1
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Tomioka M. High-throughput assessment of the behavioral responses to toxic organic solvents in Caenorhabditis elegans. PLoS One 2025; 20:e0311460. [PMID: 40245001 PMCID: PMC12005522 DOI: 10.1371/journal.pone.0311460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Novel chemical compounds are continuously being developed for use in various industries and daily life. Workers in these industries assess and avoid chemical hazards based on published information about chemical toxicities. However, avoiding the hazards associated with chemicals with unknown toxicity is difficult. Therefore, understanding the toxicities of chemicals in a high-throughput, multifaceted manner is essential. In this study, I developed a high-throughput method for assessing chemical toxicities through quantitative measurement of behavior in Caenorhabditis elegans. I determined the acute response to 30 organic solvents, including alcohols, cellosolves, ethers, ketones, and acetate esters, which are widely used in industries, with motility as an endpoint. Exposure to 0.5%-6% organic solvents caused a dramatic decrease in locomotion speed. The adverse effects of organic solvents on motility were proportional to the lipid solubility of the chemicals, similar to the positive relationship between the anesthetic effects of volatile organic chemicals and their lipid solubility in organisms, including humans. In addition to their effects on motility, organic solvents affect posture during locomotion in different ways depending on the chemical's functional group. Solvents with hydroxyl groups, such as alcohols and cellosolves (0.5%-3%), reduced the amplitude of body bending, whereas solvents with ketone groups, such as ketones and acetate esters (0.5%-4%), increased it during undulatory locomotion. In addition, organic solvents caused changes in chemotaxis plasticity based on the association between starvation and chemical signals at concentrations lower than those that affect locomotion. This study describes a high-throughput method for acute chemical toxicity testing and provides new insights into behavioral responses to organic solvents that are toxic to humans and other animals.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Division of Industrial Toxicology, Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
3
|
Manabe A, Ko K, Nakayama K, Chihara T, Okumura M. The Nematode Pristionchus pacificus Requires the Gβ and Gγ Proteins for Light Adaptation But Not For Light Avoidance. Zoolog Sci 2025; 42. [PMID: 39932758 DOI: 10.2108/zs240073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/26/2024] [Indexed: 05/08/2025]
Abstract
Most organisms can sense and adapt to a wide range of light intensities. Although animals commonly use opsins for light detection, the nematode Pristionchus pacificus lacks conserved photoreceptors. The cyclic GMP signaling pathway and G protein-coupled receptor kinase are essential for light-avoidance behavior in P. pacificus. Although the mechanism of light sensing in P. pacificus has been partially elucidated, it remains unclear whether, and how, P. pacificus adapts to light. Here, we found that prior exposure to light reduced the frequency of light-avoidance behavior in P. pacificus, indicating its ability to adapt to light. To reveal the mechanism of light adaptation in P. pacificus, we used CRISPR/Cas9 genome editing to generate Gβ and Gγ subunit mutants, as these subunits are involved in chemosensory adaptation in the nematode Caenorhabditis elegans. Gβ and Gγ subunit mutants exhibited light-avoidance behavior similar to that of the wild type, but light adaptation was impaired in the Gβ mutants. Similarly, the Gγ and arrestin mutants showed minor abnormalities in light adaptation. These findings suggest that these proteins play a role in sensory adaptation beyond that in chemosensation and could contribute to light response mechanisms in nematodes.
Collapse
Affiliation(s)
- Aya Manabe
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Keimei Ko
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kenichi Nakayama
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takahiro Chihara
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan,
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
4
|
Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K, Warner A, Xu XZS, Shaham S, Leroux MR. C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors. Sci Rep 2024; 14:28347. [PMID: 39550471 PMCID: PMC11569196 DOI: 10.1038/s41598-024-79057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Primary (non-motile) cilia represent structurally and functionally diverse organelles whose roles as specialized cellular antenna are central to animal cell signaling pathways, sensory physiology and development. An ever-growing number of ciliary proteins, including those found in vertebrate photoreceptors, have been uncovered and linked to human disorders termed ciliopathies. Here, we demonstrate that an evolutionarily-conserved PPEF-family serine-threonine phosphatase, not functionally linked to cilia in any organism but associated with rhabdomeric (non-ciliary) photoreceptor degeneration in the Drosophila rdgC (retinal degeneration C) mutant, is a bona fide ciliary protein in C. elegans. The nematode protein, PEF-1, depends on transition zone proteins, which make up a 'ciliary gate' in the proximal-most region of the cilium, for its compartmentalization within cilia. Animals lacking PEF-1 protein function display structural defects to several types of cilia, including potential degeneration of microtubules. They also exhibit anomalies to cilium-dependent behaviors, including impaired responses to chemical, temperature, light, and noxious CO2 stimuli. Lastly, we demonstrate that PEF-1 function depends on conserved myristoylation and palmitoylation signals. Collectively, our findings broaden the role of PPEF proteins to include cilia, and suggest that the poorly-characterized mammalian PPEF1 and PPEF2 orthologs may also have ciliary functions and thus represent ciliopathy candidates.
Collapse
Affiliation(s)
- Marine Barbelanne
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keerthana Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Xinxing Zhang
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Adam Warner
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - X Z Shawn Xu
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
5
|
Chen Y, Liu Z, Yuan W, Lu S, Bai W, Lin Q, Mu J, Wang J, Wang H, Liang Y. Transgenerational and parental impacts of acrylamide exposure on Caenorhabditis elegans: Physiological, behavioral, and genetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124868. [PMID: 39216669 DOI: 10.1016/j.envpol.2024.124868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Acrylamide is pervasive, and its exposure poses numerous health risks. This study examines both the direct and transgenerational effects of acrylamide toxicity in Caenorhabditis elegans, focusing on physiological and behavioral parameters. Parental exposure to acrylamide compromised several aspects of nematode health, including lifespan, reproductive capacity, body dimensions, and motor and sensory functions. Notably, while exposure to low concentrations of acrylamide did not alter the physiological traits of the offspring-except for their learning and memory-these findings suggest a possible adaptive response to low-level exposure that could be inherited by subsequent generations. Furthermore, continued acrylamide exposure in the offspring intensified both physiological and perceptual toxicity. Detailed analysis revealed dose-dependent alterations in acrylamide's detoxification and metabolic pathways. In particular, it inhibits the gene gst-4, which encodes a crucial enzyme in detoxification, mitigates DNA damage induced by acrylamide, and highlights a potential therapeutic target to reduce its deleterious effects.
Collapse
Affiliation(s)
- Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Zihan Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Weijia Yuan
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Shan Lu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Haifang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
6
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
7
|
Liu P, Liu X, Qi B. UPR ER-immunity axis acts as physiological food evaluation system that promotes aversion behavior in sensing low-quality food. eLife 2024; 13:RP94181. [PMID: 39235964 PMCID: PMC11377039 DOI: 10.7554/elife.94181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.
