1
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
2
|
Liehrmann A, Delannoy E, Launay-Avon A, Gilbault E, Loudet O, Castandet B, Rigaill G. DiffSegR: an RNA-seq data driven method for differential expression analysis using changepoint detection. NAR Genom Bioinform 2023; 5:lqad098. [PMID: 37954572 PMCID: PMC10632193 DOI: 10.1093/nargab/lqad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
To fully understand gene regulation, it is necessary to have a thorough understanding of both the transcriptome and the enzymatic and RNA-binding activities that shape it. While many RNA-Seq-based tools have been developed to analyze the transcriptome, most only consider the abundance of sequencing reads along annotated patterns (such as genes). These annotations are typically incomplete, leading to errors in the differential expression analysis. To address this issue, we present DiffSegR - an R package that enables the discovery of transcriptome-wide expression differences between two biological conditions using RNA-Seq data. DiffSegR does not require prior annotation and uses a multiple changepoints detection algorithm to identify the boundaries of differentially expressed regions in the per-base log2 fold change. In a few minutes of computation, DiffSegR could rightfully predict the role of chloroplast ribonuclease Mini-III in rRNA maturation and chloroplast ribonuclease PNPase in (3'/5')-degradation of rRNA, mRNA and tRNA precursors as well as intron accumulation. We believe DiffSegR will benefit biologists working on transcriptomics as it allows access to information from a layer of the transcriptome overlooked by the classical differential expression analysis pipelines widely used today. DiffSegR is available at https://aliehrmann.github.io/DiffSegR/index.html.
Collapse
Affiliation(s)
- Arnaud Liehrmann
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, 91190, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, 91190, France
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, Evry,91037, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, 91190, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, 91190, France
| | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, 91190, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, 91190, France
| | - Elodie Gilbault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Benoît Castandet
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, 91190, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, 91190, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, 91190, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, 91190, France
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, Evry,91037, France
| |
Collapse
|
3
|
Emamjomeh A, Zahiri J, Asadian M, Behmanesh M, Fakheri BA, Mahdevar G. Identification, Prediction and Data Analysis of Noncoding RNAs: A Review. Med Chem 2019; 15:216-230. [PMID: 30484409 DOI: 10.2174/1573406414666181015151610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/03/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs. OBJECTIVE The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA's roles in cellular processes and drugs design, briefly. METHOD In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases. RESULTS The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs. CONCLUSION ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Asadian
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Barat A Fakheri
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Ghasem Mahdevar
- Department of Mathematics, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Emmerling VV, Fischer S, Kleemann M, Handrick R, Kochanek S, Otte K. miR-483 is a self-regulating microRNA and can activate its own expression via USF1 in HeLa cells. Int J Biochem Cell Biol 2016; 80:81-86. [DOI: 10.1016/j.biocel.2016.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/03/2023]
|
5
|
Qi X, Xia T. Structure, dynamics, and mechanism of the lead-dependent ribozyme. Biomol Concepts 2015; 2:305-14. [PMID: 25962038 DOI: 10.1515/bmc.2011.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/06/2011] [Indexed: 12/24/2022] Open
Abstract
Leadzyme is a small catalytic RNA that was identified by in vitro selection for Pb2+-dependent cleavage from a tRNA library. Leadzyme employs a unique two-step Pb2+-specific mechanism to cleave within its active site. NMR and crystal structures of the active site revealed different folding patterns, but neither features the in-line alignment for attack by the 2'-OH nucleophilic group. These experimentally determined structures most likely represent ground states and are catalytically inactive. There are significant dynamics of the active site and the motif samples multiple conformations at the ground states. Various metal ion binding sites have been identified, including one that may be occupied by a catalytic Pb2+. Based on functional group analysis, a computational model of the transition state has been proposed. This model features a unique base triple that is consistent with sequence and functional group requirements for catalysis. This structure is likely only populated transiently, but imposing appropriate conformational constraints may significantly stabilize this state thereby promoting catalysis. Other ions may inhibit the cleavage by competing for the Pb2+ binding site, or by stabilizing the ground state thereby suppressing its transition to the catalytically active conformation. Some rare earth ions can enhance the reaction via an unknown mechanism. Because of its unique chemistry and dynamic behavior, leadzyme can continue to serve as an excellent model system for teaching us RNA biology and chemistry.
Collapse
|
6
|
Dufour D, Marti-Renom MA. Software for predicting the 3D structure of RNA molecules. WILEY INTERDISCIPLINARY REVIEWS: COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David Dufour
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG) and Gene Regulacion, Stem Cells and Cancer Program; Centre de Regulació Genòmica (CRG); Barcelona Spain
| | - Marc A. Marti-Renom
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG) and Gene Regulacion, Stem Cells and Cancer Program, Centre de Regulació Genòmica (CRG); Barcelona Spain
| |
Collapse
|
7
|
Meijueiro ML, Santoyo F, Ramirez L, Pisabarro AG. Transcriptome characteristics of filamentous fungi deduced using high-throughput analytical technologies. Brief Funct Genomics 2014; 13:440-50. [DOI: 10.1093/bfgp/elu033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, Jin W. Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 2014; 9:e98958. [PMID: 24892290 PMCID: PMC4044008 DOI: 10.1371/journal.pone.0098958] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/09/2014] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a class of riboregulators that either directly act in long form or are processed to shorter miRNAs and siRNAs. Emerging evidence shows that lncRNAs participate in stress responsive regulation. In this study, to identify the putative maize lncRNAs responsive to drought stress, 8449 drought responsive transcripts were first uploaded to the Coding Potential Calculator website for classification as protein coding or non-coding RNAs, and 1724 RNAs were identified as potential non-coding RNAs. A Perl script was written to screen these 1724 ncRNAs and 664 transcripts were ultimately identified as drought-responsive lncRNAs. Of these 664 transcripts, 126 drought-responsive lncRNAs were highly similar to known maize lncRNAs; the remaining 538 transcripts were considered as novel lncRNAs. Among the 664 lncRNAs identified as drought responsive, 567 were upregulated and 97 were downregulated in drought-stressed leaves of maize. 8 lncRNAs were identified as miRNA precursor lncRNAs, 62 were classified as both shRNA and siRNA precursors, and 279 were classified as siRNA precursors. The remaining 315 lncRNAs were classified as other lncRNAs that are likely to function as longer molecules. Among these 315 lncRNAs, 10 are identified as antisense lncRNAs and 7 could pair with 17 CDS sequences with near-perfect matches. Finally, RT-qPCR results confirmed that all selected lncRNAs could respond to drought stress. These findings extend the current view on lncRNAs as ubiquitous regulators under stress conditions.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhaoxue Han
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qingli Guo
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yu Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuxian Zheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Fangli Wu
- Institute of Bioengineering, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weibo Jin
- College of Life Sciences, Northwest A&F University, Yangling, China
- Institute of Bioengineering, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail:
| |
Collapse
|
9
|
Affiliation(s)
- Stephen B. Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | - Jeanne M. McCaffery
- Department of Psychiatry and Human Behavior, The Miriam Hospital, and Warren Alpert School of Medicine at Brown University, Providence, Rhode Island 02903;
| |
Collapse
|
10
|
Montes M, Becerra S, Sánchez-Álvarez M, Suñé C. Functional coupling of transcription and splicing. Gene 2012; 501:104-17. [DOI: 10.1016/j.gene.2012.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/13/2023]
|
11
|
Murray MY, Rushworth SA, MacEwan DJ. Micro RNAs as a new therapeutic target towards leukaemia signalling. Cell Signal 2011; 24:363-368. [PMID: 21978953 DOI: 10.1016/j.cellsig.2011.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/19/2011] [Indexed: 12/19/2022]
Abstract
