1
|
Dong H, Lyu Y, Huang CY, Tsai SY. Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle. Autophagy 2025; 21:1212-1227. [PMID: 39878121 PMCID: PMC12087647 DOI: 10.1080/15548627.2025.2457925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While in vitro studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood. Here, our study reveals novel insights into this complex relationship in autophagy-deficient skeletal muscle. We demonstrated that despite a compensatory increase in proteasome level in response to autophagy impairment, 26S proteasome activity was not proportionally enhanced in autophagy-deficient skeletal muscle. This functional deficit was partly attributed to reduced ATP levels to fuel the 26S proteasome. Remarkably, we found that activation of EIF4EBP1, a crucial inhibitor of cap-dependent translation, restored and even augmented proteasomal function through dual mechanisms. First, genetically activating EIF4EBP1 enhanced both ATP-dependent 26S proteasome and ATP-independent 20S proteasome activities, thereby expanding overall protein degradation capacity. Second, EIF4EBP1 activation caused muscle fiber transformation and increased mitochondrial biogenesis, thus replenishing ATP levels for 26S proteasome activation. Notably, the improved performance of the 20S proteasome in EIF4EBP1-activated skeletal muscle was attributed to an increased abundance of the immunoproteasome, a subtype specially adapted to function under oxidative stress conditions. This dual action of EIF4EBP1 activation preserved proteomic integrity in autophagy-deficient skeletal muscle. Our findings uncover a novel role of EIF4EBP1 in improving protein quality control, presenting a promising therapeutic strategy for autophagy-related muscular disorders and potentially other conditions characterized by proteostatic imbalance.Abbreviations: 3-MA: 3-methyladenine; ACAC/ACC: acetyl-Coenzyme A carboxylase; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; ATP5F1A/ATP5A: ATP synthase F1 subunit alpha; CKM-Cre: creatine kinase, muscle-Cre; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSK: cathepsin K; CTSL: cathepsin L; CUL3: cullin 3; EDL: extensor digitorum longus; EIF4E: eukaryotic translation initiation factor 4E; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EIF4F: eukaryotic translation initiation factor 4F complex; FBXO32/ATROGIN1/MAFbx: F-box protein 32; GFP: green fluorescent protein; IFNG/IFN-γ: interferon gamma; KEAP1: kelch-like ECH-associated protein 1; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; Myl1/Mlc1f-Cre: myosin, light polypeptide 1 (promoter driving Cre recombinase); mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NFE2L1/NRF1: nuclear factor, erythroid derived 2, like 1; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB1/NFκB1: nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; OXPHOS: oxidative phosphorylation; PPARGC1A/PGC1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; PSMB6: proteasome (prosome, macropain) subunit, beta type 6; PSMB7: proteasome (prosome, macropain) subunit, beta type 7; PSMB8: proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7); PSMB9: proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2); PSMB10: proteasome (prosome, macropain) subunit, beta type 10; PSME1: proteasome (prosome, macropain) activator subunit 1 (PA28 alpha); PSME2: proteasome (prosome, macropain) activator subunit 2 (PA28 beta); RBX1: ring-box 1; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1: sterol regulatory element binding transcription factor 1; STAT3: signal transducer and activator of transcription 3; TRIM63/MURF1: tripartite motif-containing 63; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yifan Lyu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chien-Yung Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Boyd SR, Chamakuri S, Trostle AJ, Chen H, Liu Z, Jian A, Wang J, Malovannaya A, Young DW. MYC-Targeting PROTACs Lead to Bimodal Degradation and N-Terminal Truncation. ACS Chem Biol 2025; 20:896-906. [PMID: 40146931 DOI: 10.1021/acschembio.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
MYC is a master regulatory transcription factor whose sustained dysregulation promotes the initiation and maintenance of numerous cancers. While MYC is a regarded as a potenial therapeutic target in cancer, its intrinsically disordered structure has proven to be a formidable barrier toward the development of highly effective small molecule inhibitors. We rationalized that proteolysis targeting chimeras (PROTACs), which might accomplish the targeted degradation of MYC, would achieve more potent cell killing in MYC-driven cancer cells than reversible inhibitors. PROTACs are bifunctional small molecules designed to produce a ternary complex between a target protein and an E3 ligase leading the target's ubiquitination and degradation by the 26S proteasome. We generated PROTAC MTP3 based on modifications of the previously reported MYC-targeting compound KJ-Pyr-9. We found that MTP3 depletes endogenous full-length MYC proteins and uniquely induces increasing levels of a functional, N-terminally truncated MYC species, tMYC. Furthermore, MTP3 perturbs cellular MYC levels in favor of a tMYC-dominated state whose gene regulatory landscape is not significantly altered compared to that of wild type MYC. Moreover, although it lacks ∼10 kDa of MYC's N-terminal transactivation domain, tMYC is sufficient to maintain an oncogenic proliferative state. Our results highlight the complexities of proximity-inducing compounds against highly regulated and conformationally dynamic protein targets such as MYC and indicate that PROTACs can induce alternative outcomes beyond target protein degradation.
