|
7
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|
8
|
Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Nat Struct Mol Biol 2022; 29:791-800. [PMID: 35927584 PMCID: PMC9399903 DOI: 10.1038/s41594-022-00808-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Proteasome inhibitors are widely used as therapeutics and research tools, and typically target one of the three active sites, each present twice in the proteasome complex. An endogeneous proteasome inhibitor, PI31, was identified 30 years ago, but its inhibitory mechanism has remained unclear. Here, we identify the mechanism of Saccharomyces cerevisiae PI31, also known as Fub1. Using cryo-electron microscopy (cryo-EM), we show that the conserved carboxy-terminal domain of Fub1 is present inside the proteasome's barrel-shaped core particle (CP), where it simultaneously interacts with all six active sites. Targeted mutations of Fub1 disrupt proteasome inhibition at one active site, while leaving the other sites unaffected. Fub1 itself evades degradation through distinct mechanisms at each active site. The gate that allows substrates to access the CP is constitutively closed, and Fub1 is enriched in mutant CPs with an abnormally open gate, suggesting that Fub1 may function to neutralize aberrant proteasomes, thereby ensuring the fidelity of proteasome-mediated protein degradation.
Collapse
|
9
|
Abstract
Meiotic crossover recombination is required for faithful chromosome segregation and promotes genetic diversity by reshuffling alleles between parental chromosomes. Meiotic chromosomes are organized into arrays of loops that are anchored to the proteinaceous axes. The length of the meiotic chromosome axis is intimately associated with crossover frequencies in yeast and higher eukaryotes. However, how chromosome axis length is regulated in meiosis is unknown. Here, we demonstrate that cohesin regulator Pds5 interacts with proteasomes to regulate meiotic chromosome axis length by modulating ubiquitination. This regulatory mechanism also includes two ubiquitin E3 ligases, SCF (Skp–Cullin–F-box) and Ufd4. These findings identify a molecular pathway in regulating chromosome organization and reveal an unexpected function of the ubiquitin–proteasome system in meiosis. Meiotic crossover (CO) recombination is tightly regulated by chromosome architecture to ensure faithful chromosome segregation and to reshuffle alleles between parental chromosomes for genetic diversity of progeny. However, regulation of the meiotic chromosome loop/axis organization is poorly understood. Here, we identify a molecular pathway for axis length regulation. We show that the cohesin regulator Pds5 can interact with proteasomes. Meiosis-specific depletion of proteasomes and/or Pds5 results in a similarly shortened chromosome axis, suggesting proteasomes and Pds5 regulate axis length in the same pathway. Protein ubiquitination is accumulated in pds5 and proteasome mutants. Moreover, decreased chromosome axis length in these mutants can be largely rescued by decreasing ubiquitin availability and thus decreasing protein ubiquitination. Further investigation reveals that two ubiquitin E3 ligases, SCF (Skp–Cullin–F-box) and Ufd4, are involved in this Pds5–ubiquitin/proteasome pathway to cooperatively control chromosome axis length. These results support the hypothesis that ubiquitination of chromosome proteins results in a shortened chromosome axis, and cohesin–Pds5 recruits proteasomes onto chromosomes to regulate ubiquitination level and thus axis length. These findings reveal an unexpected role of the ubiquitin–proteasome system in meiosis and contribute to our knowledge of how Pds5 regulates meiotic chromosome organization. A conserved regulatory mechanism probably exists in higher eukaryotes.
Collapse
|
10
|
Li J, Hochstrasser M. Selective microautophagy of proteasomes is initiated by ESCRT-0 and is promoted by proteasome ubiquitylation. J Cell Sci 2022; 135:274460. [PMID: 35099016 PMCID: PMC8919337 DOI: 10.1242/jcs.259393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 01/18/2023] Open
Abstract
The proteasome is central to proteolysis by the ubiquitin-proteasome system under normal growth conditions but is itself degraded through macroautophagy under nutrient stress. A recently described AMP-activated protein kinase (AMPK)-regulated endosomal sorting complex required for transport (ESCRT)-dependent microautophagy pathway also regulates proteasome trafficking and degradation in low-glucose conditions in yeast. Aberrant proteasomes are more prone to microautophagy, suggesting the ESCRT system fine-tunes proteasome quality control under low-glucose stress. Here, we uncover additional features of the selective microautophagy of proteasomes in budding yeast. Genetic or pharmacological induction of aberrant proteasomes is associated with increased mono- or oligo-ubiquitylation of proteasome components, which appears to be recognized by ESCRT-0. AMPK controls this pathway in part by regulating the trafficking of ESCRT-0 to the vacuole surface, which also leads to degradation of the Vps27 subunit of ESCRT-0. The Rsp5 ubiquitin ligase contributes to proteasome subunit ubiquitylation, and multiple ubiquitin-binding elements in Vps27 are involved in their recognition. We propose that ESCRT-0 at the vacuole surface recognizes ubiquitylated proteasomes and initiates their microautophagic elimination during glucose depletion. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA,Author for correspondence ()