Micro RNAs (miRNAs) have emerged as potentially useful and specific agents to regulate transcriptional control of many cellular genes. There is a real prospect that miRNA and other short-length RNA reagents could be useful in a therapeutic setting. Here we outline the control of miRNAs in acute myeloid leukaemia (AML) subtype of human leukaemia, and ask whether miRNA could be important either in the generation of an AML phenotype, or as a variety of agents to combat the disease in the clinic. The use of miRNAs as potential biomarkers of aberrant signalling pathways involved in AML oncogenesis is also discussed.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Communication/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Mimicry
- Molecular Targeted Therapy/methods
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Oligonucleotides/therapeutic use
- Signal Transduction/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Megan Y Murray
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Stuart A Rushworth
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David J MacEwan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
12
|
Pillmann H, Hatje K, Odronitz F, Hammesfahr B, Kollmar M. Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology. BMC Bioinformatics 2011; 12:270. [PMID: 21718515 PMCID: PMC3228551 DOI: 10.1186/1471-2105-12-270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative splicing of pre-mature RNA is an important process eukaryotes utilize to increase their repertoire of different protein products. Several types of different alternative splice forms exist including exon skipping, differential splicing of exons at their 3'- or 5'-end, intron retention, and mutually exclusive splicing. The latter term is used for clusters of internal exons that are spliced in a mutually exclusive manner. RESULTS We have implemented an extension to the WebScipio software to search for mutually exclusive exons. Here, the search is based on the precondition that mutually exclusive exons encode regions of the same structural part of the protein product. This precondition provides restrictions to the search for candidate exons concerning their length, splice site conservation and reading frame preservation, and overall homology. Mutually exclusive exons that are not homologous and not of about the same length will not be found. Using the new algorithm, mutually exclusive exons in several example genes, a dynein heavy chain, a muscle myosin heavy chain, and Dscam were correctly identified. In addition, the algorithm was applied to the whole Drosophila melanogaster X chromosome and the results were compared to the Flybase annotation and an ab initio prediction. Clusters of mutually exclusive exons might be subsequent to each other and might encode dozens of exons. CONCLUSIONS This is the first implementation of an automatic search for mutually exclusive exons in eukaryotes. Exons are predicted and reconstructed in the same run providing the complete gene structure for the protein query of interest. WebScipio offers high quality gene structure figures with the clusters of mutually exclusive exons colour-coded, and several analysis tools for further manual inspection. The genome scale analysis of all genes of the Drosophila melanogaster X chromosome showed that WebScipio is able to find all but two of the 28 annotated mutually exclusive spliced exons and predicts 39 new candidate exons. Thus, WebScipio should be able to identify mutually exclusive spliced exons in any query sequence from any species with a very high probability. WebScipio is freely available to academics at http://www.webscipio.org.
Collapse
Affiliation(s)
- Holger Pillmann
- Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
13
|
Michael DR, Phillips AO, Krupa A, Martin J, Redman JE, Altaher A, Neville RD, Webber J, Kim MY, Bowen T. The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem 2011; 286:19523-32. [PMID: 21357421 PMCID: PMC3103331 DOI: 10.1074/jbc.m111.233916] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of the human hyaluronan synthase 2 (HAS2) gene has been implicated in the pathology of malignancy, pulmonary arterial hypertension, osteoarthritis, asthma, thyroid dysfunction, and large organ fibrosis. Renal fibrosis is associated with increased cortical synthesis of hyaluronan (HA), an extracellular matrix glycosaminoglycan, and we have shown that HA is a correlate of interstitial fibrosis in vivo. Our previous in vitro data have suggested that both HAS2 transcriptional induction and subsequent HAS2-driven HA synthesis may contribute to kidney fibrosis via phenotypic modulation of the renal proximal tubular epithelial cell (PTC). Post-transcriptional regulation of HAS2 mRNA synthesis by the natural antisense RNA HAS2-AS1 has recently been described in osteosarcoma cells, but the antisense transcript was not detected in kidney. In this study, PTC stimulation with IL-1β or TGF-β1 induced coordinated temporal profiles of HAS2-AS1 and HAS2 transcription. Constitutive activity of the putative HAS2-AS1 promoter was demonstrated, and transcription factor-binding sequence motifs were identified. Knockdown of Sp1/Sp3 expression by siRNA blunted IL-1β induction of both HAS2-AS1 and HAS2, and Smad2/Smad3 knockdown similarly attenuated TGF-β1 stimulation. Inhibition of IL-1β-stimulated HAS2-AS1 RNA induction using HAS2-AS1-specific siRNAs also suppressed up-regulation of HAS2 mRNA transcription. The thermodynamic feasibility of HAS2-AS1/HAS2 heterodimer formation was demonstrated in silico, and locus-specific cytoplasmic double-stranded RNA was detected in vitro. In summary, our data show that transcriptional induction of HAS2-AS1 and HAS2 occurs simultaneously in PTCs and suggest that transcription of the antisense RNA stabilizes or augments HAS2 mRNA expression in these cells via RNA/mRNA heteroduplex formation.
Collapse
MESH Headings
- Cell Line, Tumor
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Fibrosis
- Gene Expression Regulation
- Gene Knockdown Techniques
- Glucuronosyltransferase/biosynthesis
- Glucuronosyltransferase/genetics
- Humans
- Hyaluronan Synthases
- Hyaluronic Acid/biosynthesis
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Kidney Diseases/genetics
- Kidney Diseases/metabolism
- Kidney Diseases/pathology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Nucleic Acid Heteroduplexes/biosynthesis
- Nucleic Acid Heteroduplexes/genetics
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Response Elements/genetics
- Smad2 Protein/genetics
- Smad2 Protein/metabolism
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor/genetics
- Sp3 Transcription Factor/metabolism
- Transcription, Genetic
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Daryn R. Michael
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Aled O. Phillips
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
- the Cardiff Institute of Tissue Engineering and Repair, Cardiff Medicentre, Heath Park, Cardiff CF14 4UJ, and
| | - Aleksandra Krupa
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - John Martin
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
- the Cardiff Institute of Tissue Engineering and Repair, Cardiff Medicentre, Heath Park, Cardiff CF14 4UJ, and
| | - James E. Redman
- the School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Abdalsamed Altaher
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Rachel D. Neville
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
- the Cardiff Institute of Tissue Engineering and Repair, Cardiff Medicentre, Heath Park, Cardiff CF14 4UJ, and
| | - Jason Webber
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Min-young Kim
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
| | - Timothy Bowen
- From the Institute of Nephrology, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN
- the Cardiff Institute of Tissue Engineering and Repair, Cardiff Medicentre, Heath Park, Cardiff CF14 4UJ, and
| |
Collapse
|
14
|
Qiu GH, Leung CHW, Yun T, Xie X, Laban M, Hooi SC. Recognition and suppression of transfected plasmids by protein ZNF511-PRAP1, a potential molecular barrier to transgene expression. Mol Ther 2011; 19:1478-86. [PMID: 21540836 DOI: 10.1038/mt.2011.80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nonviral vectors present considerable advantages over viral counterparts in gene transfer. However, the poor expression efficiency of the transfected genes poses a challenge for their use in gene therapy, primarily due to the inability of these vectors to overcome various barriers, including the biological barriers. Here, we report that ZNF511-PRAP1 may be involved in the recognition and inactivation of transfected plasmids. ZNF511-PRAP1 is induced by transfection of plasmid DNA and suppresses the transcription of transfected plasmids. It binds directly to the p21 promoter in transfected plasmids but not the endogenous counterpart. Similarly, ZNF511-PRAP1 suppresses the expression of the green fluorescent protein reporter gene on transiently transfected plasmids but not an integrated red fluorescence reporter gene with the same cytomegalovirus (CMV) promoter. Therefore, ZNF511-PRAP1 is able to differentiate between exogenous/nonintegrated and endogenous/integrated DNA. The suppression by ZNF511-PRAP1 is independent of DNA methylation and can be abolished by trichostatin A (TSA) treatment and knockdown of HDAC2 and/or ZNF511-PRAP1. Furthermore, ZNF511-PRAP1 interacts directly with HDAC2. Our results revealed that transfected plasmids are recognized by ZNF511-PRAP1 and suppressed by a repressor complex comprising ZNF511-PRAP1 and HDAC2 and suggest that ZNF511-PRAP1 could play a role as a potential molecular barrier in nonviral transgene expression.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
15
|
Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC PLANT BIOLOGY 2011; 11:61. [PMID: 21473757 PMCID: PMC3079642 DOI: 10.1186/1471-2229-11-61] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/07/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. RESULTS In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. CONCLUSION Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.
