1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Chung HH, Seo SH, Kim H, Kim Y, Kim DW, Lee KH, Lee KT, Heo JS, Han IW, Park SM, Jang KT, Lee JK, Park JK. Postoperative Prognostic Predictors of Bile Duct Cancers: Clinical Analysis and Immunoassays of Tissue Microarrays. Gut Liver 2023; 17:159-169. [PMID: 36317517 PMCID: PMC9840923 DOI: 10.5009/gnl220044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/AIMS Cholangiocarcinoma frequently recurs even after curative resection. Expression levels of proteins such as epidermal growth factor receptor (EGFR), Snail, epithelial cadherin (E-cadherin), and interleukin-6 (IL-6) examined by immunohistochemistry have been studied as potential prognostic factors for cholangiocarcinoma. The aim of this study was to investigate significant factors affecting the prognosis of resectable cholangiocarcinoma. METHODS Ninety-one patients who underwent surgical resection at Samsung Medical Center for cholangiocarcinoma from 1995 to 2013 were included in this study. Expression levels of E-cadherin, Snail, IL-6, membranous EGFR, and cytoplasmic EGFR were analyzed by immunohistochemistry using tissue microarray blocks made from surgical specimens. RESULTS Patients with high levels of membranous EGFR in tissue microarrays had significantly shorter overall survival (OS) and disease-free survival (DFS): high membranous EGFR (score 0-2) 38.0 months versus low membranous EGFR (score 3) 14.4 months (p=0.008) and high membranous EGFR (score 0-2) 23.2 months versus low membranous EGFR (score 3) 6.1 months (p=0.004), respectively. On the other hand, E-cadherin, Snail, cytoplasmic EGFR, and IL-6 did not show significant association with OS or DFS. Patients with distant metastasis had significantly higher IL-6 levels than those with locoregional recurrence (p=0.01). CONCLUSIONS This study showed that overexpression of membranous EGFR was significantly associated with shorter OS and DFS in surgically resected bile duct cancer patients. In addition, higher IL-6 expression was a predictive marker for recurrence in cholangiocarcinoma patients with distant organ metastasis after surgical resection.
Collapse
Affiliation(s)
- Hwe Hoon Chung
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hee Seo
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemin Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yuil Kim
- Department of Clinical Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Dong Wuk Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang Hyuck Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Taek Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In Woong Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Kyung Park
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
3
|
Narayanan P, Anitha AK, Ajayakumar N, Kumar KS. Poly-Lysine Dendritic Nanocarrier to Target Epidermal Growth Factor Receptor Overexpressed Breast Cancer for Methotrexate Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:800. [PMID: 35160746 PMCID: PMC8836561 DOI: 10.3390/ma15030800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
A fourth generation poly-lysine dendritic nanocarrier (P4LDN)-based targeted chemotherapy for breast cancer is attempted by incorporating an epidermal growth factor receptor (EGFR)-specific short peptide E2 (ARSHVGYTGAR) and the drug methotrexate (MTX) into a nanocarrier system. The drug is incorporated into the nanocarrier using a cathepsin B cleavable spacer: glycine-phenylalanine-leucine-glycine (GFLG). The in vitro analysis of the time-dependent drug release, binding and internalization ability, and the cytotoxic nature showed that this drug delivery system (DDS) is highly effective. The efficacy analysis using non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice also showed that compared to the control group, the DDS can effectively reduce tumor volume. The mice that received the DDS appeared to gain weight more rapidly than the free drug, which suggests that the dendrimer is more easily tolerated by mice than the free drug.
Collapse
Affiliation(s)
| | | | | | - Kesavakurup Santhosh Kumar
- Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Bio-Innovation Centre, KINFRA Park, Chanthavila (PO), Thiruvananthapuram 695585, Kerala, India; (P.N.); (A.K.A.); (N.A.)
| |
Collapse
|
4
|
Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol 2021; 58:3884-3902. [PMID: 33860438 PMCID: PMC8280051 DOI: 10.1007/s12035-021-02367-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the pathogenesis of major neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
5
|
Margiotta A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal. Int J Mol Sci 2021; 22:ijms22126342. [PMID: 34198477 PMCID: PMC8231876 DOI: 10.3390/ijms22126342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane receptors that regulate many fundamental cellular processes. A tight regulation of RTK signaling is fundamental for development and survival, and an altered signaling by RTKs can cause cancer. RTKs are localized at the plasma membrane (PM) and the major regulatory mechanism of signaling of RTKs is their endocytosis and degradation. In fact, RTKs at the cell surface bind ligands with their extracellular domain, become active, and are rapidly internalized where the temporal extent of signaling, attenuation, and downregulation are modulated. However, other mechanisms of signal attenuation and termination are known. Indeed, inhibition of RTKs’ activity may occur through the modulation of the phosphorylation state of RTKs and the interaction with specific proteins, whereas antagonist ligands can inhibit the biological responses mediated by the receptor. Another mechanism concerns the expression of endogenous inactive receptor variants that are deficient in RTK activity and take part to inactive heterodimers or hetero-oligomers. The downregulation of RTK signals is fundamental for several cellular functions and the homeostasis of the cell. Here, we will review the mechanisms of signal attenuation and termination of RTKs, focusing on FGFRs.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
6
|
Ben Jemii N, Tounsi-Kettiti H, Yaiche H, Mezghanni N, Jaballah Gabteni A, Fehri E, Ben Fayala C, Abdelhak S, Boubaker S. Dysregulated PDGFR alpha expression and novel somatic mutations in colorectal cancer: association to RAS wild type status and tumor size. J Transl Med 2020; 18:440. [PMID: 33213472 PMCID: PMC7678118 DOI: 10.1186/s12967-020-02614-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Platelet derived growth factor receptor alpha (PDGFRα) has been considered as a relevant factor in tumor proliferation, angiogenesis and metastatic dissemination. It was a target of tyrosine kinase (TK) inhibitors emerged in the therapy of diverse cancers. In colorectal cancer, the commonly used therapy is anti-epithelial growth factor receptor (EGFR). However, both RAS mutated and a subgroup of RAS wild type patients resist to such therapy. The aim of this study is to investigate PDGFRα protein expression and mutational status in colorectal adenocarcinoma and their association with clinicopathological features and molecular RAS status to provide useful information for the identification of an effective biomarker that might be implicated in prognosis and treatment prediction. Methods Our study enrolled 103 formalin fixed paraffin-embedded (FFPE) colorectal adenocarcinoma. PDGFRα expression was investigated by immunohistochemistry (IHC). Hotspot exon 18 of PDGFRA was studied by PCR followed by Sanger sequencing and RAS status was determined by real time quantitative PCR. Thirteen normal colon tissues were used as negative controls. Results PDGFRα staining was detected in the cytoplasm of all tissues. Low expression was observed in all normal colon mucosa. In adenocarcinoma, 45% (45/100) of cases showed PDGFRα overexpression. This overexpression was significantly associated with mutations in exon 18 (P = 0.024), RAS wild type status (P < 10–3), tumor diameter (P = 0.048), whereas there was no association with tumor side (P = 0.13) and other clinicopathological features. Conclusion Overexpression of PDGFRα in adenocarcinoma suggests its potential role in tumor cells growth and invasion. The association between PDGFRα overexpression in both tumor and stromal adenocarcinoma cells with RAS wild type status suggests its potential role in anti-EGFR therapy resistance and the relevance of using it as specific or adjuvant therapeutic target.