Collapse
Affiliation(s)
- Pengfei Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinyi Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Moro CA, Sony SA, Franklin LP, Dong S, Peifer MM, Wittig KE, Hanna-Rose W. Adenylosuccinate lyase deficiency affects neurobehavior via perturbations to tyramine signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010974. [PMID: 37773959 PMCID: PMC10566684 DOI: 10.1371/journal.pgen.1010974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.
Collapse
Affiliation(s)
- Corinna A. Moro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina A. Sony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Latisha P. Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Shirley Dong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mia M. Peifer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kathryn E. Wittig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
10
|
Huang T, Suzuki K, Kunitomo H, Tomioka M, Iino Y. Multiple p38/JNK mitogen-activated protein kinase (MAPK) signaling pathways mediate salt chemotaxis learning in C. elegans. G3 (BETHESDA, MD.) 2023; 13:jkad129. [PMID: 37310929 PMCID: PMC10468299 DOI: 10.1093/g3journal/jkad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/15/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Animals are able to adapt their behaviors to the environment. In order to achieve this, the nervous system plays integrative roles, such as perception of external signals, sensory processing, and behavioral regulations via various signal transduction pathways. Here genetic analyses of Caenorhabditis elegans (C. elegans) found that mutants of components of JNK and p38 mitogen-activated protein kinase (MAPK) signaling pathways, also known as stress-activated protein kinase (SAPK) signaling pathways, exhibit various types of defects in the learning of salt chemotaxis. C. elegans homologs of JNK MAPKKK and MAPKK, MLK-1 and MEK-1, respectively, are required for avoidance of salt concentrations experienced during starvation. In contrast, homologs of p38 MAPKKK and MAPKK, NSY-1 and SEK-1, respectively, are required for high-salt chemotaxis after conditioning. Genetic interaction analyses suggest that a JNK family MAPK, KGB-1, functions downstream of both signaling pathways to regulate salt chemotaxis learning. Furthermore, we found that the NSY-1/SEK-1 pathway functions in sensory neurons, ASH, ADF, and ASER, to regulate the learned high-salt chemotaxis. A neuropeptide, NLP-3, expressed in ASH, ADF, and ASER neurons, and a neuropeptide receptor, NPR-15, expressed in AIA interneurons that receive synaptic input from these sensory neurons, function in the same genetic pathway as NSY-1/SEK-1 signaling. These findings suggest that this MAPK pathway may affect neuropeptide signaling between sensory neurons and interneurons, thus promoting high-salt chemotaxis after conditioning.
Collapse
Affiliation(s)
- Taoruo Huang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hirofumi Kunitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Davis K, Mitchell C, Weissenfels O, Bai J, Raizen DM, Ailion M, Topalidou I. G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010613. [PMID: 36652499 PMCID: PMC9886303 DOI: 10.1371/journal.pgen.1010613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in G protein-coupled receptor kinase grk-2 mutant animals. grk-2 was previously shown to act in chemosensation, locomotion, and egg-laying behaviors. Using neuron-specific rescuing experiments, we show that GRK-2 acts in multiple ciliated chemosensory neurons to control exploration behavior. grk-2 acts in opposite ways from the cGMP-dependent protein kinase gene egl-4 to control movement quiescence and exploration behavior. Analysis of mutants with defects in ciliated sensory neurons indicates that grk-2 and the cilium-structure mutants act in the same pathway to control exploration behavior. We find that GRK-2 controls exploration behavior in an opposite manner from the neuropeptide receptor NPR-1 and the neuropeptides FLP-1 and FLP-18. Finally, we show that secretion of the FLP-1 neuropeptide is negatively regulated by GRK-2 and that overexpression of FLP-1 reduces exploration behavior. These results define neurons and molecular pathways that modulate movement quiescence and exploration behavior.
Collapse
Affiliation(s)
- Kristen Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Excellence in Environmental Toxicology (CEET), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christo Mitchell
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Olivia Weissenfels
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jihong Bai
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David M. Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
13
|
Pandey P, Kaur G, Babu K. Crosstalk between neurons and glia through G-protein coupled receptors: Insights from Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:119-144. [PMID: 36357074 DOI: 10.1016/bs.pmbts.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.
Collapse
Affiliation(s)
- Pratima Pandey
- Indian Institute of Science Education and Research, Mohali, Punjab, India.
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kavita Babu
- Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
14
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Matei IV, Samukange VNC, Bunu G, Toren D, Ghenea S, Tacutu R. Knock-down of odr-3 and ife-2 additively extends lifespan and healthspan in C. elegans. Aging (Albany NY) 2021; 13:21040-21065. [PMID: 34506301 PMCID: PMC8457566 DOI: 10.18632/aging.203518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Genetic manipulations can ameliorate the aging process and extend the lifespan of model organisms. The aim of this research was to identify novel genetic interventions that promote both lifespan and healthspan, by combining the effects of multiple longevity-associated gene inactivations in C. elegans. For this, the individual and combined effects of the odr-3 mutation and of ife-2 and cku-70 knock-downs were studied, both in the wild type and daf-16 mutant backgrounds. We found that besides increasing the lifespan of wild type animals, the knock-down of ife-2 (starting at L4) also extends the lifespan and healthspan of long-lived odr-3 mutants. In the daf-16 background, ife-2 and odr-3 impairment exert opposing effects individually, while the daf-16; odr-3; ife-2 deficient animals show a similar lifespan and healthspan as daf-16, suggesting that the odr-3 and ife-2 effector outcomes converge downstream of DAF-16. By contrast, cku-70 knock-down did not extend the lifespan of single or double odr-3; ife-2 inactivated animals, and was slightly deleterious to healthspan. In conclusion, we report that impairment of odr-3 and ife-2 increases lifespan and healthspan in an additive and synergistic manner, respectively, and that this result is not improved by further knocking-down cku-70.
Collapse
Affiliation(s)
- Ioan Valentin Matei
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | | - Gabriela Bunu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Dmitri Toren
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simona Ghenea
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
16
|
Plasticity in gustatory and nociceptive neurons controls decision making in C. elegans salt navigation. Commun Biol 2021; 4:1053. [PMID: 34504291 PMCID: PMC8429449 DOI: 10.1038/s42003-021-02561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
A conventional understanding of perception assigns sensory organs the role of capturing the environment. Better sensors result in more accurate encoding of stimuli, allowing for cognitive processing downstream. Here we show that plasticity in sensory neurons mediates a behavioral switch in C. elegans between attraction to NaCl in naïve animals and avoidance of NaCl in preconditioned animals, called gustatory plasticity. Ca2+ imaging in ASE and ASH NaCl sensing neurons reveals multiple cell-autonomous and distributed circuit adaptation mechanisms. A computational model quantitatively accounts for observed behaviors and reveals roles for sensory neurons in the control and modulation of motor behaviors, decision making and navigational strategy. Sensory adaptation dynamically alters the encoding of the environment. Rather than encoding the stimulus directly, therefore, we propose that these C. elegans sensors dynamically encode a context-dependent value of the stimulus. Our results demonstrate how adaptive sensory computation can directly control an animal’s behavioral state. Martijn Dekkers and Felix Salfelder et al. combine experimental approaches and mathematical modeling to determine the contribution of the two main NaCl sensory neurons (termed ASEL and ASER) and the nociceptive neurons (termed ASH) in C. elegans to the context-dependent switching between NaCl attraction and avoidance. Their results show that regulated sensitivity of these sensory neurons to NaCl allows the animal to dynamically modulate its behavioral response and suggest a role for sensory modulation in balancing exploration and exploitation during foraging.