Collapse
Affiliation(s)
- Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Yu Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Na Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Dandan Qin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, PR China
- National Plant Gene Research Centre (Beijing), Beijing 100094, PR China
- Department of Plant Genetics & Breeding, China Agricultural University, Yuanmingyuan Xi Road No. 2, Haidian District, Beijing, 100193, PR China
| |
Collapse
|
16
|
Rossi A, D'Urso OF, Gatto G, Poltronieri P, Ferracin M, Remondelli P, Negrini M, Caporaso MG, Bonatti S, Mallardo M. Non-coding RNAs change their expression profile after Retinoid induced differentiation of the promyelocytic cell line NB4. BMC Res Notes 2010; 3:24. [PMID: 20181027 PMCID: PMC2843733 DOI: 10.1186/1756-0500-3-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/27/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The importance of non-coding RNAs (ncRNAs) as fine regulators of eukaryotic gene expression has emerged by several studies focusing on microRNAs (miRNAs). miRNAs represent a newly discovered family of non coding-RNAs. They are thought to be crucial players of human hematopoiesis and related tumorigenesis and to represent a potential tool to detect the early stages of cancer. More recently, the expression regulation of numerous long ncRNAs has been linked to cell growth, differentiation and cancer although the molecular mechanism of their function is still unknown.NB4 cells are promyelocytic cells that can be induced to differentiation upon retinoic acid (ATRA) treatment and represent a feasible model to study changes of non coding RNAs expression between cancer cells and their terminally differentiated counterpart. FINDINGS we screened, by microarray analysis, the expression of 243 miRNAs and 492 human genes transcribing for putative long ncRNAs different from miRNAs in NB4 cells before and after ATRA induced differentiation. Our data show that 8 miRNAs, and 58 long ncRNAs were deregulated by ATRA induced NB4 differentiation. CONCLUSION our data suggest that ATRA-induced differentiation lead to deregulation of a large number of the ncRNAs that can play regulatory roles in both tumorigenesis and differentiation.
Collapse
Affiliation(s)
- Annalisa Rossi
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, Napoli, Italy
| | - Oscar F D'Urso
- Biotecgen, Ecotekne, via prov.le Monteroni, Lecce, Italy
| | - Graziana Gatto
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, Napoli, Italy
| | | | - Manuela Ferracin
- Department of Experimental and Diagnostic Medicine, Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara 44100, Italy
| | - Paolo Remondelli
- Department of Pharmaceutical Sciences, University of Salerno, via Ponte Don Melillo, Fisciano SA, Italy
| | - Massimo Negrini
- Department of Experimental and Diagnostic Medicine, Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara 44100, Italy
| | - Maria G Caporaso
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, Napoli, Italy
| | - Stefano Bonatti
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, Napoli, Italy
| | - Massimo Mallardo
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, Napoli, Italy
| |
Collapse
|
17
|
Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE, Sette C. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res 2009; 70:229-39. [PMID: 20028857 DOI: 10.1158/0008-5472.can-09-2788] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human cyclin D1 is expressed as two isoforms derived by alternate RNA splicing, termed D1a and D1b, which differ for the inclusion of intron 4 in the D1b mRNA. Both isoforms are frequently upregulated in human cancers, but cyclin D1b displays relatively higher oncogenic potential. The splicing factors that regulate alternative splicing of cyclin D1b remain unknown despite the likelihood that they contribute to cyclin D1 oncogenicity. In this study, we report that Sam68, an RNA-binding protein frequently overexpressed in prostate cancer cells, enhances splicing of cyclin D1b and supports its expression in prostate cancer cells. Chromatin immunoprecipitation and RNA coimmunoprecipitation experiments showed that Sam68 is recruited to the human CCND1 gene encoding cyclin D1 and that it binds to cyclin D1 mRNA. Transient overexpression and RNAi knockdown experiments indicated that Sam68 acts to enhance endogenous expression of cyclin D1b. Minigene reporter assays showed that Sam68 directly affected alternative splicing of CCND1 message, with a preference for the A870 allele that is known to favor cyclin D1b splicing. Sam68 interacted with the proximal region of intron 4, and its binding correlated inversely with recruitment of the spliceosomal component U1-70K. Sam68-mediated splicing was modulated by signal transduction pathways that elicit phosphorylation of Sam68 and regulate its affinity for CCND1 intron 4. Notably, Sam68 expression positively correlates with levels of cyclin D1b, but not D1a, in human prostate carcinomas. Our results identify Sam68 as the first splicing factor to affect CCND1 alternative splicing in prostate cancer cells, and suggest that increased levels of Sam68 may stimulate cyclin D1b expression in human prostate cancers.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Navarro A, Beà S, Fernández V, Prieto M, Salaverria I, Jares P, Hartmann E, Mozos A, López-Guillermo A, Villamor N, Colomer D, Puig X, Ott G, Solé F, Serrano S, Rosenwald A, Campo E, Hernández L. MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in Mantle cell lymphomas. Cancer Res 2009; 69:7071-8. [PMID: 19690137 DOI: 10.1158/0008-5472.can-09-1095] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The contribution of microRNAs (miR) to the pathogenesis of mantle cell lymphoma (MCL) is not well known. We investigated the expression of 86 mature miRs mapped to frequently altered genomic regions in MCL in CD5(+)/CD5(-) normal B cells, reactive lymph nodes, and purified tumor cells of 17 leukemic MCL, 12 nodal MCL, and 8 MCL cell lines. Genomic alterations of the tumors were studied by single nucleotide polymorphism arrays and comparative genomic hybridization. Leukemic and nodal tumors showed a high number of differentially expressed miRs compared with purified normal B cells, but only some of them were commonly deregulated in both tumor types. An unsupervised analysis of miR expression profile in purified leukemic MCL cells revealed two clusters of tumors characterized by different mutational status of the immunoglobulin genes, proliferation signature, and number of genomic alterations. The expression of most miRs was not related to copy number changes in their respective chromosomal loci. Only the levels of miRs included in the miR-17-92 cluster were significantly related to genetic alterations at 13q31. Moreover, overexpression of miR-17-5p/miR-20a from this cluster was associated with high MYC mRNA levels in tumors with a more aggressive behavior. In conclusion, the miR expression pattern of MCL is deregulated in comparison with normal lymphoid cells and distinguishes two subgroups of tumors with different biological features.
