1
|
Qin R, Tang Y, Yuan Y, Meng F, Zheng K, Yang X, Zhao J, Yang C. Studies on the functional role of UFMylation in cells (Review). Mol Med Rep 2025; 32:191. [PMID: 40341950 PMCID: PMC12076054 DOI: 10.3892/mmr.2025.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Protein post‑translational modifications (PTMs) play crucial roles in various life activities and aberrant protein modifications are closely associated with numerous major human diseases. Ubiquitination, the first identified protein modification system, involves the covalent attachment of ubiquitin molecules to lysine residues of target proteins. UFMylation, a recently discovered ubiquitin‑like modification, shares similarities with ubiquitination. The precursor form of ubiquitin fold modifier 1 (UFM1) undergoes synthesis and cleavage by UFM1‑specific protease 1 or UFM1‑specific protease 2 to generate activated UFM1‑G83. Subsequently, UFM1‑G83 is activated by a specific E1‑like activase, UFM1‑activating enzyme 5. UFM1‑conjugating enzyme 1 and an E3‑like ligase, UFM1‑specific ligase 1, recognize the target protein and facilitate UFMylation, leading to the degradation of the target protein. Current knowledge regarding UFMylation remains limited. Previous studies have demonstrated that defects in the UFMylation pathway can result in embryonic lethality in mice and various human diseases, highlighting the critical biological functions of UFMylation. However, the precise mechanisms underlying UFMylation remain elusive. This present review aimed to summarize recent research advances in UFMylation, with the aim of providing novel insights and perspectives for future investigations into this essential protein modification system.
Collapse
Affiliation(s)
- Rong Qin
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuhang Yuan
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Fangyu Meng
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, Yunnan 650000, P.R. China
| | - Xingyu Yang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Chuanhua Yang
- Department of General Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Schmidt HM, Sorensen GC, Lanahan MR, Bland KM, Aufgebauer CJ, Park M, Grabowski J, Horner SM. UFMylation promotes orthoflavivirus infectious particle production. J Virol 2025:e0065425. [PMID: 40459261 DOI: 10.1128/jvi.00654-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 05/14/2025] [Indexed: 06/11/2025] Open
Abstract
Post-translational modifications play crucial roles in regulating viral infections, yet roles for many modifications remain unexplored in orthoflavivirus biology. Here, we demonstrate that the UFMylation system, a post-translational modification pathway that catalyzes the transfer of UFM1 onto proteins and promotes infection by multiple orthoflaviviruses, including dengue virus (DENV), Zika virus (ZIKV), West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces orthoflavivirus infectious virion production. This regulation was specific to orthoflaviviruses as the hepacivirus and member of the broader Flaviviridae family, hepatitis C virus, was not regulated by UFL1. Mechanistically, UFMylation did not regulate viral RNA translation, RNA replication, or virion egress but instead affected the assembly of infectious virions. Furthermore, we identified novel interactions between UFL1 and several viral proteins involved in orthoflavivirus virion assembly, including NS2A, NS2B-NS3, and capsid. These findings establish UFMylation as a previously unrecognized post-translational modification pathway that promotes orthoflavivirus infection through modulation of viral assembly. This work expands our understanding of the post-translational modifications that control orthoflavivirus infection and identifies new potential therapeutic targets.IMPORTANCEOrthoflaviviruses depend on host-mediated post-translational modifications to successfully complete their life cycle, yet many of these critical interactions remain undefined. Here, we describe a role for a post-translational modification pathway, UFMylation, in promoting infectious particle production of ZIKV and DENV. We show that UFMylation is dispensable for initial RNA translation and RNA replication but promotes the assembly of infectious virions. Additionally, we find that regulation of infection by UFMylation extends to other orthoflaviviruses, including West Nile virus and yellow fever virus, but not to the broader Flaviviridae family. Finally, we demonstrate that UFMylation machinery directly interacts with specific DENV and ZIKV proteins during infection. These studies reveal a previously unrecognized role for UFMylation in regulating orthoflavivirus infection.
Collapse
Affiliation(s)
- Hannah M Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Grace C Sorensen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew R Lanahan
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine M Bland
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Caroline J Aufgebauer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Moonhee Park
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenna Grabowski
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Zhao K, Hu H, Fang D, Xie M, Chen J, Zhang S, Tang S, Wu M, Guo X, Yu N, Yao B, Jiang W, Wang C, Mei Y. Akt-phosphorylated UFL1 UFMylates ArpC4 to promote metastasis. Nat Struct Mol Biol 2025:10.1038/s41594-025-01576-8. [PMID: 40419786 DOI: 10.1038/s41594-025-01576-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025]
Abstract
The role of modification by ubiquitin-fold modifier ('UFMylation') in regulating metastasis has remained enigmatic. Cell migration, a critical step in metastasis, is driven by actin polymerization mediated by actin-related proteins 2 and 3 (Arp2/3) at the leading edge of lamellipodia. Here, we report that UFM1-specific E3 ligase 1 (UFL1) interacts with and catalyzes the UFMylation of ArpC4, a core subunit of the Arp2/3 complex. Akt has a key role in this process, which involves phosphorylating UFL1 at T426, thereby enhancing its interaction with ArpC4 and inducing ArpC4 UFMylation. Through ArpC4 UFMylation and potentially other targets, UFL1 facilitates lamellipodia formation and promotes cell migration, invasion and metastasis, making UFL1 an attractive therapeutic target for cancer.
