1
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
2
|
Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr Opin Immunol 2018; 52:81-86. [PMID: 29723668 DOI: 10.1016/j.coi.2018.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
The sequence of a large number of MHC-presented epitopes is not present as such in the original antigen because it has been re-shuffled by the proteasome or other proteases. Why do proteases throw a spanner in the works of our model of antigen tagging and immune recognition? We describe in this review what we know about the immunological relevance of post-translationally spliced epitopes and why proteases seem to have a second (dark) personality, which is keen to create new peptide bonds.
Collapse
|
3
|
Wasserberg D, Cabanas-Danés J, Prangsma J, O’Mahony S, Cazade PA, Tromp E, Blum C, Thompson D, Huskens J, Subramaniam V, Jonkheijm P. Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags. ACS NANO 2017; 11:9068-9083. [PMID: 28850777 PMCID: PMC5618149 DOI: 10.1021/acsnano.7b03717] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/29/2017] [Indexed: 05/24/2023]
Abstract
We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in "end-on" and "side-on" orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect.
Collapse
Affiliation(s)
- Dorothee Wasserberg
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jordi Cabanas-Danés
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jord Prangsma
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Shane O’Mahony
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Pierre-Andre Cazade
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Eldrich Tromp
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Christian Blum
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Jurriaan Huskens
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Vinod Subramaniam
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Free
University of Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Pascal Jonkheijm
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L. Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry 2015; 21:18466-73. [DOI: 10.1002/chem.201502461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/08/2023]
|
5
|
Liepe J, Holzhütter HG, Bellavista E, Kloetzel PM, Stumpf MPH, Mishto M. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes. eLife 2015; 4:e07545. [PMID: 26393687 PMCID: PMC4611054 DOI: 10.7554/elife.07545] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. DOI:http://dx.doi.org/10.7554/eLife.07545.001 Cells have to be able to reliably destroy or remove molecules from their interior that they no longer need. Structures called proteasomes play a central part in this complex process by cutting up and digesting proteins. Mammals have several different types of proteasomes, each made up of several protein ‘subunits’. For example, when a cell experiences inflammation some proteasomes change some of their subunits and form an immuno-proteasome. These immuno-proteasomes tend to break down proteins more quickly than ‘standard’ proteasomes, but it was not clear how they are able to do so. Liepe et al. have now combined experiments and mathematical modelling to construct a detailed model of proteasome activity. The model shows that protein transport into and out of the proteasome chamber are the steps that limit how quickly the proteasomes can break down proteins. Furthermore, these transport processes are also to a large extent responsible for the different rates at which standard and immuno-proteasomes process proteins. Liepe et al. were also able to confirm the existence of regulatory sites within the proteasome, and describe how these are arranged. Problems that alter the rate at which proteasomes break down proteins have been linked to tumors and neurological and autoimmune diseases. Liepe et al.'s model opens up the ability to study how the proteasome's activity is affected by drugs and therefore makes it easier to investigate ways of interfering with this activity for therapeutic purposes. DOI:http://dx.doi.org/10.7554/eLife.07545.002
Collapse
Affiliation(s)
- Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Elena Bellavista
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Peter M Kloetzel
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael P H Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Luigi Galvani, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Liepe J, Holzhütter HG, Kloetzel PM, Stumpf MPH, Mishto M. Modelling proteasome and proteasome regulator activities. Biomolecules 2014; 4:585-99. [PMID: 24970232 PMCID: PMC4101499 DOI: 10.3390/biom4020585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023] Open
Abstract
Proteasomes are key proteases involved in a variety of processes ranging from the clearance of damaged proteins to the presentation of antigens to CD8+ T-lymphocytes. Which cleavage sites are used within the target proteins and how fast these proteins are degraded have a profound impact on immune system function and many cellular metabolic processes. The regulation of proteasome activity involves different mechanisms, such as the substitution of the catalytic subunits, the binding of regulatory complexes to proteasome gates and the proteasome conformational modifications triggered by the target protein itself. Mathematical models are invaluable in the analysis; and potentially allow us to predict the complex interactions of proteasome regulatory mechanisms and the final outcomes of the protein degradation rate and MHC class I epitope generation. The pioneering attempts that have been made to mathematically model proteasome activity, cleavage preference variation and their modification by one of the regulatory mechanisms are reviewed here.