Collapse
|
17
|
Queirós L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. Overview of Chemotaxis Behavior Assays in Caenorhabditis elegans. Curr Protoc 2021; 1:e120. [PMID: 33974354 PMCID: PMC8162703 DOI: 10.1002/cpz1.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmental pollution related to anthropogenic pressures, and the associated repercussions on public health, represent a worldwide problem. Thus, the study of the effects that environmental contaminants can pose to natural ecosystems and human health is of vital importance. Laboratory model organisms such as Caenorhabditis elegans have played a significant role in clarifying multilevel effects of those agents. Although the evaluation of contaminant effects at the behavioral level of organisms is an emerging approach in ecotoxicology, studies assessing chemotaxis behavior in C. elegans within the ecotoxicological research context are still scarce. Chemotaxis studies in C. elegans have contributed to the understanding of both the neuronal mechanisms involved in the behavioral effects triggered by environmental cues and the impact of contaminants on natural ecosystems. Its compact and well-characterized nervous system, as well as the availability of transgenic strains and molecular tools, allows a detailed examination of behavioral, molecular, and genetic chemosensation mechanisms. This overview provides a summary and general comparison of methods used to measure chemotaxis behavior in C. elegans, with the aim of helping researchers select the most suitable approach in their chemotaxis studies. We compare methods based on the type of chemical tested, advantages and drawbacks of the different approaches, and specific experimental goals. Lastly, we hope to encourage the evaluation of C. elegans chemotaxis behavior in ecotoxicology studies, as well as its potential integration in standardized protocols assessing environmental quality. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Libânia Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Marques
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana L. Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J. M. Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Patrícia Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Brittin CA, Cook SJ, Hall DH, Emmons SW, Cohen N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature 2021; 591:105-110. [PMID: 33627874 PMCID: PMC11648602 DOI: 10.1038/s41586-021-03284-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Animal nervous system organization is crucial for all body functions and its disruption can lead to severe cognitive and behavioural impairment1. This organization relies on features across scales-from the localization of synapses at the nanoscale, through neurons, which possess intricate neuronal morphologies that underpin circuit organization, to stereotyped connections between different regions of the brain2. The sheer complexity of this organ means that the feat of reconstructing and modelling the structure of a complete nervous system that is integrated across all of these scales has yet to be achieved. Here we present a complete structure-function model of the main neuropil in the nematode Caenorhabditis elegans-the nerve ring-which we derive by integrating the volumetric reconstructions from two animals with corresponding3 synaptic and gap-junctional connectomes. Whereas previously the nerve ring was considered to be a densely packed tract of neural processes, we uncover internal organization and show how local neighbourhoods spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and identify a candidate reference connectome for the core circuit. Using this reference, we propose a modular network architecture of the C. elegans brain that supports sensory computation and integration, sensorimotor convergence and brain-wide coordination. These findings reveal scalable and robust features of brain organization that may be universal across phyla.
Collapse
Affiliation(s)
- Christopher A Brittin
- School of Computing, University of Leeds, Leeds, UK
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Steven J Cook
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Scott W Emmons
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, UK.
| |
Collapse
|
20
|
Henry SA, Crivello S, Nguyen TM, Cybulska M, Hoang NS, Nguyen M, Badial T, Emami N, Awada N, Woodward JF, So CH. G protein-coupled receptor kinase 2 modifies the ability of Caenorhabditis elegans to survive oxidative stress. Cell Stress Chaperones 2021; 26:187-197. [PMID: 33064264 PMCID: PMC7736396 DOI: 10.1007/s12192-020-01168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
Survival and adaptation to oxidative stress is important for many organisms, and these occur through the activation of many different signaling pathways. In this report, we showed that Caenorhabditis (C.) elegans G protein-coupled receptor kinases modified the ability of the organism to resist oxidative stress. In acute oxidative stress studies using juglone, loss-of-function grk-2 mutants were more resistant to oxidative stress compared with loss-of-function grk-1 mutants and the wild-type N2 animals. This effect was Ce-AKT-1 dependent, suggesting that Ce-GRK2 adjusted C. elegans oxidative stress resistance through the IGF/insulin-like signaling (IIS) pathway. Treating C. elegans with a GRK2 inhibitor, the selective serotonin reuptake inhibitor paroxetine, resulted in increased acute oxidative stress resistance compared with another selective serotonin reuptake inhibitor, fluoxetine. In chronic oxidative stress studies with paraquat, both grk-1 and grk-2 mutants had longer lifespan compared with the wild-type N2 animals in stress. In summary, this research showed the importance of both GRKs, especially GRK2, in modifying oxidative stress resistance.
Collapse
Affiliation(s)
- Stacy A Henry
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Selina Crivello
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Tina M Nguyen
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Magdalena Cybulska
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Ngoc S Hoang
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Mary Nguyen
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | | | - Nazgol Emami
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Nasma Awada
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Johnathen F Woodward
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Christopher H So
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA.
| |
Collapse
|
21
|
Dao J, Lee A, Drecksel DK, Bittlingmaier NM, Nelson TM. Characterization of TMC-1 in C. elegans sodium chemotaxis and sodium conditioned aversion. BMC Genet 2020; 21:37. [PMID: 32228447 PMCID: PMC7106803 DOI: 10.1186/s12863-020-00844-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background While sodium is attractive at low and aversive at high concentrations in most studied species, including Caenorhabditis elegans, the molecular mechanisms behind transduction remain poorly understood. Additionally, past studies with C. elegans provide evidence that the nematode’s innate behavior can be altered by previous experiences. Here we investigated the molecular aspects of both innate and conditioned responses to salts. Transmembrane channel-like 1 (tmc-1) has been suggested to encode a sodium-sensitive channel required for sodium chemosensation in C. elegans, but its specific role remains unclear. Results We report that TMC-1 is necessary for sodium attraction, but not aversion in the nematode. We show that TMC-1 contributes to the nematode’s lithium induced attraction behavior, but not potassium or magnesium attraction thus clarifying the specificity of the response. In addition, we show that sodium conditioned aversion is dependent on TMC-1 and disrupts not only sodium induced attraction, but also lithium. Conclusions These findings represent the first time a role for TMC-1 has been described in sodium and lithium attraction in vivo, as well as in sodium conditioned aversion. Together this clarifies TMC-1’s importance in sodium hedonics and offer molecular insight into salt chemotaxis learning.