Collapse
Affiliation(s)
- Kailiang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hao Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Debao Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingran Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiasheng Chen
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Zhang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suyun Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingsheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaorui Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ning Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bao Yao
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenli Jiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yide Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Wang M, Cong YS. UFMylation of ARPC4 facilitates lamellipodia formation and promotes cancer metastasis. Nat Struct Mol Biol 2025:10.1038/s41594-025-01577-7. [PMID: 40419787 DOI: 10.1038/s41594-025-01577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Affiliation(s)
- Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Blazev R, Zee BM, Peckham H, Ng YK, Lewis CTA, Zhang C, McNamara JW, Goodman CA, Gregorevic P, Ochala J, Steyn FJ, Ngo ST, Stokes MP, Parker BL. Site-specific quantification of the in vivo UFMylome reveals myosin modification in ALS. CELL REPORTS METHODS 2025; 5:101048. [PMID: 40347946 DOI: 10.1016/j.crmeth.2025.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
UFMylation is a ubiquitin-like protein modification of Ubiquitin Fold Modifier 1 (UFM1) applied to substrate proteins and regulates several cellular processes such as protein quality control. Here, we describe the development of an antibody-based enrichment approach to immunoprecipitate remnant UFMylated peptides and identification by mass spectrometry. We used this approach to identify >200 UFMylation sites from various mouse tissues, revealing extensive modification in skeletal muscle. In vivo knockdown of the E2 ligase, UFC1, followed by enrichment and analysis of remnant UFMylated peptides quantified concomitant down-regulation and validation of a subset of modification sites, particularly myosin UFMylation. Furthermore, we show that UFMylation is increased in skeletal muscle biopsies from people living with amyotrophic lateral sclerosis (plwALS). Quantification of UFMylation sites in these biopsies with multiplexed isotopic labeling reveal prominent increases in myosin UFMylation. Our data suggest that in vivo UFMylation is more complex than previously thought.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Barry M Zee
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Novo Nordisk A/S, Research and Early Development, 2760 Måløv, Denmark
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48104, USA
| | - James W McNamara
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia; Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shyuan T Ngo
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Yang S, Wang L, Gao R, Li Y, Zhang D, Wang C, Liu G, Na J, Xu P, Wang X, Jia Y, Huang Y. UFMylation safeguards human hepatocyte differentiation and liver homeostasis by regulating ribosome dissociation. Cell Rep 2025; 44:115686. [PMID: 40347470 DOI: 10.1016/j.celrep.2025.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/10/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Ribosomal UFMylation contributes to ribosome heterogeneity and is associated with ribosome-associated quality control at the endoplasmic reticulum. However, the specific pathophysiological functions of ribosomal UFMylation remain unknown. In this study, we systematically demonstrate the significance of UFMylation in the differentiation and maturation of hepatocytes using human embryonic stem cell-derived hepatocyte-like cells and liver bud organoids as experimental platforms. We also develop a strategy to identify UFMylated substrates and confirm that RPL26 is a substrate in the liver. Additionally, we discover that mice with the Rpl26 c.395A>G (p.K132R) mutation are more susceptible to steatosis induced by a high-fat diet. Further investigations reveal a key role of CDK5RAP3 and RPL26 UFMylation in regulating ribosome dissociation. Our findings suggest that ribosome UFMylation serves as an important safeguard for liver development and homeostasis and may represent a potential therapeutic target for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Shuchun Yang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Li Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ran Gao
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yanchang Li
- State Key Laboratory of Medical Proteomics, Beijng Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Duo Zhang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chenxi Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Guang Liu
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijng Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyan Jia
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
7
|
Chen H, LaFlamme CW, Wang YD, Blan AW, Koehler N, Mendonca Moraes R, Olszewski AR, Almanza Fuerte EP, Bonkowski ES, Bajpai R, Lavado A, Pruett-Miller SM, Mefford HC. Patient-derived models of UBA5-associated encephalopathy identify defects in neurodevelopment and highlight potential therapeutic avenues. Sci Transl Med 2025; 17:eadn8417. [PMID: 40333994 DOI: 10.1126/scitranslmed.adn8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in endoplasmic reticulum (ER) homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy, and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures from two patients with compound heterozygous variants in UBA5. Both shared the same missense variant, which encodes a hypomorphic allele (p.A371T), along with a nonsense variant (p.G267* or p.A123fs*4). Single-cell RNA sequencing of 100-day organoids identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and reduction in size of patient-derived organoids. Mechanistically, we showed that ER homeostasis is perturbed along with an exacerbated unfolded protein response pathway in engineered U87-MG cells and patient-derived organoids expressing UBA5 pathogenic variants. We also assessed two potential therapeutic modalities that augmented UBA5 protein abundance to rescue aberrant molecular and cellular phenotypes. We assessed SINEUP, a long noncoding RNA that augments translation efficiency, and CRISPRa, a modified CRISPR-Cas9 approach to augment transcription efficiency to increase UBA5 protein production. Our study provides a humanized model that allows further investigations of UBA5 variants in the brain and highlights promising approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aidan W Blan
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nikki Koehler
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renata Mendonca Moraes
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Athena R Olszewski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alfonso Lavado
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Liu B, Yang T, Zhang J, Li H. UFMylation in tumorigenesis: Mechanistic insights and therapeutic opportunities. Cell Signal 2025; 129:111657. [PMID: 39954715 DOI: 10.1016/j.cellsig.2025.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Post-translational modification (PTM) is an essential mechanism that regulates protein function within cells, influencing aspects such as protein activity, stability, subcellular localization, and interactions with other molecules through the addition or removal of chemical groups on amino acid residues. One notable type of PTM is UFMylation, a recently discovered modification process that involves the covalent attachment of UFM1 to lysine residues on target proteins. This process is facilitated by a specific enzyme system that includes the UFM1-activating enzyme, the UFM1-conjugating enzyme, and the UFM1-specific ligase. UFMylation is crucial for various cellular functions, such as responding to endoplasmic reticulum stress and DNA-damage response, and it is linked to the development and progression of several human diseases, including cancers, highlighting its importance in biological processes. Despite this significance, the range of substrates, regulatory mechanisms, and biological processes associated with UFMylation are not well understood, with only a few substrates having been characterized. Here, we focus on the molecular mechanisms of UFMylation, its implications in tumorigenesis, and its interactions with tumor suppressive and oncogenic signaling pathways. Furthermore, we employed bioinformatics approaches to analyze UFMylation's role in cancer, focusing on expression profiles, mutations, prognosis, drug sensitivity, and immune infiltration to explore its therapeutic potential in immunotherapy.
Collapse
Affiliation(s)
- Bingtao Liu
- Radiotherapy center, Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
9
|
Sharma R, Chirom O, Mujib A, Prasad M, Prasad A. UFMylation: Exploring a lesser known post translational modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112435. [PMID: 39993644 DOI: 10.1016/j.plantsci.2025.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Ubiquitination is a highly conserved post-translational modification (PTM) in which ubiquitin (Ub) is covalently attached to substrate proteins resulting in the alteration of protein structure, function, and stability. Another class of PTM mediated by ubiquitin-like proteins (UBLs) has gained significant attention among researchers in recent years. This article focuses on one such UBL-mediated PTM i.e. UFMylation. The enzymatic mechanism of UFMylation is similar to ubiquitination, involving three steps regulated by three different enzymes. In plants, reports suggest that UFMylation is predominantly involved in maintaining ER homeostasis including ER-phagy. However, studies related to this PTM are limited and future studies might reveal other molecular pathways regulated by UFMylation.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Oceania Chirom
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Abdul Mujib