Collapse
Affiliation(s)
- Nadia Ben Jemii
- Laboratory of Human and Experimental Pathology, Faculty of Science of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia. .,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - Haifa Tounsi-Kettiti
- Laboratory of Human and Experimental Pathology, Faculty of Medicine of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hamza Yaiche
- Laboratory of Human and Experimental Pathology, Faculty of Science of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Najla Mezghanni
- Laboratory of Human and Experimental Pathology, Faculty of Science of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amira Jaballah Gabteni
- Laboratory of Human and Experimental Pathology, Faculty of Science of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Emna Fehri
- Laboratory of Human and Experimental Pathology, Faculty of Science of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Chayma Ben Fayala
- Laboratory of Human and Experimental Pathology, Faculty of Science of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathology, Faculty of Medicine of Tunis, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Davies BA, Morton LO, Jefferson JR, Rozeveld CN, Doskey LC, LaRusso NF, Katzmann DJ. Polarized human cholangiocytes release distinct populations of apical and basolateral small extracellular vesicles. Mol Biol Cell 2020; 31:2463-2474. [PMID: 32845745 PMCID: PMC7851850 DOI: 10.1091/mbc.e19-03-0133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intercellular communication is critical for organismal homeostasis, and defects can contribute to human disease states. Polarized epithelial cells execute distinct signaling agendas via apical and basolateral surfaces to communicate with different cell types. Small extracellular vesicles (sEVs), including exosomes and small microvesicles, represent an understudied form of intercellular communication in polarized cells. Human cholangiocytes, epithelial cells lining bile ducts, were cultured as polarized epithelia in a Transwell system as a model with which to study polarized sEV communication. Characterization of isolated apically and basolaterally released EVs revealed enrichment in sEVs. However, differences in apical and basolateral sEV composition and numbers were observed. Genetic or pharmacological perturbation of cellular machinery involved in the biogenesis of intralumenal vesicles at endosomes (the source of exosomes) revealed general and domain-specific effects on sEV biogenesis/release. Additionally, analyses of signaling revealed distinct profiles of activation depending on sEV population, target cell, and the function of the endosomal sorting complex required for transport (ESCRT)-associated factor ALG-2–interacting protein X (ALIX) within the donor cells. These results support the conclusion that polarized cholangiocytes release distinct sEV pools to mediate communication via their apical and basolateral domains and suggest that defective ESCRT function may contribute to disease states through altered sEV signaling.
Collapse
Affiliation(s)
- Brian A Davies
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905
| | - Leslie O Morton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - John R Jefferson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905.,Chemistry Department, Luther College, Decorah, IA 52101
| | - Cody N Rozeveld
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| | - Luke C Doskey
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F LaRusso
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - David J Katzmann
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905.,Mayo Clinic Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
8
|
Wang Z, Wang X. miR-122-5p promotes aggression and epithelial-mesenchymal transition in triple-negative breast cancer by suppressing charged multivesicular body protein 3 through mitogen-activated protein kinase signaling. J Cell Physiol 2020; 235:2825-2835. [PMID: 31541468 DOI: 10.1002/jcp.29188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly metastatic and frequently has a poor prognosis. The lack of comprehension of TNBC and gene therapy targets has led to limitedly effective treatment for TNBC. This study was conducted to better understand the molecular mechanism behind TNBC progression, and to find out promising gene therapy targets for TNBC. Herein the influence of miR-122-5p's binding charged multivesicular body protein 3 (CHMP3) 3'-untranslated region (3'-UTR) on in TNBC cells was investigated. in vitro experiments quantitative real-time polymerase chain reaction, immunoblot analysis, dual-luciferase reporter gene assay, cell counting assay, transwell invasion assay, and flow cytometry-determined cell apoptosis assay were employed. We also used TargetScan Human 7.2 database to find out the target relationship between miR-122-5p and CHMP3 3'-UTR. TImer algorithm was used to provide an overview of the expression of CHMP3 gene across human pan-cancer, to predict the survival outcome of breast cancer patients, and to predict the correlation between CHMP3 gene expression and epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK)-related gene expression. CHMP3 gene was significantly downregulated across a wide range of human cancers including breast cancer (BRCA). A higher level of CHMP3 gene predicted a better 3- and 5-year survival outcome of patients with BRCA. In our experiments, miR-122-5p was significantly upregulated and CHMP3 gene was significantly downregulated in TNBC cells compared with normal cell line. miR-122-5p mimics enhanced TNBC cell viability, proliferation, and invasion whereas the upregulation of CHMP3 gene led to an opposite outcome. Forced expression of miR-122-5p suppressed cell apoptosis, compelled EMT and MAPK signaling whereas forced expression of CHMP3 did the opposite. We then conclude that miR-122-5p promotes aggression and EMT in TNBC by suppressing CHMP3 through MAPK signaling.
Collapse
Affiliation(s)
- Zheng Wang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Kushnir T, Bar-Cohen S, Mooshayef N, Lange R, Bar-Sinai A, Rozen H, Salzberg A, Engelberg D, Paroush Z. An Activating Mutation in ERK Causes Hyperplastic Tumors in a scribble Mutant Tissue in Drosophila. Genetics 2020; 214:109-120. [PMID: 31740452 PMCID: PMC6944410 DOI: 10.1534/genetics.119.302794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase signaling plays prominent roles in tumorigenesis, and activating oncogenic point mutations in the core pathway components Ras, Raf, or MEK are prevalent in many types of cancer. Intriguingly, however, analogous oncogenic mutations in the downstream effector kinase ERK have not been described or validated in vivo To determine if a point mutation could render ERK intrinsically active and oncogenic, we have assayed in Drosophila the effects of a mutation that confers constitutive activity upon a yeast ERK ortholog and has also been identified in a few human tumors. Our analyses indicate that a fly ERK ortholog harboring this mutation alone (RolledR80S), and more so in conjunction with the known sevenmaker mutation (RolledR80S+D334N), suppresses multiple phenotypes caused by loss of Ras-Raf-MEK pathway activity, consistent with an intrinsic activity that is independent of upstream signaling. Moreover, expression of RolledR80S and RolledR80S+D334N induces tissue overgrowth in an established Drosophila cancer model. Our findings thus demonstrate that activating mutations can bestow ERK with pro-proliferative, tumorigenic capabilities and suggest that Drosophila represents an effective experimental system for determining the oncogenicity of ERK mutants and their response to therapy.
Collapse
Affiliation(s)
- Tatyana Kushnir
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shaked Bar-Cohen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Navit Mooshayef
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, 138602, Singapore
| | - Rotem Lange
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Allan Bar-Sinai
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Helit Rozen
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - David Engelberg
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
10
|
Lamberti D, Cristinziano G, Porru M, Leonetti C, Egan JB, Shi CX, Buglioni S, Amoreo CA, Castellani L, Borad MJ, Alemà S, Anastasi S, Segatto O. HSP90 Inhibition Drives Degradation of FGFR2 Fusion Proteins: Implications for Treatment of Cholangiocarcinoma. Hepatology 2019; 69:131-142. [PMID: 30067876 DOI: 10.1002/hep.30127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
About 15% of intrahepatic cholangiocarcinomas (ICCs) express constitutively active fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs) generated by chromosomal translocations. FFs have been nominated as oncogenic drivers because administration of FGFR tyrosine kinase inhibitors (F-TKIs) can elicit meaningful objective clinical responses in patients carrying FF-positive ICC. Thus, optimization of FF targeting is a pressing clinical need. Herein, we report that three different FFs, previously isolated from ICC samples, are heat shock protein 90 (HSP90) clients and undergo rapid degradation upon HSP90 pharmacological blockade by the clinically advanced HSP90 inhibitor ganetespib. Combining catalytic suppression by the F-TKI BGJ398 with HSP90 blockade by ganetespib suppressed FGFR2-TACC3 (transforming acidic coiled-coil containing protein 3) signaling in cultured cells more effectively than either BGJ398 or ganetespib in isolation. The BGJ398 + ganetespib combo was also superior to single agents when tested in mice carrying subcutaneous tumors generated by transplantation of FGFR2-TACC3 NIH3T3 transformants. Of note, FF mutants known to enforce clinical resistance to BGJ398 in ICC patients retained full sensitivity to ganetespib in cultured cells. Conclusion: Our data provide a proof of principle that upfront treatment with the BGJ398 + ganetespib combo improves therapeutic targeting of FGFR2 fusions in an experimental setting, which may be relevant to precision medicine approaches to FF-driven ICC.