Collapse
Affiliation(s)
- Joseph Dao
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Aileen Lee
- Department of International Health, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Dana K Drecksel
- Department of International Health, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nicole M Bittlingmaier
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Theodore M Nelson
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
22
|
Zhou S, DeFranco JP, Blaha NT, Dwivedy P, Culver A, Nallamala H, Chelluri S, Dumas TC. Aversive conditioning in the tardigrade, Dactylobiotus dispar. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2019; 45:405-412. [PMID: 31368766 PMCID: PMC6776688 DOI: 10.1037/xan0000218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Defensive responses to threatening events in the environment are displayed by a vast number of animals, both vertebrate and invertebrate. These defensive responses can be associated with salient neutral stimuli that are present along with the threatening stimulus. This is referred to as aversive conditioning. Animals with more simple nervous systems, such as Aplysia, C elegans, and Drosophila, have facilitated identification of some the physiological processes that support aversive conditioning. Perhaps even more basic information regarding the neurobiology of learning and memory may be gleaned from animals that have special characteristics not found in other species. Tardigrades, also known as "water bears," are microscopic eight-legged animals that live in various aquatic and terrestrial environments. They are known for their resilience to extreme conditions because of their ability to enter a cryptobiotic "tun" state during which they turn off their metabolism. Thus, tardigrades present an ideal model to study the metabolic requirements for memory storage. However, there is no prior research on tardigrade learning and memory. The purpose of this study was to demonstrate aversive conditioning in a tardigrade species, Dactylobiotus dispar. Associative learning was confirmed by numerous control conditions (unconditioned stimulus [US] only, conditional stimulus [CS] only, backward pairing, random pairing). Short-term memories were formed after a single pairing of the CS and US. This research introduces an important new animal model to the study of the neurobiology of aversive conditioning with important ramifications for understanding the metabolic influences on learning and memory. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Sarah Zhou
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312
| | - Joseph P. DeFranco
- Undergraduate Neuroscience Program, George Mason University, Fairfax, VA 22030
| | - Nicholas T. Blaha
- Undergraduate Neuroscience Program, George Mason University, Fairfax, VA 22030
| | - Pritty Dwivedy
- Undergraduate Neuroscience Program, George Mason University, Fairfax, VA 22030
| | - Ashley Culver
- Undergraduate Neuroscience Program, George Mason University, Fairfax, VA 22030
| | - Hinduja Nallamala
- Undergraduate Neuroscience Program, George Mason University, Fairfax, VA 22030
| | - Srikanth Chelluri
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312
| | - Theodore C. Dumas
- Undergraduate Neuroscience Program, George Mason University, Fairfax, VA 22030
- Psychology Department, George Mason University, Fairfax, VA 22030
| |
Collapse
|
23
|
Multiple sensory neurons mediate starvation-dependent aversive navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019; 116:18673-18683. [PMID: 31455735 PMCID: PMC6744849 DOI: 10.1073/pnas.1821716116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Processing and integrating multiple sensory inputs are essential for generating appropriate behavioral output, where sensory information of food is particularly important. The soil nematode Caenorhabditis elegans remembers salt concentrations that they have experienced under starvation conditions and learn to avoid them by monitoring current salt concentrations with the salt-sensory neuron called ASER. Here, we described how a sensory neuron pair that was not previously implicated, called ASG, plays a pivotal role in driving food-related navigation; sensory input to these 2 sensory neurons is required for navigation to avoid salt concentrations associated with starvation. Our results show how integrated sensory information determines the bias of turning behaviors to efficiently navigate toward food in starved worms. Animals demonstrate flexible behaviors through associative learning based on their experiences. Deciphering the neural mechanisms for sensing and integrating multiple types of sensory information is critical for understanding such behavioral controls. The soil nematode Caenorhabditis elegans avoids salt concentrations it has previously experienced under starvation conditions. Here, we identify a pair of sensory neurons, the ASG neuron pair, which in cooperation with the ASER salt-sensing neuron generate starvation-dependent salt avoidance. Animals whose sensory input is restricted to only ASER failed to show learned avoidance due to inappropriately directed navigation behaviors. However, their navigation through a salt concentration gradient was improved by allowing sensory inputs to ASG in addition to ASER. Detailed behavioral analyses of these animals revealed that input from ASG neurons is required not only for controlling the frequency of initiating a set of sharp turns (called pirouettes) based on detected ambient salt concentrations but also adjusting the migration direction during pirouettes. Optogenetic activation of ASER by ChR2 induced turning behaviors in a salt concentration-dependent manner where presence of intact ASG was important for the starvation-dependent responses. Calcium imaging of the activity of ASG neurons in freely moving worms revealed that ASG is activated upon turning behavior. Our results indicate that ASG neurons cooperate with the ASER neuron to generate destination-directed reorientation in starvation-associated salt concentration avoidance.
Collapse
|
24
|
Pharmacological and molecular dynamics analyses of differences in inhibitor binding to human and nematode PDE4: Implications for management of parasitic nematodes. PLoS One 2019; 14:e0214554. [PMID: 30917179 PMCID: PMC6436744 DOI: 10.1371/journal.pone.0214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Novel chemical controls are needed that selectively target human, animal, and plant parasitic nematodes with reduced adverse effects on the host or the environment. We hypothesize that the phosphodiesterase (PDE) enzyme family represents a potential target for development of novel nematicides and anthelmintics. To test this, we identified six PDE families present in the nematode phylum that are orthologous to six of the eleven human PDE families. We characterized the binding interactions of family-selective PDE inhibitors with human and C. elegans PDE4 in conjunction with molecular dynamics (MD) simulations to evaluate differences in binding interactions of these inhibitors within the PDE4 catalytic domain. We observed that roflumilast (human PDE4-selective inhibitor) and zardaverine (selective for human PDE3 and PDE4) were 159- and 77-fold less potent, respectively, in inhibiting C. elegans PDE4. The pan-specific PDE inhibitor isobutyl methyl xanthine (IBMX) had similar affinity for nematode and human PDE4. Of 32 residues within 5 Å of the ligand binding site, five revealed significant differences in non-bonded interaction energies (van der Waals and electrostatic interaction energies) that could account for the differential binding affinities of roflumilast and zardaverine. One site (Phe506 in the human PDE4D3 amino acid sequence corresponding to Tyr253 in C. elegans PDE4) is predicted to alter the binding conformation of roflumilast and zardaverine (but not IBMX) into a less energetically favorable state for the nematode enzyme. The pharmacological differences in sensitivity to PDE4 inhibitors in conjunction with differences in the amino acids comprising the inhibitor binding sites of human and C. elegans PDE4 catalytic domains together support the feasibility of designing the next generation of anthelmintics/nematicides that could selectively bind to nematode PDEs.
Collapse
|
25
|
Shindou T, Ochi-Shindou M, Murayama T, Saita EI, Momohara Y, Wickens JR, Maruyama IN. Active propagation of dendritic electrical signals in C. elegans. Sci Rep 2019; 9:3430. [PMID: 30837592 PMCID: PMC6401061 DOI: 10.1038/s41598-019-40158-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
Active propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supralinear depolarization of ASEL upon current injection. Furthermore, stimulation of animal's nose with NaCl evoked all-or-none membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the α1 subunit of L-type voltage-gated Ca2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C. elegans chemotaxis along an NaCl gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C. elegans, and is necessary for adaptive behavior.