| |
Collapse
|
11
|
Zapata-Carmona H, Barón L, Kong M, Morales P. Protein Kinase A (PRKA) Activity Is Regulated by the Proteasome at the Onset of Human Sperm Capacitation. Cells 2021; 10:cells10123501. [PMID: 34944009 PMCID: PMC8700002 DOI: 10.3390/cells10123501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The proteasome increases its activity at the onset of sperm capacitation due to the action of the SACY/PRKACA pathway; this increase is required for capacitation to progress. PRKA activity also increases and remains high during capacitation. However, intracellular levels of cAMP decrease in this process. Our goal was to evaluate the role of the proteasome in regulating PRKA activity once capacitation has started. Viable human sperm were incubated in the presence and absence of epoxomicin or with 0.1% DMSO. The activity of PRKA; the phosphorylation pattern of PRKA substrates (pPRKAs); and the expression of PRKAR1, PRKAR2, and AKAP3 were evaluated by Western blot. The localization of pPRKAs, PRKAR1, PRKAR2, and AKAP3 was evaluated by immunofluorescence. Treatment with epoxomicin changed the localization and phosphorylation pattern and decreased the percentage of pPRKAs-positive sperm. PRKA activity significantly increased at 1 min of capacitation and remained high throughout the incubation. However, epoxomicin treatment significantly decreased PRKA activity after 30 min. In addition, PRKAR1 and AKAP3 were degraded by the proteasome but with a different temporal kinetic. Our results suggest that PRKAR1 is the target of PRKA regulation by the proteasome.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
| | - Lina Barón
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
| | - Milene Kong
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Correspondence:
| |
Collapse
|
12
|
Edskes HK, Stroobant EE, DeWilde MP, Bezsonov EE, Wickner RB. Proteasome Control of [URE3] Prion Propagation by Degradation of Anti-Prion Proteins Cur1 and Btn2 in Saccharomyces cerevisiae. Genetics 2021; 218:6179111. [PMID: 33742650 DOI: 10.1093/genetics/iyab037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/27/2021] [Indexed: 01/16/2023] Open
Abstract
[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion-curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion-curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.
Collapse
Affiliation(s)
- Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Emily E Stroobant
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Morgan P DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
13
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Cheng CL, Wong MK, Li Y, Hochstrasser M. Conserved proline residues in the coiled coil-OB domain linkers of Rpt proteins facilitate eukaryotic proteasome base assembly. J Biol Chem 2021; 296:100660. [PMID: 33862083 PMCID: PMC8134078 DOI: 10.1016/j.jbc.2021.100660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
The proteasome is a large protease complex that degrades many different cellular proteins. In eukaryotes, the 26S proteasome contains six different subunits of the ATPases associated with diverse cellular activities family, Rpt1-Rpt6, which form a hexameric ring as part of the base subcomplex that drives unfolding and translocation of substrates into the proteasome core. Archaeal proteasomes contain only a single Rpt-like ATPases associated with diverse cellular activities ATPase, the proteasome-activating nucleotidase, which forms a trimer of dimers. A key proteasome-activating nucleotidase proline residue (P91) forms cis- and trans-peptide bonds in successive subunits around the ring, allowing efficient dimerization through upstream coiled coils. However, the importance of the equivalent Rpt prolines for eukaryotic proteasome assembly was unknown. Here we showed that the equivalent proline is highly conserved in Rpt2, Rpt3, and Rpt5, and loosely conserved in Rpt1, in deeply divergent eukaryotes. Although in no case was a single Pro-to-Ala substitution in budding yeast strongly deleterious to growth, the rpt5-P76A mutation decreased levels of the protein and induced a mild proteasome assembly defect. Moreover, the rpt2-P103A, rpt3-P93A, and rpt5-P76A mutations all caused synthetic defects when combined with deletions of specific proteasome base assembly chaperones. The rpt2-P103A rpt5-P76A double mutant had uniquely strong growth defects attributable to defects in proteasome base formation. Several Rpt subunits in this mutant formed aggregates that were cleared, at least in part, by Hsp42 chaperone-mediated protein quality control. We propose that the conserved Rpt linker prolines promote efficient 26S proteasome base assembly by facilitating specific ATPase heterodimerization.