Collapse
Affiliation(s)
- Alba Navarro
- Department of Pathology (Hematopathology Unit), Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Weikard R, Goldammer T, Eberlein A, Kuehn C. Novel transcripts discovered by mining genomic DNA from defined regions of bovine chromosome 6. BMC Genomics 2009; 10:186. [PMID: 19393061 PMCID: PMC2681481 DOI: 10.1186/1471-2164-10-186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 04/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linkage analyses strongly suggest a number of QTL for production, health and conformation traits in the middle part of bovine chromosome 6 (BTA6). The identification of the molecular background underlying the genetic variation at the QTL and subsequent functional studies require a well-annotated gene sequence map of the critical QTL intervals. To complete the sequence map of the defined subchromosomal regions on BTA6 poorly covered with comparative gene information, we focused on targeted isolation of transcribed sequences from bovine bacterial artificial chromosome (BAC) clones mapped to the QTL intervals. RESULTS Using the method of exon trapping, 92 unique exon trapping sequences (ETS) were discovered in a chromosomal region of poor gene coverage. Sequence identity to the current NCBI sequence assembly for BTA6 was detected for 91% of unique ETS. Comparative sequence similarity search revealed that 11% of the isolated ETS displayed high similarity to genomic sequences located on the syntenic chromosomes of the human and mouse reference genome assemblies. Nearly a third of the ETS identified similar equivalent sequences in genomic sequence scaffolds from the alternative Celera-based sequence assembly of the human genome. Screening gene, EST, and protein databases detected 17% of ETS with identity to known transcribed sequences. Expression analysis of a subset of the ETS showed that most ETS (84%) displayed a distinctive expression pattern in a multi-tissue panel of a lactating cow verifying their existence in the bovine transcriptome. CONCLUSION The results of our study demonstrate that the exon trapping method based on region-specific BAC clones is very useful for targeted screening for novel transcripts located within a defined chromosomal region being deficiently endowed with annotated gene information. The majority of identified ETS represents unknown noncoding sequences in intergenic regions on BTA6 displaying a distinctive tissue-specific expression profile. However, their definite regulatory function has to be analyzed in further studies. The novel transcripts will add new sequence information to annotate a complete bovine genome sequence assembly, contribute to establish a detailed transcription map for targeted BTA6 regions and will also be helpful to dissect of the molecular and regulatory background of the QTL detected on BTA6.
Collapse
Affiliation(s)
- Rosemarie Weikard
- Forschungsinstitut für die Biologie Landwirtschaftlicher Nutztiere (FBN), Dummerstorf, Germany.
| | | | | | | |
Collapse
|
20
|
Reeves GA, Talavera D, Thornton JM. Genome and proteome annotation: organization, interpretation and integration. J R Soc Interface 2009; 6:129-47. [PMID: 19019817 DOI: 10.1098/rsif.2008.0341] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have seen a huge increase in the generation of genomic and proteomic data. This has been due to improvements in current biological methodologies, the development of new experimental techniques and the use of computers as support tools. All these raw data are useless if they cannot be properly analysed, annotated, stored and displayed. Consequently, a vast number of resources have been created to present the data to the wider community. Annotation tools and databases provide the means to disseminate these data and to comprehend their biological importance. This review examines the various aspects of annotation: type, methodology and availability. Moreover, it puts a special interest on novel annotation fields, such as that of phenotypes, and highlights the recent efforts focused on the integrating annotations.
Collapse
Affiliation(s)
- Gabrielle A Reeves
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
21
|
Mello BP, Abrantes EF, Torres CH, Machado-Lima A, Fonseca RDS, Carraro DM, Brentani RR, Reis LFL, Brentani H. No-match ORESTES explored as tumor markers. Nucleic Acids Res 2009; 37:2607-17. [PMID: 19270067 PMCID: PMC2677862 DOI: 10.1093/nar/gkp074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sequencing technologies and new bioinformatics tools have led to the complete sequencing of various genomes. However, information regarding the human transcriptome and its annotation is yet to be completed. The Human Cancer Genome Project, using ORESTES (open reading frame EST sequences) methodology, contributed to this objective by generating data from about 1.2 million expressed sequence tags. Approximately 30% of these sequences did not align to ESTs in the public databases and were considered no-match ORESTES. On the basis that a set of these ESTs could represent new transcripts, we constructed a cDNA microarray. This platform was used to hybridize against 12 different normal or tumor tissues. We identified 3421 transcribed regions not associated with annotated transcripts, representing 83.3% of the platform. The total number of differentially expressed sequences was 1007. Also, 28% of analyzed sequences could represent noncoding RNAs. Our data reinforces the knowledge of the human genome being pervasively transcribed, and point out molecular marker candidates for different cancers. To reinforce our data, we confirmed, by real-time PCR, the differential expression of three out of eight potentially tumor markers in prostate tissues. Lists of 1007 differentially expressed sequences, and the 291 potentially noncoding tumor markers were provided.
Collapse
Affiliation(s)
- Barbara P Mello
- Hospital A. C. Camargo, Rua Prof. Antônio Prudente 211, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 2009; 6:2817-30. [PMID: 19108609 PMCID: PMC2605928 DOI: 10.1371/journal.pbio.0060326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 11/11/2008] [Indexed: 11/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in which a set of genes (PHO genes) is expressed to activate inorganic phosphate (Pi) metabolism for adaptation to Pi starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4 transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription) of PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely) responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and is required for G1 arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21 being the largest subunit of RNA polymerase II) using a yeast tiling array. In the course of this study, we found Pi- and Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is transmitted via certain inositol polyphosphate (IP) species (IP7) that are synthesized by Vip1 IP6 kinase. We have shown that Pho4 activates the transcription of antisense and intragenic RNAs in the KCS1 locus to down-regulate the Kcs1 activity, another IP6 kinase, by producing truncated Kcs1 protein via hybrid formation with the KCS1 mRNA and translation of the intragenic RNA, thereby enabling Vip1 to utilize more IP6 to synthesize IP7 functioning in low-Pi signaling. Because Kcs1 also can phosphorylate these IP7 species to synthesize IP8, reduction in Kcs1 activity can ensure accumulation of the IP7 species, leading to further stimulation of low-Pi signaling (i.e., forming a positive feedback loop). We also report that genes apparently not involved in the PHO system are regulated by Pho4 either dependent upon or independent of the Pi conditions, and many of the latter genes are involved in stress response. In S. cerevisiae, a large-scale cDNA analysis and mapping of RNA polymerase II binding using a high-resolution tiling array have identified a large number of antisense RNA species whose functions are yet to be clarified. Here we have shown that nutrient-regulated antisense and intragenic RNAs as well as direct regulation of structural gene transcription function in the response to nutrient availability. Our findings also imply that Pho4 is present in the nucleus even under high-Pi conditions to activate or repress transcription, which challenges our current understanding of Pho4 regulation.
Collapse
Affiliation(s)
- Masafumi Nishizawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Kavanaugh LA, Dietrich FS. Non-coding RNA prediction and verification in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000321. [PMID: 19119416 PMCID: PMC2603021 DOI: 10.1371/journal.pgen.1000321] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 12/01/2008] [Indexed: 11/18/2022] Open
Abstract
Non-coding RNA (ncRNA) play an important and varied role in cellular function. A significant amount of research has been devoted to computational prediction of these genes from genomic sequence, but the ability to do so has remained elusive due to a lack of apparent genomic features. In this work, thermodynamic stability of ncRNA structural elements, as summarized in a Z-score, is used to predict ncRNA in the yeast Saccharomyces cerevisiae. This analysis was coupled with comparative genomics to search for ncRNA genes on chromosome six of S. cerevisiae and S. bayanus. Sets of positive and negative control genes were evaluated to determine the efficacy of thermodynamic stability for discriminating ncRNA from background sequence. The effect of window sizes and step sizes on the sensitivity of ncRNA identification was also explored. Non-coding RNA gene candidates, common to both S. cerevisiae and S. bayanus, were verified using northern blot analysis, rapid amplification of cDNA ends (RACE), and publicly available cDNA library data. Four ncRNA transcripts are well supported by experimental data (RUF10, RUF11, RUF12, RUF13), while one additional putative ncRNA transcript is well supported but the data are not entirely conclusive. Six candidates appear to be structural elements in 5′ or 3′ untranslated regions of annotated protein-coding genes. This work shows that thermodynamic stability, coupled with comparative genomics, can be used to predict ncRNA with significant structural elements. Recent advances in DNA sequence technology have made it possible to sequence entire genomes. Once a genome is sequenced, it becomes necessary to identify the set of genes and other functional elements within the genome. This is particularly challenging as much of the genomic sequence does not appear to perform any function and is loosely referred to as “junk.” Identifying functional elements among the “junk” is difficult. Experimental methods have been developed for this purpose but they are time-consuming, expensive, and often provide an incomplete picture. Thus, it is important to develop the ability to identify these functional elements using computational methods. Protein-coding genes are relatively easy to identify computationally, but other categories of functional elements present a significantly greater challenge. In this work, we used a computational approach to identify genes that do not encode for a protein but rather function as an RNA molecule. We then used experimental methods to verify our predictions and thereby validate the computational method.
