1
|
Abi-Raad R, Xu B, Gilani S, Ghossein RA, Prasad ML. EIF1AX mutation in thyroid nodules: a histopathologic analysis of 56 cases in the context of institutional practices. Virchows Arch 2024; 485:859-867. [PMID: 39225726 PMCID: PMC11912518 DOI: 10.1007/s00428-024-03914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
EIF1AX mutation has been identified as a driver mutation for papillary thyroid carcinoma (PTC) by The Cancer Genome Atlas (TCGA) study. Subsequent studies confirmed this mutation in PTC and Anaplastic Thyroid Carcinoma (ATC) but also reported EIF1AX mutation in Follicular nodular disease (FND) and benign thyroid nodules. In this study, we review thyroid nodules with EIF1AX mutation from two institutions: a tertiary care hospital (YNHH, n = 22) and a major cancer referral center (MSKCC, n = 34) and report the varying histomorphology in the context of additional genetic abnormalities and institutional practices. Pathology diagnoses were reviewed according to the WHO 5th edition and correlated with the type of EIF1AX mutation and additional concurrent molecular alterations, if any. Most cases were splice site type mutations. Cases consisted of 9 FND, 7 follicular (FA) or oncocytic adenomas (OA), 2 non-invasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) and 38 follicular-cell derived thyroid carcinomas. Of 8 cases with isolated EIF1AX mutation, 7 were FND, FA or OA (88%) and one was an oncocytic carcinoma (12%). Of 12 cases with EIF1AX and one additional molecular alteration, 9 (75%) were FND, FA or OA, 2 (17%) were NIFTPs and one (8%) was a poorly differentiated thyroid carcinoma. All 36 cases with EIF1AX mutation and ≥ 2 molecular alterations were malignant (100%) and included TP53 and TERT promoter mutations associated with ATC (n = 8) and high-grade follicular cell-derived non-anaplastic carcinoma (HGC, n = 2). Isolated EIF1AX mutation was noted only in thyroid nodules seen at YNHH and were predominantly encountered in benign thyroid nodules including FND. Accumulation of additional genetic abnormalities appears to be progressively associated with malignant tumors.
Collapse
Affiliation(s)
- Rita Abi-Raad
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, CB 510, New Haven, CT, 06520, USA.
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Syed Gilani
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, CB 510, New Haven, CT, 06520, USA
- Department of Pathology, Albany Medical Center, Albany Medical College, Albany, NY, USA
| | - Ronald A Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manju L Prasad
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, CB 510, New Haven, CT, 06520, USA
| |
Collapse
|
2
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Wegman R, Langberg M, Davis RB, Liu X, Luo M, Yu MC, Walker SE. Protein Arginine Methylation of the Translation Initiation Factor eIF1A Increases Usage of a Near-cognate Start Codon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608280. [PMID: 39185183 PMCID: PMC11343201 DOI: 10.1101/2024.08.16.608280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Protein arginine methylation has emerged as a key post-translational modification responsible for many facets of eukaryotic gene expression. To better understand the extent of this modification in cellular pathways, we carried out bioorthogonal methylation profiling in Saccharomyces cerevisiae to comprehensively identify the in vivo substrates of the major yeast protein arginine methyltransferase Hmt1. Gene ontology analysis of candidate substrates revealed an enrichment of proteins involved in the process of translation. We verified one such factor, eIF1A, by in vitro methylation. Three sites on eIF1A were found to be responsible for its methylation: R13, R14, and R62, with varied capacity by which each site contributed to the overall methylation capacity in vitro. To determine the role of methylation in eIF1A function, we used a battery of arginine-to-alanine substitution mutants to evaluate translation fidelity in these mutants. Our data show that substitution mutants at R13 and R14 in the N-terminal tail improved the fidelity of start codon recognition in an initiation fidelity assay. Overall, our data suggest that Hmt1-mediated methylation of eIF1A fine-tunes the fidelity of start codon recognition for proper translation initiation.
Collapse
Affiliation(s)
| | - Michael Langberg
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Richoo B. Davis
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, United States of America
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Xiaozhuo Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Michael C. Yu
- Address correspondence to: M.L, M.C.Y., and S.E.W., Minkui Luo, Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY. 10065, Fax: 646-888-3166, ; Sarah E. Walker, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975, ; Michael C. Yu, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975,
| | - Sarah E. Walker
- Address correspondence to: M.L, M.C.Y., and S.E.W., Minkui Luo, Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY. 10065, Fax: 646-888-3166, ; Sarah E. Walker, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975, ; Michael C. Yu, Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY. 14260, Fax: 716-645-2975,
| |
Collapse
|
4
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
She R, Luo J, Weissman JS. Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity. Nucleic Acids Res 2023; 51:6355-6369. [PMID: 37144468 PMCID: PMC10325891 DOI: 10.1093/nar/gkad329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
The translation initiation machinery and the ribosome orchestrate a highly dynamic scanning process to distinguish proper start codons from surrounding nucleotide sequences. Here, we performed genome-wide CRISPRi screens in human K562 cells to systematically identify modulators of the frequency of translation initiation at near-cognate start codons. We observed that depletion of any eIF3 core subunit promoted near-cognate start codon usage, though sensitivity thresholds of each subunit to sgRNA-mediated depletion varied considerably. Double sgRNA depletion experiments suggested that enhanced near-cognate usage in eIF3D depleted cells required canonical eIF4E cap-binding and was not driven by eIF2A or eIF2D-dependent leucine tRNA initiation. We further characterized the effects of eIF3D depletion and found that the N-terminus of eIF3D was strictly required for accurate start codon selection, whereas disruption of the cap-binding properties of eIF3D had no effect. Lastly, depletion of eIF3D activated TNFα signaling via NF-κB and the interferon gamma response. Similar transcriptional profiles were observed upon knockdown of eIF1A and eIF4G2, which also promoted near-cognate start codon usage, suggesting that enhanced near-cognate usage could potentially contribute to NF-κB activation. Our study thus provides new avenues to study the mechanisms and consequences of alternative start codon usage.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jingchuan Luo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Zhang J, Pi SB, Zhang N, Guo J, Zheng W, Leng L, Lin G, Fan HY. Translation regulatory factor BZW1 regulates preimplantation embryo development and compaction by restricting global non-AUG Initiation. Nat Commun 2022; 13:6621. [PMID: 36333315 PMCID: PMC9636173 DOI: 10.1038/s41467-022-34427-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Protein synthesis is an essential step in gene expression during the development of mammalian preimplantation embryos. This is a complex and highly regulated process. The accuracy of the translation initiation codon is important in various gene expression programs. However, the mechanisms that regulate AUG and non-AUG codon initiation in early embryos remain poorly understood. BZW1 is a key factor in determining the mRNA translation start codon. Here, we show that BZW1 is essential for early embryonic development in mice. Bzw1-knockdown embryos fail to undergo compaction, and show decreased blastocyst formation rates. We also observe defects in the differentiation capacity and implantation potential after Bzw1 interference. Further investigation revealed that Bzw1 knockdown causes the levels of translation initiation with CUG as the start codon to increase. The decline in BZW1 levels result in a decrease in protein synthesis in preimplantation embryos, whereas the total mRNA levels are not altered. Therefore, we concluded that BZW1 contributes to protein synthesis during early embryonic development by restricting non-AUG translational initiation.