Collapse
Affiliation(s)
- Chin Leng Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Michael K Wong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yanjie Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
15
|
Precise Replacement of Saccharomyces cerevisiae Proteasome Genes with Human Orthologs by an Integrative Targeting Method. G3-GENES GENOMES GENETICS 2020; 10:3189-3200. [PMID: 32680853 PMCID: PMC7466971 DOI: 10.1534/g3.120.401526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial induction of a chromosomal double-strand break in Saccharomyces cerevisiae enhances the frequency of integration of homologous DNA fragments into the broken region by up to several orders of magnitude. The process of homologous repair can be exploited to integrate, in principle, any foreign DNA into a target site, provided the introduced DNA is flanked at both the 5′ and 3′ ends by sequences homologous to the region surrounding the double-strand break. I have developed tools to precisely direct double-strand breaks to chromosomal target sites with the meganuclease I-SceI and select integration events at those sites. The method is validated in two different applications. First, the introduction of site-specific single-nucleotide phosphorylation site mutations into the S. cerevisiae gene SPO12. Second, the precise chromosomal replacement of eleven S. cerevisiae proteasome genes with their human orthologs. Placing the human genes under S. cerevisiae transcriptional control allowed us to update our understanding of cross-species functional gene replacement. This experience suggests that using native promoters may be a useful general strategy for the coordinated expression of foreign genes in S. cerevisiae. I provide an integrative targeting tool set that will facilitate a variety of precision genome engineering applications.
Collapse
|
16
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
17
|
Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, Del Ángel RM, Serrano-Luna J, Shibayama M. Naegleria fowleri and Naegleria gruberi 20S proteasome: identification and characterization. Eur J Cell Biol 2020; 99:151085. [PMID: 32646643 DOI: 10.1016/j.ejcb.2020.151085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The Naegleria are ubiquitous free-living amoebae and are characterized by the presence of three phases in their biological cycle: trophozoite, cyst and flagellate. Of this genus, only Naegleria fowleri has been reported as pathogenic to humans. The proteasome is a multi-catalytic complex and is considered to be the most important structure responsible for the degradation of intracellular proteins. This structure is related to the maintenance of cellular homeostasis and, in pathogenic microorganisms, to the modulation of their virulence. Until now, the proteasome and its function have not been described for the Naegleria genus. In the current study, using bioinformatic analysis, protein sequences homologous to those reported for the subunits of the 20S proteasome in other organisms were found, and virtual modelling was used to determine their three-dimensional structure. The presence of structural and catalytic subunits of the 20S proteasome was detected by Western and dot blot assays. Its localization was observed by immunofluorescence microscopy to be mainly in the cytoplasm, and a leading role of the chymotrypsin-like catalytic activity was determined using fluorogenic peptidase assays and specific proteasome inhibitors. Finally, the role of the 20S proteasome in the proliferation and differentiation of Naegleria genus trophozoites was demonstrated.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Diana Martínez-Valencia
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Rosa M Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| |
Collapse
|
18
|
Nemec AA, Tomko RJ. A suite of polymerase chain reaction-based peptide tagging plasmids for epitope-targeted enzymatic functionalization of yeast proteins. Yeast 2020; 37:327-335. [PMID: 32401365 DOI: 10.1002/yea.3471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
The budding yeast and model eukaryote Saccharomyces cerevisiae has been invaluable for purification and analysis of numerous evolutionarily conserved proteins and multisubunit complexes that cannot be readily reconstituted in Escherichia coli. For many studies, it is desirable to functionalize a particular protein or subunit of a complex with a ligand, fluorophore or other small molecule. Enzyme-catalysed site-specific modification of proteins bearing short peptide tags is a powerful strategy to overcome the limitations associated with traditional nonselective labelling chemistries. Towards this end, we developed a suite of template plasmids for C-terminal tagging with short peptide sequences that can be site-specifically functionalized with high efficiency and selectivity. We have also combined these sequences with the FLAG tag as a handle for purification or immunological detection of the modified protein. We demonstrate the utility of these plasmids by site-specifically labelling the 28-subunit core particle subcomplex of the 26S proteasome with the small molecule fluorophore Cy5. The full set of plasmids has been deposited in the non-profit plasmid repository Addgene (http://www.addgene.org).
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
19
|
The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling. mBio 2020; 11:mBio.00290-20. [PMID: 32317319 PMCID: PMC7175089 DOI: 10.1128/mbio.00290-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis.IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens.