Collapse
Affiliation(s)
- Laura A. Kavanaugh
- Department of Molecular Genetics and Microbiology, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Plomin R, Davis OSP. The future of genetics in psychology and psychiatry: microarrays, genome-wide association, and non-coding RNA. J Child Psychol Psychiatry 2009; 50:63-71. [PMID: 19220590 PMCID: PMC2898937 DOI: 10.1111/j.1469-7610.2008.01978.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? METHODS Although quantitative genetics such as twin studies will continue to yield important findings, nothing will advance the field as much as identifying the specific genes responsible for heritability. Advances in molecular genetics have been driven by technology, especially DNA microarrays the size of a postage stamp that can genotype a million DNA markers simultaneously. DNA microarrays have led to a dramatic shift in research towards genome-wide association (GWA) studies. The ultimate goal of GWA is to sequence each individual's entire genome, which has begun to happen. RESULTS GWA studies suggest that for most complex traits and common disorders genetic effects are much smaller than previously considered: The largest effects account for only 1% of the variance of quantitative traits. This finding implies that hundreds of genes are responsible for the heritability of behavioural problems in childhood, and that it will be difficult to identify reliably these genes of small effect. Another discovery with far-reaching implications for future genetic research is the importance of non-coding RNA (DNA transcribed into RNA but not translated into amino acid sequences), which redefines what the word gene means. Non-coding RNA underlines the need for a genome-wide approach that is not limited to the 2% of DNA responsible for specifying the amino acid sequences of proteins. CONCLUSIONS The only safe prediction is that the fast pace of genetic discoveries will continue and will increasingly affect research in child psychology and psychiatry. DNA microarrays will make it possible to use hundreds of genes to predict genetic risk and to use these sets of genes in top-down behavioural genomic research that explores developmental change and continuity, multivariate heterogeneity and co-morbidity, and gene-environment interaction and correlation. A crucial question is whether the prediction of genetic risk will be sufficiently robust to translate into genetically based diagnoses, personalized treatments, and prevention programmes.
Collapse
Affiliation(s)
- Robert Plomin
- Institute of Psychiatry, King's College, London, UK.
| | | |
Collapse
|
26
|
Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 2008; 19:57-69. [PMID: 18997003 DOI: 10.1101/gr.080275.108] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.
Collapse
Affiliation(s)
- Besma Ben Amor
- Institut des Sciences du Végétal (ISV), CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G. Intronic Alus influence alternative splicing. PLoS Genet 2008; 4:e1000204. [PMID: 18818740 PMCID: PMC2533698 DOI: 10.1371/journal.pgen.1000204] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 08/20/2008] [Indexed: 01/25/2023] Open
Abstract
Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Ram
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Y. Levanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gil Ast
- Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
28
|
Lev-Maor G, Goren A, Sela N, Kim E, Keren H, Doron-Faigenboim A, Leibman-Barak S, Pupko T, Ast G. The "alternative" choice of constitutive exons throughout evolution. PLoS Genet 2008; 3:e203. [PMID: 18020709 PMCID: PMC2077895 DOI: 10.1371/journal.pgen.0030203] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/01/2007] [Indexed: 12/23/2022] Open
Abstract
Alternative cassette exons are known to originate from two processes—exonization of intronic sequences and exon shuffling. Herein, we suggest an additional mechanism by which constitutively spliced exons become alternative cassette exons during evolution. We compiled a dataset of orthologous exons from human and mouse that are constitutively spliced in one species but alternatively spliced in the other. Examination of these exons suggests that the common ancestors were constitutively spliced. We show that relaxation of the 5′ splice site during evolution is one of the molecular mechanisms by which exons shift from constitutive to alternative splicing. This shift is associated with the fixation of exonic splicing regulatory sequences (ESRs) that are essential for exon definition and control the inclusion level only after the transition to alternative splicing. The effect of each ESR on splicing and the combinatorial effects between two ESRs are conserved from fish to human. Our results uncover an evolutionary pathway that increases transcriptome diversity by shifting exons from constitutive to alternative splicing. Alternative splicing is believed to play a major role in the creation of transcriptomic diversification leading to higher order of organismal complexity, especially in mammals. As much as 80% of human genes generate more than one type of mRNA by alternative splicing. Thus, alternative splicing can bridge the low number of protein coding genes (∼24,500) and the total number of proteins generated in the human proteome (∼90,000). The correlation between the higher order of phenotypic diversity and alternative splicing was recently demonstrated and thus the origin of alternative splicing is of great interest. There are currently two models regarding the origin of alternatively spliced exons—exonization of intronic sequences and exon shuffling. According to these two mechanisms, a protein-coding gene was first established and only then a new alternative exon appeared within it or was added to the gene. Our current study provides evidences for a new mechanism indicating that during evolution constitutively spliced exons became alternatively spliced. Large-scale bioinformatic analyses reveal the magnitude of this process and experimental validation systems provide insights into its mechanisms.
Collapse
Affiliation(s)
- Galit Lev-Maor
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Amir Goren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Noa Sela
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Eddo Kim
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Doron-Faigenboim
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Tal Pupko
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch Microbiol 2008; 190:319-32. [DOI: 10.1007/s00203-008-0369-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
30
|
Eisen JS, Smith JC. Controlling morpholino experiments: don't stop making antisense. Development 2008; 135:1735-43. [PMID: 18403413 DOI: 10.1242/dev.001115] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the most significant problems facing developmental biologists who do not work on an organism with well-developed genetics - and even for some who do - is how to inhibit the action of a gene of interest during development so as to learn about its normal biological function. A widely adopted approach is to use antisense technologies, and especially morpholino antisense oligonucleotides. In this article, we review the use of such reagents and present examples of how they have provided insights into developmental mechanisms. We also discuss how the use of morpholinos can lead to misleading results, including off-target effects, and we suggest controls that will allow researchers to interpret morpholino experiments correctly.
Collapse
Affiliation(s)
- Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
31
|
Abstract
Recent progress in the analyses of the mouse transcriptome leads to unexpected discoveries. The mouse genomic sequences read by RNA polymerase II may be six times more than previously expected for human chromosomes. The transcript-abundant regions (named "transcription forests") occupy more than half of the genomic sequence and are divided by transcript-scarce regions (transcription deserts). Many of the coding mRNAs may have partially overlapping antisense RNAs. There are transcripts bridging several adjacent genes that were previously regarded as distinct ones. The transcription start sites appearing as cap analysis of gene expression (CAGE) tags are mapped on the mouse genomic sequences. Distributions of CAGE tags show that the shapes of mammalian gene promoters can be classified into four major categories. These shapes were conserved between mouse and human. Most of the gene has exonic transcription start sites, especially in the 3' untranslated region (3' UTR) sequences. The term "RNA continent" has been invented to express this unexpectedly complex and prodigious mouse transcriptome. More than a half of the RNA polymerase II transcripts are regarded as noncoding RNAs (ncRNAs). The great variety of ncRNAs in mammalian transcriptome implies that there are many functional ncRNAs in the cells. Especially, the evolutionarily conserved microRNAs play critical roles in mammalian development and other biological functions. Moreover, many other ncRNAs have also been shown to have biological significant functions, mainly in the regulation of gene expression. The functional survey of the RNA continent has just started. We will describe the state of the art of the RNA continent and its impact on the modern molecular biology, especially on the cancer research.