Collapse
Affiliation(s)
- Dante Lamberti
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Cristinziano
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Porru
- Animal Facility (SAFU), IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carlo Leonetti
- Animal Facility (SAFU), IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Jan B Egan
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Chang-Xin Shi
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Simonetta Buglioni
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla A Amoreo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Loriana Castellani
- Dipartimento di Scienze Umane, Sociali e della Salute, Università di Cassino, Cassino, Italy.,Institute of Cell Biology and Neurobiology, National Research Council (CNR), Monterotondo, Italy
| | - Mitesh J Borad
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Stefano Alemà
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Monterotondo, Italy
| | - Sergio Anastasi
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
11
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
12
|
Steinbuck MP, Winandy S. A Review of Notch Processing With New Insights Into Ligand-Independent Notch Signaling in T-Cells. Front Immunol 2018; 9:1230. [PMID: 29910816 PMCID: PMC5992298 DOI: 10.3389/fimmu.2018.01230] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein essential to a wide spectrum of cellular systems, and its deregulation has been linked to a vast number of developmental disorders and malignancies. Regulated Notch function is critical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. Notch activation through trans-activation of the receptor by one of its ligands expressed on adjacent cells has been well defined. In this canonical ligand-dependent pathway, Notch receptor undergoes conformational changes upon ligand engagement, stimulated by a pulling-force on the extracellular fragment of Notch that results from endocytosis of the receptor-bound ligand into the ligand-expressing cell. These conformational changes in the receptor allow for two consecutive proteolytic cleavage events to occur, which release the intracellular region of the receptor into the cytoplasm. It can then travel to the nucleus, where it induces gene transcription. However, there is accumulating evidence that other pathways may induce Notch signaling. A ligand-independent mechanism of Notch activation has been described in which receptor processing is initiated via cell-internal signals. These signals result in the internalization of Notch into endosomal compartments, where chemical changes existing in this microenvironment result in the conformational modifications required for receptor processing. This review will present mechanisms underlying both canonical ligand-dependent and non-canonical ligand-independent Notch activation pathways and discuss the latter in the context of Notch signaling in T-cells.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Susan Winandy
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Pathak A, Tanwar S, Kumar V, Banarjee BD. Present and Future Prospect of Small Molecule & Related Targeted Therapy Against Human Cancer. VIVECHAN INTERNATIONAL JOURNAL OF RESEARCH 2018; 9:36-49. [PMID: 30853755 PMCID: PMC6407887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer is uncontrolled cell growth guided by deregulation of cell growth network. Subsequently, alteration in genes occurs which influences expression (down-regulation of tumor suppressor genes and/or up-regulation of proto-oncogene) of these prominent cell growth proteins. Protein targeting has emerged as a hope against cancer. These therapies work by inhibiting or up regulating the target proteins through agents specific for treatment of deregulated proteins. Targeted cancer therapies are more favorable for cancers like lung, colorectal, breast, lymphoma and leukemia as they focus on particular molecular changes unique to a specific cancer. As researchers scrutinize and comprehend the cell changes that initiate cancer, they are better able to design promising therapies targeting these changes or nullify their effect. In present study we have assessed prospects of significant proteins which are known to be targeted by number of small molecules and related drugs for effective treatment of various forms of cancer. Moreover, we also addressed the efficacies of these drugs toward the cancer treatment and future challenges in their development as this information is lacking in previously published work.
Collapse
Affiliation(s)
- Akshat Pathak
- Department of Computer Science and Engineering IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Sanskriti Tanwar
- Department of Biotechnology IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Basu Dev Banarjee
- Department of Biochemistry, University College of Medical Sciences & Guru Tegh Bahadur Hospital, University of Delhi, Dilshad Garden, Delhi, India
| |
Collapse
|
14
|
Li D, Chen F, Ding J, Lin N, Li Z, Wang X. Knockdown of HIP1 expression promotes ligand‑induced endocytosis of EGFR in HeLa cells. Oncol Rep 2017; 38:3387-3391. [PMID: 29039605 PMCID: PMC5783582 DOI: 10.3892/or.2017.6025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Huntington-interacting protein 1 (HIP1) is associated with various tumor types; however, its precise functions in tumor cells are unclear. In this study, the effects of HIP1 on the degradation of EGFR, which have important roles in carcinogenesis after EGF stimulation, were examined. After screening 17 cell lines, the coexpression of HIP1 and EGFR was detected in HeLa cells. Accordingly, the expression of HIP1 was knocked down in HeLa cells using various HIP1 siRNA sequences. The endocytosis of EGFR and localization of clathrin in HeLa cells were examined after stimulation by EGF at various concentrations (i.e., 1.5 and 100 ng/ml). After HIP1 expression was blocked by siRNAs, EGFR endocytosis was accelerated and this effect was dependent on the EGF concentration. This endocytosis was colocalized with clathrin expression. These findings indicate that the inhibition of HIP1 can accelerate the endocytosis and degradation of EGFR. Furthermore, they suggest that HIP1 is a potential therapeutic target for various cancer types, particularly those with high EGFR expression, but further research is needed to examine this hypothesis.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Gulou, Fuzhou, Fujian 350001, P.R. China
| | - Fenglin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Gulou, Fuzhou, Fujian 350001, P.R. China
| | - Jian Ding
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, Fujian 350005, P.R. China
| | - Na Lin
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Gulou, Fuzhou, Fujian 350001, P.R. China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200032, P.R. China
| | - Xiaozhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Gulou, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
15
|
Shen N, Yan F, Pang J, Zhao N, Gangat N, Wu L, Bode AM, Al-Kali A, Litzow MR, Liu S. Inactivation of Receptor Tyrosine Kinases Reverts Aberrant DNA Methylation in Acute Myeloid Leukemia. Clin Cancer Res 2017; 23:6254-6266. [PMID: 28720666 DOI: 10.1158/1078-0432.ccr-17-0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/18/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Purpose: Receptor tyrosine kinases (RTKs) are frequently deregulated in leukemia, yet the biological consequences of this deregulation remain elusive. The mechanisms underlying aberrant methylation, a hallmark of leukemia, are not fully understood. Here we investigated the role of RTKs in methylation abnormalities and characterized the hypomethylating activities of RTK inhibitors.Experimental Design: Whether and how RTKs regulate expression of DNA methyltransferases (DNMTs), tumor suppressor genes (TSGs) as well as global and gene-specific DNA methylation were examined. The pharmacologic activities and mechanisms of actions of RTK inhibitors in vitro, ex vivo, in mice, and in nilotinib-treated leukemia patients were determined.Results: Upregulation of RTKs paralleled DNMT overexpression in leukemia cell lines and patient blasts. Knockdown of RTKs disrupted, whereas enforced expression increased DNMT expression and DNA methylation. Treatment with the RTK inhibitor, nilotinib, resulted in a reduction of Sp1-dependent DNMT1 expression, the diminution of global DNA methylation, and the upregulation of the p15INK4B gene through promoter hypomethylation in AML cell lines and patient blasts. This led to disruption of AML cell clonogenicity and promotion of cellular apoptosis without obvious changes in cell cycle. Importantly, nilotinib administration in mice and human patients with AML impaired expression of DNMTs followed by DNA hypomethylation, TSG re-expression, and leukemia regression.Conclusions: Our findings demonstrate RTKs as novel regulators of DNMT-dependent DNA methylation and define DNA methylation status in AML cells as a pharmacodynamic marker for their response to RTK-based therapy, providing new therapeutic avenues for RTK inhibitors in overcoming epigenetic abnormalities in leukemia. Clin Cancer Res; 23(20); 6254-66. ©2017 AACR.
Collapse
Affiliation(s)
- Na Shen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Fei Yan
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Jiuxia Pang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Na Zhao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Laichu Wu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, Minnesota.
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| |
Collapse
|
16
|
Dean M, Lassak A, Wilk A, Zapata A, Marrero L, Molina P, Reiss K. Acute Ethanol Increases IGF-I-Induced Phosphorylation of ERKs by Enhancing Recruitment of p52-Shc to the Grb2/Shc Complex. J Cell Physiol 2017; 232:1275-1286. [PMID: 27607558 PMCID: PMC5381968 DOI: 10.1002/jcp.25586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
Ethanol plays a detrimental role in the development of the brain. Multiple studies have shown that ethanol inhibits insulin-like growth factor I receptor (IGF-IR) function. Because the IGF-IR contributes to brain development by supporting neural growth, survival, and differentiation, we sought to determine the molecular mechanism(s) involved in ethanol's effects on this membrane-associated tyrosine kinase. Using multiple neuronal cell types, we performed Western blot, immunoprecipitation, and GST-pulldowns following acute (1-24 h) or chronic (3 weeks) treatment with ethanol. Surprisingly, exposure of multiple neuronal cell types to acute (up to 24 h) ethanol (50 mM) enhanced IGF-I-induced phosphorylation of extracellular regulated kinases (ERKs), without affecting IGF-IR tyrosine phosphorylation itself, or Akt phosphorylation. This acute increase in ERKs phosphorylation was followed by the expected inhibition of the IGF-IR signaling following 3-week ethanol exposure. We then expressed a GFP-tagged IGF-IR construct in PC12 cells and used them to perform fluorescence recovery after photobleaching (FRAP) analysis. Using these fluorescently labeled cells, we determined that 50 mM ethanol decreased the half-time of the IGF-IR-associated FRAP, which implied that cell membrane-associated signaling events could be affected. Indeed, co-immunoprecipitation and GST-pulldown studies demonstrated that the acute ethanol exposure increased the recruitment of p52-Shc to the Grb2-Shc complex, which is known to engage the Ras-Raf-ERKs pathway following IGF-1 stimulation. These experiments indicate that even a short and low-dose exposure to ethanol may dysregulate function of the receptor, which plays a critical role in brain development. J. Cell. Physiol. 232: 1275-1286, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Dean
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
- Department of Genetics, LSU Health New Orleans
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Adam Lassak
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Anna Wilk
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604
| | | | - Luis Marrero
- Morphology and Imaging Core, LSU Health New Orleans
| | - Patricia Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
| | | |
Collapse
|
17
|
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7:1016-1036. [PMID: 28560055 PMCID: PMC5446472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023] Open
Abstract
The hallmarks of cancer described by Hanahan and Weinberg have proved seminal in our understanding of cancer's common traits and in rational drug design. Not free of critique and with understanding of different aspects of tumorigenesis coming into clearer focus in the recent years, we attempt to draw a more organized and updated picture of the cancer hallmarks. We define seven hallmarks of cancer: selective growth and proliferative advantage, altered stress response favoring overall survival, vascularization, invasion and metastasis, metabolic rewiring, an abetting microenvironment, and immune modulation, while highlighting some considerations for the future of the field.