Collapse
Affiliation(s)
- Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
- College of Life Science, Hunan Normal University, 410006, Changsha, China
| | - Shuai-Bo Pi
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Nan Zhang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Lizhi Leng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, 410078, Changsha, China.
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, 410078, Changsha, China.
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
7
|
Karslioglu French E, Nikitski AV, Yip L, Nikiforova MN, Nikiforov YE, Carty SE. Clinicopathological features and outcomes of thyroid nodules with EIF1AX mutations. Endocr Relat Cancer 2022; 29:467-473. [PMID: 35609001 DOI: 10.1530/erc-22-0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
EIF1AX gene mutations are reported in both benign and malignant thyroid tumors, with unclear outcomes when detected preoperatively. The aim of this study was to determine the features and outcomes of thyroid nodules with various types of mutation identified in cytologic (fine-needle aspiration) samples on preoperative ThyroSeq testing and with surgical outcomes. In this single-institution retrospective study of 31 consecutive patients, 77% were female and nodule size ranged from 1.5 to 9.4 cm with widely varying cytologic and TI-RADS ultrasound categorizations. Among two main mutational hotspots, 55% were located in exon 2 and 45% at the intron 5/exon 6 splice site. On histology, 45% of -positive nodules were cancer/noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) including 19% encapsulated follicular variant papillary thyroid carcinoma, 10% follicular carcinoma, 10% anaplastic carcinoma (ATC), and 7% NIFTP. Almost half (48%) of patients had one or more coexisting mutations, most frequently RAS. The prevalence of cancer/NIFTP was 80% for mutation with coexisting molecular alteration vs 13% with an isolated mutation (P = 0.0002). Cancer probability was associated with mutation type and was 64% for splice-site mutation and 29% for non-splice mutation (P = 0.075). All 3 nodules with EIF1AX+RAS+TERT+TP53 mutations were ATC. In summary, in this study, all nodules with an isolated non-splice mutation were benign, one-third of those with an isolated splice mutation were cancer, and most nodules with coexisting with RAS or other alterations were malignant. These findings suggest that clinical management decisions for patients with EIF1AX-mutant nodules should consider both the type of mutation and its co-occurrence with other genetic alterations.
Collapse
Affiliation(s)
- Esra Karslioglu French
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Linwah Yip
- Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Carty
- Division of Endocrine Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Ram AK, Mallik M, Reddy RR, Suryawanshi AR, Alone PV. Altered proteome in translation initiation fidelity defective eIF5 G31R mutant causes oxidative stress and DNA damage. Sci Rep 2022; 12:5033. [PMID: 35322093 PMCID: PMC8943034 DOI: 10.1038/s41598-022-08857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The recognition of the AUG start codon and selection of an open reading frame (ORF) is fundamental to protein biosynthesis. Defect in the fidelity of start codon selection adversely affect proteome and have a pleiotropic effect on cellular function. Using proteomic techniques, we identified differential protein abundance in the translation initiation fidelity defective eIF5G31R mutant that initiates translation using UUG codon in addition to the AUG start codon. Consistently, the eIF5G31R mutant altered proteome involved in protein catabolism, nucleotide biosynthesis, lipid biosynthesis, carbohydrate metabolism, oxidation–reduction pathway, autophagy and re-programs the cellular pathways. The utilization of the upstream UUG codons by the eIF5G31R mutation caused downregulation of uridylate kinase expression, sensitivity to hydroxyurea, and DNA damage. The eIF5G31R mutant cells showed lower glutathione levels, high ROS activity, and sensitivity to H2O2.
Collapse
Affiliation(s)
- Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - Monalisha Mallik
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - R Rajendra Reddy
- Clinical Proteomics, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | | | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
9
|
Gamble N, Paul EE, Anand B, Marintchev A. Regulation of the interactions between human eIF5 and eIF1A by the CK2 kinase. Curr Res Struct Biol 2022; 4:308-319. [PMID: 36164648 PMCID: PMC9508154 DOI: 10.1016/j.crstbi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in eukaryotes relies on a complex network of interactions that are continuously reorganized throughout the process. As more information becomes available about the structure of the ribosomal preinitiation complex (PIC) at various points in translation initiation, new questions arise about which interactions occur when, their roles, and regulation. The eukaryotic translation factor (eIF) 5 is the GTPase-activating protein (GAP) for the GTPase eIF2, which brings the initiator Met-tRNAi to the PIC. eIF5 also plays a central role in PIC assembly and remodeling through interactions with other proteins, including eIFs 1, 1A, and 3c. Phosphorylation by casein kinase 2 (CK2) significantly increases the eIF5 affinity for eIF2. The interaction between eIF5 and eIF1A was reported to be mediated by the eIF5 C-terminal domain (CTD) and the eIF1A N-terminal tail. Here, we report a new contact interface, between eIF5-CTD and the oligonucleotide/oligosaccharide-binding fold (OB) domain of eIF1A, which contributes to the overall affinity between the two proteins. We also show that the interaction is modulated by dynamic intramolecular interactions within both eIF5 and eIF1A. CK2 phosphorylation of eIF5 increases its affinity for eIF1A, offering new insights into the mechanisms by which CK2 stimulates protein synthesis and cell proliferation. eIF5-CTD interacts with both the N-terminal tail and the OB domain of eIF1A. The OB domain contacts stabilize the overall interaction. The eIF1A C-terminal tail and the eIF5 DWEAR motif interfere with OB domain binding. CK2 phosphorylation of eIF5 increases its affinity for eIF1A.
Collapse
|
10
|
Abstract
Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the "balanced" proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.
Collapse
|
11
|
Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, Moyrand F, Natarajan P, Madhani HD, Janbon G. Quantitative global studies reveal differential translational control by start codon context across the fungal kingdom. Nucleic Acids Res 2020; 48:2312-2331. [PMID: 32020195 PMCID: PMC7049704 DOI: 10.1093/nar/gkaa060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.
Collapse
Affiliation(s)
- Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Corinne Maufrais
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Jade Sales-Lee
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Laura R Tuck
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK
| | - Luciana de Oliveira
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Frank Feuerbach
- Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015 Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| | - Prashanthi Natarajan
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015 Paris, France
| |
Collapse
|
12
|
Migration of Small Ribosomal Subunits on the 5' Untranslated Regions of Capped Messenger RNA. Int J Mol Sci 2019; 20:ijms20184464. [PMID: 31510048 PMCID: PMC6769788 DOI: 10.3390/ijms20184464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential ‘scanning’ of the 5′ untranslated regions (UTRs). Scanning through the 5′UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5′UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured β-globin sequences in the 5′UTR but not that of an mRNA with a poly(A) sequence as the 5′UTR. By contrast, the nonhydrolysable ATP analogue β,γ-imidoadenosine 5′-triphosphate (AMP-PNP) inhibited translation irrespective of the 5′UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA (‘toeprinting’), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This ‘−8 nt toeprint’ was seen with mRNA 5′UTRs of different length, sequence and structure potential. Importantly, the ‘−8 nt toeprint’ was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5′UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5′UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.