Collapse
Affiliation(s)
- Jun Yasuda
- Functional RNA Research Program, Frontier Research System, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
32
|
Yazgan O, Krebs JE. Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. Biochem Cell Biol 2008; 85:484-96. [PMID: 17713583 DOI: 10.1139/o07-061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing and annotation has advanced our understanding of genome organization and gene structure but initially only allowed predictions of how many genes might be present. Mechanisms such as alternative splicing reveal that these predictions only scratch the surface of the true nature of the transcriptome. Several thousand expressed partial gene fragments have been cloned but were considered transcriptional noise or cloning artifacts. We now know that genomes are indeed expressed at much higher levels than was previously predicted, and much of the additional transcription maps to intergenic regions, intron sequences, and untranslated regions of mRNAs. These transcripts are expressed from either the sense or the antisense strand and can be confirmed by conventional techniques. In addition to the already established roles for small RNAs in gene regulation, large noncoding RNAs (ncRNAs) are also emerging as potent regulators of gene expression. In this review, we summarize several illustrative examples of gene regulatory mechanisms that involve large ncRNAs. We describe several distinct regulatory mechanisms that involve large ncRNAs, such as transcriptional interference and promoter inactivation, as well as indirect effects on transcription regulatory proteins and in genomic imprinting. These diverse functions for large ncRNAs are likely to be only the first of many novel regulatory mechanisms emerging from this growing field.
Collapse
Affiliation(s)
- Oya Yazgan
- Department of Biological Sciences, University of AK Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | |
Collapse
|
33
|
Xin Y, Quarta G, Gan HH, Schlick T. Estimating the Fraction of Non-Coding RNAs in Mammalian Transcriptomes. Bioinform Biol Insights 2008; 2:75-94. [PMID: 19812767 PMCID: PMC2735967 DOI: 10.4137/bbi.s443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies of mammalian transcriptomes have identified numerous RNA transcripts that do not code for proteins; their identity, however, is largely unknown. Here we explore an approach based on sequence randomness patterns to discern different RNA classes. The relative z-score we use helps identify the known ncRNA class from the genome, intergene and intron classes. This leads us to a fractional ncRNA measure of putative ncRNA datasets which we model as a mixture of genuine ncRNAs and other transcripts derived from genomic, intergenic and intronic sequences. We use this model to analyze six representative datasets identified by the FANTOM3 project and two computational approaches based on comparative analysis (RNAz and EvoFold). Our analysis suggests fewer ncRNAs than estimated by DNA sequencing and comparative analysis, but the verity of our approach and its prediction requires more extensive experimental RNA data.
Collapse
Affiliation(s)
- Yurong Xin
- Department of Chemistry and 251 Mercer Street, New York University, New York, NY 10012, U.S.A
- Courant Institute of Mathematical Sciences, 251 Mercer Street, New York University, New York, NY 10012, U.S.A
| | - Giulio Quarta
- Department of Chemistry and 251 Mercer Street, New York University, New York, NY 10012, U.S.A
| | - Hin Hark Gan
- Department of Chemistry and 251 Mercer Street, New York University, New York, NY 10012, U.S.A
| | - Tamar Schlick
- Department of Chemistry and 251 Mercer Street, New York University, New York, NY 10012, U.S.A
- Courant Institute of Mathematical Sciences, 251 Mercer Street, New York University, New York, NY 10012, U.S.A
| |
Collapse
|
34
|
Abstract
Noncoding RNA genes produce a functional RNA product rather than a translated protein. More than 1500 homologs of known "classical" RNA genes can be annotated in the human genome sequence, and automatic homology-based methods predict up to 5000 related sequences. Methods to predict novel RNA genes on a whole-genome scale are immature at present, but their use hints at tens of thousands of such genes in the human genome. Messenger RNA-like transcripts with no protein-coding potential are routinely discovered by high-throughput transcriptome analyses. Meanwhile, various experimental studies have suggested that the vast majority of the human genome is transcribed, although the proportion of the detected RNAs that is functional remains unknown.
Collapse
Affiliation(s)
- Sam Griffiths-Jones
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom.
| |
Collapse
|
35
|
Mason CE, Seringhaus MR, Sattler de Sousa e Brito C. Personalized genomic medicine with a patchwork, partially owned genome. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2007; 80:145-51. [PMID: 18449389 PMCID: PMC2347364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
"His book was known as the Book of Sand, because neither the book nor the sand have any beginning or end." - Jorge Luis BorgesThe human genome is a three billion-letter recipe for the genesis of a human being, directing development from a single-celled embryo to the trillions of adult cells. Since the sequencing of the human genome was announced in 2001, researchers have an increased ability to discern the genetic basis for diseases. This reference genome has opened the door to genomic medicine, aimed at detecting and understanding all genetic variations of the human genome that contribute to the manifestation and progression of disease. The overarching vision of genomic (or "personalized") medicine is to custom-tailor each treatment for maximum effectiveness in an individual patient. Detecting the variation in a patient's deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein structures is no longer an insurmountable hurdle. Today, the challenge for genomic medicine lies in contextualizing those myriad genetic variations in terms of their functional consequences for a person's health and development throughout life and in terms of that patient's susceptibility to disease and differential clinical responses to medication. Additionally, several recent developments have complicated our understanding of the nominal human genome and, thereby, altered the progression of genomic medicine. In this brief review, we shall focus on these developments and examine how they are changing our understanding of our genome.
Collapse
Affiliation(s)
- Christopher E. Mason
- Program on Neurogenetics, Yale University Medical School, New Haven, Connecticut,Information Society Project, Yale Law School, New Haven, Connecticut,To whom all correspondence should be addressed: Christopher E. Mason, Department of Genetics, Yale University Medical School, 300 Cedar Street, New Haven, CT 06511; E-mail:
| | | | | |
Collapse
|
36
|
Li MD, Wang J. Neuroproteomics and its applications in research on nicotine and other drugs of abuse. Proteomics Clin Appl 2007; 1:1406-27. [PMID: 21136639 DOI: 10.1002/prca.200700321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 12/24/2022]
Abstract
The rapidly growing field of neuroproteomics is able to track changes in protein expression and protein modifications underlying various physiological conditions, including the neural diseases related to drug addiction. Thus, it presents great promise in characterizing protein function, biochemical pathways, and networks to understand the mechanisms underlying drug dependence. In this article, we first provide an overview of proteomics technologies and bioinformatics tools available to analyze proteomics data. Then we summarize the recent applications of proteomics to profile the protein expression pattern in animal or human brain tissues after the administration of nicotine, alcohol, amphetamine, butorphanol, cocaine, and morphine. By comparing the protein expression profiles in response to chronic nicotine exposure with those appearing in response to treatment with other drugs of abuse, we identified three biological processes that appears to be regulated by multiple drugs of abuse: energy metabolism, oxidative stress response, and protein degradation and modification. Such similarity indicates that despite the obvious differences among their chemical properties and the receptors with which they interact, different substances of abuse may cause some similar changes in cellular activities and biological processes in neurons.
Collapse
Affiliation(s)
- Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
37
|
Buratti E, Dhir A, Lewandowska MA, Baralle FE. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events. Nucleic Acids Res 2007; 35:4369-83. [PMID: 17580311 PMCID: PMC1935003 DOI: 10.1093/nar/gkm447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variations deep in the intronic regions of pre-mRNA molecules are increasingly reported to affect splicing events. However, there is no general explanation why apparently similar variations may have either no effect on splicing or cause significant splicing alterations. In this work we have examined the structural architecture of pseudoexons previously described in ATM and CFTR patients. The ATM case derives from the deletion of a repressor element and is characterized by an aberrant 5′ss selection despite the presence of better alternatives. The CFTR pseudoexon instead derives from the creation of a new 5′ss that is used while a nearby pre-existing donor-like sequence is never selected. Our results indicate that RNA structure is a major splicing regulatory factor in both cases. Furthermore, manipulation of the original RNA structures can lead to pseudoexon inclusion following the exposure of unused 5′ss already present in their wild-type intronic sequences and prevented to be recognized because of their location in RNA stem structures. Our data show that intrinsic structural features of introns must be taken into account to understand the mechanism of pseudoexon activation in genetic diseases. Our observations may help to improve diagnostics prediction programmes and eventual therapeutic targeting.