Collapse
Affiliation(s)
- Juliane Liepe
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.
| | | | - Peter M Kloetzel
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael P H Stumpf
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.
| | - Michele Mishto
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
7
|
Wasserberg D, Nicosia C, Tromp EE, Subramaniam V, Huskens J, Jonkheijm P. Oriented Protein Immobilization using Covalent and Noncovalent Chemistry on a Thiol-Reactive Self-Reporting Surface. J Am Chem Soc 2013; 135:3104-11. [DOI: 10.1021/ja3102133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dorothee Wasserberg
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
- Nanobiophysics Group, MESA+ Institute for Nanotechnology
and MIRA Institute for Biomedical
Technology and Technical Medicine, Department of Science and Technology, University of Twente, 7500 AE, Enschede, Netherlands
| | - Carlo Nicosia
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
| | - Eldrich E. Tromp
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
- Nanobiophysics Group, MESA+ Institute for Nanotechnology
and MIRA Institute for Biomedical
Technology and Technical Medicine, Department of Science and Technology, University of Twente, 7500 AE, Enschede, Netherlands
| | - Vinod Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology
and MIRA Institute for Biomedical
Technology and Technical Medicine, Department of Science and Technology, University of Twente, 7500 AE, Enschede, Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
| |
Collapse
|
8
|
González-Campo A, Brasch M, Uhlenheuer DA, Gómez-Casado A, Yang L, Brunsveld L, Huskens J, Jonkheijm P. Supramolecularly oriented immobilization of proteins using cucurbit[8]uril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16364-16371. [PMID: 23134267 DOI: 10.1021/la303987c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A supramolecular strategy is used for oriented positioning of proteins on surfaces. A viologen-based guest molecule is attached to the surface, while a naphthol guest moiety is chemoselectively ligated to a yellow fluorescent protein. Cucurbit[8]uril (CB[8]) is used to link the proteins onto surfaces through specific charge-transfer interactions between naphthol and viologen inside the CB cavity. The assembly process is characterized using fluorescence and atomic force microscopy, surface plasmon resonance, IR-reflective absorption, and X-ray photoelectron spectroscopy measurements. Two different immobilization routes are followed to form patterns of the protein ternary complexes on the surfaces. Each immobilization route consists of three steps: (i) attaching the viologen to the glass using microcontact chemistry, (ii) blocking, and (iii) either incubation or microcontact printing of CB[8] and naphthol guests. In both cases uniform and stable fluorescent patterns are fabricated with a high signal-to-noise ratio. Control experiments confirm that CB[8] serves as a selective linking unit to form stable and homogeneous ternary surface-bound complexes as envisioned. The attachment of the yellow fluorescent protein complexes is shown to be reversible and reusable for assembly as studied using fluorescence microscopy.
Collapse
Affiliation(s)
- Arántzazu González-Campo
- Molecular Nanofabrication Group, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang L, Gomez-Casado A, Young JF, Nguyen HD, Cabanas-Danés J, Huskens J, Brunsveld L, Jonkheijm P. Reversible and oriented immobilization of ferrocene-modified proteins. J Am Chem Soc 2012; 134:19199-206. [PMID: 23126430 DOI: 10.1021/ja308450n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.
Collapse
Affiliation(s)
- Lanti Yang
- Molecular Nanofabrication Group, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Eisele NB, Andersson FI, Frey S, Richter RP. Viscoelasticity of Thin Biomolecular Films: A Case Study on Nucleoporin Phenylalanine-Glycine Repeats Grafted to a Histidine-Tag Capturing QCM-D Sensor. Biomacromolecules 2012; 13:2322-32. [DOI: 10.1021/bm300577s] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nico B. Eisele
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009
Donostia - San Sebastian, Spain
- Department of Cellular
Logistics, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen,
Germany
| | | | - Steffen Frey
- Department of Cellular
Logistics, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen,
Germany
| | - Ralf P. Richter
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009
Donostia - San Sebastian, Spain
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569
Stuttgart, Germany
| |
Collapse
|
11
|
A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 2011; 30:4387-97. [PMID: 21897368 DOI: 10.1038/emboj.2011.314] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/15/2011] [Indexed: 11/08/2022] Open
Abstract
The heterotrimeric SecYEG complex comprises a protein-conducting channel in the bacterial cytoplasmic membrane. SecYEG functions together with the motor protein SecA in preprotein translocation. Here, we have addressed the functional oligomeric state of SecYEG when actively engaged in preprotein translocation. We reconstituted functional SecYEG complexes labelled with fluorescent markers into giant unilamellar vesicles at a natively low density. Förster's resonance energy transfer and fluorescence (cross-) correlation spectroscopy with single-molecule sensitivity allowed for independent observations of the SecYEG and preprotein dynamics, as well as complex formation. In the presence of ATP and SecA up to 80% of the SecYEG complexes were loaded with a preprotein translocation intermediate. Neither the interaction with SecA nor preprotein translocation resulted in the formation of SecYEG oligomers, whereas such oligomers can be detected when enforced by crosslinking. These data imply that the SecYEG monomer is sufficient to form a functional translocon in the lipid membrane.