Collapse
Affiliation(s)
- Shelton R Boyd
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Alexander J Trostle
- Department of Pediatrics─Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Hu Chen
- Department of Pediatrics─Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Zhandong Liu
- Department of Pediatrics─Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Antrix Jian
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Samulevich ML, Carman LE, Aneskievich BJ. Critical Analysis of Cytoplasmic Progression of Inflammatory Signaling Suggests Potential Pharmacologic Targets for Wound Healing and Fibrotic Disorders. Biomedicines 2024; 12:2723. [PMID: 39767629 PMCID: PMC11726985 DOI: 10.3390/biomedicines12122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors are the start of a cytoplasmic signaling pathway where balance is key to effective healing and, as needed, cell and matrix regeneration. When directed through NF-κB, these signaling routes lead to transient responses to the benefit of initiating immune cell recruitment, cell replication, local chemokine and cytokine production, and matrix protein synthesis. The converse can also occur, where ongoing canonical NF-κB activation leads to chronic, hyper-responsive states. Here, we assess three key players, TAK1, TNFAIP3, and TNIP1, in cytoplasmic regulation of NF-κB activation, which, because of their distinctive and yet inter-related functions, either promote or limit that activation. Their balanced function is integral to successful wound healing, given their significant control over the expression of inflammation-, fibrosis-, and matrix remodeling-associated genes. Intriguingly, these three proteins have also been emphasized in dysregulated NF-κB signaling central to systemic sclerosis (SSc). Notably, diffuse SSc shares some tissue features similar to an excessive inflammatory/fibrotic wound response without eventual resolution. Taking a cue from certain instances of aberrant wound healing and SSc having some shared aspects, e.g., chronic inflammation and fibrosis, this review looks for the first time, to our knowledge, at what those pathologies might have in common regarding the cytoplasmic progression of NF-κB-mediated signaling. Additionally, while TAK1, TNFAIP3, and TNIP1 are often investigated and reported on individually, we propose them here as three proteins whose consequences of function are very highly interconnected at the signaling focus of NF-κB. We thus highlight the emerging promise for the eventual clinical benefit derived from an improved understanding of these integral signal progression modulators. Depending on the protein, its indirect or direct pharmacological regulation has been reported. Current findings support further intensive studies of these points in NF-κB regulation both for their basic function in healthy cells as well as with the goal of targeting them for translational benefit in multiple cutaneous wound healing situations, whether stemming from acute injury or a dysregulated inflammatory/fibrotic response.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
5
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
6
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
7
|
Pepelnjak M, Rogawski R, Arkind G, Leushkin Y, Fainer I, Ben-Nissan G, Picotti P, Sharon M. Systematic identification of 20S proteasome substrates. Mol Syst Biol 2024; 20:403-427. [PMID: 38287148 PMCID: PMC10987551 DOI: 10.1038/s44320-024-00015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.
Collapse
Affiliation(s)
- Monika Pepelnjak
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rivkah Rogawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yegor Leushkin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
8
|
Saito S, Okuno A, Peng Z, Cao DY, Tsuji NM. Probiotic lactic acid bacteria promote anti-tumor immunity through enhanced major histocompatibility complex class I-restricted antigen presentation machinery in dendritic cells. Front Immunol 2024; 15:1335975. [PMID: 38605963 PMCID: PMC11008462 DOI: 10.3389/fimmu.2024.1335975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alato Okuno
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Hirosaki, Aomori, Japan
| | - Zhenzi Peng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Noriko M. Tsuji
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Food Science, Jumonji University, Niiza, Saitama, Japan
| |
Collapse
|
9
|
Kamińska J, Tylicka M, Sutkowska K, Gacuta KM, Sawicka MM, Kowalewska E, Ćwiklińska-Dworakowska M, Maciejczyk M, Łysoń T, Kornhuber J, Lewczuk P, Matowicka-Karna J, Koper-Lenkiewicz OM. The preliminary study suggests an association between NF-ĸB pathway activation and increased plasma 20S proteasome activity in intracranial aneurysm patients. Sci Rep 2024; 14:3941. [PMID: 38366068 PMCID: PMC10873410 DOI: 10.1038/s41598-024-54692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
The significant role of increased activation of 20S proteasomes in the development of abdominal aortic aneurysms has been well-established in a mouse model. The available literature lacks similar studies concerning brain aneurysms. The aim of the study was to verify the hypothesis that patients with unruptured intracranial aneurysms (UIA) have increased 20S proteasome ChT-L activity compared to the control group of individuals without vascular lesions in the brain. In the next step, the relationship between the activity of 20S proteasomes ChT-L and precursor proteins from the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family, namely NF-κB1 (p105), NF-κB2 (p100), NF-κB p65, and the inflammatory chemokine MCP-1, was examined. Patients with UIA had significantly higher 20S ChT-L proteasome activity compared to the control group. Patients with multiple aneurysms had significantly higher 20S proteasome ChT-L activity compared to those with single aneurysms. In patients with UIA, the activity of the 20S proteasome ChT-L negatively correlated with the concentration of NF-κB1 (p105) and NF-κB p65 precursor proteins and positively correlated with the concentration of the cerebrospinal fluid chemokine MCP-1. Our results may suggest that increased 20S proteasome ChT-L activity in UIA patients modulates inflammation in the cerebral arterial vessel via the MCP-1 chemokine as a result of activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, 2A Adama Mickiewicza St., 15-089, Białystok, Poland
| | - Kinga Sutkowska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Karolina Marta Gacuta
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Magdalena Maria Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 2D Mickiewicza St., 15-222, Białystok, Poland
| | - Ewa Kowalewska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Magdalena Ćwiklińska-Dworakowska
- Department of Oncological Surgery and General Surgery, Independent Public Health Care Facility of the Ministry of the Interior and Administration in Bialystok named Marian Zyndram-Kościałkowski, 27 Fabryczna St., 15-471, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Białystok, 2C Mickiewicza St., 15-022, Białystok, Poland
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok/Clinical Hospital of the Medical University of Bialystok, 24A Marii Skłodowskiej-Curie St., 15-276, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| |
Collapse
|
10
|
Oliveri F, Keller SJ, Goebel H, Alvarez Salinas GO, Basler M. The ubiquitin-like modifier FAT10 is degraded by the 20S proteasome in vitro but not in cellulo. Life Sci Alliance 2023; 6:e202201760. [PMID: 37012049 PMCID: PMC10070814 DOI: 10.26508/lsa.202201760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Ubiquitin-independent protein degradation via the 20S proteasome without the 19S regulatory particle has gained increasing attention over the last years. The degradation of the ubiquitin-like modifier FAT10 by the 20S proteasome was investigated in this study. We found that FAT10 was rapidly degraded by purified 20S proteasomes in vitro, which was attributed to the weak folding of FAT10 and the N-terminally disordered tail. To confirm our results in cellulo, we established an inducible RNA interference system in which the AAA-ATPase Rpt2 of the 19S regulatory particle is knocked down to impair the function of the 26S proteasome. Using this system, degradation of FAT10 in cellulo was strongly dependent on functional 26S proteasome. Our data indicate that in vitro degradation studies with purified proteins do not necessarily reflect biological degradation mechanisms occurring in cells and, therefore, cautious data interpretation is required when 20S proteasome function is studied in vitro.