Collapse
|
38
|
Izquierdo JM, Valcárcel J. Two isoforms of the T-cell intracellular antigen 1 (TIA-1) splicing factor display distinct splicing regulation activities. Control of TIA-1 isoform ratio by TIA-1-related protein. J Biol Chem 2007; 282:19410-7. [PMID: 17488725 DOI: 10.1074/jbc.m700688200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TIA-1 (T-cell Intracellular Antigen 1) and TIAR (TIA-1-related protein) are RNA-binding proteins involved in the regulation of alternative pre-mRNA splicing and other aspects of RNA metabolism. Various isoforms of these proteins exist in mammals. For example, TIA-1 presents two major isoforms (TIA-1a and TIA-1b) generated by alternative splicing of exon 5 that differ by eleven amino acids exclusive of the TIA-1a isoform. Here we show that the relative expression of TIA-1 and TIAR isoforms varies in different human tissues and cell lines, suggesting distinct functional properties and regulated isoform expression. We report that whereas TIA-1 isoforms show similar subcellular distribution and RNA binding, TIA-1b displays enhanced splicing stimulatory activity compared with TIA-1a, both in vitro and in vivo. Interestingly, TIAR depletion from HeLa and mouse embryonic fibroblasts results in an increased ratio of TIA-1b/a expression, suggesting that TIAR regulates the relative expression of TIA-1 isoforms. Taken together, the results reveal distinct functional properties of TIA-1 isoforms and the existence of a regulatory network that controls isoform expression.
Collapse
Affiliation(s)
- José M Izquierdo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
39
|
Braga J, McNally JG, Carmo-Fonseca M. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys J 2007; 92:2694-703. [PMID: 17259280 PMCID: PMC1831683 DOI: 10.1529/biophysj.106.096693] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/05/2007] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study molecular dynamics inside living cells. During the past years, several laboratories have used FRAP to image the motion of RNA-protein and other macromolecular complexes in the nucleus and cytoplasm. In the case of mRNAs, there is growing evidence indicating that these molecules assemble into large ribonucleoprotein complexes that diffuse throughout the nucleus by Brownian motion. However, estimates of the corresponding diffusion rate yielded values that differ by up to one order of magnitude. In vivo labeling of RNA relies on indirect tagging with a fluorescent probe, and here we show how the binding affinity of the probe to the target RNA influences the effective diffusion estimates of the resulting complex. We extend current reaction-diffusion models for FRAP by allowing for diffusion of the bound complex. This more general model can be used to fit any fluorescence recovery curve involving two interacting mobile species in the cell (a fluorescent probe and its target substrate). The results show that interpreting FRAP data in light of the new model reconciles the discrepant mRNA diffusion-rate values previously reported.
Collapse
Affiliation(s)
- José Braga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | | | | |
Collapse
|
40
|
Abstract
Mammalian X inactivation, imprinting, and allelic exclusion are classic examples of monoallelic gene expression. Two emerging themes are thought to be critical for monoallelic expression: (1) noncoding, often antisense, transcription linked to differential chromatin marks on otherwise homologous alleles and (2) physical segregation of alleles to separate domains within the nucleus. Here, we highlight recent progress in identifying these phenomena as possible key regulatory mechanisms of monoallelic expression.
Collapse
Affiliation(s)
- Pok Kwan Yang
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 2007; 17:556-65. [PMID: 17387145 PMCID: PMC1855172 DOI: 10.1101/gr.6036807] [Citation(s) in RCA: 545] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of evidence of their functionality, thereby leaving an impression that, instead, they represent "transcriptional noise." Here, we describe an analysis of 3122 long and full-length, noncoding RNAs ("macroRNAs") from the mouse, and compare their sequences and their promoters with orthologous sequence from human and from rat. We considered three independent signatures of purifying selection related to substitutions, sequence insertions and deletions, and splicing. We find that the evolution of the set of noncoding RNAs is not consistent with neutralist explanations. Rather, our results indicate that purifying selection has acted on the macroRNAs' promoters, primary sequence, and consensus splice site motifs. Promoters have experienced the greatest elimination of nucleotide substitutions, insertions, and deletions. The proportion of conserved sequence (4.1%-5.5%) in these macroRNAs is comparable to the density of exons within protein-coding transcripts (5.2%). These macroRNAs, taken together, thus possess the imprint of purifying selection, thereby indicating their functionality. Our findings should now provide an incentive for the experimental investigation of these macroRNAs' functions.
Collapse
Affiliation(s)
- Jasmina Ponjavic
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Chris P. Ponting
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- Corresponding authors.E-mail ; fax 44-1865-282651.E-mail ; fax 44-1865-282651
| | - Gerton Lunter
- MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
- Corresponding authors.E-mail ; fax 44-1865-282651.E-mail ; fax 44-1865-282651
| |
Collapse
|
42
|
Ro S, Park C, Jin J, Sanders KM, Yan W. A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun 2006; 351:756-763. [PMID: 17084816 PMCID: PMC1934510 DOI: 10.1016/j.bbrc.2006.10.105] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
Recent cloning efforts have identified hundreds of thousands of small RNAs including micro RNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs). These non-coding small RNAs need to be further validated and characterized by detecting and quantifying their expression in different tissues and during different developmental courses. A simple, accurate, and sensitive method for small RNA expression profiling is in high demand. Here, we report such a PCR-based method.
Collapse
Affiliation(s)
- Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
43
|
Miura F, Kawaguchi N, Sese J, Toyoda A, Hattori M, Morishita S, Ito T. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci U S A 2006; 103:17846-51. [PMID: 17101987 PMCID: PMC1693835 DOI: 10.1073/pnas.0605645103] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Indexed: 11/18/2022] Open
Abstract
We performed a large-scale cDNA analysis to explore the transcriptome of the budding yeast Saccharomyces cerevisiae. We sequenced two cDNA libraries, one from the cells exponentially growing in a minimal medium and the other from meiotic cells. Both libraries were generated by using a vector-capping method that allows the accurate mapping of transcription start sites (TSSs). Consequently, we identified 11,575 TSSs associated with 3,638 annotated genomic features, including 3,599 ORFs, to suggest that most yeast genes have two or more TSSs. In addition, we identified 45 previously undescribed introns, including those affecting current ORF annotations and those spliced alternatively. Furthermore, the analysis revealed 667 transcription units in the intergenic regions and transcripts derived from antisense strands of 367 known features. We also found that 348 ORFs carry TSSs in their 3'-halves to generate sense transcripts starting from inside the ORFs. These results indicate that the budding yeast transcriptome is considerably more complex than previously thought, and it shares many recently revealed characteristics with the transcriptomes of mammals and other higher eukaryotes. Thus, the genome-wide active transcription that generates novel classes of transcripts appears to be an intrinsic feature of the eukaryotic cells. The budding yeast will serve as a versatile model for the studies on these aspects of transcriptome, and the full-length cDNA clones can function as an invaluable resource in such studies.