Collapse
|
12
|
Suskiewicz MJ, Sussman JL, Silman I, Shaul Y. Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 2011; 20:1285-97. [PMID: 21574196 DOI: 10.1002/pro.657] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the "degradation by default" model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
13
|
Classen M, Breuer S, Baumeister W, Guckenberger R, Witt S. Force spectroscopy of substrate molecules en route to the proteasome's active sites. Biophys J 2011; 100:489-97. [PMID: 21244845 DOI: 10.1016/j.bpj.2010.12.3689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/23/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
We used an atomic force microscope to study the mechanism underlying the translocation of substrate molecules inside the proteasome. Our specific experimental setup allowed us to measure interaction forces between the 20S proteasome and its substrates. The substrate (β-casein) was covalently bound either via a thiol-Au bond or by a PEG-based binding procedure to the atomic force microscope cantilever tip and offered as bait to proteasomes from Methanosarcina mazei. The proteasomes were immobilized densely in an upright orientation on mica, which made their upper pores accessible for substrates to enter. Besides performing conventional single-molecule force spectroscopy experiments, we developed a three-step procedure that allows the detection of specific proteasome-substrate single-molecule events without tip-sample contact. Using the active 20S wild type and an inactive active-site mutant, as well as two casein mutants bound with opposite termini to the microscope tip, we detected no directional preference of the proteasome-substrate interactions. By comparing the distribution of the measured forces for the proteasome-substrate interactions, were observed that a significant proportion of interaction events occurred at higher forces for the active versus the inactive proteasome. These forces can be attributed to the translocation of substrate en route to the active sites that are harbored deep inside the proteasome.
Collapse
Affiliation(s)
- Mirjam Classen
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
14
|
The proteasome antechamber maintains substrates in an unfolded state. Nature 2010; 467:868-71. [DOI: 10.1038/nature09444] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/23/2010] [Indexed: 11/08/2022]
|
15
|
Liepe J, Mishto M, Textoris-Taube K, Janek K, Keller C, Henklein P, Kloetzel PM, Zaikin A. The 20S proteasome splicing activity discovered by SpliceMet. PLoS Comput Biol 2010; 6:e1000830. [PMID: 20613855 PMCID: PMC2891702 DOI: 10.1371/journal.pcbi.1000830] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/24/2010] [Indexed: 01/18/2023] Open
Abstract
The identification of proteasome-generated spliced peptides (PSP) revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL) thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS). For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected.
Collapse
Affiliation(s)
- Juliane Liepe
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Michele Mishto
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Interdepartmental Center for Studies on Biophysics, Bioinformatics and Biocomplexity ‘L. Galvani’ (CIG), University of Bologna, Bologna, Italy
| | | | - Katharina Janek
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christin Keller
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Henklein
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Alexey Zaikin
- Institute for Women's Health and Department of Mathematics, University College London, London, United Kingdom
| |
Collapse
|
16
|
Dalet A, Vigneron N, Stroobant V, Hanada KI, Van den Eynde BJ. Splicing of Distant Peptide Fragments Occurs in the Proteasome by Transpeptidation and Produces the Spliced Antigenic Peptide Derived from Fibroblast Growth Factor-5. THE JOURNAL OF IMMUNOLOGY 2010; 184:3016-24. [DOI: 10.4049/jimmunol.0901277] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Young JF, Nguyen HD, Yang L, Huskens J, Jonkheijm P, Brunsveld L. Strong and Reversible Monovalent Supramolecular Protein Immobilization. Chembiochem 2009; 11:180-3. [DOI: 10.1002/cbic.200900599] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Knecht E, Aguado C, Cárcel J, Esteban I, Esteve JM, Ghislat G, Moruno JF, Vidal JM, Sáez R. Intracellular protein degradation in mammalian cells: recent developments. Cell Mol Life Sci 2009; 66:2427-43. [PMID: 19399586 PMCID: PMC11115841 DOI: 10.1007/s00018-009-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 12/16/2022]
Abstract
In higher organisms, dietary proteins are broken down into amino acids within the digestive tract but outside the cells, which incorporate the resulting amino acids into their metabolism. However, under certain conditions, an organism loses more nitrogen than is assimilated in the diet. This additional loss was found in the past century to come from intracellular proteins and started an intensive research that produced an enormous expansion of the field and a dispersed literature. Therefore, our purpose is to provide an updated summary of the current knowledge on the proteolytic machinery involved in intracellular protein degradation and its physiological and pathological relevance, especially addressed to newcomers in the field who may find further details in more specialized reviews. However, even providing a general overview, this is an extremely wide field and, therefore, we mainly focus on mammalian cells, while other cells will be mentioned only for comparison purposes.
Collapse
Affiliation(s)
- Erwin Knecht
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Maglica Z, Kolygo K, Weber-Ban E. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry. Structure 2009; 17:508-16. [PMID: 19368884 DOI: 10.1016/j.str.2009.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 01/08/2023]
Abstract
A common feature of chaperone-proteases is architectural two-fold symmetry across the proteolytic cylinder. Here we investigate the role of symmetry for the function of ClpAP and ClpXP assemblies. We generated asymmetric ClpP particles in which the two rings differ in ClpA and ClpX binding capability and/or in proteolytic activity. Rapid-kinetic fluorescence measurements and steady-state experiments indicate that single 2:1 ClpAP or ClpXP complexes are as efficient in substrate degradation as two 1:1 ClpAP or ClpXP assemblies. This implies that the two chaperone components work independently. However, an asymmetric ClpP particle composed of one active and one inactive ring can stimulate ATPase activity of ClpA regardless of whether ClpA binds to the active ring or to the opposite side of ClpP, across the ring of inactivated protease. Thus, we propose that conformational transitions in ClpP are concerted and allosteric effects are transferred simultaneously to both associated chaperones, leading to synchronized activation.