Collapse
|
13
|
Antony A C, Ram AK, Dutta K, Alone PV. Ribosomal mutation in helix 32 of 18S rRNA alters fidelity of eukaryotic translation start site selection. FEBS Lett 2019; 593:852-867. [PMID: 30900251 DOI: 10.1002/1873-3468.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/09/2022]
Abstract
The 40S ribosome plays a critical role in start codon selection. To gain insights into the role of its 18S rRNA in start codon selection, a suppressor screen was performed that suppressed the preferential UUG start codon recognition (Suppressor of initiation codon: Sui- phenotype) associated with the eIF5G31R mutant. The C1209U mutation in helix h32 of 18S rRNA was found to suppress the Sui- and Gcn- (failure to derepress GCN4 expression) phenotype of the eIF5G31R mutant. The C1209U mutation suppressed Sui- and Gcd- (constitutive derepression of GCN4 expression) phenotype of eIF2βS264Y , eIF1K60E , and eIF1A-ΔC mutation. We propose that the C1209U mutation in 40S ribosomal may perturb the premature head rotation in 'Closed/PIN ' state and enhance the stringency of translation start site selection.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kalloly Dutta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
14
|
Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. Int J Mol Sci 2019; 20:ijms20040939. [PMID: 30795538 PMCID: PMC6412873 DOI: 10.3390/ijms20040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding molecular mechanisms of ribosomal translation sheds light on the emergence and evolution of protein synthesis in the three domains of life. Universally, ribosomal translation is described in three steps: initiation, elongation and termination. During initiation, a macromolecular complex assembled around the small ribosomal subunit selects the start codon on the mRNA and defines the open reading frame. In this review, we focus on the comparison of start codon selection mechanisms in eukaryotes and archaea. Eukaryotic translation initiation is a very complicated process, involving many initiation factors. The most widespread mechanism for the discovery of the start codon is the scanning of the mRNA by a pre-initiation complex until the first AUG codon in a correct context is found. In archaea, long-range scanning does not occur because of the presence of Shine-Dalgarno (SD) sequences or of short 5′ untranslated regions. However, archaeal and eukaryotic translation initiations have three initiation factors in common: e/aIF1, e/aIF1A and e/aIF2 are directly involved in the selection of the start codon. Therefore, the idea that these archaeal and eukaryotic factors fulfill similar functions within a common structural ribosomal core complex has emerged. A divergence between eukaryotic and archaeal factors allowed for the adaptation to the long-range scanning process versus the SD mediated prepositioning of the ribosome.
Collapse
|
15
|
Abstract
The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.
Collapse
|
16
|
Krishnamoorthy GP, Davidson NR, Leach SD, Zhao Z, Lowe SW, Lee G, Landa I, Nagarajah J, Saqcena M, Singh K, Wendel HG, Dogan S, Tamarapu PP, Blenis J, Ghossein RA, Knauf JA, Rätsch G, Fagin JA. EIF1AX and RAS Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discov 2018; 9:264-281. [PMID: 30305285 DOI: 10.1158/2159-8290.cd-18-0606] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
Translation initiation is orchestrated by the cap binding and 43S preinitiation complexes (PIC). Eukaryotic initiation factor 1A (EIF1A) is essential for recruitment of the ternary complex and for assembling the 43S PIC. Recurrent EIF1AX mutations in papillary thyroid cancers are mutually exclusive with other drivers, including RAS. EIF1AX mutations are enriched in advanced thyroid cancers, where they display a striking co-occurrence with RAS, which cooperates to induce tumorigenesis in mice and isogenic cell lines. The C-terminal EIF1AX-A113splice mutation is the most prevalent in advanced thyroid cancer. EIF1AX-A113splice variants stabilize the PIC and induce ATF4, a sensor of cellular stress, which is co-opted to suppress EIF2α phosphorylation, enabling a general increase in protein synthesis. RAS stabilizes c-MYC, an effect augmented by EIF1AX-A113splice. ATF4 and c-MYC induce expression of amino acid transporters and enhance sensitivity of mTOR to amino acid supply. These mutually reinforcing events generate therapeutic vulnerabilities to MEK, BRD4, and mTOR kinase inhibitors. SIGNIFICANCE: Mutations of EIF1AX, a component of the translation PIC, co-occur with RAS in advanced thyroid cancers and promote tumorigenesis. EIF1AX-A113splice drives an ATF4-induced dephosphorylation of EIF2α, resulting in increased protein synthesis. ATF4 also cooperates with c-MYC to sensitize mTOR to amino acid supply, thus generating vulnerability to mTOR kinase inhibitors. This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natalie R Davidson
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven D Leach
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gina Lee
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Iňigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Nagarajah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasanna P Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Blenis
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunnar Rätsch
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit. Sci Rep 2018; 8:11468. [PMID: 30065356 PMCID: PMC6068138 DOI: 10.1038/s41598-018-29832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/19/2018] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic translation the 60S ribosome subunit has not been proposed to interact with mRNA or closed-loop factors eIF4E, eIF4G, and PAB1. Using analytical ultracentrifugation with fluorescent detection system, we have identified a 57S translation complex that contains the 60S ribosome, mRNA, and the closed-loop factors. Previously published data by others also indicate the presence of a 50S-60S translation complex containing these same components. We have found that the abundance of this complex increased upon translational cessation, implying formation after ribosomal dissociation. Stoichiometric analyses of the abundances of the closed-loop components in the 57S complex indicate this complex is most similar to polysomal and monosomal translation complexes at the end of translation rather than at the beginning or middle of translation. In contrast, a 39S complex containing the 40S ribosome bound to mRNA and closed-loop factors was also identified with stoichiometries most similar to polysomal complexes engaged in translation, suggesting that the 39S complex is the previously studied 48S translation initiation complex. These results indicate that the 60S ribosome can associate with the closed-loop mRNA structure and plays a previously undetected role in the translation process.