Collapse
Affiliation(s)
| | - Carmen Aanei
- Hematology Laboratory, Pole De Biologie-Pathologie, University Hospital of St EtienneSt Etienne, France
| |
Collapse
|
18
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
20
|
Zhang RY, Du WQ, Zhang YC, Zheng JN, Pei DS. PLCε signaling in cancer. J Cancer Res Clin Oncol 2016; 142:715-22. [PMID: 26109147 DOI: 10.1007/s00432-015-1999-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE As one of the members of the PLC family, the phosphoinositide-specific phospholipase Cε (PLCε) has been shown to play pivotal roles in multiple signal pathways and control a variety of cellular functions. A number of studies have shown that aberrant regulation of PLCε was involved in various types of animal and human cancer. However, the role of PLCε in cancer remains elusive. In this review, we provide an overview of the PLCε, especially its roles in multiple signal pathways, and summarize the recent findings that highlight the roles of PLCε in carcinogenesis and cancer progression, making an avenue to provide a novel therapeutic strategy for the treatment of cancer. METHODS A literature search mainly paying attention to the network of PLCε involved in tumorigenesis and development was performed in electronic databases. RESULTS PLCε plays a key role in medicating the development and progression of human cancers with highest potency to be a target of cancer prevention and treatment.
Collapse
Affiliation(s)
- Rui-Yan Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Wen-Qi Du
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Ying-Chun Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, People's Republic of China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM, Ni N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Fan Y, Richelme S, Avazeri E, Audebert S, Helmbacher F, Dono R, Maina F. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis. PLoS Genet 2015; 11:e1005533. [PMID: 26393505 PMCID: PMC4579069 DOI: 10.1371/journal.pgen.1005533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 08/25/2015] [Indexed: 12/04/2022] Open
Abstract
The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26stopMet knock-in context (Del-R26Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. The need to achieve precise control of RTK activation is highlighted by human pathologies such as congenital malformations and cancers caused by aberrant RTK signalling. Identifying strategies to restrain RTK activity in cancer and/or to reactivate RTKs for counteracting degenerative processes is the focus of intense research efforts. We designed a genetic system to enhance RTK signalling during mouse embryogenesis in order to examine the competence of cells to deal with changes in RTK inputs. Our data reveal that most embryonic cells are capable of: 1) handling moderate perturbations in Met-RTK expression levels, 2) imposing a threshold of intracellular signalling activation despite elevated Met-RTK inputs, and/or 3) integrating variable quantitative levels of Met-RTK signalling within biological responses. Our results also establish that certain cell types, such as limb mesenchyme, are particularly vulnerable to alterations of the spatial distribution of RTK expression. The vulnerability of limb mesenchyme to enhanced Met levels is illustrated by gene expression changes, by interference with HGF chemoattractant effects, and by loss of accessibility to incoming myoblasts, leading to limb muscle defects. These findings highlight how resilience versus vulnerability to RTK fluctuation is strictly linked to cell competence and to the robustness of the developmental programs they undergo.
Collapse
Affiliation(s)
- Yannan Fan
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Sylvie Richelme
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Emilie Avazeri
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université UM 105, CNRS UMR7258, Inserm U1068, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Françoise Helmbacher
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Rosanna Dono
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
| | - Flavio Maina
- Aix-Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille, France
- * E-mail:
| |
Collapse
|
23
|
Bagheri-Fam S, Ono M, Li L, Zhao L, Ryan J, Lai R, Katsura Y, Rossello FJ, Koopman P, Scherer G, Bartsch O, Eswarakumar JVP, Harley VR. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum Mol Genet 2015; 24:6699-710. [PMID: 26362256 DOI: 10.1093/hmg/ddv374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Patients with 46,XY gonadal dysgenesis (GD) exhibit genital anomalies, which range from hypospadias to complete male-to-female sex reversal. However, a molecular diagnosis is made in only 30% of cases. Heterozygous mutations in the human FGFR2 gene cause various craniosynostosis syndromes including Crouzon and Pfeiffer, but testicular defects were not reported. Here, we describe a patient whose features we would suggest represent a new FGFR2-related syndrome, craniosynostosis with XY male-to-female sex reversal or CSR. The craniosynostosis patient was chromosomally XY, but presented as a phenotypic female due to complete GD. DNA sequencing identified the FGFR2c heterozygous missense mutation, c.1025G>C (p.Cys342Ser). Substitution of Cys342 by Ser or other amino acids (Arg/Phe/Try/Tyr) has been previously reported in Crouzon and Pfeiffer syndrome. We show that the 'knock-in' Crouzon mouse model Fgfr2c(C342Y/C342Y) carrying a Cys342Tyr substitution displays XY gonadal sex reversal with variable expressivity. We also show that despite FGFR2c-Cys342Tyr being widely considered a gain-of-function mutation, Cys342Tyr substitution in the gonad leads to loss of function, as demonstrated by sex reversal in Fgfr2c(C342Y/-) mice carrying the knock-in allele on a null background. The rarity of our patient suggests the influence of modifier genes which exacerbated the testicular phenotype. Indeed, patient whole exome analysis revealed several potential modifiers expressed in Sertoli cells at the time of testis determination in mice. In summary, this study identifies the first FGFR2 mutation in a 46,XY GD patient. We conclude that, in certain rare genetic contexts, maintaining normal levels of FGFR2 signaling is important for human testis determination.
Collapse
Affiliation(s)
- Stefan Bagheri-Fam
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia, Department of Anatomy and Developmental Biology,
| | - Makoto Ono
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Li Li
- Department of Orthopedics and Rehabilitation, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janelle Ryan
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Raymond Lai
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yukako Katsura
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerd Scherer
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany and
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Jacob V P Eswarakumar
- Department of Orthopedics and Rehabilitation, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Vincent R Harley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia, Department of Anatomy and Developmental Biology,
| |
Collapse
|
24
|
Jung YY, Lee YK, Koo JS. The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer. Expert Opin Ther Targets 2015; 20:167-78. [PMID: 26357854 DOI: 10.1517/14728222.2016.1085971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Beclin 1 plays a crucial role in autophagy via the Beclin 1 interactome, and is involved in various biological processes such as protein sorting, chemokinesis, and cell death. Via these biologic functions, Beclin 1 contributes to both tumor suppression and tumor progression. AREAS COVERED Beclin 1 plays a key biologic function on cell homeostasis and affects tumorigenesis. In this review, detailing up-to-date knowledge on the tumorigenic role of Beclin 1, its implication in breast cancer, and its utility as a breast cancer-specific drug target is discussed. EXPERT OPINION Because Beclin 1 is expressed in breast cancer cells, Beclin 1 could be a unique, effective drug target for the prevention and treatment of breast cancer. However, the expression of Beclin 1 varies according to cancer molecular subtypes, and Beclin 1 is involved in both breast cancer suppression and tumor progression; therefore, the decision of using a Beclin 1 inducer or inhibitor should be made based on breast cancer stage and subtype.