Collapse
|
20
|
Li J, Breker M, Graham M, Schuldiner M, Hochstrasser M. AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation. PLoS Genet 2019; 15:e1008387. [PMID: 31738769 PMCID: PMC6886873 DOI: 10.1371/journal.pgen.1008387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/02/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system regulates numerous cellular processes and is central to protein homeostasis. In proliferating yeast and many mammalian cells, proteasomes are highly enriched in the nucleus. In carbon-starved yeast, proteasomes migrate to the cytoplasm and collect in proteasome storage granules (PSGs). PSGs dissolve and proteasomes return to the nucleus within minutes of glucose refeeding. The mechanisms by which cells regulate proteasome homeostasis under these conditions remain largely unknown. Here we show that AMP-activated protein kinase (AMPK) together with endosomal sorting complexes required for transport (ESCRTs) drive a glucose starvation-dependent microautophagy pathway that preferentially sorts aberrant proteasomes into the vacuole, thereby biasing accumulation of functional proteasomes in PSGs. The proteasome core particle (CP) and regulatory particle (RP) are regulated differently. Without AMPK, the insoluble protein deposit (IPOD) serves as an alternative site that specifically sequesters CP aggregates. Our findings reveal a novel AMPK-controlled ESCRT-mediated microautophagy mechanism in the regulation of proteasome trafficking and homeostasis under carbon starvation.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Sciences, Rehovot, Israel
| | - Morven Graham
- Center for Cellular and Molecular Imaging, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Sciences, Rehovot, Israel
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
21
|
Proteasome subunit α1 overexpression preferentially drives canonical proteasome biogenesis and enhances stress tolerance in yeast. Sci Rep 2019; 9:12418. [PMID: 31455793 PMCID: PMC6712033 DOI: 10.1038/s41598-019-48889-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023] Open
Abstract
The 26S proteasome conducts the majority of regulated protein catabolism in eukaryotes. At the heart of the proteasome is the barrel-shaped 20S core particle (CP), which contains two β-rings sandwiched between two α-rings. Whereas canonical CPs contain α-rings with seven subunits arranged α1-α7, a non-canonical CP in which a second copy of the α4 subunit replaces the α3 subunit occurs in both yeast and humans. The mechanisms that control canonical versus non-canonical CP biogenesis remain poorly understood. Here, we have repurposed a split-protein reporter to identify genes that can enhance canonical proteasome assembly in mutant yeast producing non-canonical α4-α4 CPs. We identified the proteasome subunit α1 as an enhancer of α3 incorporation, and find that elevating α1 protein levels preferentially drives canonical CP assembly under conditions that normally favor α4-α4 CP formation. Further, we demonstrate that α1 is stoichiometrically limiting for α-ring assembly, and that enhancing α1 levels is sufficient to increase proteasome abundance and enhance stress tolerance in yeast. Together, our data indicate that the abundance of α1 exerts multiple impacts on proteasome assembly and composition, and we propose that the limited α1 levels observed in yeast may prime cells for alternative proteasome assembly following environmental stimuli.
Collapse
|
22
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
24
|
Leme JMM, Ohara E, Santiago VF, Barros MH, Netto LES, Pimenta DC, Mariano DOC, Oliveira CLP, Bicev RN, Barreto-Chaves MLM, Lino CA, Demasi M. Mutations of Cys and Ser residues in the α5-subunit of the 20S proteasome from Saccharomyces cerevisiae affects gating and chronological lifespan. Arch Biochem Biophys 2019; 666:63-72. [PMID: 30940569 DOI: 10.1016/j.abb.2019.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.
Collapse
Affiliation(s)
- Janaína M M Leme
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Department of Genetics and Evolutive Biology, IB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Erina Ohara
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Verônica F Santiago
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil; Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Mario H Barros
- Department of Microbiology, ICB-Universidade de São Paulo, São Paulo-SP, Brazil
| | - Luis E S Netto
- Department of Genetics and Evolutive Biology, IB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil
| | - Douglas O C Mariano
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil
| | | | - Renata N Bicev
- Department of Experimental Physics, IF- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Maria L M Barreto-Chaves
- Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Caroline A Lino
- Program of Morfofunctional Sciences, Department of Anatomy, ICB- Universidade de São Paulo, São Paulo-SP, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo-SP, Brazil.
| |
Collapse
|
25
|
Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci Rep 2019; 9:3170. [PMID: 30816680 PMCID: PMC6395709 DOI: 10.1038/s41598-019-39508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
The β5 subunit of the proteasome has been shown in worms and in human cell lines to be regulatory. In these models, β5 overexpression results in upregulation of the entire proteasome complex which is sufficient to increase proteotoxic stress resistance, improve metabolic parameters, and increase longevity. However, fundamental questions remain unanswered, including the temporal requirements for β5 overexpression and whether β5 overexpression can extend lifespan in other species. To determine if adult-only overexpression of the β5 subunit can increase proteasome activity in a different model, we characterized phenotypes associated with β5 overexpression in Drosophila melanogaster adults. We find that adult-only overexpression of the β5 subunit does not result in transcriptional upregulation of the other subunits of the proteasome as they do in nematodes and human cell culture. Despite this lack of a regulatory role, boosting β5 expression increases the chymotrypsin-like activity associated with the proteasome, reduces both the size and number of ubiquitinated protein aggregates in aged flies, and increases longevity. Surprisingly, these phenotypes were not associated with increased resistance to acute proteotoxic insults or improved metabolic parameters.
Collapse
|
26
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 740] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reed RG, Tomko RJ. Engineered disulfide crosslinking to measure conformational changes in the 26S proteasome. Methods Enzymol 2019; 619:145-159. [PMID: 30910019 DOI: 10.1016/bs.mie.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 26S proteasome is a multisubunit ATP-dependent peptidase complex mediating most regulated protein degradation in eukaryotes. The proteasome undergoes several coordinated conformational changes during catalysis that activate it for substrate processing and functionally couple distinct enzymatic activities during substrate degradation. Understanding the impact of substrate interactions and individual ATP binding events on these conformational changes is currently a major bottleneck in the study of proteasome function. Here, we describe a simple biochemical reporter based on engineered disulfide crosslinking for measuring the conformational distribution of the Saccharomyces cerevisiae 26S proteasome. We demonstrate its use to investigate the impact of ATP analogs and proteasome inhibitors on proteasome conformational equilibria. This reporter allows simultaneous and rapid comparison of multiple treatments or conditions on the steady-state conformational distribution of the proteasome and can be readily extended to the study of other multisubunit complexes for which multiple conformational states are known at near-atomic resolution.