Collapse
|
18
|
Abrahams L, Hurst LD. Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts. Mol Biol Evol 2018; 34:3064-3080. [PMID: 28961919 PMCID: PMC5850271 DOI: 10.1093/molbev/msx223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA levels. Here, we identify a possible signature of “dual-coding,” namely extensive adenine (A) enrichment at bacterial CDS fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part, A-enrichment likely reduces 5′ mRNA stability, promoting translation initiation. However T/U, which may also reduce stability, is avoided. Further, +1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth residue, acting either as a frameshift “catch and destroy” or a frameshift stop and adjust mechanism and hence implicated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-enrichment. Sequences lacking a Shine–Dalgarno sequence and those without upstream leader genes, that may be more error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction model is consistent with the notion that many genomic features are error-mitigation factors and provides the first evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
19
|
Denis CL, Richardson R, Park S, Zhang C, Xi W, Laue TM, Wang X. Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins 2018; 86:177-191. [PMID: 29139201 PMCID: PMC5897186 DOI: 10.1002/prot.25422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022]
Abstract
The eukaryotic eRF1 translation termination factor plays an important role in recognizing stop codons and initiating the end to translation. However, which exact complexes contain eRF1 and at what abundance is not clear. We have used analytical ultracentrifugation with fluorescent detection system to identify the protein complexome of eRF1 in the yeast Saccharomyces cerevisiae. In addition to eRF1 presence in translating polysomes, we found that eRF1 associated with five other macromolecular complexes: 77S, 57S, 39S, 28S, and 20S in size. Generally equal abundances of each of these complexes were found. The 77S complex primarily contained the free 80S ribosome consistent with in vitro studies and did not appear to contain significant levels of the monosomal translating complex that co-migrates with the free 80S ribosome. The 57S and 39S complexes represented, respectively, free 60S and 40S ribosomal subunits bound to eRF1, associations not previously reported. The novel 28S and 20S complexes (containing minimal masses of 830 KDa and 500 KDa, respectively) lacked significant RNA components and appeared to be oligomeric, as eRF1 has a mass of 49 KDa. The majority of polysomal complexes containing eRF1 were both substantially deadenylated and lacking in closed-loop factors eIF4E and eIF4G. The thirteen percent of such translating polysomes that contained poly(A) tails had equivalent levels of eIF4E and eIF4G, suggesting these complexes were in a closed-loop structure. The identification of eRF1 in these unique and previously unrecognized complexes suggests a variety of new roles for eRF1 in the regulation of cellular processes.
Collapse
Affiliation(s)
- Clyde L. Denis
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Roy Richardson
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Shiwha Park
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Wen Xi
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Thomas M. Laue
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| |
Collapse
|
20
|
Martin-Marcos P, Zhou F, Karunasiri C, Zhang F, Dong J, Nanda J, Kulkarni SD, Sen ND, Tamame M, Zeschnigk M, Lorsch JR, Hinnebusch AG. eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. eLife 2017; 6:31250. [PMID: 29206102 PMCID: PMC5756025 DOI: 10.7554/elife.31250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States.,Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Charm Karunasiri
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jagpreet Nanda
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Michael Zeschnigk
- Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.,Eye Cancer Research Group, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
21
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
22
|
Etemadmoghadam D, Azar WJ, Lei Y, Moujaber T, Garsed DW, Kennedy CJ, Fereday S, Mitchell C, Chiew YE, Hendley J, Sharma R, Harnett PR, Li J, Christie EL, Patch AM, George J, Au-Yeung G, Mir Arnau G, Holloway TP, Semple T, Pearson JV, Waddell N, Grimmond SM, Köbel M, Rizos H, Lomakin IB, Bowtell DDL, deFazio A. EIF1AX and NRAS Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Res 2017. [PMID: 28646021 DOI: 10.1158/0008-5472.can-16-2224] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-grade serous ovarian carcinomas (LGSC) are associated with a poor response to chemotherapy and are molecularly characterized by RAS pathway activation. Using exome and whole genome sequencing, we identified recurrent mutations in the protein translational regulator EIF1AX and in NF1, USP9X, KRAS, BRAF, and NRAS RAS pathway mutations were mutually exclusive; however, we found significant co-occurrence of mutations in NRAS and EIF1AX Missense EIF1AX mutations were clustered at the N-terminus of the protein in a region associated with its role in ensuring translational initiation fidelity. Coexpression of mutant NRAS and EIF1AX proteins promoted proliferation and clonogenic survival in LGSC cells, providing the first example of co-occurring, growth-promoting mutational events in ovarian cancer. Cancer Res; 77(16); 4268-78. ©2017 AACR.
Collapse
Affiliation(s)
- Dariush Etemadmoghadam
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Walid J Azar
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ying Lei
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia
| | - Tania Moujaber
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia.,Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Chris Mitchell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yoke-Eng Chiew
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Raghwa Sharma
- The University of Sydney, Sydney, New South Wales, Australia.,Pathology West ICPMR, Westmead, New South Wales, Australia.,The University of Western Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia.,Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - George Au-Yeung
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Timothy Semple
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothill Medical Center, University of Calgary, Calgary, Canada
| | - Helen Rizos
- Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia.,Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia. .,Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia.,The University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
23
|
Antony A C, Alone PV. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation. Biochem Biophys Res Commun 2017; 486:1110-1115. [PMID: 28385532 DOI: 10.1016/j.bbrc.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
Abstract
In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui-) phenotype due to its hyper GTPase activity. The eIF5G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn- phenotype) in the eIF5G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF.
Collapse
Affiliation(s)
- Charles Antony A
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Constituent Institutes of Homi Bhabha National Institute (HBNI), P.O Jatni, Khurda 752050 India
| | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Constituent Institutes of Homi Bhabha National Institute (HBNI), P.O Jatni, Khurda 752050 India.
| |
Collapse
|
24
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
25
|
Visweswaraiah J, Hinnebusch AG. Interface between 40S exit channel protein uS7/Rps5 and eIF2α modulates start codon recognition in vivo. eLife 2017; 6. [PMID: 28169832 PMCID: PMC5323038 DOI: 10.7554/elife.22572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic pre-initiation complex (PIC) bearing the eIF2·GTP·Met-tRNAiMet ternary complex (TC) scans the mRNA for an AUG codon in favorable context. AUG recognition evokes rearrangement of the PIC from an open, scanning to a closed, arrested conformation. Cryo-EM reconstructions of yeast PICs suggest remodeling of the interface between 40S protein Rps5/uS7 and eIF2α between open and closed states; however, its importance was unknown. uS7 substitutions disrupting eIF2α contacts favored in the open complex increase initiation at suboptimal sites, and uS7-S223D stabilizes TC binding to PICs reconstituted with a UUG start codon, indicating inappropriate rearrangement to the closed state. Conversely, uS7-D215 substitutions, perturbing uS7-eIF2α interaction in the closed state, confer the opposite phenotypes of hyperaccuracy and (for D215L) accelerated TC dissociation from reconstituted PICs. Thus, remodeling of the uS7/eIF2α interface appears to stabilize first the open, and then the closed state of the PIC to promote accurate AUG selection in vivo. DOI:http://dx.doi.org/10.7554/eLife.22572.001
Collapse
Affiliation(s)
- Jyothsna Visweswaraiah
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
26
|
Dehghani M, Lasko P. Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis. Results Probl Cell Differ 2017; 63:127-147. [PMID: 28779316 DOI: 10.1007/978-3-319-60855-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The DEAD-box helicase Vasa (Vas) has been most extensively studied in the fruit fly, Drosophila melanogaster, and numerous roles for it in germline development have been discovered. Here, we summarize the present state of knowledge about processes during oogenesis that involve Vas, as well as functions of Vas as a maternal determinant of embryonic spatial patterning and germ cell specification. We review literature that implicates Vas in Piwi-interacting RNA (piRNA) biogenesis in germline cells and in regulating mitosis in germline stem cells (GSCs). We describe the functions of Vas in translational activation of two mRNAs, gurken (grk) and mei-P26, which encode proteins that are important regulators of developmental processes, as Grk specifies both the dorsal-ventral and the anterior-posterior axis of the embryo and Mei-P26 promotes GSC differentiation. The role of Vas in assembly of polar granules, ribonucleoprotein particles that accumulate in the posterior pole plasm of the oocyte and are essential for germ cell specification and posterior embryonic patterning, is also described.