Collapse
Affiliation(s)
- Fumihito Miura
- *Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo 102-0081, Japan
| | - Noriko Kawaguchi
- *Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo 102-0081, Japan
| | - Jun Sese
- *Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
| | - Atsushi Toyoda
- The Institute of Physical and Chemical Research (RIKEN) Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan; and
| | - Masahira Hattori
- *Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
- The Institute of Physical and Chemical Research (RIKEN) Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan; and
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shinichi Morishita
- *Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo 102-0081, Japan
| | - Takashi Ito
- *Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo 102-0081, Japan
| |
Collapse
|
44
|
Vanden Berghe W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006; 72:1114-31. [PMID: 16934762 DOI: 10.1016/j.bcp.2006.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 02/06/2023]
Abstract
Controlled expression of cytokine genes is an essential component of an immune response and is crucial for homeostasis. In order to generate an appropriate response to an infectious condition, the type of cytokine, as well as the cell type, dose range and the kinetics of its expression are of critical importance. The nuclear factor-kappaB (NF-kappaB) family of transcription factors has a crucial role in rapid responses to stress and pathogens (innate immunity), as well as in development and differentiation of immune cells (acquired immunity). Although quite a number of genes contain NF-kappaB-responsive elements in their regulatory regions, their expression pattern can significantly vary from both a kinetic and quantitative point of view, reflecting the impact of environmental and differentiative cues. At the transcription level, selectivity is conferred by the expression of specific NF-kappaB subunits and their respective posttranslational modifications, and by combinatorial interactions between NF-kappaB and other transcription factors and coactivators, that form specific enhanceosome complexes in association with particular promoters. These enhanceosome complexes represent another level of signaling integration, whereby the activities of multiple upstream pathways converge to impress a distinct pattern of gene expression upon the NF-kappaB-dependent transcriptional network. Today, several pieces of evidence suggest that the chromatin structure and epigenetic settings are the ultimate integration sites of both environmental and differentiative inputs, determining proper expression of each NF-kappaB-dependent gene. We will therefore discuss in this review the multilayered interplay of NF-kappaB signaling and epigenome dynamics, in achieving appropriate gene expression responses and transcriptional activity.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The brain is unquestionably the most fascinating organ. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward improved understanding of the molecular mechanisms underlying brain function is neuroproteomics. Today's neuroscientists have access to a battery of versatile technologies both in transcriptomics and proteomics. The challenge is to choose the right strategy in order to generate new hypotheses on how the brain works. The goal of this review is therefore two-fold: first we recall the bewildering cellular, molecular, and functional complexity in the brain, as this knowledge is fundamental to any study design. In fact, an impressive complexity on the molecular level has recently re-emerged as a central theme in large-scale analyses. Then we review transcriptomics and proteomics technologies, as both are complementary. Finally, we comment on the most widely used proteomics techniques and their respective strengths and drawbacks. We conclude that for the time being, neuroproteomics should focus on its strengths, namely the identification of posttranslational modifications and protein-protein interactions, as well as the characterization of highly purified subproteomes. For global expression profiling, emphasis should be put on further development to significantly increase coverage.
Collapse
Affiliation(s)
- Michael Becker
- Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Germany
| | | | | |
Collapse
|
46
|
Thierry-Mieg D, Thierry-Mieg J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 2006; 7 Suppl 1:S12.1-14. [PMID: 16925834 PMCID: PMC1810549 DOI: 10.1186/gb-2006-7-s1-s12] [Citation(s) in RCA: 460] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Regions covering one percent of the genome, selected by ENCODE for extensive analysis, were annotated by the HAVANA/Gencode group with high quality transcripts, thus defining a benchmark. The ENCODE Genome Annotation Assessment Project (EGASP) competition aimed at reproducing Gencode and finding new genes. The organizers evaluated the protein predictions in depth. We present a complementary analysis of the mRNAs, including alternative transcript variants. Results We evaluate 25 gene tracks from the University of California Santa Cruz (UCSC) genome browser. We either distinguish or collapse the alternative splice variants, and compare the genomic coordinates of exons, introns and nucleotides. Whole mRNA models, seen as chains of introns, are sorted to find the best matching pairs, and compared so that each mRNA is used only once. At the mRNA level, AceView is by far the closest to Gencode: the vast majority of transcripts of the two methods, including alternative variants, are identical. At the protein level, however, due to a lack of experimental data, our predictions differ: Gencode annotates proteins in only 41% of the mRNAs whereas AceView does so in virtually all. We describe the driving principles of AceView, and how, by performing hand-supervised automatic annotation, we solve the combinatorial splicing problem and summarize all of GenBank, dbEST and RefSeq into a genome-wide non-redundant but comprehensive cDNA-supported transcriptome. AceView accuracy is now validated by Gencode. Conclusion Relative to a consensus mRNA catalog constructed from all evidence-based annotations, Gencode and AceView have 81% and 84% sensitivity, and 74% and 73% specificity, respectively. This close agreement validates a richer view of the human transcriptome, with three to five times more transcripts than in UCSC Known Genes (sensitivity 28%), RefSeq (sensitivity 21%) or Ensembl (sensitivity 19%).
Collapse
Affiliation(s)
- Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA.
| | | |
Collapse
|
47
|
Seidl CIM, Stricker SH, Barlow DP. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J 2006; 25:3565-75. [PMID: 16874305 PMCID: PMC1538572 DOI: 10.1038/sj.emboj.7601245] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/28/2006] [Indexed: 11/09/2022] Open
Abstract
Expression of the Air ncRNA is necessary to silence multiple genes in cis in the imprinted Igf2r cluster. However, its mode of action is unknown. Here, we characterize co- and post-transcriptional features of Air that identify it as a new member of the class of nuclear regulatory RNAs. We show that Air is transcribed from a DNA methylation-sensitive promoter by RNA polymerase II (RNAPII). However, although it is capped and polyadenylated similar to other RNAPII transcripts, the majority of Air transcripts evade cotranscriptional splicing resulting in a mature 108 kb ncRNA. As a consequence, the mature unspliced Air is nuclear localized and highly unstable. These features show that Air is an atypical RNAPII transcript whose properties indicate that its mode of action in gene silencing may not depend on the RNA per se but instead is related to its actual transcription.
Collapse
Affiliation(s)
- Christine I M Seidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Stefan H Stricker
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, A-1030 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, c/o Institute of Genetics, Max F Perutz Laboratories, Vienna Biocenter, Dr Bohr-Gasse 9/4, 1030 Vienna, Austria. Tel.: +43 1 4277 54 610; Fax: +43 1 4277 9546; E-mail:
| |
Collapse
|
48
|
Carninci P. Tagging mammalian transcription complexity. Trends Genet 2006; 22:501-10. [PMID: 16859803 DOI: 10.1016/j.tig.2006.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/24/2006] [Accepted: 07/04/2006] [Indexed: 11/18/2022]
Abstract
The nature of the 'transcriptome' is more complex than first realized. Although CAGE, various tagging technologies and tiling arrays show that most of the mammalian genome is transcribed, a large proportion of transcripts do not encode proteins and are either poorly polyadenylated, involved in sense-antisense pairs or never leave the nucleus. In this article, I review the various techniques and data sets that are currently used to measure gene transcription and the evidence that reveals the true extent of transcription in mammalian genomes. The next few years will see efforts to identify novel transcripts systematically and decipher their function. A deeper understanding of transcriptional complexity might even lead us to redefine what we mean by the term 'gene'.
Collapse
Affiliation(s)
- Piero Carninci
- Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.
| |
Collapse
|
49
|
Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 2006; 34:3494-510. [PMID: 16855287 PMCID: PMC1524908 DOI: 10.1093/nar/gkl498] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 12/25/2022] Open
Abstract
The number of aberrant splicing processes causing human disease is growing exponentially and many recent studies have uncovered some aspects of the unexpectedly complex network of interactions involved in these dysfunctions. As a consequence, our knowledge of the various cis- and trans-acting factors playing a role on both normal and aberrant splicing pathways has been enhanced greatly. However, the resulting information explosion has also uncovered the fact that many splicing systems are not easy to model. In fact we are still unable, with certainty, to predict the outcome of a given genomic variation. Nonetheless, in the midst of all this complexity some hard won lessons have been learned and in this survey we will focus on the importance of the wide sequence context when trying to understand why apparently similar mutations can give rise to different effects. The examples discussed in this summary will highlight the fine 'balance of power' that is often present between all the various regulatory elements that define exon boundaries. In the final part, we shall then discuss possible therapeutic targets and strategies to rescue genetic defects of complex splicing systems.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| |
Collapse
|
50
|
Izquierdo JM, Valcárcel J. A simple principle to explain the evolution of pre-mRNA splicing. Genes Dev 2006; 20:1679-84. [PMID: 16818600 DOI: 10.1101/gad.1449106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- José-María Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | |
Collapse
|