Collapse
Affiliation(s)
- Randi G Reed
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
28
|
Eisenberg AR, Higdon A, Keskin A, Hodapp S, Jovanovic M, Brar GA. Precise Post-translational Tuning Occurs for Most Protein Complex Components during Meiosis. Cell Rep 2018; 25:3603-3617.e2. [PMID: 30590036 PMCID: PMC6328264 DOI: 10.1016/j.celrep.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Protein degradation is known to be a key component of expression regulation for individual genes, but its global impact on gene expression has been difficult to determine. We analyzed a parallel gene expression dataset of yeast meiotic differentiation, identifying instances of coordinated protein-level decreases to identify new cases of regulated meiotic protein degradation, including of ribosomes and targets of the meiosis-specific anaphase-promoting complex adaptor Ama1. Comparison of protein and translation measurements over time also revealed that, although meiotic cells are capable of synthesizing protein complex members at precisely matched levels, they typically do not. Instead, the members of most protein complexes are synthesized imprecisely, but their protein levels are matched, indicating that wild-type eukaryotic cells routinely use post-translational adjustment of protein complex partner levels to achieve proper stoichiometry. Outlier cases, in which specific complex components show divergent protein-level trends, suggest timed regulation of these complexes.
Collapse
Affiliation(s)
- Amy Rose Eisenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrea Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Abdurrahman Keskin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Wu W, Sahara K, Hirayama S, Zhao X, Watanabe A, Hamazaki J, Yashiroda H, Murata S. PAC1-PAC2 proteasome assembly chaperone retains the core α4-α7 assembly intermediates in the cytoplasm. Genes Cells 2018; 23:839-848. [PMID: 30133132 DOI: 10.1111/gtc.12631] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
The proteasome core particle (CP) is a cytoplasmic and nuclear protease complex and is comprised of two α-rings and two β-rings stacked in order of αββα. The assembly of CP proceeds by ordered recruitment of β-subunits on an α-ring with help of assembly chaperones PAC1-PAC2, PAC3-PAC4, and UMP1. However, the mechanism of α-ring formation remains unsolved. Here, we show that α4, α5, α6, and α7 form a core intermediate as the initial process of α-ring assembly, which requires PAC3-PAC4. α1 and α3 can be incorporated independently into the core α4-α7 intermediate, whereas α2 incorporation is dependent on preceding incorporation of α1. Through these processes, PAC1-PAC2 prevents nonproductive dimerization of α-ring assembly intermediates. We also found that PAC1-PAC2 overrides the effect of nuclear localization signals of α-subunits and retains α-ring assembly intermediates in the cytoplasm. Our results first show a detailed assembly pathway of proteasomal α-ring and explain the mechanism by which CP assembly occurs in the cytoplasm.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Xian Zhao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Watanabe
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Ahmed R, Kodgire S, Santhakumari B, Patil R, Kulkarni M, Zore G. Serum responsive proteome reveals correlation between oxidative phosphorylation and morphogenesis in Candida albicans ATCC10231. J Proteomics 2018; 185:25-38. [PMID: 29959084 DOI: 10.1016/j.jprot.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
To understand the impact of fetal bovine serum (FBS) on metabolism and cellular architecture in addition to morphogenesis, we have identified FBS responsive proteome of Candida albicans. FBS induced 34% hyphae and 60% pseudohyphae in C. albicans at 30 °C while 98% hyphae at 37 °C. LC-MS/MS analysis revealed that 285 proteins modulated significantly in response to FBS at 30 °C and 37 °C. Out of which 152 were upregulated and 62 were downregulated at 30 °C while 18 were up and 53 were downregulated at 37 °C. Functional annotation suggests that FBS may inhibit glycolysis and fermentative pathway and enhance oxidative phosphorylation (OxPhos), TCA cycle, amino acid and fatty acid metabolism indicating a use of alternative energy source by C. albicans. OxPhos inhibition assay using sodium azide corroborated the correlation between inhibition of glycolysis and enhanced OxPhos with pseudohyphae formation. C. albicans induced hyphae in response to FBS irrespective of down regulation of Ras1,Asr1/Asr2, indicates the possible involvement of MAPK and cAMP-PKA independent pathway. The Cell wall of cells grown in presence of FBS at 30 °C was rich in mannan, Beta 1,3-glucan and chitin while membranes were rich in ergosterol compared to those grown at 37 °C. SIGNIFICANCE OF THE STUDY This is the first study suggesting a correlation between OxPhos and morphogenesis especially pseudohyphae formation in C. albicans. Our data also indicate that fetal bovine serum (FBS) induced morphogenesis is multifactorial and may involve MAPK and cAMP-PKA independent pathway. In addition to morphogenesis, our study provides an insight in to the modulation of metabolism and cellular architecture of C. albicans in response to FBS.