Collapse
Affiliation(s)
- Mehrnoush Dehghani
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada, H3G 0B1
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada, H3G 0B1.
| |
Collapse
|
27
|
Nag N, Lin KY, Edmonds KA, Yu J, Nadkarni D, Marintcheva B, Marintchev A. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Res 2016; 44:7441-56. [PMID: 27325746 PMCID: PMC5009744 DOI: 10.1093/nar/gkw552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments.
Collapse
Affiliation(s)
- Nabanita Nag
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Kai Ying Lin
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | | | - Jielin Yu
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Devika Nadkarni
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| | - Boriana Marintcheva
- Bridgewater State University, Department of Biological Sciences, Bridgewater, MA 02325, USA
| | - Assen Marintchev
- Boston University School of Medicine, Department of Physiology and Biophysics, Boston, MA 02118, USA
| |
Collapse
|
28
|
Lind C, Åqvist J. Principles of start codon recognition in eukaryotic translation initiation. Nucleic Acids Res 2016; 44:8425-32. [PMID: 27280974 PMCID: PMC5041461 DOI: 10.1093/nar/gkw534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
Selection of the correct start codon during initiation of translation on the ribosome is a key event in protein synthesis. In eukaryotic initiation, several factors have to function in concert to ensure that the initiator tRNA finds the cognate AUG start codon during mRNA scanning. The two initiation factors eIF1 and eIF1A are known to provide important functions for the initiation process and codon selection. Here, we have used molecular dynamics free energy calculations to evaluate the energetics of initiator tRNA binding to different near-cognate codons on the yeast 40S ribosomal subunit, in the presence and absence of these two initiation factors. The results show that eIF1 and eIF1A together cause a relatively uniform and high discrimination against near-cognate codons. This works such that eIF1 boosts the discrimination against a first position near-cognate G-U mismatch, and also against a second position A-A base pair, while eIF1A mainly acts on third codon position. The computer simulations further reveal the structural basis of the increased discriminatory effect caused by binding of eIF1 and eIF1A to the 40S ribosomal subunit.
Collapse
Affiliation(s)
- Christoffer Lind
- Department of Cell and Molecular biology, Uppsala University, Biomedical Center, Box 596, SE-75124 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular biology, Uppsala University, Biomedical Center, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
29
|
Karunamurthy A, Panebianco F, J Hsiao S, Vorhauer J, Nikiforova MN, Chiosea S, Nikiforov YE. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer 2016; 23:295-301. [PMID: 26911375 PMCID: PMC5494715 DOI: 10.1530/erc-16-0043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/21/2023]
Abstract
The EIF1AX gene mutations have been recently found in papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC). The prevalence of these mutations in other types of thyroid cancers and benign nodules is unknown. In this study, we analyzed the occurrence of EIF1AX mutations in exons 2, 5, and 6 of the gene in a series of 266 thyroid tumors and hyperplastic nodules by either Sanger or next-generation sequencing (ThyroSeq v.2). In addition, 647 thyroid fine-needle aspiration (FNA) samples with indeterminate cytology were analyzed. Using surgically removed samples, EIF1AX mutations were detected in 3/86 (2.3%) PTC, 1/4 (25%) ATC, 0/53 follicular carcinomas, 0/12 medullary carcinomas, 2/27 (7.4%) follicular adenomas, and 1/80 (1.3%) hyperplastic nodules. Among five mutation-positive FNA samples with surgical follow-up, one nodule was PTC and others were benign follicular adenomas or hyperplastic nodules. Overall, among 33 mutations identified, A113_splice mutation at the intron 5/exon 6 splice site of EIF1AX was the most common. All four carcinomas harbored A113_splice mutation and three of them had one or more coexisting mutations, typically RAS All PTC carrying EIF1AX mutations were encapsulated follicular variants. In summary, this study shows that EIF1AX mutations occur not only in thyroid carcinomas, but also in benign nodules. The most common mutation hotspot is the A113_splice, followed by a cluster of mutations in exon 2. When found in thyroid FNA samples, EIF1AX mutations confer ~20% risk of cancer; the risk is likely to be higher in nodules carrying a A113_splice mutation and when EIF1AX coexists with RAS mutations.
Collapse
Affiliation(s)
- Arivarasan Karunamurthy
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Federica Panebianco
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Susan J Hsiao
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jennie Vorhauer
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marina N Nikiforova
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Simion Chiosea
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yuri E Nikiforov
- Department of PathologyUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Transcriptomic Characterization of Tambaqui (Colossoma macropomum, Cuvier, 1818) Exposed to Three Climate Change Scenarios. PLoS One 2016; 11:e0152366. [PMID: 27018790 PMCID: PMC4809510 DOI: 10.1371/journal.pone.0152366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Climate change substantially affects biodiversity around the world, especially in the Amazon region, which is home to a significant portion of the world’s biodiversity. Freshwater fishes are susceptible to increases in water temperature and variations in the concentrations of dissolved gases, especially oxygen and carbon dioxide. It is important to understand the mechanisms underlying the physiological and biochemical abilities of fishes to survive such environmental changes. In the present study, we applied RNA-Seq and de novo transcriptome sequencing to evaluate transcriptome alterations in tambaqui when exposed to five or fifteen days of the B1, A1B and A2 climate scenarios foreseen by the IPCC. The generated ESTs were assembled into 54,206 contigs. Gene ontology analysis and the STRING tool were then used to identify candidate protein domains, genes and gene families potentially responsible for the adaptation of tambaqui to climate changes. After sequencing eight RNA-Seq libraries, 32,512 genes were identified and mapped using the Danio rerio genome as a reference. In total, 236 and 209 genes were differentially expressed at five and fifteen days, respectively, including chaperones, energetic metabolism-related genes, translation initiation factors and ribosomal genes. Gene ontology enrichment analysis revealed that mitochondrion, protein binding, protein metabolic process, metabolic processes, gene expression, structural constituent of ribosome and translation were the most represented terms. In addition, 1,202 simple sequence repeats were detected, 88 of which qualified for primer design. These results show that cellular response to climate change in tambaqui is complex, involving many genes, and it may be controlled by different cues and transcription/translation regulation mechanisms. The data generated from this study provide a valuable resource for further studies on the molecular mechanisms involved in the adaptation of tambaqui and other closely related teleost species to climate change.