Collapse
Affiliation(s)
- Yoon Yang Jung
- a Yonsei University College of Medicine, Severance Hospital, Department of Pathology , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea ;
| | - Yu Kyung Lee
- a Yonsei University College of Medicine, Severance Hospital, Department of Pathology , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea ;
| | - Ja Seung Koo
- a Yonsei University College of Medicine, Severance Hospital, Department of Pathology , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea ;
| |
Collapse
|
25
|
Tan BL, Norhaizan ME, Huynh K, Heshu SR, Yeap SK, Hazilawati H, Roselina K. Water extract of brewers' rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers' rice-treated rats with azoxymethane-induced colon carcinogenesis. Altern Ther Health Med 2015; 15:205. [PMID: 26122204 PMCID: PMC4487214 DOI: 10.1186/s12906-015-0730-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Brewers' rice, is locally known as temukut, is a mixture of broken rice, rice bran, and rice germ. The current study is an extension of our previous work, which demonstrated that water extract of brewers' rice (WBR) induced apoptosis in human colorectal cancer (HT-29) cells. We also identified that brewers' rice was effective in reducing the tumor incidence and multiplicity in azoxymethane (AOM)-injected colon cancer rats. Our present study was designed to identify whether WBR confers an inhibitory effect via the regulation of upstream components in the Wnt signaling pathway in HT-29 cells. To further determine whether the in vitro mechanisms of action observed in the HT-29 cells inhibit the downstream signaling target of the Wnt/β-catenin pathway, we evaluated the mechanistic action of brewers' rice in regulating the expressions and key protein markers during colon carcinogenesis in male Sprague-Dawley rats. METHODS The mRNA levels of several upstream-related genes in the Wnt signaling pathway in HT-29 cells treated with WBR were determined by quantitative real-time PCR analyses. Caspase-3 and -8 were evaluated using a colorimetric assay. Male Sprague-Dawley rats were administered two intraperitoneal injections of AOM in saline (15 mg/kg body weight) over a two-week period and received with 10, 20, and 40% (w/w) brewers' rice. The expressions and protein levels of cyclin D1 and c-myc were evaluated by immunohistochemical staining and western blotting, respectively. RESULTS The overall analyses revealed that the treatment of HT-29 cells with WBR inhibited Wnt signaling activity through upregulation of the casein kinase 1 (CK1) and adenomatous polyposis coli (APC) mRNA levels. We discovered that the treatment of HT-29 cells with WBR resulted in the induction of apoptosis by the significant activation of caspase-3 and -8 activities compared with the control (P < 0.05). In vivo analyses indicated that brewers' rice diminished the β-catenin, cyclin D1, and c-myc protein levels. CONCLUSIONS We provide evidence that brewers' rice can induce apoptosis and inhibit the proliferation of HT-29 cells through regulation of caspase-dependent pathways and inhibit the Wnt/β-catenin downstream signaling pathway in vivo. We suggest that brewers' rice may be a useful dietary agent for colorectal cancer.
Collapse
|
26
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
27
|
Hu B, Jiang D, Chen Y, Wei L, Zhang S, Zhao F, Ni R, Lu C, Wan C. High CHMP4B expression is associated with accelerated cell proliferation and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol 2015; 36:2569-81. [PMID: 25874485 DOI: 10.1007/s13277-014-2873-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/18/2014] [Indexed: 01/17/2023] Open
Abstract
Charged multivesicular body protein 4B (CHMP4B), a subunit of the endosomal sorting complex required for transport (ESCRT)-III complex, plays an important part in cytokinetic membrane abscission and the late stage of mitotic cell division. In this study, we explored the prognostic significance of CHMP4B in human hepatocellular carcinoma (HCC) and its impact on the physiology of HCC cells. Western blot and immunohistochemistrical analyses showed that CHMP4B was significantly upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Meanwhile, clinicopathological analysis revealed that high CHMP4B expression was correlated with multiple clinicopathological variables, including AFP, cirrhosis, AJCC stage, Ki-67 expression, and poor prognosis. More importantly, univariate and multivariate survival analyses demonstrated that CHMP4B served as an independent prognostic factor for survival of HCC patients. Using HCC cell cultures, we found that the expression of CHMP4B was progressively upregulated after the release from serum starvation. To verify whether CHMP4B could regulate the proliferation of HCC cells, CHMP4B was knocked down through the transfection of CHMP4B-siRNA oligos. Flow cytometry and CCK-8 assays indicated that interference of CHMP4B led to cell cycle arrest and proliferative impairment of HCC cells. Additionally, depletion of CHMP4B expression could increase the sensitivity to doxorubicin in HepG2 and Huh7 cells. Taken together, our results implied that CHMP4B could be a promising prognostic biomarker as well as a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene 2014; 34:4613-23. [PMID: 25500539 DOI: 10.1038/onc.2014.390] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
There is controversy over the role of glycogen synthase kinase-3 (GSK-3) in cancer progression. Recent work has implicated GSK-3 in the regulation of mammalian target of rapamycin (mTOR), a known player in malignant transformation. Autophagy, a self-degradation pathway, is inhibited by mTOR and is tightly associated with cell survival and tumor growth. Here we show that GSK-3 suppresses autophagy via mTOR complex-1 (mTORC1) and lysosomal regulation. We show that overexpression of GSK-3 isoforms (GSK-3α and GSK-3β) activated mTORC1 and suppressed autophagy in MCF-7 human breast cancer cells as indicated by reduced beclin-1 levels and upregulation of sequestosome 1 (p62/SQSTM1). Further, overexpression of GSK-3 increased the number of autophagosomes and inhibited autophagic flux. This activity was directly related to reduced lysosomal acidification triggered by GSK-3 (in which GSK-3β has a stronger impact). We found that lysosomal acidification is reduced in MCF-7 cells that also exhibit increased levels of autophagosomes and p62/SQSTM1 and increased activity of mTORC1. Subsequently, treating cells with GSK-3 inhibitors restored lysosomal acidification, enhanced autophagic flux and inhibited mTORC1. Furthermore, GSK-3 inhibitors inhibited cell proliferation. We provide evidence that GSK3-mediated mTORC1 activity and GSK-3-mediated lysosomal acidification occur via distinct pathways, yet both mTORC1 and lysosomes control cell growth. Finally, we show that GSK-3-reduced lysosomal acidification inhibits endocytic clearance as demonstrated by reduced endocytic degradation of the epidermal growth factor receptor. Taken together, our study places GSK-3 as a key regulator coordinating cellular homeostasis. GSK-3 inhibitors may be useful in targeting mTORC1 and lysosomal acidification for cancer therapy.
Collapse
|
29
|
Yu J, Kong CZ, Zhang Z, Zhan B, Jiang ZM. Aplasia Ras homolog member I expression induces apoptosis in renal cancer cells via the β-catenin signaling pathway. Mol Med Rep 2014; 11:475-81. [PMID: 25339197 DOI: 10.3892/mmr.2014.2742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
In numerous types of cancer, the Ras-associated tumor suppressor gene aplasia Ras homolog member I (ARHI), is downregulated. However, the function of ARHI in renal cancer remains to be elucidated. The present study investigated whether the suppressor gene ARHI influenced the growth of renal cancer cell lines and aimed to elucidate its mechanism of action, using the techniques of cell biology and molecular pathology. To the best of our knowledge, the present study was the first to determine the effects of ARHI on human renal cancer cells in vivo and in vitro. It was demonstrated that ARHI exhibited a tumor suppressor function in OS-RC-2 cells and acted via the β-catenin signaling pathway. It was additionally confirmed that the levels of ARHI messenger RNA and protein in renal cancer tissues were lower than those in matched normal tissues. These results provided a novel insight into the possible therapeutic applications of ARHI in renal cancer.
Collapse
Affiliation(s)
- Jian Yu
- Department of Urology, Institute of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chui-Ze Kong
- Department of Urology, Institute of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Zhang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Zhan
- Department of Urology, Institute of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhen-Ming Jiang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
30
|
New series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives: synthesis, antitumor activity, EGFR tyrosine kinase inhibitory activity and molecular modeling studies. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1114-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Yaqoob U, Jagavelu K, Shergill U, de Assuncao T, Cao S, Shah VH. FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway. PLoS One 2014; 9:e98130. [PMID: 24848261 PMCID: PMC4029959 DOI: 10.1371/journal.pone.0098130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 12/26/2022] Open
Abstract
Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.