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India; National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
10
|
Pan B, Chen S, Wu H, Zhang X, Zhang Z, Ye D, Yao Y, Luo Y, Zhang X, Wang X, Tang N. Short-term starvation inhibits CD36 N-glycosylation and downregulates USP7 UFMylation to alleviate RBPJ-maintained T cell exhaustion in liver cancer. Theranostics 2025; 15:5931-5952. [PMID: 40365281 PMCID: PMC12068301 DOI: 10.7150/thno.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Short-term starvation (STS) has been shown to enhance the sensitivity of tumors to chemotherapy while concurrently safeguarding normal cells from its detrimental side effects. Nonetheless, the extent to which STS relies on the anti-tumor immune response to impede the progression of hepatocellular carcinoma (HCC) remains uncertain. Methods: In this study, we employed mass cytometry, flow cytometry, immunoprecipitation, immunoblotting, CUT&Tag, RT-qPCR, and DNA pull-down assays to evaluate the relationship between STS and T-cell antitumor immunity in HCC. Results: We demonstrated that STS alleviated T cell exhaustion in HCC. This study elucidated the mechanism by which STS blocked CD36 N-glycosylation, leading to the upregulation of AMPK phosphorylation and the downregulation of USP7 UFMylation, thus enhancing ubiquitination and destabilized USP7. Consequently, diminished USP7 levels facilitated the ubiquitination and subsequent degradation of RBPJ, thereby inhibiting T cell exhaustion through the IRF4/TNFRSF1B axis. From a therapeutic standpoint, STS not only suppressed the growth of patient-derived orthotopic xenografts but also enhanced their sensitivity to immunotherapy. Conclusions: These findings uncovered a novel mechanism by which N-glycosylation participated in UFMylation/ubiquitination to regulate T cell exhaustion, and we underscored the potential of targeting USP7 and RBPJ in anti-tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Siyan Chen
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hao Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Dongjie Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yue Luo
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xinyu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University; Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
11
|
Li L, Zhou R, Yue Z, Li H, Han Y, Zhang L, Zhu J. RNA-binding protein HuR interacts with UFM1 mRNA to ameliorate chondrocyte inflammation, apoptosis and extracellular matrix degradation. Funct Integr Genomics 2025; 25:95. [PMID: 40289171 DOI: 10.1007/s10142-025-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/28/2025] [Accepted: 03/22/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE To investigate the mechanisms by which the RNA-binding protein HuR /ELAVL1 interacts with UFM1 mRNA to ameliorate chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation in osteoarthritis (OA). METHODS OA cartilage tissues were collected. A lipopolysaccharide-induced chondrocyte inflammation model was constructed and transfected with relevant sequences or plasmids, chondrocyte viability was detected by MTT, and chondrocyte apoptosis was detected by flow cytometry. OA was induced in rats via anterior cruciate ligament transection (ACLT), and lentiviral vectors mediating overexpression or silencing of HuR/UFM1 were administered via intra-articular injection following surgery. The pathology of cartilage tissue in rats was observed by hematoxylin and eosin staining and safranin O/fast green staining, apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Collagen II, Aggrecan, MMP3, and MMP13 were measured by immunohistochemistry. Western blot was conducted to measure PCNA, Cleaved-caspase 3, Collagen II, Aggrecan, MMP3 and MMP13. Inflammatory factors in chondrocyte supernatant and rat serum were detected using an enzyme-linked immunosorbent assay. HuR and UFM1 detection was performed using real-time fluorescence quantitative PCR and Western blot. Bioinformatics software, RIP, RNA pull down and mRNA stability analysis were combined to study the binding relationship between HuR and UFM1. RESULTS HuR expression was down-regulated in OA. HuR overexpression ameliorated OA chondrocyte inflammation, apoptosis, and ECM degradation, and HuR downregulation aggravated these pathologies. HuR regulated UFM1 stability by binding to UFM1 3'UTR. UFM1 expression was downregulated in OA and positively correlated with HuR expression. UFM1 silencing counteracted the ameliorative effect of HuR on OA chondrocyte inflammation, apoptosis, and ECM degradation. CONCLUSION HuR ameliorates OA chondrocyte inflammation, apoptosis, and ECM degradation through post-transcriptional regulation of UFM1.
Collapse
Affiliation(s)
- LeXiang Li
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Hospital of Naval Medical University), No.415 FengYang Road, Huangpu District, Shanghai City, 200003, China
| | - Rong Zhou
- Department of Orthopaedics, 72nd Group Army Hospital of PLA, Huzhou City, Zhejiang Province, 313000, China
| | - ZhiPeng Yue
- Department of Medicine, Dalian Rehabilitation and Recuperation Center of PLA, Dalian City, Liaoning Province, 116000, China
| | - HaoBo Li
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Hospital of Naval Medical University), No.415 FengYang Road, Huangpu District, Shanghai City, 200003, China
| | - YaGuang Han
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Hospital of Naval Medical University), No.415 FengYang Road, Huangpu District, Shanghai City, 200003, China
| | - Lei Zhang
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Hospital of Naval Medical University), No.415 FengYang Road, Huangpu District, Shanghai City, 200003, China
| | - Jun Zhu
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Hospital of Naval Medical University), No.415 FengYang Road, Huangpu District, Shanghai City, 200003, China.
| |
Collapse
|
12
|
Kumar M, Banerjee S, Cohen-Kfir E, Mitelberg MB, Tiwari S, Isupov MN, Dessau M, Wiener R. UFC1 reveals the multifactorial and plastic nature of oxyanion holes in E2 conjugating enzymes. Nat Commun 2025; 16:3912. [PMID: 40280917 PMCID: PMC12032130 DOI: 10.1038/s41467-025-58826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The conjugation of ubiquitin (Ub) or ubiquitin-like proteins (UBL) to target proteins is a crucial post-translational modification that typically involves nucleophilic attack by a lysine on a charged E2 enzyme (E2~Ub/UBL), forming an oxyanion intermediate. Stabilizing this intermediate through an oxyanion hole is vital for progression of the reaction. Still, the mechanism of oxyanion stabilization in E2 enzymes remains unclear, although an asparagine residue in the conserved HPN motif of E2 enzymes was suggested to stabilize the oxyanion intermediate. Here, we study the E2 enzyme UFC1, which presents a TAK rather than an HPN motif. Crystal structures of UFC1 mutants, including one that mimics the oxyanion intermediate, combined with in vitro activity assays, suggest that UFC1 utilizes two distinct types of oxyanion holes, one that stabilizes the oxyanion intermediate during trans-ufmylation mediated by the E3 ligase, and another that stabilizes cis-driven auto-ufmylation. Our findings indicate that oxyanion stabilization is influenced by multiple factors, including C-alpha hydrogen bonding, and is adaptable, enabling different modes of action.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sayanika Banerjee
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Marissa Basia Mitelberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Suryakant Tiwari
- Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Moshe Dessau
- Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
13
|
Chen F, Xiang M, Wang Z, Yang F, Zhou J, Deng Z, Wang S, Li P, Tew J, Zhang W, Li H, Teng Y, Zhu X, Cai Y. Neuronal CDK5RAP3 deficiency leads to encephalo-dysplasia via upregulation of N-glycosylases and glycogen deposition. Cell Death Discov 2025; 11:146. [PMID: 40188151 PMCID: PMC11972371 DOI: 10.1038/s41420-025-02414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
CDK5RAP3 is a binding protein of CDK5 activating proteins and also one of the key co-factors of the E3 enzyme in the UFMylation system. Several reports have implicated the involvement of CDK5 and other components of the UFMylation system in neuronal development and multiple psychiatric disorders. However, the precise role of CDK5RAP3 in neurons remains elusive. In this study, we generated CDK5RAP3 neuron-specific knockout mice (CDK5RAPF/F: Nestin-Cre). CDK5RAP3 conditional knockout (CDK5RAP3 CKO) mice exhibited severe encephalo-dysplasia and a slower developmental trajectory compared to wild-type (WT) mice and succumbed to postnatal demise by day 14. Transcriptome sequencing unveiled that CDK5RAP3 deficiency affects synapse formation, transmembrane trafficking and physiological programs in the brain. Morphological analysis demonstrated that neuronal CDK5RAP3 deficiency leads to increased SLC17A6 and N-glycosylase (RPN1 and ALG2) protein expression, and while causing endoplasmic reticulum (ER) stress. In vitro experiments utilizing CDK5RAP3F/F: ROSA26-ERT2Cre MEFs were conducted to elucidate similar mechanism following CDK5RAP3 deletion. Both in vivo and in vitro, CDK5RAP3 deficiency significantly increased the expression of N-glycosylases (RPN1 and ALG2), as well as the total amount of glycoproteins. CDK5RAP3 may potentially maintain a balance by enhancing the degradation of RPN1 and ALG2 through proteolytic degradation pathways and autophagy. This study underscores the indispensable role of CDK5RAP3 in neuronal development and sheds new light on drug discovery endeavors targeting early brain abnormalities.
Collapse
Affiliation(s)
- Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghui Xiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Yang
- Department of Human Anatomy, Bengbu Medical College, Bengbu, 233030, China
| | - Junzhi Zhou
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Zihan Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Susu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieqi Tew
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, 430071, China.