Collapse
Affiliation(s)
- Zeljka Maglica
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
21
|
Gielen E, Smisdom N, vandeVen M, De Clercq B, Gratton E, Digman M, Rigo JM, Hofkens J, Engelborghs Y, Ameloot M. Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5209-18. [PMID: 19260653 PMCID: PMC2728053 DOI: 10.1021/la8040538] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) have to be applied to explore the dynamics of membrane components. The recently introduced raster image correlation spectroscopy (RICS) offers a much wider dynamic range than each of these methods separately and allows for spatial mapping of the dynamic properties. RICS is implemented on a confocal laser-scanning microscope (CLSM), and the wide dynamic range is achieved by exploiting the inherent time information carried by the scanning laser beam in the generation of the confocal images. The original introduction of RICS used two-photon excitation and photon counting detection. However, most CLSM systems are based on one-photon excitation with analog detection. Here we report on the performance of such a commercial CLSM (Zeiss LSM 510 META) in the study of the diffusion of the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiI-C(18)(5)) both in giant unilamellar vesicles and in the plasma membrane of living oligodendrocytes, i.e., the myelin-producing cells of the central nervous system. It is shown that RICS on a commercial CLSM with analog detection allows for reliable results in the study of membrane diffusion by removal of unwanted correlations introduced by the analog detection system. The results obtained compare well with those collected by FRAP and FCS.
Collapse
Affiliation(s)
- Ellen Gielen
- Laboratory for Cell Physiology, Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium
- Laboratory for Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium
| | - Nick Smisdom
- Laboratory for Cell Physiology, Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium
| | - Martin vandeVen
- Laboratory for Cell Physiology, Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium
| | - Ben De Clercq
- Laboratory for Cell Physiology, Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Biomedical Engineering Department, 3120 Natural Sciences 2, Irvine, CA 92697-2715, USA
| | - Michelle Digman
- Laboratory for Fluorescence Dynamics, University of California, Biomedical Engineering Department, 3120 Natural Sciences 2, Irvine, CA 92697-2715, USA
| | - Jean-Michel Rigo
- Laboratory for Cell Physiology, Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Yves Engelborghs
- Laboratory for Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium
| | - Marcel Ameloot
- Laboratory for Cell Physiology, Biomedical Research Institute, Hasselt University and transnationale Universiteit Limburg, Agoralaan, Bldg C, B-3590 Diepenbeek, Belgium
| |
Collapse
|
22
|
Jung T, Grune T. The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 2009; 60:743-52. [PMID: 18636510 DOI: 10.1002/iub.114] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The generation of free radicals and the resulting oxidative modification of cell structures are omnipresent in mammalian cells. This includes the permanent oxidation of proteins leading to the disruption of the protein structure and an impaired functionality. In consequence, these oxidized proteins have to be removed in order to prevent serious metabolic disturbances. The most important cellular proteolytic system responsible for the removal of oxidized proteins is the proteasomal system. For normal functioning, the proteasomal system needs the coordinated interaction of numerous components. This review describes the fundamental functions of the 20S "core" proteasome, its regulators, and the roles of the proteasomal system beyond the removal of oxidized proteins in mammalian cells.
Collapse
Affiliation(s)
- Tobias Jung
- Institute for Biological Chemistry and Nutrition, Biofunctionality and Food Safety (140f), University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
23
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl 2008; 47:9618-47. [PMID: 19025742 DOI: 10.1002/anie.200801711] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein biochips are at the heart of many medical and bioanalytical applications. Increasing interest has been focused on surface activation and subsequent functionalization strategies for immobilizing these biomolecules. Different approaches using covalent and noncovalent chemistry are reviewed; particular emphasis is placed on the chemical specificity of protein attachment and on retention of protein function. Strategies for creating protein patterns (as opposed to protein arrays) are also outlined. An outlook on promising and challenging future directions for protein biochip research and applications is also offered.