Collapse
|
31
|
Identification of Psk2, Skp1, and Tub4 as trans-acting factors for uORF-containing ROK1 mRNA in Saccharomyces cerevisiae. J Microbiol 2015; 53:616-22. [PMID: 26310304 DOI: 10.1007/s12275-015-5389-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Rok1, a DEAD-box RNA helicase, is involved in rRNA processing and the control of cell cycle progression in Saccharomyces cerevisiae. Rok1 protein expression is cell cycle-regulated, declining at G1/S and increasing at G2. The downregulation of Rok1 expression in G1/S phase is mediated by the inhibitory action of two upstream open reading frames (uORFs) in the ROK1 5'-untranslated region (5'UTR). We identified Psk2 (PAS kinase), Skp1 (kinetochore protein) and Tub4 (γ-tubulin protein) as ROK1 5'UTR-interacting proteins using yeast three-hybrid system. A deletion analysis of PSK2 or inactivation of temperature-sensitive alleles of SKP1 and TUB4 revealed that Rok1 protein synthesis is repressed by Psk2 and Skp1. This repression appeared to be mediated through the ROK1 uORF1. In contrast, Tub4 plays a positive role in regulating Rok1 protein synthesis and likely after the uORF1-mediated inhibitory regulation. These results suggest that 5'UTR-interacting proteins, identified using three hybrid screening, are important for uORF-mediated regulation of Rok1 protein expression.
Collapse
|
32
|
Dubiez E, Aleksandrov A, Lazennec-Schurdevin C, Mechulam Y, Schmitt E. Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2. Nucleic Acids Res 2015; 43:2946-57. [PMID: 25690901 PMCID: PMC4357699 DOI: 10.1093/nar/gkv053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eukaryotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In archaea, orthologs of eIF5 are not found and aIF2 GTPase activity is thought to be non-assisted. However, no in vitro GTPase activity of the archaeal factor has been reported to date. Here, we show that aIF2 significantly hydrolyses GTP in vitro. Within aIF2γ, H97, corresponding to the catalytic histidine found in other translational GTPases, and D19, from the GKT loop, both participate in this activity. Several high-resolution crystal structures were determined to get insight into GTP hydrolysis by aIF2γ. In particular, a crystal structure of the H97A mutant was obtained in the presence of non-hydrolyzed GTP. This structure reveals the presence of a second magnesium ion bound to GTP and D19. Quantum chemical/molecular mechanical simulations support the idea that the second magnesium ion may assist GTP hydrolysis by helping to neutralize the developing negative charge in the transition state. These results are discussed in light of the absence of an identified GAP in archaea to assist GTP hydrolysis on aIF2.
Collapse
Affiliation(s)
- Etienne Dubiez
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau cedex, France
| |
Collapse
|
33
|
Zhang F, Saini AK, Shin BS, Nanda J, Hinnebusch AG. Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes. Nucleic Acids Res 2015; 43:2293-312. [PMID: 25670678 PMCID: PMC4344491 DOI: 10.1093/nar/gkv028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The translation preinitiation complex (PIC) is thought to assume an open conformation when scanning the mRNA leader, with AUG recognition evoking a closed conformation and more stable P site interaction of Met-tRNAi; however, physical evidence is lacking that AUG recognition constrains interaction of mRNA with the 40S binding cleft. We compared patterns of hydroxyl radical cleavage of rRNA by Fe(II)-BABE tethered to unique sites in eIF1A in yeast PICs reconstituted with mRNA harboring an AUG or near-cognate (AUC) start codon. rRNA residues in the P site display reduced cleavage in AUG versus AUC PICs; and enhanced cleavage in the AUC complexes was diminished by mutations of scanning enhancer elements of eIF1A that increase near-cognate recognition in vivo. This suggests that accessibility of these rRNA residues is reduced by accommodation of Met-tRNAi in the P site (PIN state) and by their interactions with the anticodon stem of Met-tRNAi. Our cleavage data also provide evidence that AUG recognition evokes dissociation of eIF1 from its 40S binding site, ejection of the eIF1A-CTT from the P-site and rearrangement to a closed conformation of the entry channel with reduced mobility of mRNA.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Gene Regulation and Development, NICHD, NIH, Bethesda, MD 20892, USA
| | - Adesh K Saini
- Laboratory of Gene Regulation and Development, NICHD, NIH, Bethesda, MD 20892, USA Department of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh-173212, India
| | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, NICHD, NIH, Bethesda, MD 20892, USA
| | - Jagpreet Nanda
- Laboratory on the Mechanism and Regulation of Protein Synthesis, NICHD, NIH, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, NICHD, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Hussain T, Llácer JL, Fernández IS, Munoz A, Martin-Marcos P, Savva CG, Lorsch JR, Hinnebusch AG, Ramakrishnan V. Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 2014; 159:597-607. [PMID: 25417110 PMCID: PMC4217140 DOI: 10.1016/j.cell.2014.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/15/2014] [Accepted: 10/01/2014] [Indexed: 11/03/2022]
Abstract
During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2?, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon.
Collapse
Affiliation(s)
| | - Jose L Llácer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Antonio Munoz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jon R Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
35
|
Sokabe M, Fraser CS. Human eukaryotic initiation factor 2 (eIF2)-GTP-Met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J Biol Chem 2014; 289:31827-31836. [PMID: 25246524 DOI: 10.1074/jbc.m114.602870] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of a stable 43 S preinitiation complex (PIC) must occur to enable successful mRNA recruitment. However, the contributions of eIF1, eIF1A, eIF3, and the eIF2-GTP-Met-tRNAi ternary complex (TC) in stabilizing the 43 S PIC are poorly defined. We have reconstituted the human 43 S PIC and used fluorescence anisotropy to systematically measure the affinity of eIF1, eIF1A, and eIF3j in the presence of different combinations of 43 S PIC components. Our data reveal a complicated network of interactions that result in high affinity binding of all 43 S PIC components with the 40 S subunit. Human eIF1 and eIF1A bind cooperatively to the 40 S subunit, revealing an evolutionarily conserved interaction. Negative cooperativity is observed between the binding of eIF3j and the binding of eIF1, eIF1A, and TC with the 40 S subunit. To overcome this, eIF3 dramatically increases the affinity of eIF1 and eIF3j for the 40 S subunit. Recruitment of TC also increases the affinity of eIF1 for the 40 S subunit, but this interaction has an important indirect role in increasing the affinity of eIF1A for the 40 S subunit. Together, our data provide a more complete thermodynamic framework of the human 43 S PIC and reveal important interactions between its components to maintain its stability.
Collapse
Affiliation(s)
- Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
36
|
Li W, Klovstad M, Schüpbach T. Repression of Gurken translation by a meiotic checkpoint in Drosophila oogenesis is suppressed by a reduction in the dose of eIF1A. Development 2014; 141:3910-21. [PMID: 25231760 DOI: 10.1242/dev.109306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Drosophila melanogaster, the anteroposterior (AP) and dorsoventral (DV) axes of the oocyte and future embryo are established through the localization and translational regulation of gurken (grk) mRNA. This process involves binding of specific factors to the RNA during transport and a dynamic remodeling of the grk-containing ribonucleoprotein (RNP) complexes once they have reached their destination within the oocyte. In ovaries of spindle-class females, an activated DNA damage checkpoint causes inefficient Grk translation and ventralization of the oocyte. In a screen for modifiers of the oocyte DV patterning defects, we identified a mutation in the eIF1A gene as a dominant suppressor. We show that reducing the function of eIF1A in spnB ovaries suppresses the ventralized eggshell phenotype by restoring Grk expression. This suppression is not the result of more efficient DNA damage repair or of disrupted checkpoint activation, but is coupled to an increase in the amount of grk mRNA associated with polysomes. In spnB ovaries, the activated meiotic checkpoint blocks Grk translation by disrupting the accumulation of grk mRNA in a translationally competent RNP complex that contains the translational activator Oo18 RNA-binding protein (Orb); this regulation involves the translational repressor Squid (Sqd). We further propose that reduction of eIF1A allows more efficient Grk translation possibly because of the presence of specific structural features in the grk 5'UTR.