Collapse
Affiliation(s)
- Usman Yaqoob
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kumaravelu Jagavelu
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Uday Shergill
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thiago de Assuncao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sheng Cao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| | - Vijay H. Shah
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| |
Collapse
|
32
|
Tong S, Sun C, Cao X, Zheng Q, Zhang H, Firempong CK, Feng Y, Yang Y, Yu J, Xu X. Development and thermodynamic evaluation of novel lipid raft stationary phase chromatography for screening potential antitumor agents. Biomed Chromatogr 2014; 28:1615-23. [PMID: 24706535 DOI: 10.1002/bmc.3189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 11/06/2022]
Abstract
Novel lipid raft stationary phase chromatography (LRSC), with lipid rafts that contain abundant tropomyosin-related tyrosine kinase A receptors immobilized on the stationary phase, was developed for a high-throughput screening of potentially active antitumor agents. Lestaurtinib was used as a model compound to determine the operational parameters of the LRSC. Of all the factors considered, the particle size of column packing, the column temperature and the flow rate were of immense importance in determining the performance of the established LRSC system. In order to profoundly comprehend the binding interaction between the model drug and the receptors on the column, thermodynamic studies were employed. The results revealed that the interaction was spontaneous and exothermic, a typical enthalpy-driven process. Additionally, the primary forces were hydrogen bonding and van der Waals forces. In evaluating the applicability of the method, active extracts from Albizziae Cortex were screened out using the LRSC system under the optimized conditions. The bioactive components were successfully confirmed by the MTT assay. In conclusion, it could be said that the LRSC is a good model for screening potential antitumor agents because of its viability, rapid response and scalable features.
Collapse
Affiliation(s)
- Shanshan Tong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shaughnessy R, Retamal C, Oyanadel C, Norambuena A, López A, Bravo-Zehnder M, Montecino FJ, Metz C, Soza A, González A. Epidermal growth factor receptor endocytic traffic perturbation by phosphatidate phosphohydrolase inhibition: new strategy against cancer. FEBS J 2014; 281:2172-89. [PMID: 24597955 DOI: 10.1111/febs.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/02/2014] [Accepted: 02/26/2014] [Indexed: 01/11/2023]
Abstract
Epidermal growth factor receptor (EGFR) exaggerated (oncogenic) function is currently targeted in cancer treatment with drugs that block receptor ligand binding or tyrosine kinase activity. Because endocytic trafficking is a crucial regulator of EGFR function, its pharmacological perturbation might provide a new anti-tumoral strategy. Inhibition of phosphatidic acid (PA) phosphohydrolase (PAP) activity has been shown to trigger PA signaling towards type 4 phosphodiesterase (PDE4) activation and protein kinase A inhibition, leading to internalization of empty/inactive EGFR. Here, we used propranolol, its l- and d- isomers and desipramine as PAP inhibitors to further explore the effects of PAP inhibition on EGFR endocytic trafficking and its consequences on EGFR-dependent cancer cell line models. PAP inhibition not only made EGFR inaccessible to stimuli but also prolonged the signaling lifetime of ligand-activated EGFR in recycling endosomes. Strikingly, such endocytic perturbations applied in acute/intermittent PAP inhibitor treatments selectively impaired cell proliferation/viability sustained by an exaggerated EGFR function. Phospholipase D inhibition with FIPI (5-fluoro-2-indolyl des-chlorohalopemide) and PDE4 inhibition with rolipram abrogated both the anti-tumoral and endocytic effects of PAP inhibition. Prolonged treatments with a low concentration of PAP inhibitors, although without detectable endocytic effects, still counteracted cell proliferation, induced apoptosis and decreased anchorage-independent growth of cells bearing EGFR oncogenic influences. Overall, our results show that PAP inhibitors can counteract EGFR oncogenic traits, including receptor overexpression or activating mutations resistant to current tyrosine kinase inhibitors, perturbing EGFR endocytic trafficking and perhaps other as yet unknown processes, depending on treatment conditions. This puts PAP activity forward as a new suitable target against EGFR-driven malignancy.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kon S, Kobayashi N, Satake M. Altered trafficking of mutated growth factor receptors and their associated molecules: implication for human cancers. CELLULAR LOGISTICS 2014; 4:e28461. [PMID: 25210647 PMCID: PMC4156482 DOI: 10.4161/cl.28461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Ligand-stimulated receptor tyrosine kinases (RTKs) are phosphorylated/ubiquitinated, endocytosed and transported to the lysosomes via endosomes/multivesicular bodies, resulting in the attenuation of signal transmission. If this physiological mechanism of RTK signal downregulation is perturbed, signal transduction persists and may contribute to cellular transformation. This article presents several such examples. In some cases, endocytosis is impaired, and the activated RTK remains on the plasma membrane. In other cases, the activated RTK is endocytosed into endosomes/multivesicular bodies, but not subsequently sorted to the lysosomes for degradation. The latter cases indicate that even endocytosed RTKs can transmit signals. Transport of RTKs is accomplished via the formation and movement of membrane vesicles. Blockage or delay of endocytosis/trafficking can be caused by genetic alterations in the RTK itself or by mutations in CBL, Arf GAPs, or other components involved in internalization and vesicle transport. A survey of the literature indicates that, in some cases, even RTKs synthesized de novo can initiate signaling at the endoplasmic reticulum/Golgi before reaching the plasma membrane. The spectrum of molecules targeted by the signal is likely to be different between cell surface- and endoplasmic reticulum/Golgi-localized RTKs.
Collapse
Affiliation(s)
- Shunsuke Kon
- Institute of Development, Aging and Cancer, Tohoku University; Sendai, Japan
| | - Nobuhide Kobayashi
- Institute of Development, Aging and Cancer, Tohoku University; Sendai, Japan
| | - Masanobu Satake
- Institute of Development, Aging and Cancer, Tohoku University; Sendai, Japan
| |
Collapse
|
35
|
Chen FJ, Lee KW, Lai CC, Lee SP, Shen HH, Tsai SP, Liu BH, Wang LM, Liou GG. Structure of native oligomeric Sprouty2 by electron microscopy and its property of electroconductivity. Biochem Biophys Res Commun 2013; 439:351-6. [PMID: 24012675 DOI: 10.1016/j.bbrc.2013.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.
Collapse
Affiliation(s)
- Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Talati R, Vanderpoel A, Eladdadi A, Anderson K, Abe K, Barroso M. Automated selection of regions of interest for intensity-based FRET analysis of transferrin endocytic trafficking in normal vs. cancer cells. Methods 2013; 66:139-52. [PMID: 23994873 DOI: 10.1016/j.ymeth.2013.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/14/2022] Open
Abstract
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells.
Collapse
Affiliation(s)
- Ronak Talati
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Andrew Vanderpoel
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Amina Eladdadi
- Department of Mathematics, The College of Saint Rose, 432 Western Avenue, Albany, NY 12203, USA
| | - Kate Anderson
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Ken Abe
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
37
|
Jin Z, Han YX, Han XR. Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/β-catenin signaling pathway. Nutr Cancer 2013; 65:126-31. [PMID: 23368922 DOI: 10.1080/01635581.2013.741753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Osteosarcoma (OS) is a high-grade malignant bone tumor. Therefore, using both in vitro and in vivo assays, the effects of degraded iota-Carrageenan (ι-CGN) on a human osteosarcoma cell line, HOS, were examined. Degraded ι-CGN was observed to induce apoptosis and G(1) phase arrest in HOS cells. Moreover, degraded ι-CGN suppressed tumor growth in established xenograft tumor models. Accordingly, the survival rate of these mice was significantly higher than that of mice bearing tumors treated with native ι-CGN or PBS. In addition, the formation of intratumoral microvessels was inhibited following treatment with degraded ι-CGN. In Western blot assays, degraded ι-CGN was found to inhibit the Wnt/β-catenin signaling pathway. Overall, these studies demonstrate the antitumor activity of degraded ι-CGN toward the OS cell line, HOS. Moreover, valuable insight into the mechanisms mediated by degraded ι-CGN was obtained, potentially leading to the identification of novel treatments for OS. However, additional studies are needed to confirm these results in other cell types, particularly in human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China.