Collapse
Affiliation(s)
- Franziska Oliveri
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany;
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
11
|
Deshmukh FK, Ben-Nissan G, Olshina MA, Füzesi-Levi MG, Polkinghorn C, Arkind G, Leushkin Y, Fainer I, Fleishman SJ, Tawfik D, Sharon M. Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family. Nat Commun 2023; 14:3126. [PMID: 37253751 DOI: 10.1038/s41467-023-38404-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs). Here, we show that CCRs function through an allosteric mechanism, coupling the physical binding of the PSMB4 β-subunit with attenuation of the complex's three proteolytic activities. In addition, by dissecting the structural properties that are required for CCR-like function, we could recapitulate this activity using a designed protein that is half the size of natural CCRs. These data uncover an allosteric path that does not involve the proteasome's enzymatic subunits but rather propagates through the non-catalytic subunit PSMB4. This way of 20S proteasome-specific attenuation opens avenues for decoupling the 20S and 26S proteasome degradation pathways as well as for developing selective 20S proteasome inhibitors.
Collapse
Affiliation(s)
- Fanindra Kumar Deshmukh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya A Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maria G Füzesi-Levi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Caley Polkinghorn
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yegor Leushkin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dan Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
12
|
Pal D, De K, Yates TB, Kolape J, Muchero W. Mutating novel interaction sites in NRP1 reduces SARS-CoV-2 spike protein internalization. iScience 2023; 26:106274. [PMID: 36910328 PMCID: PMC9957656 DOI: 10.1016/j.isci.2023.106274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The global pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a severe global health problem because of its rapid spread. Both Ace2 and NRP1 provide initial viral binding sites for SARS-CoV-2. Here, we show that cysteine residues located in the vestigial plasminogen-apple-nematode (PAN) domain of NRP1 are necessary for SARS-CoV-2 spike protein internalization. Mutating novel cysteine residues in the PAN altered NRP1 stability and downstream activation of extracellular signal-regulated kinase (ERK) signaling pathway and impaired its interaction with the spike protein. This resulted in a significant reduction in spike protein abundance in Vero-E6 cells for the original, alpha, and delta SARS-CoV-2 variants even in the presence of the Ace2. Moreover, mutating these cysteine residues in NRP1 significantly lowered its association with Plexin-A1. As the spike protein is a critical component for targeted therapy, our biochemical study may represent a distinct mechanism to develop a path for future therapeutic discovery.
Collapse
Affiliation(s)
- Debjani Pal
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Timothy B. Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
| | - Jaydeep Kolape
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
- Corresponding author
| |
Collapse
|
13
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
14
|
Li X, Xie W, Pan Q, Zhang X, Zhang L, Zhao N, Xie Q, Ding J, Chai J. Semaphorin 7A interacts with nuclear factor NF-kappa-B p105 via integrin β1 and mediates inflammation. Cell Commun Signal 2023; 21:24. [PMID: 36717921 PMCID: PMC9885601 DOI: 10.1186/s12964-022-01024-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Semaphorin7a (SEMA7A), a membrane-anchored member of the semaphorin protein family, could be involved in a diverse range of immune responses via its receptor integrin β1. Recently, we reported that the SEMA7AR148W mutation (a gain-of-function mutation, Sema7aR145W in mice) is a risk factor for progressive familial intrahepatic cholestasis and nonalcoholic fatty liver disease via upregulated membrane localization. In this study, we demonstrated that integrin β1 is a membrane receptor for nuclear factor NF-kappa-B p105 (NF-κB p105) and a critical mediator of inflammation. Integrin β1 could interact with the C-terminal domain of NF-κB p105 to promote p50 generation and stimulate the NF-κB p50/p65 signalling pathway, upregulate TNF-α and IL-1β levels, and subsequently render hepatocytes more susceptible to inflammation. The induction of integrin β1 depends on elevated Sema7a membrane localization. Moreover, we revealed elevated levels of Sema7aWT (SEMA7AWT) in hepatocellular carcinoma (HCC) patients and an HCC mouse model. In line with our findings, the NF-κB p50/p65 pathway could also be activated by high Sema7a expression and repressed by integrin β1 silencing. In conclusion, our findings suggest that the Sema7aR145W (SEMA7AR148W) mutation and high Sema7aWT (SEMA7AWT) expression both activate the NF-κB p50/p65 pathway via integrin β1 and play a crucial role in inflammatory responses. Video Abstract.