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Mousa R, Shkolnik D, Alalouf Y, Brik A. Chemical approaches to explore ubiquitin-like proteins. RSC Chem Biol 2025; 6:492-509. [PMID: 39950163 PMCID: PMC11817102 DOI: 10.1039/d4cb00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Chemical protein synthesis has emerged as a powerful approach for producing ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in both their free and conjugated forms, particularly when recombinant or enzymatic strategies are challenging. By providing precise control over the assembly of Ub and Ubls, chemical synthesis enables the generation of complex constructs with site-specific modifications that facilitate detailed functional and structural studies. Ub and Ubls are central regulators of protein homeostasis, regulating a wide range of cellular processes such as cell cycle progression, transcription, DNA repair, and apoptosis. Ubls share an evolutionary link with Ub, resembling its structure and following a parallel conjugation pathway that results in a covalent isopeptide bond with their cellular substrates. Despite their structural similarities and sequence homology, Ub and Ubls exhibit distinct functional differences. Understanding Ubl biology is essential for unraveling how cells maintain their regulatory networks and how disruptions in these pathways contribute to various diseases. In this review, we highlight the chemical methodologies and strategies available for studying Ubls and advancing our comprehensive understanding of the Ubl system in health and disease.
Collapse
Affiliation(s)
- Reem Mousa
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Dana Shkolnik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Yam Alalouf
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
15
|
Jing J, Yang F, Wang K, Cui M, Kong N, Wang S, Qiao X, Kong F, Zhao D, Ji J, Tang L, Gao J, Cong Y, Ding D, Chen K. UFMylation of NLRP3 Prevents Its Autophagic Degradation and Facilitates Inflammasome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406786. [PMID: 39985286 PMCID: PMC12005806 DOI: 10.1002/advs.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/29/2025] [Indexed: 02/24/2025]
Abstract
NLRP3 (NOD, LRR and pyrin domain-containing protein 3) inflammasome is important for host defense against infections and maintaining homeostasis. Aberrant activation of NLRP3 inflammasome is closely related to various inflammatory diseases. Post-translational modifications are critical for NLRP3 inflammasome regulation. However, the mechanism of NLRP3 inflammasome activation remains incompletely understood. Here, it is demonstrated that the Ufm1 E3 ligase Ufl1 mediated UFMylation is essential for NLRP3 inflammasome activation. Mechanistically, Ufl1 binds and UFMylates NLRP3 in the priming stage of NLRP3 activation, thereby sustaining the stability of NLRP3 by preventing NLRP3 K63-linked ubiquitination and the subsequent autophagic degradation. It is further demonstrated that myeloid cell-specific Ufl1 or Ufm1 deficiency in mice significantly alleviated inflammatory responses and tissue damage following lipopolysaccharide (LPS)-induced endotoxemia and alum-induced peritonitis. Thus, the findings offer new insights into potential therapeutic targets for NLRP3 inflammasome-related diseases by targeting the UFMylation system.
Collapse
Affiliation(s)
- Jiongjie Jing
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Fan Yang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Ke Wang
- Shanghai Key Laboratory of Maternal Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Mintian Cui
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Ni Kong
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Shixi Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Xiaoyue Qiao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
| | - Fanyu Kong
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Dongyang Zhao
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jinlu Ji
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Lunxian Tang
- Department of Internal Emergency MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jiaxin Gao
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Yu‐Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou311121China
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Shanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200127China
- Shanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
16
|
Wang RN, Li L, Zhou J, Ran J. Multifaceted roles of UFMylation in health and disease. Acta Pharmacol Sin 2025; 46:805-815. [PMID: 39775503 PMCID: PMC11950361 DOI: 10.1038/s41401-024-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Ru-Na Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
17
|
Panichnantakul P, Oeffinger M. Protocol for the purification and analysis of nuclear UFMylated proteins. STAR Protoc 2025; 6:103634. [PMID: 39937649 PMCID: PMC11869847 DOI: 10.1016/j.xpro.2025.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Protein UFMylation regulates numerous cellular processes including ribosome quality control and nuclear DNA repair. Here, we present a technique to isolate nuclei and purify UFMylated proteins under denaturing non-reducing conditions from commonly used mammalian cell line models such as hTERT-RPE1, HEK293, U2OS, and HCT116 cells. We then describe procedures for identifying and analyzing purified UFMylated proteins using mass spectrometry and western blot. For complete details on the use and execution of this protocol, please refer to Panichnantakul et al.1.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de Recherches Cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada; Département de Biochimie et Médicine Moléculaire, Faculté de Médicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
18
|
Gutierrez IV, Park M, Sar L, Rodriguez R, Snider DL, Torres G, Scaglione KM, Horner SM. 14-3-3ε UFMylation promotes RIG-I-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644084. [PMID: 40166322 PMCID: PMC11957140 DOI: 10.1101/2025.03.19.644084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Post-translational modifications are critical for regulating the RIG-I signaling pathway. Previously, we identified a role for the post-translation modification UFM1 (UFMylation) in promoting RIG-I signaling by stimulating the interaction between RIG-I and its membrane-targeting protein 14-3-3ε. Here, we identify UFMylation of 14-3-3ε as a novel regulatory mechanism promoting RIG-I signaling. We demonstrate that UFM1 conjugation to lysine residue K50 or K215 results in mono-UFMylation on 14-3-3ε and enhances its ability to promote RIG-I signaling. Importantly, we show that mutation of these residues (K50R/K215R) abolishes UFMylation and impairs induction of type I and III interferons without disrupting the interaction between 14-3-3ε and RIG-I. This suggests that UFMylation of 14-3-3ε likely stabilizes signaling events downstream of RIG-I activation to promote induction of interferon. Collectively, our work suggests that UFMylation-driven activation of 14-3-3ε facilitates innate immune signaling and highlights the broader role of UFMylation for antiviral defense and immune regulation. Importance Post-translational modifications provide regulatory control of antiviral innate immune responses. Our study reveals that UFMylation of 14-3-3ε is a control point for RIG-I-mediated antiviral signaling. We demonstrate that conjugation of UFM1 to specific lysine residues on 14-3-3ε enhances downstream signaling events that facilitate interferon induction, but surprisingly it does not affect 14-3-3ε binding to RIG-I. By identifying the precise sites of UFMylation on 14-3-3ε and their functional consequences, we provide insights into the regulatory layers governing antiviral innate immunity. These findings complement emerging evidence that UFMylation serves as a versatile modulator across diverse immune pathways. Furthermore, our work highlights how protein chaperones like 14-3-3ε can be dynamically modified to orchestrate complex signaling cascades, suggesting potential therapeutic approaches for targeting dysregulated innate immunity.