Collapse
Affiliation(s)
- Wei Li
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martha Klovstad
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Trudi Schüpbach
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
37
|
Saini AK, Nanda JS, Martin-Marcos P, Dong J, Zhang F, Bhardwaj M, Lorsch JR, Hinnebusch AG. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex. Nucleic Acids Res 2014; 42:9623-40. [PMID: 25114053 PMCID: PMC4150770 DOI: 10.1093/nar/gku653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
eIF5 is the GTPase activating protein (GAP) for the eIF2 · GTP · Met-tRNAi (Met) ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2 · GDP · Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui(-) mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.
Collapse
Affiliation(s)
- Adesh K Saini
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jagpreet S Nanda
- Shoolini University of Biotechnology and Management Sciences, Department of Biotechnology, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Monika Bhardwaj
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Shoolini University of Biotechnology and Management Sciences, Department of Biotechnology, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Asano K. Why is start codon selection so precise in eukaryotes? ACTA ACUST UNITED AC 2014; 2:e28387. [PMID: 26779403 PMCID: PMC4705826 DOI: 10.4161/trla.28387] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes.
Collapse
Affiliation(s)
- Katsura Asano
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| |
Collapse
|
39
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
40
|
Luna RE, Arthanari H, Hiraishi H, Akabayov B, Tang L, Cox C, Markus MA, Luna LE, Ikeda Y, Watanabe R, Bedoya E, Yu C, Alikhan S, Wagner G, Asano K. The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry 2013; 52:9510-8. [PMID: 24319994 PMCID: PMC3917153 DOI: 10.1021/bi4009775] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Scanning of the mRNA transcript by the preinitiation complex (PIC) requires a panel of eukaryotic initiation factors, which includes eIF1 and eIF1A, the main transducers of stringent AUG selection. eIF1A plays an important role in start codon recognition; however, its molecular contacts with eIF5 are unknown. Using nuclear magnetic resonance, we unveil eIF1A's binding surface on the carboxyl-terminal domain of eIF5 (eIF5-CTD). We validated this interaction by observing that eIF1A does not bind to an eIF5-CTD mutant, altering the revealed eIF1A interaction site. We also found that the interaction between eIF1A and eIF5-CTD is conserved between humans and yeast. Using glutathione S-transferase pull-down assays of purified proteins, we showed that the N-terminal tail (NTT) of eIF1A mediates the interaction with eIF5-CTD and eIF1. Genetic evidence indicates that overexpressing eIF1 or eIF5 suppresses the slow growth phenotype of eIF1A-NTT mutants. These results suggest that the eIF1A-eIF5-CTD interaction during scanning PICs contributes to the maintenance of eIF1 within the open PIC.
Collapse
Affiliation(s)
- Rafael E. Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Hiroyuki Hiraishi
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Barak Akabayov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Leiming Tang
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Christian Cox
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Michelle A. Markus
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Lunet E. Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Yuka Ikeda
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Ryosuke Watanabe
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Edward Bedoya
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Cathy Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Shums Alikhan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Katsura Asano
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
41
|
Lomakin IB, Steitz TA. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 2013; 500:307-11. [PMID: 23873042 PMCID: PMC3748252 DOI: 10.1038/nature12355] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022]
Abstract
During translation initiation in eukaryotes, the small ribosomal subunit binds messenger RNA at the 5' end and scans in the 5' to 3' direction to locate the initiation codon, form the 80S initiation complex and start protein synthesis. This simple, yet intricate, process is guided by multiple initiation factors. Here we determine the structures of three complexes of the small ribosomal subunit that represent distinct steps in mammalian translation initiation. These structures reveal the locations of eIF1, eIF1A, mRNA and initiator transfer RNA bound to the small ribosomal subunit and provide insights into the details of translation initiation specific to eukaryotes. Conformational changes associated with the captured functional states reveal the dynamics of the interactions in the P site of the ribosome. These results have functional implications for the mechanism of mRNA scanning.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
| | | |
Collapse
|
42
|
Weisser M, Voigts-Hoffmann F, Rabl J, Leibundgut M, Ban N. The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nat Struct Mol Biol 2013; 20:1015-7. [PMID: 23851459 DOI: 10.1038/nsmb.2622] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/23/2013] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factors (eIFs) 1A and 1 are central players in the complex process of start-codon recognition. To improve mechanistic understanding of this process, we determined the crystal structure of the 40S ribosomal subunit in complex with eIF1A and eIF1 from Tetrahymena thermophila at a resolution of 3.7 Å. It reveals the positions of the two factors on the 40S and the conformational changes that accompany their binding.
Collapse
Affiliation(s)
- Melanie Weisser
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 2013; 45:933-6. [PMID: 23793026 DOI: 10.1038/ng.2674] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022]
Abstract
Gene expression profiles and chromosome 3 copy number divide uveal melanomas into two distinct classes correlating with prognosis. Using exome sequencing, we identified recurrent somatic mutations in EIF1AX and SF3B1, specifically occurring in uveal melanomas with disomy 3, which rarely metastasize. Targeted resequencing showed that 24 of 31 tumors with disomy 3 (77%) had mutations in either EIF1AX (15; 48%) or SF3B1 (9; 29%). Mutations were infrequent (2/35; 5.7%) in uveal melanomas with monosomy 3, which are associated with poor prognosis. Resequencing of 13 uveal melanomas with partial monosomy 3 identified 8 tumors with a mutation in either SF3B1 (7; 54%) or EIF1AX (1; 8%). All EIF1AX mutations caused in-frame changes affecting the N terminus of the protein, whereas 17 of 19 SF3B1 mutations encoded an alteration of Arg625. Resequencing of ten uveal melanomas with disomy 3 that developed metastases identified SF3B1 mutations in three tumors, none of which targeted Arg625.
Collapse
|
44
|
Valásek LS. 'Ribozoomin'--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 2013; 13:305-30. [PMID: 22708493 PMCID: PMC3434475 DOI: 10.2174/138920312801619385] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 01/16/2012] [Accepted: 02/16/2012] [Indexed: 02/05/2023]
Abstract
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into
life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene
regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the
study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA
translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular
details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss
recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of
how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our
current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.