Collapse
Affiliation(s)
- Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Wanlu Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Qiong Pan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Liangjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Qiaoling Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jingjing Ding
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
15
|
Gallego-Selles A, Galvan-Alvarez V, Martinez-Canton M, Garcia-Gonzalez E, Morales-Alamo D, Santana A, Gonzalez-Henriquez JJ, Dorado C, Calbet JAL, Martin-Rincon M. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: Role of oxygenation and metabolite accumulation. Redox Biol 2022; 55:102398. [PMID: 35841628 PMCID: PMC9287614 DOI: 10.1016/j.redox.2022.102398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB signalling pathway plays a critical role in inflammation, immunity, cell proliferation, apoptosis, and muscle metabolism. NF-κB is activated by extracellular signals and intracellular changes in Ca2+, Pi, H+, metabolites and reactive oxygen and nitrogen species (RONS). However, it remains unknown how NF-κB signalling is activated during exercise and how metabolite accumulation and PO2 influence this process. Eleven active men performed incremental exercise to exhaustion (IE) in normoxia and hypoxia (PIO2:73 mmHg). Immediately after IE, the circulation of one leg was instantaneously occluded (300 mmHg). Muscle biopsies from m. vastus lateralis were taken before (Pre), and 10s (Post, occluded leg) and 60s after exercise from the occluded (Oc1m) and free circulation (FC1m) legs simultaneously together with femoral vein blood samples. NF-κB signalling was activated by exercise to exhaustion, with similar responses in normoxia and acute hypoxia, as reflected by the increase of p105, p50, IKKα, IκBβ and glutathione reductase (GR) protein levels, and the activation of the main kinases implicated, particularly IKKα and CaMKII δD, while IKKβ remained unchanged. Postexercise ischaemia maintained and stimulated further NF-κB signalling by impeding muscle reoxygenation. These changes were quickly reverted at the end of exercise when the muscles recovered with open circulation. Finally, we have shown that Thioredoxin 1 (Trx1) protein expression was reduced immediately after IE and after 1 min of occlusion while the protein expression levels of glutathione peroxidase 1 (Gpx1) and thioredoxin reductase 1 (TrxR1) remained unchanged. These novel data demonstrate that exercising to exhaustion activates NF-κB signalling in human skeletal muscle and regulates the expression levels of antioxidant enzymes in human skeletal muscle. The fast regulation of NF-κB at exercise cessation has implications for the interpretation of published studies and the design of new experiments.
Collapse
Affiliation(s)
- Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alfredo Santana
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
16
|
Fliegauf M, Kinnunen M, Posadas-Cantera S, Camacho-Ordonez N, Abolhassani H, Alsina L, Atschekzei F, Bogaert DJ, Burns SO, Church JA, Dückers G, Freeman AF, Hammarström L, Hanitsch LG, Kerre T, Kobbe R, Sharapova SO, Siepermann K, Speckmann C, Steiner S, Verma N, Walter JE, Westermann-Clark E, Goldacker S, Warnatz K, Varjosalo M, Grimbacher B. Detrimental NFKB1 missense variants affecting the Rel-homology domain of p105/p50. Front Immunol 2022; 13:965326. [PMID: 36105815 PMCID: PMC9465457 DOI: 10.3389/fimmu.2022.965326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Most of the currently known heterozygous pathogenic NFKB1 (Nuclear factor kappa B subunit 1) variants comprise deleterious defects such as severe truncations, internal deletions, and frameshift variants. Collectively, these represent the most frequent monogenic cause of common variable immunodeficiency (CVID) identified so far. NFKB1 encodes the transcription factor precursor p105 which undergoes limited proteasomal processing of its C-terminal half to generate the mature NF-κB subunit p50. Whereas p105/p50 haploinsufficiency due to devastating genetic damages and protein loss is a well-known disease mechanism, the pathogenic significance of numerous NFKB1 missense variants still remains uncertain and/or unexplored, due to the unavailability of accurate test procedures to confirm causality. In this study we functionally characterized 47 distinct missense variants residing within the N-terminal domains, thus affecting both proteins, the p105 precursor and the processed p50. Following transient overexpression of EGFP-fused mutant p105 and p50 in HEK293T cells, we used fluorescence microscopy, Western blotting, electrophoretic mobility shift assays (EMSA), and reporter assays to analyze their effects on subcellular localization, protein stability and precursor processing, DNA binding, and on the RelA-dependent target promoter activation, respectively. We found nine missense variants to cause harmful damage with intensified protein decay, while two variants left protein stability unaffected but caused a loss of the DNA-binding activity. Seven of the analyzed single amino acid changes caused ambiguous protein defects and four variants were associated with only minor adverse effects. For 25 variants, test results were indistinguishable from those of the wildtype controls, hence, their pathogenic impact remained elusive. In summary, we show that pathogenic missense variants affecting the Rel-homology domain may cause protein-decaying defects, thus resembling the disease-mechanisms of p105/p50 haploinsufficiency or may cause DNA-binding deficiency. However, rare variants (with a population frequency of less than 0.01%) with minor abnormalities or with neutral tests should still be considered as potentially pathogenic, until suitable tests have approved them being benign.