Collapse
|
19
|
Cates K, Hung V, Barna M. Ribosome-associated proteins: unwRAPping ribosome heterogeneity in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230378. [PMID: 40045784 PMCID: PMC11883435 DOI: 10.1098/rstb.2023.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
The definition of the ribosome as the monolithic machinery in cells that synthesizes all proteins in the cell has persisted for the better part of a century. Yet, research has increasingly revealed that ribosomes are dynamic, multimodal complexes capable of fine-tuning gene expression. This translation regulation may be achieved by ribosome-associated proteins (RAPs), which play key roles as modular trans-acting factors that are dynamic across different cellular contexts and can mediate the recruitment of specific transcripts or the modification of RNA or ribosomal proteins. As a result, RAPs have the potential to rapidly regulate translation within specific subcellular regions, across different cell or tissue types, in response to signalling, or in disease states. In this article, we probe the definition of the eukaryotic ribosome and review the major layers of additional proteins that expand the definition of ribosomes in the twenty-first century. We pose RAPs as key modulators that impart ribosome function in cellular processes, development and disease.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Kitra Cates
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305, USA
| |
Collapse
|
20
|
Du Z, Liu Q, Wang M, Gao Y, Li Q, Yang Y, Lu T, Bao L, Pang Y, Wang H, Niu Y, Zhang R. Reticulophagy promotes EMT-induced fibrosis in offspring's lung tissue after maternal exposure to carbon black nanoparticles during gestation by a m 5C-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136873. [PMID: 39694008 DOI: 10.1016/j.jhazmat.2024.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Accumulating evidence indicates that maternal exposure to carbon black nanoparticles (CBNPs) during gestation can induce multiple system abnormalities in offspring, whereas its potential mechanism in respiratory disease is still largely unknown. In order to explore the effect of maternal exposure to CBNPs on offspring's lung and latent pathogenesis, we respectively established in vivo model of pregnant rats exposed to CBNPs and ex vivo model of lung epithelial cells treated with pups' serum of pregnant rats exposed to CBNPs. After maternal exposure to CBNPs, epithelial-mesenchymal transition (EMT) and fibrosis levels increased as a result of DDRGK1-mediated reticulophagy upregulated in offspring's lung. DDRGK1 as FAM134B's cargo bound with FAM134B to mediate reticulophagy. Transcription factor "SP1" positively regulated DDRGK1 gene expression by binding to its promoter. Furthermore, the upregulation of NSUN2 elevated m5C methylation of SP1 mRNA and the protein level of SP1 subsequently increased through Ybx1 recognizing and stabilizing m5C-methylated SP1 mRNA, followed by the increased levels of reticulophagy and fibrosis in lung epithelial cells treated with offspring's serum of matrix exposed to CBNPs during gestation. In conclusion, NSUN2/Ybx1/m5C-SP1 axis promoted DDRGK1-mediated reticulophagy, which played an important role in EMT-induced fibrosis in offspring's lung tissue after maternal exposure to CBNPs during gestation.
Collapse
Affiliation(s)
- Zhe Du
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yifu Gao
- Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, PR China
| | - Qi Li
- Hunan Institute for Drug Control, Changsha 410001, PR China
| | - Yizhe Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tianyu Lu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Haijun Wang
- Department of Maternal and Child Health, Peking University, Beijing 100191, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
21
|
Cheng S, Fan S, Yang C, Hu W, Liu F. Proteomics revealed novel functions and drought tolerance of Arabidopsis thaliana protein kinase ATG1. BMC Biol 2025; 23:48. [PMID: 39984923 PMCID: PMC11846238 DOI: 10.1186/s12915-025-02149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
ATG1 stimulates autophagy biogenesis and serves as a gatekeeper for classical autophagy. To obtain insight into the control of autophagy by ATG1 and determine whether ATG1 has broader processes, we performed a thorough proteomics analysis on the Col-0 wild-type and atg1abct mutant in Arabidopsis thaliana. Proteomic data analysis pointed out that ATG1 has an unidentified function within the inositol trisphosphate and fatty acid metabolism. We also discovered ATG1-dependent autophagy has an emerging connection with ER homeostasis and ABA biosynthesis. Moreover, Gene Ontology terms for abiotic and biotic stress were strongly enriched in differentially abundant proteins, consistent with the reported role of canonical autophagy in these processes. Additional physiological and biochemical analysis revealed that atg1abct exhibited stronger drought resistance under both PEG-simulated drought treatment and natural drought stress. Results from DAB staining also indicated that atg1abct accumulation fewer ROS than Col-0 following drought treatment. As a result, these results illuminate previously unknown functions for ATG1 and offers novel perspectives into the underlying processes of autophagy function.
Collapse
Affiliation(s)
- Shan Cheng
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Siqi Fan
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Chao Yang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
- College of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| |
Collapse
|
22
|
Ichihara Y, Okawa M, Minegishi M, Oizumi H, Yamamoto M, Ohbuchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 14 (HLD14)-Related UFC1 p.Arg23Gln Decreases Cell Morphogenesis: A Phenotype Reversable with Hesperetin. MEDICINES (BASEL, SWITZERLAND) 2025; 12:2. [PMID: 39846712 PMCID: PMC11755592 DOI: 10.3390/medicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths. Among these, an amino acid mutation of the ubiquitin-fold modifier conjugating enzyme 1 (UFC1) is associated with HLD14-related disease, characterized by hypomyelination and delayed myelination in the brain. UFC1 is a critical component of the UFMylation system, functioning similarly to E2-conjugating enzymes in the ubiquitin-dependent protein degradation system. METHODOLOGY We describe how a missense mutation in UFC1 (p.Arg23Gln) leads to the aggregation of UFC1 primarily in lysosomes in FBD-102b cells, which are undergoing oligodendroglial cell differentiation. RESULTS Cells with mutated UFC1 exhibit reduced Akt kinase phosphorylation and reduced expression of differentiation and myelination marker proteins. Consistently, these cells exhibit impaired morphological differentiation with a reduced ability to extend widespread membranes. Interestingly, hesperetin, a citrus flavonoid with known neuroprotective properties, was found to restore differentiation abilities in cells with the UFC1 mutation. CONCLUSIONS These findings indicate that the HLD14-related mutation in UFC1 causes its lysosomal aggregation, impairing its morphological differentiation. Furthermore, the study highlights potential therapeutic insights into the pathological molecular and cellular mechanisms underlying HLD14 and suggests hesperetin as a promising candidate for treatment.
Collapse
Affiliation(s)
- Yuri Ichihara
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Minori Minegishi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
23
|
Schmidt HM, Sorensen GC, Lanahan MR, Grabowski J, Park M, Horner SM. UFMylation promotes orthoflavivirus infectious particle production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632082. [PMID: 39829754 PMCID: PMC11741389 DOI: 10.1101/2025.01.09.632082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C. Mechanistically, UFMylation does not regulate viral RNA translation or RNA replication but instead affects a later stage of the viral lifecycle. We identified novel interactions between UFL1, and several viral proteins involved in orthoflavivirus virion assembly, including NS2A, NS2B-NS3, and Capsid. These findings establish UFMylation as a previously unrecognized post-translational modification system that promotes orthoflavivirus infection, likely through modulation of viral assembly. This work expands our understanding of the post-translational modifications that control orthoflavivirus infection and identifies new potential therapeutic targets.
Collapse
Affiliation(s)
- Hannah M Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Grace C Sorensen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew R Lanahan
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jenna Grabowski
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Moonhee Park
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2025; 33:42-59. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
25
|
Jiang M, Zhang C, Zhang Z, Duan Y, Qi S, Zeng Q, Wang J, Zhang J, Jiang Y, Wang Y, Chen Y, Liu J. Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 16:31. [PMID: 39858578 PMCID: PMC11765366 DOI: 10.3390/genes16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear. This study aimed to determine the expressed patterns of UFMylation components in multiple tissues of leptin-deficient ob/ob mice and high-fat diet (HFD)-fed mice, which are mimicking the conditions of MASLD. METHODS The ob/ob mice and HFD-fed mice were sacrificed to collect tissues indicated in this study. Total RNA and proteins were extracted from tissues to examine the expressed patterns of UFMylation components, including UBA5, UFC1, UFL1, DDRGK1, UFSP1, UFSP2 and UFM1, by real-time PCR and western blot analysis. RESULTS The protein levels of UBA5, UFC1 and UFL1 were down-regulated in liver, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), whereas the messenger RNA (mRNA) levels of Ufl1 and Ufsp1 were both decreased in skeletal muscle, BAT, iWAT and epididymal white adipose tissue (eWAT) of ob/ob mice. In contrast, the mRNA levels of Ufsp1 in skeletal muscle, BAT, iWAT and heart, and the protein levels of UFL1 were decreased in BAT, iWAT, heart and cerebellum of HFD-fed mice. CONCLUSIONS Our findings established the expressed profiles of UFMylaiton in multiple tissues of mice mimicking MASLD, indicating an important regulation for UFMylation in these tissues' homeostasis maintenance.