Collapse
Affiliation(s)
- Tomomi Shindou
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Mayumi Ochi-Shindou
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Ei-Ichiro Saita
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Yuto Momohara
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
26
|
Peymen K, Watteyne J, Borghgraef C, Van Sinay E, Beets I, Schoofs L. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007945. [PMID: 30779740 PMCID: PMC6380545 DOI: 10.1371/journal.pgen.1007945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Aversive learning and memories are crucial for animals to avoid previously encountered stressful stimuli and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learned behaviors, but their precise role is not well understood. Here, we show that neuropeptides of the evolutionarily conserved MyoInhibitory Peptide (MIP)-family modify salt chemotaxis behavior in Caenorhabditis elegans according to previous experience. MIP signaling, through activation of the G protein-coupled receptor SPRR-2, is required for short-term gustatory plasticity. In addition, MIP/SPRR-2 neuropeptide-receptor signaling mediates another type of aversive gustatory learning called salt avoidance learning that depends on de novo transcription, translation and the CREB transcription factor, all hallmarks of long-term memory. MIP/SPRR-2 signaling mediates salt avoidance learning in parallel with insulin signaling. These findings lay a foundation to investigate the suggested orphan MIP receptor orthologs in deuterostomians, including human GPR139 and GPR142. All animals rely on learning and memory processes to learn from experience and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learning and memory processes. We found that the C. elegans receptor SPRR-2 and its ligands, the MIP-1 neuropeptides—which are members of the evolutionarily conserved myoinhibitory peptide system—are required for aversive gustatory learning. Our results provide a basis for investigations into the poorly characterized MIP systems in deuterostomians, including humans, and suggest a possible function in learning for human MIP signaling.
Collapse
Affiliation(s)
- Katleen Peymen
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Watteyne
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | - Elien Van Sinay
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Isabel Beets
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| | - Liliane Schoofs
- Department of Biology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail: (IB); (LS)
| |
Collapse
|
27
|
Grinevich V, Stoop R. Interplay between Oxytocin and Sensory Systems in the Orchestration of Socio-Emotional Behaviors. Neuron 2018; 99:887-904. [DOI: 10.1016/j.neuron.2018.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
|
28
|
Lim JP, Fehlauer H, Das A, Saro G, Glauser DA, Brunet A, Goodman MB. Loss of CaMKI Function Disrupts Salt Aversive Learning in C. elegans. J Neurosci 2018; 38:6114-6129. [PMID: 29875264 PMCID: PMC6031575 DOI: 10.1523/jneurosci.1611-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. Although some genes have been implicated in this salt-aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt-aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegansSIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. In addition to its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt-aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt-sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity.
Collapse
Affiliation(s)
- Jana P Lim
- Neurosciences Graduate Program
- Department of Genetics
- Department of Molecular and Cellular Physiology
| | | | | | - Gabriella Saro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Anne Brunet
- Neurosciences Graduate Program,
- Department of Genetics
- Glenn Center for the Biology of Aging at Stanford University, Stanford, California 94305, and
| | - Miriam B Goodman
- Neurosciences Graduate Program,
- Department of Molecular and Cellular Physiology
| |
Collapse
|
29
|
Urushihata T, Wakabayashi T, Osato S, Yamashita T, Matsuura T. Short-term nicotine exposure induces long-lasting modulation of gustatory plasticity in Caenorhabditis elegans. Biochem Biophys Rep 2017; 8:41-47. [PMID: 28955940 PMCID: PMC5613740 DOI: 10.1016/j.bbrep.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 02/04/2023] Open
Abstract
Nicotine administration induces many effects on animal behavior. In wild-type Caenorhabditis elegans, gustatory plasticity results in reduced chemotaxis toward NaCl of otherwise attractive concentrations after pre-exposure to 100 mM NaCl in the absence of food. However, acute nicotine administration during a 15 min pre-exposure period inhibits gustatory plasticity, whereas chronic nicotine administration during worm development facilitates the plasticity. To investigate the relationship between the duration of nicotine administration and its effects, we exposed worms to nicotine for various periods during development. The modulatory effect of nicotine on gustatory plasticity was gradually switched from inhibition to facilitation with increased duration of nicotine administration. Moreover, inhibition of plasticity was sustained after relatively short-term chronic administration, with effects lasting for 45 h after the removal of nicotine. Similar to the acute inhibitory effect after 15 min nicotine pre-exposure, the inhibitory effect after short-term chronic administration was dependent on the nicotinic acetylcholine receptor subunit genes lev-1 and unc-29, and genes involved in serotonin biosynthesis bas-1 and tph-1. The impaired inhibition in bas-1 and tph-1mutants was recovered by exogenous serotonin, demonstrating that serotonin plays an important role in the long-lasting inhibitory effects of short-term chronic nicotine exposure. We analyzed gustatory plasticity of C. elegans after nicotine administration. Nicotine modulates gustatory plasticity in various ways. Nicotine inhibits gustatory plasticity after short-term chronic administration. The inhibitory effect was long-lasting even after removal of nicotine.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.,Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Tokumitsu Wakabayashi
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.,Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Shoichi Osato
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Tetsuro Yamashita
- Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| | - Tetsuya Matsuura
- Department of Applied Chemistry and Biosciences, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.,Division of Bioprocess Engineering, United Graduate School of Agricultural Science, Iwate University, Morioka, Japan
| |
Collapse
|
30
|
Wang J, Luo J, Aryal DK, Wetsel WC, Nass R, Benovic JL. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans. J Biol Chem 2017; 292:5943-5956. [PMID: 28213524 DOI: 10.1074/jbc.m116.760850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans, and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway.
Collapse
Affiliation(s)
- Jianjun Wang
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jiansong Luo
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences.,Cell Biology, and.,Neurobiology and.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jeffrey L Benovic
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
31
|
Todd PAC, McCue HV, Haynes LP, Barclay JW, Burgoyne RD. Interaction of ARF-1.1 and neuronal calcium sensor-1 in the control of the temperature-dependency of locomotion in Caenorhabditis elegans. Sci Rep 2016; 6:30023. [PMID: 27435667 PMCID: PMC4951722 DOI: 10.1038/srep30023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/27/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis. In the absence of NCS-1, worms show delayed onset and a shorter duration of paralysis. This phenotype can be rescued by re-expression of ncs-1 in AIY neurons. Mutants with defects in four potential NCS-1 targets (arf-1.1, pifk-1, trp-1 and trp-2) showed qualitatively similar phenotypes to ncs-1 null worms, although the effect of pifk-1 mutation on time to paralysis was considerably delayed. Inhibition of pifk-1 also resulted in a locomotion phenotype. Analysis of double mutants showed no additive effects between mutations in ncs-1 and trp-1 or trp-2. In contrast, double mutants of arf-1.1 and ncs-1 had an intermediate phenotype, consistent with NCS-1 and ARF-1.1 acting in the same pathway. Over-expression of arf-1.1 in the AIY neurons was sufficient to rescue partially the phenotype of both the arf-1.1 and the ncs-1 null worms. These findings suggest that ARF-1.1 interacts with NCS-1 in AIY neurons and potentially pifk-1 in the Ca(2+) signaling pathway that leads to inhibited locomotion at an elevated temperature.