Collapse
Affiliation(s)
- Manfred Fliegauf
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Barcelona, Spain
| | - Faranaz Atschekzei
- RESIST – Cluster of Excellence 2155 to Hanover Medical School , Satellite Center Freiburg, Freiburg, Germany
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Delfien J. Bogaert
- Department of Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Joseph A. Church
- Department of Pediatrics, Keck School of Medicine, University of Southern California and Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | | | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, Huddinge, Sweden
| | - Leif Gunnar Hanitsch
- Department of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Carsten Speckmann
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophie Steiner
- Department of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nisha Verma
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Emma Westermann-Clark
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy and Immunology, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sigune Goldacker
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Proteomics Unit, University of Helsinki, Helsinki, Finland
| | - Bodo Grimbacher
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, Freiburg, Germany
- RESIST – Cluster of Excellence 2155 to Hanover Medical School , Satellite Center Freiburg, Freiburg, Germany
- DZIF – German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- *Correspondence: Bodo Grimbacher,
| |
Collapse
|
17
|
Roy PK, Biswas A, Deepak K, Mandal M. An insight into the ubiquitin-proteasomal axis and related therapeutic approaches towards central nervous system malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188734. [PMID: 35489645 DOI: 10.1016/j.bbcan.2022.188734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
The Ubiquitin-Protease system (UPS) is a major destruction system that is responsible for the elimination of dysfunctional/misfolded proteins, thus acting as a pivotal regulator of protein homeostasis in eukaryotic cells. In this review, the UPS system and its various functions in the cell and their detailed impact such as cell cycle control, DNA damage response, apoptosis, and cellular stress regulations have been elucidated with a focus on the central nervous system. Since the Ubiquitin-Protease pathway(UPP) plays a prominent role in the sculpting of the CNS cells and their maintenance, it is naturally deeply involved in many malignancies that develop due to dysregulation of the UPS. Understanding the major disruptive players of the UPS in the development of these malignancies, for example, insoluble protein aggregates or inclusion bodies deposits due to malfunctioning of the UPS has paved the pathway for the development of new therapeutics. Here, the de-regulation of the UPS at various checkpoints in CNS malignancies has been detailed, thus facilitating an easy comprehension of the different targets that remain to be explored yet. The present therapeutic advancements in the field of CNS malignancies management through UPS targeting have also been included thus broadening the scope of drug development. Thus, this review while shedding sufficient light on the details of the UPS system and its connection to CNS malignancies, also opens new avenues for therapeutic advancements in the form of novel targetable UPP proteins and their interactions.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India..
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India..
| |
Collapse
|
18
|
Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, Cingolani G. Differential recognition of canonical NF-κB dimers by Importin α3. Nat Commun 2022; 13:1207. [PMID: 35260573 PMCID: PMC8904830 DOI: 10.1038/s41467-022-28846-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. In unstimulated cells, p50/p65 is retained by the inhibitor IκBα in the cytoplasm that masks the p65-nuclear localization sequence (NLS). Upon activation, p50/p65 is translocated into the nucleus by the adapter importin α3 and the receptor importin β. Here, we describe a bipartite NLS in p50/p65, analogous to nucleoplasmin NLS but exposed in trans. Importin α3 accommodates the p50- and p65-NLSs at the major and minor NLS-binding pockets, respectively. The p50-NLS is the predominant binding determinant, while the p65-NLS induces a conformational change in the Armadillo 7 of importin α3 that stabilizes a helical conformation of the p65-NLS. Neither conformational change was observed for importin α1, which makes fewer bonds with the p50/p65 NLSs, explaining the preference for α3. We propose that importin α3 discriminates between the transcriptionally active p50/p65 heterodimer and p50/p50 and p65/65 homodimers, ensuring fidelity in NF-κB signaling. Nuclear translocation of the p50/p65 heterodimer is essential for NF-κB signaling. Here, the authors identify a bipartite Nuclear Localization Signal in the NF-κB p50/p65 heterodimer that is recognized with high affinity by importin α3.
Collapse
Affiliation(s)
- Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Daniel P Yeggoni
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Rajeshwer S Sankhala
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Connor A Ott
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
19
|
Superoxide Dismutase-3 Downregulates Laminin α5 Expression in Tumor Endothelial Cells via the Inhibition of Nuclear Factor Kappa B Signaling. Cancers (Basel) 2022; 14:cancers14051226. [PMID: 35267534 PMCID: PMC8909228 DOI: 10.3390/cancers14051226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The balance between laminin isoforms containing the α5 or the α4 chain in the endothelial basement membrane determines the site of leukocyte diapedesis under inflammatory conditions. Extracellular superoxide dismutase (SOD3) induces laminin α4 expression in tumor blood vessels, which is associated with enhanced intratumor T cell infiltration in primary human cancers. We show now that SOD3 overexpression in neoplastic and endothelial cells (ECs) reduces laminin α5 in tumor blood vessels. SOD3 represses the laminin α5 gene (LAMA5), but LAMA5 expression is not changed in SOD1-overexpressing cells. Transcriptomic analyses revealed SOD3 overexpression to change the transcription of 1682 genes in ECs, with the canonical and non-canonical NF-κB pathways as the major SOD3 targets. Indeed, SOD3 reduced the transcription of well-known NF-κB target genes as well as NF-κB-driven promoter activity in ECs stimulated with tumor necrosis factor (TNF)-α, an NF-κB signaling inducer. SOD3 inhibited the phosphorylation and degradation of IκBα (nuclear factor of the kappa light polypeptide gene enhancer in B-cells inhibitor alpha), an NF-κB inhibitor. Finally, TNF-α was found to be a transcriptional activator of LAMA5 but not of LAMA4; LAMA5 induction was prevented by SOD3. In conclusion, SOD3 is a major regulator of laminin balance in the basement membrane of tumor ECs, with potential implications for immune cell infiltration into tumors.