Collapse
Affiliation(s)
- Mingdi Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Chenlu Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Zhengyao Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yingying Duan
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Shuaiyong Qi
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Qingyu Zeng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiabao Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiawen Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Yu Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China;
| | - Ying Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yi Chen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Jiang Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| |
Collapse
|
26
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. Mol Neurodegener 2024; 19:97. [PMID: 39696466 DOI: 10.1186/s13024-024-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. METHODS Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. RESULTS Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. CONCLUSIONS There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily C Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Present Address: Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA.
| |
Collapse
|
27
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
29
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
30
|
Liang Z, Ning R, Wang Z, Kong X, Yan Y, Cai Y, He Z, Liu X, Zou Y, Zhou J. The emerging roles of UFMylation in the modulation of immune responses. Clin Transl Med 2024; 14:e70019. [PMID: 39259506 PMCID: PMC11389534 DOI: 10.1002/ctm2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Post-translational modification is a rite of passage for cellular functional proteins and ultimately regulate almost all aspects of life. Ubiquitin-fold modifier 1 (UFM1) system represents a newly identified ubiquitin-like modification system with indispensable biological functions, and the underlying biological mechanisms remain largely undiscovered. The field has recently experienced a rapid growth of research revealing that UFMylation directly or indirectly regulates multiple immune processes. Here, we summarised important advances that how UFMylation system responds to intrinsic and extrinsic stresses under certain physiological or pathological conditions and safeguards immune homeostasis, providing novel perspectives into the regulatory framework and functions of UFMylation system, and its therapeutic applications in human diseases.
Collapse
Affiliation(s)
- Zhengyan Liang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Rongxuan Ning
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Zhaoxiang Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Xia Kong
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yubin Yan
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yafei Cai
- Key Laboratory for Epigenetics of Dongguan City, China‐America Cancer Research InstituteGuangdong Medical UniversityDongguanChina
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| | - Xin‐guang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yongkang Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Junzhi Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
31
|
Han Y, Ge Y, Liu H, Liu L, Xie L, Chen X, Chen Q. A novel compound heterozygous mutation of UFC1 in a patient with neurodevelopmental disorder. Genes Genomics 2024; 46:1037-1043. [PMID: 39078589 DOI: 10.1007/s13258-024-01543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterized by impaired cognition, behavior, and motor skills. Genetic factor is the leading cause in about 35% of NDDs patients. Mutations of UFC1, an E2 enzyme participating in the post-translational modification of proteins through attachment of ubiquitin-like proteins, were recently reported to be associated with NDDs. However, the UFC1 associated NDDs are rare and the data are scarce, thus making it difficult to identify this disease. OBJECTIVE This study reported a novel compound heterozygous mutation of UFC1 in a Chinese patient with NDD. METHODS Detailed clinical data were recorded. Whole exome sequencing (WES) was performed to determine the genetic cause of the patient. The candidate mutation was verified using Sanger sequencing. RESULTS WES analysis identified a novel compound heterozygous mutation of UFC1 (c.19 C > T, p.Arg7* and c.164G > A, p.Arg55Gln). The nonsense mutation c.19 C > T (p.Arg7*) led to a premature truncation of UFC1 and nonsense-mediated RNA decay. Arg55 is highly conserved among orthologues. Molecular modeling predicted that mutation c.164G > A (p.Arg55Gln) may influence the correct folding of UFC1. These two mutations were evaluated as likely pathogenic based on the ACMG guideline. Moreover, neurodevelopmental delay, microcephaly, and epilepsy were confirmed as major phenotypes of UFC1 mutation. CONCLUSION This study expands the mutational spectrum of NDDs. We reported the nonsense mutation of UFC1 for the first time. We also confirmed the major phenotypes that may guide clinical identification of UFC1 mutation. Ubiquitination mechanism is highlighted in NDDs pathogenesis.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, The Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Yangyang Ge
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Haoran Liu
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Liying Liu
- Department of Pediatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Lina Xie
- Department of Neurology, The Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Chen
- Department of Genetics, Capital Institute of Pediatrics, Beijing, China.
| | - Qian Chen
- Department of Neurology, The Affiliated Hospital of Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
32
|
Kaminskaya AN, Evpak AS, Belogurov AA, Kudriaeva AA. Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation. Int J Mol Sci 2024; 25:8671. [PMID: 39201358 PMCID: PMC11354881 DOI: 10.3390/ijms25168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.
Collapse
Affiliation(s)
- Alena N. Kaminskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alena S. Evpak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
- Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| |
Collapse
|
33
|
Wang X, Lv X, Ma J, Xu G. UFMylation: An integral post-translational modification for the regulation of proteostasis and cellular functions. Pharmacol Ther 2024; 260:108680. [PMID: 38878974 DOI: 10.1016/j.pharmthera.2024.108680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is covalently conjugated to protein substrates via a cascade of enzymatic reactions, a process known as UFMylation. UFMylation orchestrates an array of vital biological functions, including maintaining endoplasmic reticulum (ER) homeostasis, facilitating protein biogenesis, promoting cellular differentiation, regulating DNA damage response, and participating in cancer-associated signaling pathways. UFMylation has rapidly evolved into one of the forefront research areas within the last few years, yet much remains to be uncovered. In this review, first, UFMylation and its cellular functions associated with diseases are briefly introduced. Then, we summarize the proteomic approaches for identifying UFMylation substrates and explore the impact of UFMylation on gene transcription, protein translation, and maintenance of ER homeostasis. Next, we highlight the intricate regulation between UFMylation and two protein degradation pathways, the ubiquitin-proteasome system and the autophagy-lysosome pathway, and explore the potential of UFMylation system as a drug target. Finally, we discuss emerging perspectives in the UFMylation field. This review may provide valuable insights for drug discovery targeting the UFMylation system.
Collapse
Affiliation(s)
- Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaowei Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
34
|
Li G, Huang Y, Han W, Wei L, Huang H, Zhu Y, Xiao Q, Wang Z, Huang W, Duan R. Eg5 UFMylation promotes spindle organization during mitosis. Cell Death Dis 2024; 15:544. [PMID: 39085203 PMCID: PMC11291904 DOI: 10.1038/s41419-024-06934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
UFMylation is a highly conserved ubiquitin-like post-translational modification that catalyzes the covalent linkage of UFM1 to its target proteins. This modification plays a critical role in the maintenance of endoplasmic reticulum proteostasis, DNA damage response, autophagy, and transcriptional regulation. Mutations in UFM1, as well as in its specific E1 enzyme UBA5 and E2 enzyme UFC1, have been genetically linked to microcephaly. Our previous research unveiled the important role of UFMylation in regulating mitosis. However, the underlying mechanisms have remained unclear due to the limited identification of substrates. In this study, we identified Eg5, a motor protein crucial for mitotic spindle assembly and maintenance, as a novel substrate for UFMylation and identified Lys564 as the crucial UFMylation site. UFMylation did not alter its transcriptional level, phosphorylation level, or protein stability, but affected the mono-ubiquitination of Eg5. During mitosis, Eg5 and UFM1 co-localize at the centrosome and spindle apparatus, and defective UFMylation leads to diminished spindle localization of Eg5. Notably, the UFMylation-defective Eg5 mutant (K564R) exhibited shorter spindles, metaphase arrest, spindle checkpoint activation, and a failure of cell division in HeLa cells. Overall, Eg5 UFMylation is essential for proper spindle organization, mitotic progression, and cell proliferation.