Collapse
Affiliation(s)
- Pascal Jonkheijm
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology and Faculty of Chemistry, Chemical Biology, Technical University of Dortmund, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
24
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer C, Waldmann H. Chemische Verfahren zur Herstellung von Proteinbiochips. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801711] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Ludden M, Mulder A, Schulze K, Subramaniam V, Tampé R, Huskens J. Anchoring of Histidine-Tagged Proteins to Molecular Printboards: Self-assembly, Thermodynamic Modeling, and Patterning. Chemistry 2008; 14:2044-51. [DOI: 10.1002/chem.200701478] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Granéli A, Benkoski JJ, Höök F. Characterization of a proton pumping transmembrane protein incorporated into a supported three-dimensional matrix of proteoliposomes. Anal Biochem 2007; 367:87-94. [PMID: 17524345 DOI: 10.1016/j.ab.2007.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 11/19/2022]
Abstract
Surface analytical tools have gained interest in the bioanalytical field during recent years because they offer the possibility of more detailed investigations of biomolecular interactions. To be able to use such tools, the biomolecules of interest must be immobilized to a surface in a functioning way. For small water-soluble biomolecules, the surface immobilization is quite straightforward, but it has been shown to be difficult for large transmembrane proteins. In those cases, the solid surface often has a negative influence on the function of the transmembrane proteins. In this article, we present a new approach for surface immobilization of transmembrane proteins where the proteins were immobilized on a surface in a proteoliposome multilayer structure. The surface-binding events and the structure of the surface-immobilized proteoliposomes were monitored using both the quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) techniques. With this multilayer proteoliposome structure, it was possible to detect trypsin digestion of the transmembrane protein proton translocating nicotinamide nucleotide transhydrogenase in real time using SPR. The results from the combined SPR and QCM-D analysis were confirmed by fluorescence microscopy imaging of the multilayer structure and activity measurements of transhydrogenase. These results showed that the activity of transhydrogenase was significantly decreased in the bottom layer, but in the subsequent proteoliposome layers 90% of the activity was retained compared with bulk measurements. These results emphasize the importance of an immobilization strategy where the transmembrane proteins are lifted off the solid surface at the same time as the amount of protein is increased. We consider this new method for surface immobilization of transmembrane proteins to meet these demands and that the method will improve the possibility to use a variety of surface analytical tools for the analysis of interactions involving transmembrane proteins in the future.
Collapse
Affiliation(s)
- Annette Granéli
- Department of Physics, Göteborg University, SE-412 96 Göteborg, Sweden.
| | | | | |
Collapse
|
27
|
Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, Braun S, Maurizi MR, Suzuki CK, Oppenheim AB, Orly J. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 2007; 21:2164-77. [PMID: 17579211 DOI: 10.1210/me.2005-0458] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroidogenic acute regulatory protein (StAR) is a vital mitochondrial protein promoting transfer of cholesterol into steroid making mitochondria in specialized cells of the adrenal cortex and gonads. Our previous work has demonstrated that StAR is rapidly degraded upon import into the mitochondrial matrix. To identify the protease(s) responsible for this rapid turnover, murine StAR was expressed in wild-type Escherichia coli or in mutant strains lacking one of the four ATP-dependent proteolytic systems, three of which are conserved in mammalian mitochondria-ClpP, FtsH, and Lon. StAR was rapidly degraded in wild-type bacteria and stabilized only in lon (-)mutants; in such cells, StAR turnover was fully restored upon coexpression of human mitochondrial Lon. In mammalian cells, the rate of StAR turnover was proportional to the cell content of Lon protease after expression of a Lon-targeted small interfering RNA, or overexpression of the protein. In vitro assays using purified proteins showed that Lon-mediated degradation of StAR was ATP-dependent and blocked by the proteasome inhibitors MG132 (IC(50) = 20 microm) and clasto-lactacystin beta-lactone (cLbetaL, IC(50) = 3 microm); by contrast, epoxomicin, representing a different class of proteasome inhibitors, had no effect. Such inhibition is consistent with results in cultured rat ovarian granulosa cells demonstrating that degradation of StAR in the mitochondrial matrix is blocked by MG132 and cLbetaL but not by epoxomicin. Both inhibitors also blocked Lon-mediated cleavage of the model substrate fluorescein isothiocyanate-casein. Taken together, our former studies and the present results suggest that Lon is the primary ATP-dependent protease responsible for StAR turnover in mitochondria of steroidogenic cells.
Collapse
Affiliation(s)
- Zvi Granot
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tinazli A, Piehler J, Beuttler M, Guckenberger R, Tampé R. Native protein nanolithography that can write, read and erase. NATURE NANOTECHNOLOGY 2007; 2:220-225. [PMID: 18654266 DOI: 10.1038/nnano.2007.63] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 02/14/2007] [Indexed: 05/26/2023]
Abstract
The development of systematic approaches to explore protein-protein interactions and dynamic protein networks is at the forefront of biological sciences. Nanopatterned protein arrays offer significant advantages for sensing applications, including short diffusion times, parallel detection of multiple targets and the requirement for only tiny amounts of sample. Atomic force microscopy (AFM) based techniques have successfully demonstrated patterning of molecules, including stable proteins, with submicrometre resolution. Here, we introduce native protein nanolithography for the nanostructured assembly of even fragile proteins or multiprotein complexes under native conditions. Immobilized proteins are detached by a novel vibrational AFM mode (contact oscillation mode) and replaced by other proteins, which are selectively self-assembled from the bulk. This nanolithography permits rapid writing, reading and erasing of protein arrays in a versatile manner. Functional protein complexes may be assembled with uniform orientation at dimensions down to 50 nm. Such fabrication of two-dimensionally arranged nano-objects with biological activity will prove powerful for proteome-wide interaction screens and single molecule/virus/cell analyses.