| | | | | |
Collapse
|
38
|
Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis. Int J Gynecol Pathol 2013; 31:570-9. [PMID: 23018215 DOI: 10.1097/pgp.0b013e31824fe289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endometrial stromal sarcomas (ESS) are rare uterine malignant mesenchymal neoplasms, which are currently treated by surgery, as effective adjuvant therapies have not yet been established. Tyrosine kinase inhibitors have rarely been applied in ESS therapy, with few reports describing imatinib responsivity. The aim of this study was to analyze the status of different tyrosine kinase receptors in an ESS series, in order to evaluate their potential role as molecular targets. Immunohistochemistry was performed for EGFR, c-KIT, PDGFR-α, PDGFR-β, and ABL on 28 ESS. EGFR, PDGFR-α, and PDGFR-β gene expression was investigated by real-time polymerase chain reaction (qRT-PCR) on selected cases. "Hot-spot" mutations were screened for on EGFR, c-KIT, PDGFR-α, and PDGFR-β genes, by sequencing. All analysis was executed from formalin-fixed, paraffin-embedded specimens. Immunohistochemical overexpression of 2 or more tyrosine kinase receptors was observed in 18 of 28 tumors (64%), whereas only 5 tumors were consistently negative. Gene expression profiles were concordant with immunohistochemical overexpression in only 1 tumor, which displayed both high mRNA levels and specific immunoreactivity for PDGFR-α, and PDGFR-β. No activating mutations were found on the tumors included in the study. This study confirms that TKRs expression is frequently observed in ESS. Considering that the responsiveness to tyrosine kinase inhibitors is known to be related to the presence of specific activating mutations or gene over-expression, which are not detectable in ESS, TKRs immunohistochemical over-expression alone should not be considered as a reliable marker for targeted therapies in ESS. Specific post-translational abnormalities, responsible for activation of TKRs, should be further investigated.
Collapse
|
39
|
Ceregido MA, Garcia-Pino A, Ortega-Roldan JL, Casares S, López Mayorga O, Bravo J, van Nuland NAJ, Azuaga AI. Multimeric and differential binding of CIN85/CD2AP with two atypical proline-rich sequences from CD2 and Cbl-b*. FEBS J 2013; 280:3399-415. [PMID: 23663663 DOI: 10.1111/febs.12333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
Abstract
The CD2AP (CD2-associated protein) and CIN85 (Cbl-interacting protein of 85 kDa) adaptor proteins each employ three Src homology 3 (SH3) domains to cluster protein partners and ensure efficient signal transduction and down-regulation of tyrosine kinase receptors. Using NMR, isothermal titration calorimetry and small-angle X-ray scattering methods, we have characterized several binding modes of the N-terminal SH3 domain (SH3A) of CD2AP and CIN85 with two natural atypical proline-rich regions in CD2 (cluster of differentiation 2) and Cbl-b (Casitas B-lineage lymphoma), and compared these data with previous studies and published crystal structures. Our experiments show that the CD2AP-SH3A domain forms a type II dimer with CD2 and both type I and type II dimeric complexes with Cbl-b. Like CD2AP, the CIN85-SH3A domain forms a type II complex with CD2, but a trimeric complex with Cbl-b, whereby the type I and II interactions take place at the same time. Together, these results explain how multiple interactions among similar SH3 domains and ligands produce a high degree of diversity in tyrosine kinase, cell adhesion or T-cell signaling pathways.
Collapse
Affiliation(s)
- M Angeles Ceregido
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
41
|
Endocytic adaptor protein epsin is elevated in prostate cancer and required for cancer progression. ISRN ONCOLOGY 2013; 2013:420597. [PMID: 23691361 PMCID: PMC3649151 DOI: 10.1155/2013/420597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 11/29/2022]
Abstract
Epsins have an important role in mediating clathrin-mediated endocytosis of ubiquitinated cell surface receptors. The potential role for epsins in tumorigenesis and cancer metastasis by regulating intracellular signaling pathways has largely not been explored. Epsins are reportedly upregulated in several types of cancer including human skin, lung, and canine mammary cancers. However, whether their expression is elevated in prostate cancer is unknown. In this study, we investigated the potential role of epsins in prostate tumorigenesis using the wild type or epsin-deficient human prostate cancer cells, LNCaP, in a human xenograft model, and the spontaneous TRAMP mouse model in wild type or epsin-deficient background. Here, we reported that the expression of epsins 1 and 2 is upregulated in both human and mouse prostate cancer cells and cancerous tissues. Consistent with upregulation of epsins in prostate tumors, we discovered that depletion of epsins impaired tumor growth in both the human LNCaP xenograft and the TRAMP mouse prostate. Furthermore, epsin depletion significantly prolonged survival in the TRAMP mouse model. In summary, our findings suggest that epsins may act as oncogenic proteins to promote prostate tumorigenesis and that depletion or inhibition of epsins may provide a novel therapeutic target for future prostate cancer therapies.
Collapse
|
42
|
Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, Sakamoto D, Higuchi Y, Kiyonari H, Asano K, Iwakura Y, Fukumoto M, Osato M, Sanada M, Ogawa S, Nakamura T, Satake M. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. J Clin Invest 2013; 123:1123-37. [PMID: 23434593 DOI: 10.1172/jci63711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
The formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance. Smap1-deficent mice exhibited healthy growth, but their erythroblasts showed enhanced transferrin endocytosis. In mast cells cultured in SCF, Smap1 deficiency did not affect the internalization of c-KIT but impaired the sorting of internalized c-KIT from multivesicular bodies to lysosomes, resulting in intracellular accumulation of undegraded c-KIT that was accompanied by enhanced activation of ERK and increased cell growth. Interestingly, approximately 50% of aged Smap1-deficient mice developed anemia associated with morphologically dysplastic cells of erythroid-myeloid lineage, which are hematological abnormalities similar to myelodysplastic syndrome (MDS) in humans. Furthermore, some Smap1-deficient mice developed acute myeloid leukemia (AML) of various subtypes. Collectively, to our knowledge these results provide the first evidence in a mouse model that the deregulation of clathrin-dependent membrane trafficking may be involved in the development of MDS and subsequent AML.
Collapse
Affiliation(s)
- Shunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Muppirala M, Gupta V, Swarup G. Emerging role of tyrosine phosphatase, TCPTP, in the organelles of the early secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1125-32. [PMID: 23328081 DOI: 10.1016/j.bbamcr.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
T-cell protein tyrosine phosphatase, TCPTP, is a ubiquitously expressed non-receptor type tyrosine phosphatase. There are two splice variants of TCPTP, TC48 and TC45, which differ in their sub-cellular localizations and functions. TC45 is a nuclear protein, which has both nuclear and cytoplasmic substrates, and is involved in many signaling events including endocytic recycling of platelet-derived growth factor β-receptor. TC48 is a predominantly endoplasmic reticulum (ER)-localizing protein, which dephosphorylates some of the substrates of TC45 at the ER. However, recently few specific substrates for TC48 have been identified. These include C3G (RapGEF1), syntaxin 17 and BCR-Abl. TC48 moves from the ER to post-ER compartments, the ER-Golgi intermediate compartment (ERGIC) and Golgi, and it is retrieved back to the ER. The retrieval of ER proteins from post-ER compartments is generally believed as a mechanism of targeting these proteins to the ER. However, it is possible that this shuttling of TC48 serves to regulate signaling in the early secretory pathway. For example, TC48 dephosphorylates phosphorylated C3G at the Golgi and inhibits neurite outgrowth. TC48 interacts with and dephosphorylates syntaxin 17, which is an ER and ERGIC-localizing protein involved in vesicle transport. A yeast two-hybrid screen identified several unique interacting partners of TC48 belonging to two groups - proteins involved in vesicle trafficking and proteins involved in cell adhesion. These interacting proteins could be substrates or regulators of TC48 function and localization. Thus, the role of TC48 seems to be more diverse, which is still to be explored.