Collapse
Affiliation(s)
- Paul A. C. Todd
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Hannah V. McCue
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Jeff W. Barclay
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|
32
|
Ballestriero F, Nappi J, Zampi G, Bazzicalupo P, Di Schiavi E, Egan S. Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Sci Rep 2016; 6:29284. [PMID: 27384057 PMCID: PMC4935850 DOI: 10.1038/srep29284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators’ behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Jadranka Nappi
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Paolo Bazzicalupo
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| |
Collapse
|
33
|
Loucks CM, Bialas NJ, Dekkers MPJ, Walker DS, Grundy LJ, Li C, Inglis PN, Kida K, Schafer WR, Blacque OE, Jansen G, Leroux MR. PACRG, a protein linked to ciliary motility, mediates cellular signaling. Mol Biol Cell 2016; 27:2133-44. [PMID: 27193298 PMCID: PMC4927285 DOI: 10.1091/mbc.e15-07-0490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Cilia are cellular projections that can be motile to generate fluid flow or nonmotile to enable signaling. Both forms are based on shared components, and proteins involved in ciliary motility, like PACRG, may also function in ciliary signaling. Caenorhabditis elegans PACRG acts in a subset of nonmotile cilia to influence a learning behavior and promote longevity. Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon–associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.
Collapse
Affiliation(s)
- Catrina M Loucks
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Nathan J Bialas
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - P Nick Inglis
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Katarzyna Kida
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
34
|
Fosu-Nyarko J, Tan JACH, Gill R, Agrez VG, Rao U, Jones MGK. De novo analysis of the transcriptome of Pratylenchus zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism. MOLECULAR PLANT PATHOLOGY 2016; 17:532-52. [PMID: 26292651 PMCID: PMC6638428 DOI: 10.1111/mpp.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The root lesion nematode Pratylenchus zeae, a migratory endoparasite, is an economically important pest of major crop plants (e.g. cereals, sugarcane). It enters host roots, migrates through root tissues and feeds from cortical cells, and defends itself against biotic and abiotic stresses in the soil and in host tissues. We report de novo sequencing of the P. zeae transcriptome using 454 FLX, and the identification of putative transcripts encoding proteins required for movement, response to stimuli, feeding and parasitism. Sequencing generated 347,443 good quality reads which were assembled into 10,163 contigs and 139,104 singletons: 65% of contigs and 28% of singletons matched sequences of free-living and parasitic nematodes. Three-quarters of the annotated transcripts were common to reference nematodes, mainly representing genes encoding proteins for structural integrity and fundamental biochemical processes. Over 15,000 transcripts were similar to Caenorhabditis elegans genes encoding proteins with roles in mechanical and neural control of movement, responses to chemicals, mechanical and thermal stresses. Notably, 766 transcripts matched parasitism genes employed by both migratory and sedentary endoparasites in host interactions, three of which hybridized to the gland cell region, suggesting that they might be secreted. Conversely, transcripts for effectors reported to be involved in feeding site formation by sedentary endoparasites were conspicuously absent. Transcripts similar to those encoding some secretory-excretory products at the host interface of Brugia malayi, the secretome of Meloidogyne incognita and products of gland cells of Heterodera glycines were also identified. This P. zeae transcriptome provides new information for genome annotation and functional analysis of possible targets for control of pratylenchid nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
- Nemgenix Pty Ltd, WA State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, 6150, Australia
| | - Jo-Anne C H Tan
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Vaughan G Agrez
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Uma Rao
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Michael G K Jones
- Plant Biotechnology Research Group, WA State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
35
|
Serotonin promotes exploitation in complex environments by accelerating decision-making. BMC Biol 2016; 14:9. [PMID: 26847342 PMCID: PMC4743430 DOI: 10.1186/s12915-016-0232-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/21/2016] [Indexed: 01/22/2023] Open
Abstract
Background Fast responses can provide a competitive advantage when resources are inhomogeneously distributed. The nematode Caenorhabditis elegans was shown to modulate locomotion on a lawn of bacterial food in serotonin (5-HT)-dependent manners. However, potential roles for serotonergic signaling in responding to food discovery are poorly understood. Results We found that 5-HT signaling in C. elegans facilitates efficient exploitation in complex environments by mediating a rapid response upon encountering food. Genetic or cellular manipulations leading to deficient serotonergic signaling resulted in gradual responses and defective exploitation of a patchy foraging landscape. Physiological imaging revealed that the NSM serotonergic neurons responded acutely upon encounter with newly discovered food and were key to rapid responses. In contrast, the onset of responses of ADF serotonergic neurons preceded the physical encounter with the food. The serotonin-gated chloride channel MOD-1 and the ortholog of mammalian 5-HT1 metabotropic serotonin receptors SER-4 acted in synergy to accelerate decision-making. The relevance of responding rapidly was demonstrated in patchy environments, where the absence of 5-HT signaling was detrimental to exploitation. Conclusions Our results implicate 5-HT in a novel form of decision-making, demonstrate its fitness consequences, suggest that NSM and ADF act in concert to modulate locomotion in complex environments, and identify the synergistic action of a channel and a metabotropic receptor in accelerating C. elegans decision-making. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0232-y) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Wakabayashi T, Sakata K, Togashi T, Itoi H, Shinohe S, Watanabe M, Shingai R. Navigational choice between reversal and curve during acidic pH avoidance behavior in Caenorhabditis elegans. BMC Neurosci 2015; 16:79. [PMID: 26584677 PMCID: PMC4653917 DOI: 10.1186/s12868-015-0220-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Under experimental conditions, virtually all behaviors of Caenorhabditis elegans are achieved by combinations of simple locomotion, including forward, reversal movement, turning by deep body bending, and gradual shallow turning. To study how worms regulate these locomotion in response to sensory information, acidic pH avoidance behavior was analyzed by using worm tracking system. RESULTS In the acidic pH avoidance, we characterized two types of behavioral maneuvers that have similar behavioral sequences in chemotaxis and thermotaxis. A stereotypic reversal-turn-forward sequence of reversal avoidance caused an abrupt random reorientation, and a shallow gradual turn in curve avoidance caused non-random reorientation in a less acidic direction to avoid the acidic pH. Our results suggest that these two maneuvers were each triggered by a distinct threshold pH. A simulation study using the two-distinct-threshold model reproduced the avoidance behavior of the real worm, supporting the presence of the threshold. Threshold pH for both reversal and curve avoidance was altered in mutants with reduced or enhanced glutamatergic signaling from acid-sensing neurons. CONCLUSIONS C. elegans employ two behavioral maneuvers, reversal (klinokinesis) and curve (klinotaxis) to avoid acidic pH. Unlike the chemotaxis in C. elegans, reversal and curve avoidances were triggered by absolute pH rather than temporal derivative of stimulus concentration in this behavior. The pH threshold is different between reversal and curve avoidance. Mutant studies suggested that the difference results from a differential amount of glutamate released from ASH and ASK chemosensory neurons.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Kazumi Sakata
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Takuya Togashi
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Hiroaki Itoi
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Sayaka Shinohe
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Miwa Watanabe
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| | - Ryuzo Shingai
- Department of Chemistry and Biological Sciences, Faculty of Engineering, Iwate University, Iwate, 020-8551, Japan.