Collapse
Affiliation(s)
- Radfan Ahmed
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Santosh Kodgire
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - B Santhakumari
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India.
| | - Mahesh Kulkarni
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
31
|
Abstract
The segregation of homologous chromosomes in meiosis depends on their ability to locate one another in the nucleus and establish a physical association through crossing over. A tightly regulated number of crossovers (COs) emerges following repair of induced DNA double-strand breaks by homologous recombination (HR), but the process of how HR intermediates transition into COs is still poorly understood. Two recent studies by Ahuja et al. and Rao et al. have revealed a role for chromosomally localized proteasomes in choreographing both homologous chromosome pairing and the evolution of HR intermediates into segregation-competent COs. Using chemical inhibition of the proteasome and mutant analysis, the collective data reveal conserved functions for both the proteasome and a family of E3 ligases that can direct or compete with its activity in ensuring CO formation. Here, we review these findings and the impact of the discovery that protein modification dynamics and proteasomal activity cooperate to regulate key meiotic processes.
Collapse
Affiliation(s)
- Aleksandar Vujin
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H, Hunt PA, Yanowitz JL, Börner GV. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 2017; 355:408-411. [PMID: 28059715 DOI: 10.1126/science.aaf4778] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/12/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
During meiosis, paired homologous chromosomes (homologs) become linked via the synaptonemal complex (SC) and crossovers. Crossovers mediate homolog segregation and arise from self-inflicted double-strand breaks (DSBs). Here, we identified a role for the proteasome, the multisubunit protease that degrades proteins in the nucleus and cytoplasm, in homolog juxtaposition and crossing over. Without proteasome function, homologs failed to pair and instead remained associated with nonhomologous chromosomes. Although dispensable for noncrossover formation, a functional proteasome was required for a coordinated transition that entails SC assembly between longitudinally organized chromosome axes and stable strand exchange of crossover-designated DSBs. Notably, proteolytic core and regulatory proteasome particles were recruited to chromosomes by Zip3, the ortholog of mammalian E3 ligase RNF212, and SC protein Zip1 . We conclude that proteasome functions along meiotic chromosomes are evolutionarily conserved.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Rana Mainpal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hanna Henley
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
35
|
Hammack LJ, Kusmierczyk AR. Assembly of proteasome subunits into non-canonical complexes in vivo. Biochem Biophys Res Commun 2016; 482:164-169. [PMID: 27833017 DOI: 10.1016/j.bbrc.2016.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/05/2016] [Indexed: 01/25/2023]
Abstract
Proteasomes exist in all domains of life. In general, they are comprised of a compartmentalized protease whose activity is modulated by one or more regulatory complexes with which it interacts. The quaternary structure of this compartmentalized protease, called the 20S proteasome, is absolutely conserved and consists of four heptameric rings stacked coaxially. The rings are made of structurally related α and β subunits. In eukaryotes, assembly factors chaperone the α and β subunits during 20S biogenesis. Here we demonstrate that proteasome subunits can assemble into structures other than the canonical 20S proteasome in vivo. Specifically, the yeast α4 subunit forms high molecular weight complexes whose abundance increases when proteasome function is compromised. Results from a disulfide crosslinking approach are consistent with these complexes being ring-shaped. Though several eukaryotic α subunits can form rings when expressed recombinantly in bacteria, this is the first evidence that such non-canonical complexes exist in vivo.
Collapse
Affiliation(s)
- Lindsay J Hammack
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, United States
| | - Andrew R Kusmierczyk
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
36
|
Padmanabhan A, Vuong SAT, Hochstrasser M. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells. Cell Rep 2016; 14:2962-74. [PMID: 26997268 DOI: 10.1016/j.celrep.2016.02.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 11/17/2022] Open
Abstract
Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Simone Anh-Thu Vuong
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Li X, Li Y, Arendt CS, Hochstrasser M. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly. J Biol Chem 2015; 291:1991-2003. [PMID: 26627836 DOI: 10.1074/jbc.m115.677047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.
Collapse
Affiliation(s)
- Xia Li
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Yanjie Li
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Cassandra S Arendt
- the Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Mark Hochstrasser
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and.
| |
Collapse
|
38
|
Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion. Mol Cell Biol 2015; 36:347-62. [PMID: 26552703 DOI: 10.1128/mcb.00920-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment.