Collapse
Affiliation(s)
- Leos Shivaya Valásek
- Laboratory of Eukaryotic Gene Regulation, Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
45
|
Nanda JS, Saini AK, Muñoz AM, Hinnebusch AG, Lorsch JR. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J Biol Chem 2013; 288:5316-29. [PMID: 23293029 PMCID: PMC3581429 DOI: 10.1074/jbc.m112.440693] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Accurate recognition of the start codon in an mRNA by the eukaryotic translation preinitiation complex (PIC) is essential for proper gene expression. The process is mediated by eukaryotic translation initiation factors (eIFs) in conjunction with the 40 S ribosomal subunit and (initiator) tRNA(i). Here, we provide evidence that the C-terminal tail (CTT) of eIF1A, which we previously implicated in start codon recognition, moves closer to the N-terminal domain of eIF5 when the PIC encounters an AUG codon. Importantly, this movement is coupled to dissociation of eIF1 from the PIC, a critical event in start codon recognition, and is dependent on the scanning enhancer elements in the eIF1A CTT. The data further indicate that eIF1 dissociation must be accompanied by the movement of the eIF1A CTT toward eIF5 in order to trigger release of phosphate from eIF2, which converts the latter to its GDP-bound state. Our results also suggest that release of eIF1 from the PIC and movement of the CTT of eIF1A are triggered by the same event, most likely accommodation of tRNA(i) in the P site of the 40 S subunit driven by base pairing between the start codon in the mRNA and the anticodon in tRNA(i). Finally, we show that the C-terminal domain of eIF5 is responsible for the factor's activity in antagonizing eIF1 binding to the PIC. Together, our data provide a more complete picture of the chain of molecular events that is triggered when the scanning PIC encounters an AUG start codon in the mRNA.
Collapse
Affiliation(s)
- Jagpreet S. Nanda
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Adesh K. Saini
- the Laboratory of Gene Regulation and Development, Eunice K. Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Antonio M. Muñoz
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Alan G. Hinnebusch
- the Laboratory of Gene Regulation and Development, Eunice K. Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Jon R. Lorsch
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| |
Collapse
|
46
|
Wang X, Zhang C, Chiang YC, Toomey S, Power MP, Granoff ME, Richardson R, Xi W, Lee DJ, Chase S, Laue TM, Denis CL. Use of the novel technique of analytical ultracentrifugation with fluorescence detection system identifies a 77S monosomal translation complex. Protein Sci 2012; 21:1253-68. [PMID: 22733647 DOI: 10.1002/pro.2110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 11/08/2022]
Abstract
A fundamental problem in proteomics is the identification of protein complexes and their components. We have used analytical ultracentrifugation with a fluorescence detection system (AU-FDS) to precisely and rapidly identify translation complexes in the yeast Saccharomyces cerevisiae. Following a one-step affinity purification of either poly(A)-binding protein (PAB1) or the large ribosomal subunit protein RPL25A in conjunction with GFP-tagged yeast proteins/RNAs, we have detected a 77S translation complex that contains the 80S ribosome, mRNA, and components of the closed-loop structure, eIF4E, eIF4G, and PAB1. This 77S structure, not readily observed previously, is consistent with the monosomal translation complex. The 77S complex abundance decreased with translational defects and following the stress of glucose deprivation that causes translational stoppage. By quantitating the abundance of the 77S complex in response to different stress conditions that block translation initiation, we observed that the stress of glucose deprivation affected translation initiation primarily by operating through a pathway involving the mRNA cap binding protein eIF4E whereas amino acid deprivation, as previously known, acted through the 43S complex. High salt conditions (1M KCl) and robust heat shock acted at other steps. The presumed sites of translational blockage caused by these stresses coincided with the types of stress granules, if any, which are subsequently formed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 2012; 4:4/5/a011536. [PMID: 22550233 DOI: 10.1101/cshperspect.a011536] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.
Collapse
|
48
|
Satpati P, Simonson T. Conformational selection through electrostatics: Free energy simulations of GTP and GDP binding to archaeal initiation factor 2. Proteins 2012; 80:1264-82. [PMID: 22275120 DOI: 10.1002/prot.24023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 11/05/2022]
Abstract
Archaeal Initiation Factor 2 is a GTPase involved in protein biosynthesis. In its GTP-bound, "ON" conformation, it binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and their dependence on the conformational state, molecular dynamics free energy simulations were performed. The ON state specificity was predicted to be weak, with a GTP/GDP binding free energy difference of -1 kcal/mol, favoring GTP. The OFF state specificity is larger, 4 kcal/mol, favoring GDP. The overall effects result from a competition among many interactions in several complexes. To interpret them, we use a simpler, dielectric continuum model. Several effects are robust with respect to the model details. Both nucleotides have a net negative charge, so that removing them from solvent into the binding pocket carries a desolvation penalty, which is large for the ON state, and strongly disfavors GTP binding compared to GDP. Short-range interactions between the additional GTP phosphate group and ionized sidechains in the binding pocket offset most, but not all of the desolvation penalty; more distant groups also contribute significantly, and the switch 1 loop only slightly. The desolvation penalty is lower for the more open, wetter OFF state, and the GTP/GDP difference much smaller. Short-range interactions in the binding pocket and with more distant groups again make a significant contribution. Overall, the simulations help explain how conformational selection is achieved with a single phosphate group.
Collapse
Affiliation(s)
- Priyadarshi Satpati
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
49
|
Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2012; 75:434-67, first page of table of contents. [PMID: 21885680 DOI: 10.1128/mmbr.00008-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5' end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an "open" conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a "closed" conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the "P" site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded "landing pad" for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site.
Collapse
|
50
|
Takacs JE, Neary TB, Ingolia NT, Saini AK, Martin-Marcos P, Pelletier J, Hinnebusch AG, Lorsch JR. Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery. RNA (NEW YORK, N.Y.) 2011; 17:439-452. [PMID: 21220547 PMCID: PMC3039144 DOI: 10.1261/rna.2475211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Translation initiation in eukaryotes involves more than a dozen protein factors. Alterations in six factors have been found to reduce the fidelity of start codon recognition by the ribosomal preinitiation complex in yeast, a phenotype referred to as Sui(-). No small molecules are known that affect the fidelity of start codon recognition. Such compounds would be useful tools for probing the molecular mechanics of translation initiation and its regulation. To find compounds with this effect, we set up a high-throughput screen using a dual luciferase assay in S. cerevisiae. Screening of over 55,000 compounds revealed two structurally related molecules that decrease the fidelity of start codon selection by approximately twofold in the dual luciferase assay. This effect was confirmed using additional in vivo assays that monitor translation from non-AUG start codons. Both compounds increase translation of a natural upstream open reading frame previously shown to initiate translation at a UUG. The compounds were also found to exacerbate increased use of UUG as a start codon (Sui(-) phenotype) conferred by haploinsufficiency of wild-type eukaryotic initiation factor (eIF) 1, or by mutation in eIF1. Furthermore, the effects of the compounds are suppressed by overexpressing eIF1, which is known to restore the fidelity of start codon selection in strains harboring Sui(-) mutations in various other initiation factors. Together, these data strongly suggest that the compounds affect the translational machinery itself to reduce the accuracy of selecting AUG as the start codon.
Collapse
Affiliation(s)
- Julie E Takacs
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|