Collapse
|
20
|
Leger MM, Ros-Rocher N, Najle SR, Ruiz-Trillo I. Rel/NF-κB Transcription Factors Emerged at the Onset of Opisthokonts. Genome Biol Evol 2022; 14:6499270. [PMID: 34999783 PMCID: PMC8763368 DOI: 10.1093/gbe/evab289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The Rel/NF-κB transcription factor family has myriad roles in immunity, development, and differentiation in animals, and was considered a key innovation for animal multicellularity. Rel homology domain-containing proteins were previously hypothesized to have originated in a last common ancestor of animals and some of their closest unicellular relatives. However, key taxa were missing from previous analyses, necessitating a systematic investigation into the distribution and evolution of these proteins. Here, we address this knowledge gap by surveying taxonomically broad data from eukaryotes, with a special emphasis on lineages closely related to animals. We report an earlier origin for Rel/NF-κB proteins than previously described, in the last common ancestor of animals and fungi, and show that even in the sister group to fungi, these proteins contain elements that in animals are necessary for the subcellular regulation of Rel/NF-κB.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Núria Ros-Rocher
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sebastián R Najle
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity, University of Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
IκBα is required for full transcriptional induction of some NFκB-regulated genes in response to TNF in MCF-7 cells. NPJ Syst Biol Appl 2021; 7:42. [PMID: 34853340 PMCID: PMC8636565 DOI: 10.1038/s41540-021-00204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα's role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.
Collapse
|
22
|
Kupp R, Ruff L, Terranova S, Nathan E, Ballereau S, Stark R, Sekhar Reddy Chilamakuri C, Hoffmann N, Wickham-Rahrmann K, Widdess M, Arabzade A, Zhao Y, Varadharajan S, Zheng T, Murugesan M, Pfister SM, Kawauchi D, Pajtler KW, Deneen B, Mack SC, Masih KE, Gryder BE, Khan J, Gilbertson RJ. ZFTA Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discov 2021; 11:2216-2229. [PMID: 33741711 PMCID: PMC8918067 DOI: 10.1158/2159-8290.cd-20-1052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Lisa Ruff
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Sabrina Terranova
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Erica Nathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Stephane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | | | - Nadin Hoffmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | | | - Marcus Widdess
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
| | - Amir Arabzade
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Yanhua Zhao
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Srinidhi Varadharajan
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Tuyu Zheng
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohankumar Murugesan
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, India
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Deneen
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Stephen C Mack
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Katherine E Masih
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Berkley E Gryder
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England.
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, England
| |
Collapse
|
23
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
24
|
Fujisawa K, Shimo M, Taguchi YH, Ikematsu S, Miyata R. PCA-based unsupervised feature extraction for gene expression analysis of COVID-19 patients. Sci Rep 2021; 11:17351. [PMID: 34456333 PMCID: PMC8403676 DOI: 10.1038/s41598-021-95698-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is raging worldwide. This potentially fatal infectious disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the complete mechanism of COVID-19 is not well understood. Therefore, we analyzed gene expression profiles of COVID-19 patients to identify disease-related genes through an innovative machine learning method that enables a data-driven strategy for gene selection from a data set with a small number of samples and many candidates. Principal-component-analysis-based unsupervised feature extraction (PCAUFE) was applied to the RNA expression profiles of 16 COVID-19 patients and 18 healthy control subjects. The results identified 123 genes as critical for COVID-19 progression from 60,683 candidate probes, including immune-related genes. The 123 genes were enriched in binding sites for transcription factors NFKB1 and RELA, which are involved in various biological phenomena such as immune response and cell survival: the primary mediator of canonical nuclear factor-kappa B (NF-κB) activity is the heterodimer RelA-p50. The genes were also enriched in histone modification H3K36me3, and they largely overlapped the target genes of NFKB1 and RELA. We found that the overlapping genes were downregulated in COVID-19 patients. These results suggest that canonical NF-κB activity was suppressed by H3K36me3 in COVID-19 patient blood.
Collapse
Affiliation(s)
- Kota Fujisawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Mamoru Shimo
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan
| | - Shinya Ikematsu
- Department of Bioresources Engineering, National Institute of Technology, OkinawaCollege, Okinawa, 905-2192, Japan
| | - Ryota Miyata
- Faculty of Engineering, University of the Ryukyus, Okinawa, 903-0213, Japan.
| |
Collapse
|
25
|
Long non-coding RNA NKILA regulates expression of HSP90α, NF-κB and β-catenin proteins in the MCF-7 breast cancer cell line. Mol Biol Rep 2021; 48:4563-4571. [PMID: 34125329 DOI: 10.1007/s11033-021-06482-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Non-coding RNAs are increasingly being investigated and have shown great potential for diagnosis, prognosis and treatment of cancer. Thus, we have investigated a possible regulatory mechanism between NF-κB suppressor-NKILA, and HSP90, NF-κB, and β-catenin molecules in MCF-7 breast cancer cells. HSP90 is an important stress protein and together with β-catenin and NF-κB molecules can be responsible for cancer cell development. However, there is no comprehensive data available on the novel molecule NKILA unlike for HSP90, β-catenin and NF-κB alone. Therefore, we suggest there might be a correlation between NKILA and these proteins. To investigate the NKILA role on HSP90, NF-κB and β-catenin proteins we inhibited the NKILA by using transfection in MCF-7 breast cancer cells. NKILA-siRNA transfected cells were incubated for 5 h. Then, cells were collected and proteins were extracted to be separated by SDS-PAGE. The aforementioned proteins of siRNA transfected group were evaluated by quantification and comparison of their relative expression levels with the control group by immunoblotting. Results showed, HSP90 and NF-κB/p105, NF-κB/p65 and NF-κB/p50 subunits significantly increased while the level of β-catenin decreased after NKILA inhibition. For the first time we have demonstrated that HSP90 and expression levels of beta-catenin are associated with NKILA levels which may be closely related to the canonical NF-κB pathway in MCF-7 cells. These novel findings may have significant implications in cancer cells development and possibly present important hints for the future studies of the cancer cell targeted therapy.