Collapse
Affiliation(s)
- Guangxu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yuanjiang Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wenbo Han
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Liyi Wei
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Hongjing Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yingbao Zhu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Qiao Xiao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Zujia Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wen Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ranhui Duan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
35
|
Ran J, Guo G, Zhang S, Zhang Y, Zhang L, Li D, Wu S, Cong Y, Wang X, Xie S, Zhao H, Liu H, Ou G, Zhu X, Zhou J, Liu M. KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400569. [PMID: 38666385 PMCID: PMC11220646 DOI: 10.1002/advs.202400569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 07/04/2024]
Abstract
The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Guizhi Guo
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yufei Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Shian Wu
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yusheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou310036China
| | - Xiaohong Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammation BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Songbo Xie
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Huijie Zhao
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Hongbin Liu
- Center for Reproductive MedicineCheeloo College of MedicineKey Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinan250014China
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life SciencesMinistry of Education Key Laboratory for Protein ScienceSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Jun Zhou
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
36
|
Jing Y, Ye K, Zhang G, Zhu J, Mao Z, Zhang Q, Chen F. UFM1 inhibits hypoxia-induced angiogenesis via promoting proteasome degradation of HIF-1α. Mol Cell Biochem 2024; 479:1833-1852. [PMID: 38722467 DOI: 10.1007/s11010-024-05013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 07/18/2024]
Abstract
Angiogenesis is crucial for blood flow recovery and ischemic tissue repair of peripheral artery disease (PAD). Exploration of new mechanisms underlying angiogenesis will shed light on the treatment of PAD. Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule, has been discovered to be involved in various pathophysiological processes. However, the role of UFM1 in the pathogenesis of PAD, especially in endothelial angiogenesis remains obscure, and we aimed to clarify this issue in this study. We initially found UFM1 was significantly upregulated in gastrocnemius muscles of PAD patients and hind limb ischemia mice. And UFM1 was mainly colocalized with endothelial cells in ischemic muscle tissues. Further, elevated expression of UFM1 was observed in hypoxic endothelial cells. Subsequent genetic inhibition of UFM1 dramatically enhanced migration, invasion, adhesion, and tube formation of endothelial cells under hypoxia. Mechanistically, UFM1 reduced the stability of hypoxia-inducible factor-1α (HIF-1α) and promoted the von Hippel-Lindau-mediated K48-linked ubiquitin-proteasome degradation of HIF-1α, which in turn decreased angiogenic factor VEGFA expression and suppressed VEGFA related signaling pathway. Consistently, overexpression of UFM1 inhibited the angiogenesis of endothelial cells under hypoxic conditions, whereas overexpression of HIF-1α reversed this effect. Collectively, our data reveal that UFM1 inhibits the angiogenesis of endothelial cells under hypoxia through promoting ubiquitin-proteasome degradation of HIF-1α, suggesting UFM1 might serve as a potential therapeutic target for PAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Kuanping Ye
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Qianru Zhang
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
37
|
Xu X, Huang W, Bryant CN, Dong Z, Li H, Wu G. The ufmylation cascade controls COPII recruitment, anterograde transport, and sorting of nascent GPCRs at ER. SCIENCE ADVANCES 2024; 10:eadm9216. [PMID: 38905340 PMCID: PMC11192079 DOI: 10.1126/sciadv.adm9216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Ufmylation is implicated in multiple cellular processes, but little is known about its functions and regulation in protein trafficking. Here, we demonstrate that the genetic depletion of core components of the ufmylation cascade, including ubiquitin-fold modifier 1 (UFM1), UFM1 activation enzyme 5, UFM1-specific ligase 1 (UFL1), UFM1-specific protease 2, and UFM1-binding protein 1 (UFBP1) each markedly inhibits the endoplasmic reticulum (ER)-Golgi transport, surface delivery, and recruitment to COPII vesicles of a subset of G protein-coupled receptors (GPCRs) and UFBP1's function partially relies on UFM1 conjugation. We also show that UFBP1 and UFL1 interact with GPCRs and UFBP1 localizes at COPII vesicles coated with specific Sec24 isoforms. Furthermore, the UFBP1/UFL1-binding domain identified in the receptors effectively converts non-GPCR protein transport into the ufmylation-dependent pathway. Collectively, these data reveal important functions for the ufmylation system in GPCR recruitment to COPII vesicles, biosynthetic transport, and sorting at ER via UFBP1 ufmylation and interaction directly.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christian N. Bryant
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
38
|
Chen J, Zhao H, Liu M, Chen L. A new perspective on the autophagic and non-autophagic functions of the GABARAP protein family: a potential therapeutic target for human diseases. Mol Cell Biochem 2024; 479:1415-1441. [PMID: 37440122 DOI: 10.1007/s11010-023-04800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Mammalian autophagy-related protein Atg8, including the LC3 subfamily and GABARAP subfamily. Atg8 proteins play a vital role in autophagy initiation, autophagosome formation and transport, and autophagy-lysosome fusion. GABARAP subfamily proteins (GABARAPs) share a high degree of homology with LC3 family proteins, and their unique roles are often overlooked. GABARAPs are as indispensable as LC3 in autophagy. Deletion of GABARAPs fails autophagy flux induction and autophagy lysosomal fusion, which leads to the failure of autophagy. GABARAPs are also involved in the transport of selective autophagy receptors. They are engaged in various particular autophagy processes, including mitochondrial autophagy, endoplasmic reticulum autophagy, Golgi autophagy, centrosome autophagy, and dorphagy. Furthermore, GABARAPs are closely related to the transport and delivery of the inhibitory neurotransmitter γ-GABAA and the angiotensin II AT1 receptor (AT1R), tumor growth, metastasis, and prognosis. GABARAPs also have been confirmed to be involved in various diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In order to better understand the role and therapeutic potential of GABARAPs, this article comprehensively reviews the autophagic and non-autophagic functions of GABARAPs, as well as the research progress of the role and mechanism of GABARAPs in cancer, cardiovascular diseases and neurodegenerative diseases. It emphasizes the significance of GABARAPs in the clinical prevention and treatment of diseases, and may provide new therapeutic ideas and targets for human diseases. GABARAP and GABARAPL1 in the serum of cancer patients are positively correlated with the prognosis of patients, which can be used as a clinical biomarker, predictor and potential therapeutic target.