Collapse
Affiliation(s)
- Ali Tinazli
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
29
|
Scharf A, Rockel TD, von Mikecz A. Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry. Histochem Cell Biol 2007; 127:591-601. [PMID: 17205305 DOI: 10.1007/s00418-006-0266-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.
Collapse
Affiliation(s)
- Andrea Scharf
- Institut für umweltmedizinische Forschung, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
30
|
Lata S, Piehler J. Synthesis of a multivalent chelator lipid for stably tethering histidine-tagged proteins onto membranes. Nat Protoc 2006; 1:2104-9. [PMID: 17487201 DOI: 10.1038/nprot.2006.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol describes the synthesis of a lipid-like molecule carrying a head group containing two nitrilotriacetic acid moieties. This multivalent chelator lipid can be incorporated into lipid membranes, to which histidine-tagged protein can then be tethered in an oriented fashion. Possible applications of this lipid are protein tethering to solid-supported membranes, to lipid vesicles or to live cells. As compared to conventional monovalent chelator lipids, this lipid can achieve highly stable tethering of proteins by the multivalent chelator head. The eight-step synthesis described in this protocol can be completed within 4-5 weeks.
Collapse
Affiliation(s)
- Suman Lata
- Institute of Biochemistry, Biocenter N210, Johann Wolfgang Goethe-University, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
31
|
Schulze K, Mulder A, Tinazli A, Tampé R. Kontrolle der Aktivität des 20S-Proteasoms durch synthetische Torwächter. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Schulze K, Mulder A, Tinazli A, Tampé R. Controlling the Activity of the 20S Proteasome Complex by Synthetic Gatekeepers. Angew Chem Int Ed Engl 2006; 45:5702-5. [PMID: 16858705 DOI: 10.1002/anie.200600644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Katrin Schulze
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt A. M., Germany
| | | | | | | |
Collapse
|
33
|
Ludden MJW, Reinhoudt DN, Huskens J. Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem Soc Rev 2006; 35:1122-34. [PMID: 17057841 DOI: 10.1039/b600093m] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review describes the development of molecular printboards, which are tailor-made surfaces functionalized with receptor (host) molecules. Such substrates can be used for the binding of complementary ligand (guest) molecules through multivalent interactions. Supramolecular multivalent interactions are ideal to attain a quantitative and fundamental understanding of multivalency at interfaces. Because of their quantitative interpretation, the focus is on (i) the interaction of cyclodextrin host surfaces with multivalent hydrophobic guest molecules, (ii) the vancomycin-oligopeptide system, and (iii) the multivalent binding of histidine-tagged proteins to NiNTA receptor surfaces. The review will be of interest to researchers in the fields of supramolecular chemistry, chemical biology, surface chemistry, and molecular recognition.
Collapse
Affiliation(s)
- Manon J W Ludden
- Laboratories of Supramolecular Chemistry & Technology and Molecular Nanofabrication, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
34
|
Abstract
In eukaryotes, thousands of genes have to be organized and expressed in the cell nucleus. Conformational and kinetic instability of nuclear structure and components appear to enable cells to use the encoded information selectively. The ubiquitin-proteasome system is active in distinct nuclear domains and plays a major role controlling the initial steps of gene expression, DNA repair and nuclear quality-control mechanisms. Recent work indicates that a tuned balance of ubiquitylation and proteasome-dependent protein degradation of nuclear proteins is instrumental in nuclear function and, when deregulated, leads to the development of diseases such as polyQ disorders and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Anna von Mikecz
- Institut für umweltmedizinische Forschung, Heinrich-Heine-Universität Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Sharon M, Witt S, Felderer K, Rockel B, Baumeister W, Robinson CV. 20S Proteasomes Have the Potential to Keep Substrates in Store for Continual Degradation. J Biol Chem 2006; 281:9569-75. [PMID: 16446364 DOI: 10.1074/jbc.m511951200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 20S core of the proteasome, which together with the regulatory particle plays a major role in the degradation of proteins in eukaryotic cells, is traversed by an internal system of cavities, namely two antechambers and one central proteolytic chamber. Little is known about the mechanisms underlying substrate binding and translocation of polypeptide chains into the interior of 20S proteasomes. Specifically, the role of the antechambers is not fully understood, and the number of substrate molecules sequestered within the internal cavities at any one time is unknown. Here we have shown that by applying both electron microscopy and tandem mass spectrometry (MS) approaches to this multisubunit complex we obtain precise information regarding the stoichiometry and location of substrates within the three chambers. The dissociation pattern in tandem MS allows us to conclude that a maximum of three green fluorescent protein and four cytochrome c substrate molecules are bound within the cavities. Our results also show that >95% of the population of proteasome molecules contain the maximum number of partially folded substrates. Moreover, we deduce that one green fluorescent protein or two cytochrome c molecules must reside within the central proteolytic chamber while the remaining substrate molecules occupy, singly, both antechambers. The results imply therefore an additional role for 20S proteasomes in the storage of substrates prior to their degradation, specifically in cases where translocation rates are slower than proteolysis. More generally, the ability to locate relatively small protein ligands sequestered within the 28-subunit core particle highlights the tremendous potential of tandem MS for deciphering substrate binding within large macromolecular assemblies.