Collapse
|
26
|
Fliegauf M, Krüger R, Steiner S, Hanitsch LG, Büchel S, Wahn V, von Bernuth H, Grimbacher B. A Pathogenic Missense Variant in NFKB1 Causes Common Variable Immunodeficiency Due to Detrimental Protein Damage. Front Immunol 2021; 12:621503. [PMID: 33995346 PMCID: PMC8115018 DOI: 10.3389/fimmu.2021.621503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
In common variable immunodeficiency (CVID), heterozygous damaging NFKB1 variants represent the most frequent monogenic cause. NFKB1 encodes the precursor p105, which undergoes proteasomal processing to generate the mature NF-κB transcription factor subunit p50. The majority of NFKB1 sequence changes comprises missense variants of uncertain significance (VUS), each requiring functional evaluation to assess causality, particularly in families with multiple affected members presenting with different phenotypes. In four affected members of a German family, all diagnosed with CVID, we identified a previously uncharacterized heterozygous NFKB1 missense variant (c.1049A>G; p.Tyr350Cys). The clinical phenotypes varied markedly regarding onset, frequency and severity of infections. Consistent immunologic findings were hypogammaglobulinemia with normal specific antibody response to protein- and polysaccharide-based vaccinations, reduced switched memory B cells and decreased lymphocyte proliferation upon stimulation with the B cell mitogen SAC. To assess the pathogenicity of the NFKB1 missense variant, we employed immunophenotyping and functional analyses in a routine in vitro cell culture model. Following site-directed mutagenesis to introduce the variant into overexpression vectors encoding EGFP-fused p105 or p50, we analyzed transiently transfected HEK293T cells by confocal imaging and Western blotting. The cytoplasmic p105-Tyr350Cys precursor gained only weak expression levels indicating accelerated decay. The missense change disabled processing of the precursor to prevent the generation of mutant p50. Unlike the wildtype p50, the overexpressed mutant p50-Tyr350Cys was also not sustainable and showed a conspicuous subnuclear mislocalization with accumulation in dense aggregates instead of a homogenous distribution. Electrophoretic mobility shift assays, fluorescence-based reporter gene analyses and co-transfection experiments however demonstrated, that the DNA-binding activity of p50-Tyr350Cys and the interaction with RelA(p65), IκBα and wildtype p50 were preserved. Mutation carriers had reduced p105 and p50 levels, indicating insufficient protein amounts as the most likely primary defect. In conclusion, the missense variant c.1049A>G caused a detrimental defect, preventing the persistent expression of both, the p105-Tyr350Cys precursor and the mature p50-Tyr350Cys. The variable clinical phenotypes among affected family members sharing an identical pathogenic NFKB1 variant support a disease mechanism provoked by a p105/p50 (haplo)insufficient condition.
Collapse
Affiliation(s)
- Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Steiner
- Department of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Gunnar Hanitsch
- Department of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Büchel
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany.,Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Wangsanut T, Brann KR, Adcox HE, Carlyon JA. Orientia tsutsugamushi modulates cellular levels of NF-κB inhibitor p105. PLoS Negl Trop Dis 2021; 15:e0009339. [PMID: 33857149 PMCID: PMC8078813 DOI: 10.1371/journal.pntd.0009339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKβ-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. Principal findings Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen’s ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. Conclusions O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection. Scrub typhus is a neglected disease that can be fatal and occurs predominantly in the Asia-Pacific, one of the most densely populated regions of the world. Notably, cases continue to emerge outside this area. The etiologic agent is Orientia tsutsugamushi, a bacterial pathogen that infects certain leukocytes and cells that line blood vessels in animals and humans. The success of O. tsutsugamushi to colonize these cells is at least partially attributable to its ability to counter host immunity. In this study, we demonstrate that O. tsutsugamushi stabilizes p105, a mammalian inhibitor of the transcription factor, NF-κB, which is otherwise key for activating proinflammatory and antimicrobial gene expression. O. tsutsugamushi is the first example of a bacterium that inhibits NF-κB by promoting elevated levels of p105 and impairing its degradation. Our findings provide fundamental information that helps explain how this important pathogen has evolved to stealthily establish infection in host cells.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Katelynn R. Brann
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|
28
|
20S proteasomes secreted by the malaria parasite promote its growth. Nat Commun 2021; 12:1172. [PMID: 33608523 PMCID: PMC7895969 DOI: 10.1038/s41467-021-21344-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins β-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth. Plasmodium falciparum secretes extracellular vesicles (EVs) while growing inside red blood cells (RBCs). Here the authors show that these EVs contain assembled and functional 20S proteasome complexes that remodel the cytoskeleton of naïve human RBCs, priming the RBCs for parasite invasion.
Collapse
|
29
|
Holkova B, Shafer D, Yazbeck V, Dave S, Bose P, Tombes MB, Shrader E, Wan W, Bandyopadhyay D, Weir C, Collins EB, Garnett A, Kmieciak M, Roberts JD, Garcia-Manero G, Grant S. Phase 1 study of belinostat (PXD-101) and bortezomib (Velcade, PS-341) in patients with relapsed or refractory acute leukemia and myelodysplastic syndrome. Leuk Lymphoma 2020; 62:1187-1194. [PMID: 33356689 DOI: 10.1080/10428194.2020.1861270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We report the results of a phase 1 dose-escalation study of belinostat and bortezomib in adult patients with acute leukemia or MDS or CML with blast crisis. Thirty-eight patients received IV belinostat days 1-5 and 8-12 with IV bortezomib days 1, 4, 8, and 11 every 21 days. QTc prolongation was the only identified DLT. The RP2Ds were 1.3 mg/m2 bortezomib and 1000 mg/m2 belinostat. One patient with highly refractory MLL-ENL rearranged biphenotypic AML with multiple karyotypic aberrations had a complete pathologic and karyotypic response. One patient with post-MPN AML remained on study with stable disease (SD) for 32 cycles. Whole-exome sequencing revealed no aberrations in the first patient and a hyper-mutator genotype in the second. Eighteen patients had a best response of SD. We conclude that this treatment strategy is feasible but has limited activity in this population. Nevertheless, the factors that predict exceptional responses to this strategy warrant further investigation.