Collapse
|
39
|
Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, Yuan J, Li W, Xu R, Jin Y, Li P, Weaver D, Ma Q, Liu X, Cao C. c-Abl Regulates Proteasome Abundance by Controlling the Ubiquitin-Proteasomal Degradation of PSMA7 Subunit. Cell Rep 2015; 10:484-96. [DOI: 10.1016/j.celrep.2014.12.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/03/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
|
40
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
41
|
N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol Cell Biol 2014; 35:141-52. [PMID: 25332237 DOI: 10.1128/mcb.00582-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The proteasome core particle (CP) is a conserved protease complex that is formed by the stacking of two outer α-rings and two inner β-rings. The α-ring is a heteroheptameric ring of subunits α1 to α7 and acts as a gate that restricts entry of substrate proteins into the catalytic cavity formed by the two abutting β-rings. The 31-kDa proteasome inhibitor (PI31) was originally identified as a protein that binds to the CP and inhibits CP activity in vitro, but accumulating evidence indicates that PI31 is required for physiological proteasome activity. To clarify the in vivo role of PI31, we examined the Saccharomyces cerevisiae PI31 ortholog Fub1. Fub1 was essential in a situation where the CP assembly chaperone Pba4 was deleted. The lethality of Δfub1 Δpba4 was suppressed by deletion of the N terminus of α7 (α7ΔN), which led to the partial activation of the CP. However, deletion of the N terminus of α3, which activates the CP more efficiently than α7ΔN by gate opening, did not suppress Δfub1 Δpba4 lethality. These results suggest that the α7 N terminus has a role in CP activation different from that of the α3 N terminus and that the role of Fub1 antagonizes a specific function of the α7 N terminus.
Collapse
|
42
|
Panja C, Ghosh S. Detection of in vivo protein tyrosine nitration in petite mutant of Saccharomyces cerevisiae: consequence of its formation and significance. Biochem Biophys Res Commun 2014; 451:529-34. [PMID: 25111815 DOI: 10.1016/j.bbrc.2014.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Protein tyrosine nitration (PTN) is a selective post-translational modification often associated with physiological and pathophysiological conditions. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group. In our previous study we first time showed that PTN occurs in vivo in Saccharomyces cerevisiae. In the present study we observed occurrence of PTN in petite mutant of S. cerevisiae which indicated that PTN is not absolutely dependent on functional mitochondria. Nitration of proteins in S. cerevisiae was also first time confirmed in immunohistochemical study using spheroplasts. Using proteosomal mutants Rpn10Δ, Pre9Δ, we first time showed that the fate of protein nitration in S. cerevisiae was not dependent on proteosomal clearing and probably played vital role in modulating signaling cascades. From our study it is evident that protein tyrosine nitration is a normal physiological event of S. cerevisiae.
Collapse
Affiliation(s)
- Chiranjit Panja
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
43
|
McKnight K, Liu H, Wang Y. Replicative stress induces intragenic transcription of the ASE1 gene that negatively regulates Ase1 activity. Curr Biol 2014; 24:1101-6. [PMID: 24768052 DOI: 10.1016/j.cub.2014.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 02/01/2023]
Abstract
Intragenic transcripts initiate within the coding region of a gene, thereby producing shorter mRNAs and proteins. Although intragenic transcripts are widely expressed [1], their role in the functional regulation of genes remains largely unknown. In budding yeast, DNA replication stress activates the S phase checkpoint that stabilizes replication forks and arrests cells in S phase with a short spindle [2-4]. When yeast cells were treated with hydroxyurea (HU) to block DNA synthesis and induce replication stress, we found that Ase1, a conserved spindle midzone protein [5], appeared as two short protein isoforms in addition to the full-length protein. We further demonstrated that the short isoforms result from intragenic transcription of ASE1, which depends on the S phase checkpoint. Blocking generation of the short isoforms leads to a destabilized S phase spindle, characterized by increased spindle dynamics and frequent spindle collapse. Because the short Ase1 isoforms localize at the spindle in HU-treated cells and overexpression of the short Ase1 isoforms impairs the spindle midzone localization of full-length Ase1, it is likely that the presence of short Ase1 isoforms stabilizes the spindle by antagonizing full-length Ase1. Together, our results reveal intragenic transcription as a unique mechanism to downregulate gene functions in response to DNA replication stress.
Collapse
Affiliation(s)
- Kelly McKnight
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Hong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
44
|
Abstract
Trinucleotide repeat (TNR) expansion is the causative mutation for at least 17 inherited neurological diseases. An important question in the field is which proteins drive the expansion process. This study reports that the multi-functional protein Sem1 is a novel driver of TNR expansions in budding yeast. Mutants of SEM1 suppress up to 90% of expansions. Subsequent analysis showed that Sem1 facilitates expansions via its function in the 26S proteasome, a highly conserved multi-subunit complex with both proteolytic and non-proteolytic functions. The proteolytic function of the 26S proteasome is relevant to expansions, as mutation of additional proteasome components or treatment of yeast with a proteasome inhibitor suppressed CTG•CAG expansions. The 26S proteasome also drives expansions in human cells. In a human astrocytic cell line, siRNA-mediated knockdown of 26S proteasome subunits PSMC5 or PSMB3 reduced expansions. This expansion phenotype, both in yeast and human cells, is dependent on the proteolytic activity of the proteasome rather than a stress response owing to depletion of free ubiquitin. Thus, the 26S proteasome is a novel factor that drives expansions in both yeast and human cells by a mechanism involving protein degradation.