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Gaczynska M, Rodriguez K, Madabhushi S, Osmulski PA. Highbrow proteasome in high-throughput technology. Expert Rev Proteomics 2006; 3:115-27. [PMID: 16445356 DOI: 10.1586/14789450.3.1.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteasome is a major protease of the ubiquitin-proteasome pathway involved in the regulation of practically all intracellular biochemical processes. The enzyme core is created by a heteromultimer of complex architecture built with multiple subunits arranged into a tube-like structure. The multiple active sites of diverse peptidase specificity are hidden inside the tube. Access to the interior is guarded by a gate formed by the N-termini of specialized subunits and by the attachment of additional multisubunit protein complexes controlling the enzymatic capabilities of the core. Proteasome, due to its Byzantine molecular architecture and equally sophisticated enzymatic mechanism, is by itself a fascinating biophysical object. Recently, the position of the protease advanced from an academically remarkable protein processor to a providential anticancer drug target and futuristic nanomachine. Proteomics studies actively shape our current understanding of the protease and direct the future applications of the proteasome in medicine.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
37
|
Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 2005; 18:92-7. [PMID: 16343885 DOI: 10.1016/j.coi.2005.11.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/25/2005] [Indexed: 01/21/2023]
Abstract
A variety of different post-translational modifications of peptides displayed by class I and II MHC molecules have now been described. Some modifications promote the binding of peptides to MHC molecules, and might also influence the ability of the peptide to be produced by antigen processing pathways. In some instances, the antigen processing components themselves are actually responsible for generating post-translational modifications. Finally, evidence is accumulating that modifications can be altered as a consequence of inflammation, transformation, apoptosis and aging. This leads to altered repertories of MHC-associated peptides, which may be important in immune responses associated with autoimmune diseases, infection and cancer.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Center for Immunology Research and the Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA.
| | | | | | | |
Collapse
|
38
|
Rockel TD, Stuhlmann D, von Mikecz A. Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 2005; 118:5231-42. [PMID: 16249232 DOI: 10.1242/jcs.02642] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin proteasome system plays a fundamental role in the regulation of cellular processes by degradation of endogenous proteins. Proteasomes are localized in both, the cytoplasm and the cell nucleus, however, little is known about nuclear proteolysis. Here, fluorogenic precursor substrates enabled detection of proteasomal activity in nucleoplasmic cell fractions (turnover 0.0541 μM/minute) and nuclei of living cells (turnover 0.0472 μM/minute). By contrast, cell fractions of nucleoli or nuclear envelopes did not contain proteasomal activity. Microinjection of ectopic fluorogenic protein DQ-ovalbumin revealed that proteasomal protein degradation occurs in distinct nucleoplasmic foci, which partially overlap with signature proteins of subnuclear domains, such as splicing speckles or promyelocytic leukemia bodies, ubiquitin, nucleoplasmic proteasomes and RNA polymerase II. Our results establish proteasomal proteolysis as an intrinsic function of the cell nucleus.
Collapse
Affiliation(s)
- Thomas Dino Rockel
- Institut für Umweltmedizinische Forschung at Heinrich-Heine-University, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
39
|
Abstract
The major enzyme system catalysing the degradation of intracellular proteins is the proteasome system. A central inner chamber of the cylinder-shaped 20 S proteasome contains the active site, formed by N-terminal threonine residues. The 20 S proteasomes are extremely inefficient in degrading folded protein substrates and therefore one or two multisubunit 19 S regulatory particles bind to one or both ends of the 20 S proteasome cylinder, forming 26 S and 30 S proteasomes respectively. These regulatory complexes are able to bind proteins marked as proteasome substrates by prior conjugation with polyubiquitin chains, and initiate their unfolding and translocation into the proteolytic chamber of the 20 S proteasome, where they are broken down into peptides of 3–25 amino acids. The polyubiquitin tag is removed from the substrate protein by the deubiquitinating activity of the 19 S regulator complex. Under conditions of an intensified immune response, many eukaryotic cells adapt by replacing standard 20 S proteasomes with immuno-proteasomes and/or generating the proteasome activator complex, PA28. Both of these adaptations change the protein-breakdown process for optimized generation of antigenic peptide epitopes that are presented by the class I MHCs. Hybrid proteasomes (19 S regulator–20 S proteasome–PA28) may have a special function during the immune response. The functions of other proteasome accessory complexes, such as PA200 and PI31 are still under investigation.