Collapse
Affiliation(s)
- Jiawei Chen
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong Zhao
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meiqing Liu
- Central Laboratory of Yan'nan Hospital Affiliated to Kunming, Medical University, Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, No. 245, Renmin East Road, Kunming, 650000, Yunnan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
39
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595755. [PMID: 38903110 PMCID: PMC11188091 DOI: 10.1101/2024.05.24.595755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Methods Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Results Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. Conclusions There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Emily C. Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
40
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
41
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
42
|
Tian T, Chen J, Zhao H, Li Y, Xia F, Huang J, Han J, Liu T. UFL1 triggers replication fork degradation by MRE11 in BRCA1/2-deficient cells. Nat Chem Biol 2024:10.1038/s41589-024-01611-7. [PMID: 38649452 DOI: 10.1038/s41589-024-01611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The stabilization of stalled forks has emerged as a crucial mechanism driving resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient tumors. Here, we identify UFL1, a UFM1-specific E3 ligase, as a pivotal regulator of fork stability and the response to PARP inhibitors in BRCA1/2-deficient cells. On replication stress, UFL1 localizes to stalled forks and catalyzes the UFMylation of PTIP, a component of the MLL3/4 methyltransferase complex, specifically at lysine 148. This modification facilitates the assembly of the PTIP-MLL3/4 complex, resulting in the enrichment of H3K4me1 and H3K4me3 at stalled forks and subsequent recruitment of the MRE11 nuclease. Consequently, loss of UFL1, disruption of PTIP UFMylation or overexpression of the UFM1 protease UFSP2 protects nascent DNA strands from extensive degradation and confers resistance to PARP inhibitors in BRCA1/2-deficient cells. These findings provide mechanistic insights into the processes underlying fork instability in BRCA1/2-deficient cells and offer potential therapeutic avenues for the treatment of BRCA1/2-deficient tumors.
Collapse
Affiliation(s)
- Tian Tian
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Huacun Zhao
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feiyu Xia
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Huang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Liu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
43
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
44
|
Huang ZJ, Li YJ, Yang J, Huang L, Zhao Q, Lu YF, Hu Y, Zhang WX, Liang JZ, Pan J, Pan YL, He QY, Wang Y. PTPLAD1 Regulates PHB-Raf Interaction to Orchestrate Epithelial-Mesenchymal and Mitofusion-Fission Transitions in Colorectal Cancer. Int J Biol Sci 2024; 20:2202-2218. [PMID: 38617530 PMCID: PMC11008263 DOI: 10.7150/ijbs.82361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/22/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The poor prognosis of this malignancy is attributed mainly to the persistent activation of cancer signaling for metastasis. Here, we showed that protein tyrosine phosphatase-like A domain containing 1 (PTPLAD1) is down-regulated in highly metastatic CRC cells and negatively associated with poor survival of CRC patients. Systematic analysis reveals that epithelial-to-mesenchymal transition (EMT) and mitochondrial fusion-to-fission (MFT) transition are two critical features for CRC patients with low expression of PTPLAD1. PTPLAD1 overexpression suppresses the metastasis of CRC in vivo and in vitro by inhibiting the Raf/ERK signaling-mediated EMT and mitofission. Mechanically, PTPLAD1 binds with PHB via its middle fragment (141-178 amino acids) and induces dephosphorylation of PHB-Y259 to disrupt the interaction of PHB-Raf, resulting in the inactivation of Raf/ERK signaling. Our results unveil a novel mechanism in which Raf/ERK signaling activated in metastatic CRC induces EMT and mitochondrial fission simultaneously, which can be suppressed by PTPLAD1. This finding may provide a new paradigm for developing more effective treatment strategies for CRC.
Collapse
Affiliation(s)
- Zi-Jia Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie Yang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Qian Zhao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Fan Lu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun-Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
He C, Xing X, Chen HY, Gao M, Shi J, Xiang B, Xiao X, Sun Y, Yu H, Xu G, Yao Y, Xie Z, Xing Y, Budiarto BR, Chen SY, Gao Y, Lee YR, Zhang J. UFL1 ablation in T cells suppresses PD-1 UFMylation to enhance anti-tumor immunity. Mol Cell 2024; 84:1120-1138.e8. [PMID: 38377992 DOI: 10.1016/j.molcel.2024.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
UFMylation is an emerging ubiquitin-like post-translational modification that regulates various biological processes. Dysregulation of the UFMylation pathway leads to human diseases, including cancers. However, the physiological role of UFMylation in T cells remains unclear. Here, we report that mice with conditional knockout (cKO) Ufl1, a UFMylation E3 ligase, in T cells exhibit effective tumor control. Single-cell RNA sequencing analysis shows that tumor-infiltrating cytotoxic CD8+ T cells are increased in Ufl1 cKO mice. Mechanistically, UFL1 promotes PD-1 UFMylation to antagonize PD-1 ubiquitination and degradation. Furthermore, AMPK phosphorylates UFL1 at Thr536, disrupting PD-1 UFMylation to trigger its degradation. Of note, UFL1 ablation in T cells reduces PD-1 UFMylation, subsequently destabilizing PD-1 and enhancing CD8+ T cell activation. Thus, Ufl1 cKO mice bearing tumors have a better response to anti-CTLA-4 immunotherapy. Collectively, our findings uncover a crucial role of UFMylation in T cells and highlight UFL1 as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hsin-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Gaoshan Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zuosong Xie
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yujie Xing
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Yang Gao
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
46
|
Wang L, Xu Y, Fukushige T, Saidi L, Wang X, Yu C, Lee JG, Krause M, Huang L, Ye Y. Mono-UFMylation promotes misfolding-associated secretion of α-synuclein. SCIENCE ADVANCES 2024; 10:eadk2542. [PMID: 38489364 PMCID: PMC10942102 DOI: 10.1126/sciadv.adk2542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Stressed cells secret misfolded proteins lacking signaling sequence via an unconventional protein secretion (UcPS) pathway, but how misfolded proteins are targeted selectively in UcPS is unclear. Here, we report that misfolded UcPS clients are subject to modification by a ubiquitin-like protein named ubiquitin-fold modifier 1 (UFM1). Using α-synuclein (α-Syn) as a UcPS model, we show that mutating the UFMylation sites in α-Syn or genetic inhibition of the UFMylation system mitigates α-Syn secretion, whereas overexpression of UFBP1, a component of the endoplasmic reticulum-associated UFMylation ligase complex, augments α-Syn secretion in mammalian cells and in model organisms. UFM1 itself is cosecreted with α-Syn, and the serum UFM1 level correlates with that of α-Syn. Because UFM1 can be directly recognized by ubiquitin specific peptidase 19 (USP19), a previously established UcPS stimulator known to associate with several chaperoning activities, UFMylation might facilitate substrate engagement by USP19, allowing stringent and regulated selection of misfolded proteins for secretion and proteotoxic stress alleviation.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Layla Saidi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Jin-Gu Lee
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Makhlouf L, Peter JJ, Magnussen HM, Thakur R, Millrine D, Minshull TC, Harrison G, Varghese J, Lamoliatte F, Foglizzo M, Macartney T, Calabrese AN, Zeqiraj E, Kulathu Y. The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons. Nature 2024; 627:437-444. [PMID: 38383789 PMCID: PMC10937380 DOI: 10.1038/s41586-024-07093-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.
Collapse
Affiliation(s)
- Linda Makhlouf
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joshua J Peter
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Rohan Thakur
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - David Millrine
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Translational Immunology, Cancer Biomarker Centre, Manchester CRUK Institute, Manchester, UK
| | - Thomas C Minshull
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Grace Harrison
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
48
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small-molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. Mol Biol Cell 2024; 35:ar15. [PMID: 38019608 PMCID: PMC10881158 DOI: 10.1091/mbc.e23-08-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small-molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase and demonstrated that CFTR-F508del ERAD is robust. Gene-drug interaction experiments illustrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
49
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|