Collapse
Affiliation(s)
- Madhavi Muppirala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
44
|
Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, Klimaschewski L. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol 2013; 139:135-48. [PMID: 22903848 DOI: 10.1007/s00418-012-1009-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase promoting tumor growth in a variety of cancers, including glioblastoma. Binding of FGFs triggers the intracellular Ras/Raf/ERK signaling pathway leading to cell proliferation. Down-regulation of FGFR1 and, consequently, inactivation of its signaling pathways represent novel treatment strategies for glioblastoma. In this study, we investigated the internalization and endocytic trafficking of FGFR1 in the human glioma cell line U373. Stimulation with FGF-2 induced cell rounding accompanied by increased BrdU and pERK labeling. The overexpression of FGFR1 (without FGF treatment) resulted in enhanced phosphorylated FGFR1 suggesting receptor autoactivation. Labeled ligand (FGF-2-Cy5.5) was endocytosed in a clathrin- and caveolin-dependent manner. About 25 % of vesicles carrying fluorescently tagged FGFR1 represented early endosomes, 15 % transferrin-positive recycling endosomes and 40 % Lamp1-positive late endosomal/lysosomal vesicles. Stimulation with FGF-2 increased the colocalization rate in each of these vesicle populations. The treatment with the lysosomal inhibitor leupeptin resulted in FGFR1 accumulation in lysosomes, but did not enhance receptor recycling as observed in neurons. Analysis of vesicle distributions revealed an accumulation of recycling endosomes in the perinuclear region. In conclusion, the shuttling of receptor tyrosine kinases can be directly visualized by overexpression of fluorescently tagged receptors which respond to ligand stimulation and follow the recycling and degradation pathways similarly to their endogenous counterparts.
Collapse
Affiliation(s)
- Regina Irschick
- Division of Neuroanatomy, Medical University Innsbruck, Muellerstrasse 59, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Tessneer KL, Cai X, Pasula S, Dong Y, Liu X, Chang B, McManus J, Hahn S, Yu L, Chen H. Epsin Family of Endocytic Adaptor Proteins as Oncogenic Regulators of Cancer Progression. ACTA ACUST UNITED AC 2013; 2:144-150. [PMID: 24501612 PMCID: PMC3911794 DOI: 10.6000/1929-2279.2013.02.03.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor angiogenesis, tumor cell proliferation, and tumor cell migration result from an accumulation of oncogenic mutations that alter protein expression and the regulation of various signaling cascades. Epsins, a small family of clathrin-mediated endocytic adaptor proteins, are reportedly upregulated in a variety of cancers. Importantly, loss of epsins protects against tumorigenesis, thus supporting an oncogenic role for epsins in cancer. Although a clear relationship between epsins and cancer has evolved, the importance of this relationship with regards to cancer progression and anti-cancer therapies remains unclear. In this review, we summarize epsins’ role as endocytic adaptors that modulate VEGF and Notch signaling through the regulated internalization of VEGFR2 and trans-endocytosis of Notch receptors. As both VEGF and Notch signaling have significant implications in angiogenesis, we focus on the newly identified role for epsins in tumor angiogenesis. In addition to epsins’ canonical role in receptor-mediated endocytosis, and the resulting downstream signaling regulation, we discuss the non-canonical role of epsins as regulators of small GTPases and the implications this has on tumor cell proliferation and invasion. Given epsins’ identified roles in tumor angiogenesis, tumor cell proliferation, and tumor cell invasion, we predict that the investigative links between epsins and cancer will provide new insights into the importance of endocytic adaptors and their potential use as future therapeutic targets.
Collapse
Affiliation(s)
- Kandice L Tessneer
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Xiaofeng Cai
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Satish Pasula
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Yunzhou Dong
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Xiaolei Liu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA ; Biochemistry and Molecular Biology Department, University of Oklahoma Health Science Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Baojun Chang
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - John McManus
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Scott Hahn
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Lili Yu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA
| | - Hong Chen
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK 73104, USA ; Biochemistry and Molecular Biology Department, University of Oklahoma Health Science Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| |
Collapse
|
46
|
Takeshita K, Tezuka T, Isozaki Y, Yamashita E, Suzuki M, Kim M, Yamanashi Y, Yamamoto T, Nakagawa A. Structural flexibility regulates phosphopeptide-binding activity of the tyrosine kinase binding domain of Cbl-c. ACTA ACUST UNITED AC 2012; 152:487-95. [DOI: 10.1093/jb/mvs085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
He Y, Yu Z, Ge D, Wang-Sattler R, Thiesen HJ, Xie L, Li Y. Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks. Protein Cell 2012; 3:701-13. [PMID: 22802048 DOI: 10.1007/s13238-012-2049-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022] Open
Abstract
Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of "response context" to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the "response contexts" presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Systems Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Sannang RT, Robertson H, Siddall NA, Hime GR. Akap200 suppresses the effects of Dv-cbl expression in the Drosophila eye. Mol Cell Biochem 2012; 369:135-45. [PMID: 22773306 DOI: 10.1007/s11010-012-1376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/20/2012] [Indexed: 11/27/2022]
Abstract
The Drosophila melanogaster orthologue of the c-Cbl proto-oncogene acts to downregulate signalling from receptor tyrosine kinases by enhancing endocytosis of activated receptors. Expression of an analogue of the C-terminally truncated v-Cbl oncogene, Dv-cbl, in the developing Drosophila eye conversely leads to excess signalling and disruption to the well-ordered adult compound eye. Co-expression of activated Ras with Dv-cbl leads to a severe disruption of eye development. We have used a transposon-based inducible expression system to screen for molecules that can suppress the Dv-cbl phenotype and have identified an allele that upregulates the A-kinase anchoring protein, Akap200. Overexpression of Akap200 not only suppresses the phenotype caused by Dv-cbl expression, but also the severe disruption to eye development caused by the combined expression of Dv-cbl and activated Ras. Akap200 is also endogenously expressed in the developing Drosophila eye at a level that modulates the effects of excessive signalling caused by expression of Dv-cbl.
Collapse
Affiliation(s)
- Rowena T Sannang
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
49
|
Zhang F, Tang JM, Wang L, Shen JY, Zheng L, Wu PP, Zhang M, Yan ZW. Phosphorylation of epidermal growth factor receptor and chromosome 7 polysomy in gastric adenocarcinoma. J Dig Dis 2012; 13:350-9. [PMID: 22713084 DOI: 10.1111/j.1751-2980.2012.00597.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the phosphorylation of epidermal growth factor receptor (EGFR) and its potentially associated chromosomal aberrations in gastric adenocarcinoma. METHODS Phosphorylated EGFR (pEGFR) was detected by immunohistochemistry on 145 specimens including 60 tumoral, 60 non-tumoral, 12 tumor-adjacent intramucosal dysplasia from patients with gastric adenocarcinoma and 13 mucosae from cancer-free patients. EGFR gene amplification and chromosome 7 (Chr-7) polysomy were detected by fluorescence in situ hybridization. RESULTS Positivity of pEGFR was found in 50 tumoral (83.3%) and 42 non-tumoral specimens (70.0%). There was an association between tumoral and non-tumoral zones on immunostains of pEGFR (r = 0.353, P = 0.006). Nuclear pEGFR usually presented in mucosae with Helicobacter pylori infection, stromal reaction or vascular invasion. Cytoplasmic pEGFR was correlated with local cancer extension (r = 0.337, P = 0.014) and inversely related with gastrokine 2, which had been previously detected in the same specimens. Eleven intramucosal dysplastic specimens were also positive for pEGFR while 13 mucosae from cancer-free patients were all negative. No EGFR gene amplification was observed. However, seven tumor specimens showed Chr-7 polysomy (11.7%) in which 5 were strongly positive for pEGFR. CONCLUSIONS EGFR phosphorylation may be one of the mechanisms that promote tumor initiation and expansion in gastric adenocarcinoma. Detection of pEGFR with analysis of its nuclear or cytoplasmic patterns could be clinicopathologically valuable. Chr-7 polysomy may partially contribute to EGFR activation in gastric adenocarcinoma, although its role does not predominate.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Ubiquitination of epidermal growth factor receptor (EGFR) is required for downregulation of the receptor by endocytosis. Impairment of this pathway results in constitutively active EGFR, which is associated with carcinogenesis, particularly in lung cancer. We previously demonstrated that the deubiquitinating enzyme ubiquitin-specific protease 2a (USP2a) has oncogenic properties. Here, we show a new role for USP2a as a regulator of EGFR endocytosis. USP2a localizes to early endosomes and associates with EGFR, stabilizing the receptor, which retains active downstream signaling. HeLa cells transiently expressing catalytically active, but not mutant (MUT), USP2a show increased plasma membrane-localized EGFR, as well as decreased internalized and ubiquitinated EGFR. Conversely, USP2a silencing reverses this phenotype. Importantly, USP2a prevents the degradation of MUT in addition to wild-type EGFR. Finally, we observed that USP2a and EGFR proteins are coordinately overexpressed in non-small cell lung cancers. Taken together, our data indicate that USP2a antagonizes EGFR endocytosis and thus amplifies signaling activity from the receptor. Our findings suggest that regulation of deubiquitination could be exploited therapeutically in cancers overexpressing EGFR.
Collapse
|