Collapse
|
40
|
Babbitt SE, Kiss A, Deffenbaugh AE, Chang YH, Bailly E, Erdjument-Bromage H, Tempst P, Buranda T, Sklar LA, Baumler J, Gogol E, Skowyra D. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 2005; 121:553-565. [PMID: 15907469 DOI: 10.1016/j.cell.2005.03.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/03/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
ATP hydrolysis is required for degradation of polyubiquitinated proteins by the 26S proteasome but is thought to play no role in proteasomal stability during the catalytic cycle. In contrast to this view, we report that ATP hydrolysis triggers rapid dissociation of the 19S regulatory particles from immunopurified 26S complexes in a manner coincident with release of the bulk of proteasome-interacting proteins. Strikingly, this mechanism leads to quantitative disassembly of the 19S into subcomplexes and free Rpn10, the polyubiquitin binding subunit. Biochemical reconstitution with purified Sic1, a prototype substrate of the Cdc34/SCF ubiquitin ligase, suggests that substrate degradation is essential for triggering the ATP hydrolysis-dependent dissociation and disassembly of the 19S and that this mechanism leads to release of degradation products. This is the first demonstration that a controlled dissociation of the 19S regulatory particles from the 26S proteasome is part of the mechanism of protein degradation.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Alexi Kiss
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Andrew E Deffenbaugh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Eric Bailly
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-Centre National de la Recherche Scientifique, Marseille Cedex 20, France
| | | | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - Larry A Sklar
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131
| | - Jennifer Baumler
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Edward Gogol
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104.
| |
Collapse
|
41
|
Goenrich M, Duin EC, Mahlert F, Thauer RK. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J Biol Inorg Chem 2005; 10:333-42. [PMID: 15846525 DOI: 10.1007/s00775-005-0636-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
Methyl-coenzyme M reductase (MCR) catalyses the formation of methane from methyl-coenzyme M (CH(3)-S-CoM) and coenzyme B (HS-CoB) in methanogenic archaea. The enzyme has an alpha(2)beta(2)gamma(2) subunit structure forming two structurally interlinked active sites each with a molecule F(430) as a prosthetic group. The nickel porphinoid must be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-based electron paramagnetic resonance (EPR) signal and a UV-vis spectrum with an absorption maximum at 385 nm. This state is called the MCR-red1 state. In the presence of coenzyme M (HS-CoM) and coenzyme B the MCR-red1 state is in part converted reversibly into the MCR-red2 state, which shows a rhombic Ni(I)-based EPR signal and a UV-vis spectrum with an absorption maximum at 420 nm. We report here for MCR from Methanothermobacter marburgensis that the MCR-red2 state is also induced by several coenzyme B analogues and that the degree of induction by coenzyme B is temperature-dependent. When the temperature was lowered below 20 degrees C the percentage of MCR in the red2 state decreased and that in the red1 state increased. These changes with temperature were fully reversible. It was found that at most 50% of the enzyme was converted to the MCR-red2 state under all experimental conditions. These findings indicate that in the presence of both coenzyme M and coenzyme B only one of the two active sites of MCR can be in the red2 state (half-of-the-sites reactivity). On the basis of this interpretation a two-stroke engine mechanism for MCR is proposed.
Collapse
Affiliation(s)
- Meike Goenrich
- Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
42
|
Luciani F, Keşmir C, Mishto M, Or-Guil M, de Boer RJ. A mathematical model of protein degradation by the proteasome. Biophys J 2005; 88:2422-32. [PMID: 15665121 PMCID: PMC1305341 DOI: 10.1529/biophysj.104.049221] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is the major protease for intracellular protein degradation. The influx rate of protein substrates and the exit rate of the fragments/products are regulated by the size of the axial channels. Opening the channels is known to increase the overall degradation rate and to change the length distribution of fragments. We develop a mathematical model with a flux that depends on the gate size and a phenomenological cleavage mechanism. The model has Michaelis-Menten kinetics with a V(max) that is inversely related to the length of the substrate, as observed in the in vitro experiments. We study the distribution of fragment lengths assuming that proteasomal cleavage takes place at a preferred distance from the ends of a protein fragment, and find multipeaked fragment length distributions similar to those found experimentally. Opening the gates in the model increases the degradation rate, increases the average length of the fragments, and increases the peak in the distribution around a length of 8-10 amino acids. This behavior is also observed in immunoproteasomes equipped with PA28. Finally, we study the effect of re-entry of processed fragments in the degradation kinetics and conclude that re-entry is only expected to affect the cleavage dynamics when short fragments enter the proteasome much faster than the original substrate. In summary, the model proposed in this study captures the known characteristics of proteasomal degradation, and can therefore help to quantify MHC class I antigen processing and presentation.
Collapse
Affiliation(s)
- Fabio Luciani
- Institute for Theoretical Biology, Humboldt University-Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|