| |
Collapse
|
37
|
Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device. Anal Chim Acta 2015; 887:155-162. [PMID: 26320797 DOI: 10.1016/j.aca.2015.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 04/24/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022]
Abstract
Caenorhabditis elegans, one of the widely studied model organisms, sense external chemical cues and perform relative chemotaxis behaviors through its simple chemosensory neuronal system. To study the mechanism underlying chemosensory behavior, a rapid and reliable method for quantitatively analyzing the worms' behaviors is essential. In this work, we demonstrated a microfluidic approach for investigating chemotaxis responses of worms to chemical gradients. The flow-based microfluidic chip was consisted of circular tree-like microchannels, which was able to generate eight flow streams containing stepwise chemical concentrations without the difference in flow velocity. Worms' upstream swimming into microchannels with various concentrations was monitored for quantitative analysis of the chemotaxis behavior. By using this microfluidic chip, the attractive and repellent responses of C. elegans to NaCl were successfully quantified within several minutes. The results demonstrated the wild type-like repellent responses and severely impaired attractive responses in grk-2 mutant animals with defects in calcium influx. In addition, the chemotaxis analysis of the third stage larvae revealed that its gustatory response was different from that in the adult stage. Thus, our microfluidic method provided a useful platform for studying the chemosensory behaviors of C. elegans and screening of chemosensation-related chemical drugs.
Collapse
|
38
|
McDiarmid TA, Ardiel EL, Rankin CH. The role of neuropeptides in learning and memory in Caenorhabditis elegans. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Li G, Wang Y. Protein kinase D: a new player among the signaling proteins that regulate functions in the nervous system. Neurosci Bull 2014; 30:497-504. [PMID: 24526660 DOI: 10.1007/s12264-013-1403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/07/2013] [Indexed: 10/25/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily-conserved family of protein kinases. It has structural, regulatory, and enzymatic properties quite different from the PKC family. Many stimuli induce PKD signaling, including G-protein-coupled receptor agonists and growth factors. PKD1 is the most studied member of the family. It functions during cell proliferation, differentiation, secretion, cardiac hypertrophy, immune regulation, angiogenesis, and cancer. Previously, we found that PKD1 is also critically involved in pain modulation. Since then, a series of studies performed in our lab and by other groups have shown that PKDs also participate in other processes in the nervous system including neuronal polarity establishment, neuroprotection, and learning. Here, we discuss the connections between PKD structure, enzyme function, and localization, and summarize the recent findings on the roles of PKD-mediated signaling in the nervous system.
Collapse
Affiliation(s)
- Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | | |
Collapse
|
40
|
Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, Iino Y. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nat Commun 2014; 4:2210. [PMID: 23887678 DOI: 10.1038/ncomms3210] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/01/2013] [Indexed: 01/31/2023] Open
Abstract
It is poorly understood how sensory systems memorize the intensity of sensory stimulus, compare it with a newly sensed stimulus, and regulate the orientation behaviour based on the memory. Here we report that Caenorhabditis elegans memorizes the environmental salt concentration during cultivation and exhibits a strong behavioural preference for this concentration. The right-sided amphid gustatory neuron known as ASER, senses decreases in salt concentration, and this information is transmitted to the postsynaptic AIB interneurons only in the salt concentration range lower than the cultivation concentration. In this range, animals migrate towards higher concentration by promoting turning behaviour upon decreases in salt concentration. These observations provide a mechanism for adjusting the orientation behaviour based on the memory of sensory stimulus using a simple neural circuit.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Sasakura H, Tsukada Y, Takagi S, Mori I. Japanese studies on neural circuits and behavior of Caenorhabditis elegans. Front Neural Circuits 2013; 7:187. [PMID: 24348340 PMCID: PMC3842693 DOI: 10.3389/fncir.2013.00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/03/2013] [Indexed: 01/25/2023] Open
Abstract
The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies.
Collapse
Affiliation(s)
- Hiroyuki Sasakura
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Yuki Tsukada
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Shin Takagi
- Laboratory of Brain Function and Structure, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Ikue Mori
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| |
Collapse
|
42
|
Matsuura T, Miura H, Nishino A. Inhibition of gustatory plasticity due to acute nicotine exposure in the nematode Caenorhabditis elegans. Neurosci Res 2013; 77:155-61. [DOI: 10.1016/j.neures.2013.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
43
|
Beets I, Temmerman L, Janssen T, Schoofs L. Ancient neuromodulation by vasopressin/oxytocin-related peptides. WORM 2013; 2:e24246. [PMID: 24058873 PMCID: PMC3704447 DOI: 10.4161/worm.24246] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/25/2013] [Accepted: 03/08/2013] [Indexed: 11/19/2022]
Abstract
Neuropeptidergic signaling is widely adopted by animals for the regulation of physiology and behavior in a rapidly changing environment. The vasopressin/oxytocin neuropeptide family originates from an ancestral peptide precursor in the antecedent of protostomian and deuterostomian animals. In vertebrates, vasopressin and oxytocin have both hormonal effects on peripheral target tissues, such as in the regulation of reproduction and water balance, and neuromodulatory actions in the central nervous system controlling social behavior and cognition. The recent identification of vasopressin/oxytocin-related signaling in C. elegans reveals that this peptidergic system is widespread among nematodes. Genetic analysis of the C. elegans nematocin system denotes vasopressin/oxytocin-like peptides as ancient neuromodulators of neuronal circuits involved in reproductive behavior and associative learning, whereas former invertebrate studies focused on conserved peripheral actions of this peptide family. Nematocin provides neuromodulatory input into the gustatory plasticity circuit as well as into distinct male mating circuits to generate a coherent mating behavior. Molecular interactions are comparable to those underlying vasopressin- and oxytocin-mediated effects in the mammalian brain. Understanding how the vasopressin/oxytocin family fine-tunes neuronal circuits for social behavior, learning and memory poses a major challenge. Functional conservation of these effects in nematodes and most likely in other invertebrates enables the development of future models to help answering this question.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology; Functional Genomics and Proteomics Group; KU Leuven; Leuven, Belgium
| | | | | | | |
Collapse
|
44
|
Martin VM, Johnson JR, Haynes LP, Barclay JW, Burgoyne RD. Identification of key structural elements for neuronal calcium sensor-1 function in the regulation of the temperature-dependency of locomotion in C. elegans. Mol Brain 2013; 6:39. [PMID: 23981466 PMCID: PMC3765893 DOI: 10.1186/1756-6606-6-39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Intracellular Ca2+ regulates many aspects of neuronal function through Ca2+ binding to EF hand-containing Ca2+ sensors that in turn bind target proteins to regulate their function. Amongst the sensors are the neuronal calcium sensor (NCS) family of proteins that are involved in multiple neuronal signalling pathways. Each NCS protein has specific and overlapping targets and physiological functions and specificity is likely to be determined by structural features within the proteins. Common to the NCS proteins is the exposure of a hydrophobic groove, allowing target binding in the Ca2+-loaded form. Structural analysis of NCS protein complexes with target peptides has indicated common and distinct aspects of target protein interaction. Two key differences between NCS proteins are the size of the hydrophobic groove that is exposed for interaction and the role of their non-conserved C-terminal tails. Results We characterised the role of NCS-1 in a temperature-dependent locomotion assay in C. elegans and identified a distinct phenotype in the ncs-1 null in which the worms do not show reduced locomotion at actually elevated temperature. Using rescue of this phenotype we showed that NCS-1 functions in AIY neurons. Structure/function analysis introducing single or double mutations within the hydrophobic groove based on information from characterised target complexes established that both N- and C-terminal pockets of the groove are functionally important and that deletion of the C-terminal tail of NCS-1 did not impair its ability to rescue. Conclusions The current work has allowed physiological assessment of suggestions from structural studies on the key structural features that underlie the interaction of NCS-1 with its target proteins. The results are consistent with the notion that full length of the hydrophobic groove is required for the regulatory interactions underlying NCS-1 function whereas the C-terminal tail of NCS-1 is not essential. This has allowed discrimination between two potential modes of interaction of NCS-1 with its targets.