Collapse
Affiliation(s)
- Claire Concannon
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
45
|
The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol Cell Biol 2013; 33:2136-48. [PMID: 23508107 DOI: 10.1128/mcb.01579-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial precursor proteins are synthesized in the cytosol and subsequently imported into mitochondria. The import of mitochondrial intermembrane space proteins is coupled with their oxidative folding and governed by the mitochondrial intermembrane space import and assembly (MIA) pathway. The cytosolic steps that precede mitochondrial import are not well understood. We identified a role for the ubiquitin-proteasome system in the biogenesis of intermembrane space proteins. Interestingly, the function of the ubiquitin-proteasome system is not restricted to conditions of mitochondrial protein import failure. The ubiquitin-proteasome system persistently removes a fraction of intermembrane space proteins under physiological conditions, acting as a negative regulator in the biogenesis of this class of proteins. Thus, the ubiquitin-proteasome system plays an important role in determining the levels of proteins targeted to the intermembrane space of mitochondria.
Collapse
|
46
|
Kunjappu MJ, Hochstrasser M. Assembly of the 20S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:2-12. [PMID: 23507199 DOI: 10.1016/j.bbamcr.2013.03.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Mary J Kunjappu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
47
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
48
|
Hochstrasser M, Funakoshi M. Disulfide engineering to map subunit interactions in the proteasome and other macromolecular complexes. Methods Mol Biol 2012; 832:349-62. [PMID: 22350897 DOI: 10.1007/978-1-61779-474-2_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In studies of protein complexes for which high-resolution structural data are unavailable, it is often still possible to determine both nearest-neighbor relationships between subunits and atomic-resolution details of these interactions. The eukaryotic 26S proteasome, a ∼2.5 MDa protein complex with at least 33 different subunits, is a prime example. Important information about quaternary organization and assembly of proteasomes has been gained using a combination of sequence alignments with related proteins of known tertiary structure, molecular modeling, and disulfide engineering to allow oxidative cross-linking between predicted polypeptide neighbors. Here, we provide detailed protocols for engineered cysteine cross-linking of yeast proteasome subunits in whole-cell extracts, in active 26S proteasome complexes first isolated by native polyacrylamide gel electrophoresis, and in subcomplexes that function as potential assembly intermediates.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
49
|
Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. Proc Natl Acad Sci U S A 2012; 109:6060-5. [PMID: 22474342 DOI: 10.1073/pnas.1200854109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has recently become clear that components of the proteasome are recruited to sites of gene transcription. Prevailing evidence suggests that the transcriptionally relevant form of the proteasome is a subcomplex of 19S base proteins, which functions as an ATP-dependent chaperone that influences transcriptional processes. Despite this notion, compelling evidence for a transcription-dedicated 19S base complex is lacking, and 20S proteasome subunits have been shown to associate with chromatin in some contexts. To gain insight into the form of the proteasome that is recruited to chromatin, we assembled a panel of highly specific antibodies that recognize native yeast proteasome subunits in chromatin immunoprecipitation assays. Using these reagents, we show that components from the three major subassemblies of the proteasome--19S lid, 19S base, and 20S core--associate with the activated GAL10 gene in yeast in a virtually indistinguishable manner. We find that proteasome subunits Rpt1, Rpt4, Rpn8, Rpn12, Pre6, and Pre10 are recruited to GAL10 rapidly upon galactose induction. These subunits associate with the entire transcribed portion of GAL10, display near-identical patterns of distribution, and dissociate from chromatin rapidly once transcription is shut down. We also find that proteasome subunits are enriched at telomeres and at genes transcribed by RNA polymerase III. Our data suggest that the transcriptionally relevant form of the proteasome is the canonical 26S complex.
Collapse
|
50
|
Tomko RJ, Hochstrasser M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem Biophys 2011; 60:13-20. [PMID: 21461838 DOI: 10.1007/s12013-011-9178-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 26S proteasome is responsible for a large fraction of the regulated protein degradation in eukaryotic cells. The enzyme complex is composed of a 20S proteolytic core particle (CP) capped on one or both ends with a 19S regulatory particle (RP). The RP recognizes and unfolds substrates and translocates them into the CP. The RP can be further divided into lid and base subcomplexes. The base contains a ring of six AAA+ ATPases (Rpts) that directly abuts the CP and is responsible for unfolding substrates and driving them into the CP for proteolysis. Although 120 arrangements of the six different ATPases within the ring are possible in principle, they array themselves in one specific order. The high sequence and structural similarity between the Rpt subunits presents special challenges for their ordered association and incorporation into the assembling proteasome. In this review, we discuss recent advances in our understanding of proteasomal RP base biogenesis, with emphasis on potential specificity determinants in ring arrangement, and the implications of the ATPase ring arrangement for proteasome assembly.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | |
Collapse
|