Collapse
Affiliation(s)
- Victoria M Martin
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| | | | | | | | | |
Collapse
|
45
|
Appleby PA. The role of multiple chemotactic mechanisms in a model of chemotaxis in C. elegans: different mechanisms are specialised for different environments. J Comput Neurosci 2013; 36:339-54. [PMID: 23942985 DOI: 10.1007/s10827-013-0474-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Unlike simpler organisms, C. elegans possesses several distinct chemosensory pathways and chemotactic mechanisms. These mechanisms and pathways are individually capable of driving chemotaxis in a chemical concentration gradient. However, it is not understood if they are redundant or co-operate in more sophisticated ways. Here we examine the specialisation of different chemotactic mechanisms in a model of chemotaxis to NaCl. We explore the performance of different chemotactic mechanisms in a range of chemical gradients and show that, in the model, far from being redundant, the mechanisms are specialised both for different environments and for distinct features within those environments. We also show that the chemotactic drive mediated by the ASE pathway is not robust to the presence of noise in the chemical gradient. This problem cannot be solved along the ASE pathway without destroying its ability to drive chemotaxis. Instead, we show that robustness to noise can be achieved by introducing a second, much slower NaCl-sensing pathway. This secondary pathway is simpler than the ASE pathway, in the sense that it can respond to either up-steps or down-steps in NaCl but not both, and could correspond to one of several candidates in the literature which we identify and evaluate. This work provides one possible explanation of why there are multiple NaCl sensing pathways and chemotactic mechanisms in C. elegans: rather than being redundant the different pathways and mechanism are specialised both for the characteristics of different environments and for distinct features within a single environment.
Collapse
Affiliation(s)
- Peter A Appleby
- Kroto Research Institute, University of Sheffield, Sheffield, UK,
| |
Collapse
|
46
|
Nishino A, Kanno R, Matsuura T. The Role of Oxygen Intermediates in the Retention Time of Diacetyl Adaptation in the NematodeCaenorhabditis elegans. ACTA ACUST UNITED AC 2013; 319:431-9. [DOI: 10.1002/jez.1806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ryo Kanno
- Laboratory of Behavioral Physiology, Faculty of Engineering; Iwate University; Morioka; Japan
| | | |
Collapse
|
47
|
Murayama T, Takayama J, Fujiwara M, Maruyama IN. Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans. Curr Biol 2013; 23:1007-12. [PMID: 23664973 DOI: 10.1016/j.cub.2013.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Survival requires that living organisms continuously monitor environmental and tissue pH. Animals sense acidic pH using ion channels and G-protein-coupled receptors (GPCRs), but monitoring of alkaline pH is not well understood. We report here that in the nematode Caenorhabditis elegans, a transmembrane receptor-type guanylyl cyclase (RGC), GCY-14, of the ASEL gustatory neuron, plays an essential role in the sensing of extracellular alkalinity. Activation of GCY-14 opens a cGMP-gated cation channel encoded by tax-2 and tax-4, resulting in Ca(2+) entry into ASEL. Ectopic expression of GCY-14 in other neurons indicates that it accounts for the alkalinity sensing capability. Domain-swapping and site-directed mutagenesis of GCY-14 reveal that GCY-14 functions as a homodimer, in which histidine of the extracellular domains plays a crucial role in alkalinity detection. These results argue that in addition to ion channels and GPCRs, RGCs also play a role in pH sensation in neurons.
Collapse
Affiliation(s)
- Takashi Murayama
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | | | | | | |
Collapse
|
48
|
Lee JI, Mukherjee S, Yoon K, Dwivedi M, Bandyopadhyay J. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J Biosci 2013; 38:417-31. [DOI: 10.1007/s12038-013-9319-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Dacks PA, Moreno CL, Kim ES, Marcellino BK, Mobbs CV. Role of the hypothalamus in mediating protective effects of dietary restriction during aging. Front Neuroendocrinol 2013; 34:95-106. [PMID: 23262258 PMCID: PMC3626742 DOI: 10.1016/j.yfrne.2012.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/04/2012] [Accepted: 12/11/2012] [Indexed: 01/09/2023]
Abstract
Dietary restriction (DR) can extend lifespan and reduce disease burden across a wide range of animals and yeast but the mechanisms mediating these remarkably protective effects remain to be elucidated despite extensive efforts. Although it has generally been assumed that protective effects of DR are cell-autonomous, there is considerable evidence that many whole-body responses to nutritional state, including DR, are regulated by nutrient-sensing neurons. In this review, we explore the hypothesis that nutrient sensing neurons in the ventromedial hypothalamus hierarchically regulate the protective responses of dietary restriction. We describe multiple peripheral responses that are hierarchically regulated by the hypothalamus and we present evidence for non-cell autonomous signaling of dietary restriction gathered from a diverse range of models including invertebrates, mammalian cell culture, and rodent studies.
Collapse
Affiliation(s)
- Penny A. Dacks
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
- Alzheimer's Drug Discovery Foundation, New York, NY 10019
| | - Cesar L. Moreno
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Esther S. Kim
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Bridget K. Marcellino
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Charles V. Mobbs
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
50
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|