Collapse
Affiliation(s)
- Beata Holkova
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Danielle Shafer
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Victor Yazbeck
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Sandeep Dave
- Department of Medicine, Duke University, Durham, NC, USA
| | - Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mary Beth Tombes
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Ellen Shrader
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Wen Wan
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Statistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Dipankar Bandyopadhyay
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Statistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Caryn Weir
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Amanda Garnett
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - John D Roberts
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,The Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
30
|
Dwivedi V, Yaniv K, Sharon M. Beyond cells: The extracellular circulating 20S proteasomes. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166041. [PMID: 33338594 DOI: 10.1016/j.bbadis.2020.166041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence arising from numerous clinical studies indicate that assembled and functional 20S proteasome complexes circulate freely in plasma. Elevated levels of this core proteolytic complex have been found in the plasma of patients suffering from blood, skin and solid cancers, autoimmune disorders, trauma and sepsis. Moreover, in various diseases, there is a positive correlation between circulating 20S proteasome (c20S) levels and treatment efficacy and survival rates, suggesting the involvement of this under-studied c20S complex in pathophysiology. However, many aspects of this system remain enigmatic, as we still do not know the origin, biological role or mechanisms of extracellular transport and regulation of c20S proteasomes. In this review, we provide an overview of the current understanding of the c20S proteasome system and discuss the remaining gaps in knowledge.
Collapse
Affiliation(s)
- Vandita Dwivedi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Karina Yaniv
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
31
|
Shafique S, Winn LM. Characterizing the effects of in utero valproic acid exposure on NF-κB signaling in CD-1 mouse embryos during neural tube closure. Neurotoxicol Teratol 2020; 83:106941. [PMID: 33212164 DOI: 10.1016/j.ntt.2020.106941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Nuclear factor kappa B (NF-κB) is a heterodimer of protein subunits p65 and p50, that regulates the expression of a large number of genes related to cell growth and proliferation. The p65 subunit is activated after phosphorylation by Pim-1, while the p50 subunit is the cleaved product of its precursor molecule p105. Valproic acid (VPA), an antiepileptic drug, is a known teratogen and its exposure during pregnancy is associated with 1-2% of neural tube defects in the offspring. The current study aimed at investigating the effects of in utero VPA exposure on the key components of the NF-κB signaling pathway including p65, p50, and Pim-1 in CD-1 mouse embryos during the critical period of neural tube closure. Here we report that p65, Pim-1 and p105/p50 mRNA were significantly (p < 0.05) downregulated at 1 and 3 h following in utero exposure to a teratogenic dose (400 mg/kg) of VPA in gestational day (GD)9 exposed embryos. At GD13 heads of control, non-exencephalic and exencephalic embryos were used for analysis and we found significant upregulation of p65 protein expression in non-exencephalic GD13 heads while p50 protein levels were significantly downregulated in both non-exencephalic and exencephalic groups. On the other hand, p65 and p50 protein levels remained unchanged in the nuclear extracts of the VPA-exposed non-exencephalic and exencephalic GD13 embryo heads. The reported results suggest that VPA exposure perturbates p65, p105/p50, Pim-1 transcript and p65/p50 protein levels in mouse embryos.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
32
|
Koper-Lenkiewicz OM, Kamińska J, Reszeć J, Dymicka-Piekarska V, Ostrowska H, Karpińska M, Matowicka-Karna J, Tylicka M. Elevated plasma 20S proteasome chymotrypsin-like activity is correlated with IL-8 levels and associated with an increased risk of death in glial brain tumor patients. PLoS One 2020; 15:e0238406. [PMID: 32886667 PMCID: PMC7473512 DOI: 10.1371/journal.pone.0238406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION In cancer treatment an attempt has been made to pharmacologically regulate the proteasome functions, thus the aim was to test whether 20S proteasome chymotrypsin-like (ChT-L) activity has a role in glial brain tumors. Furthermore, we analyzed the correlation between proteasome activity and IL-8, CCL2, NF-κB1 and NF-κB2 concentrations, which impact on brain tumors has already been indicated. METHODS Plasma 20S proteasome ChT-L activity was assayed using the fluorogenic peptide substrate Suc-Leu-Leu-Val-Tyr-AMC in the presence of SDS. IL-8, CCL2, NF-κB1 and NF-κB2 concentration was analyzed with the use of ELISA method. Immunohistochemistry for IDH1-R132H was done on 5-microns-thick formalin-fixed, paraffin-embedded tumor sections with the use of antibody specific for the mutant IDH1-R132H protein. Labelled streptavidin biotin kit was used as a detection system. RESULTS Brain tumor patients had statistically higher 20S proteasome ChT-L activity (0.649 U/mg) compared to non-tumoral individuals (0.430 U/mg). IDH1 wild-type patients had statistically higher 20S proteasome ChT-L activity (1.025 U/mg) compared to IDH1 mutants (0.549 U/mg). 20S proteasome ChT-L activity in brain tumor patients who died as the consequence of a tumor (0.649) in the following 2 years was statistically higher compared to brain tumor patients who lived (0.430 U/mg). In brain tumor patients the 20S proteasome ChT-L activity positively correlated with IL-8 concentration. CONCLUSIONS Elevated 20S proteasome ChT-L activity was related to the increased risk of death in glial brain tumor patients. A positive correlation between 20S proteasome ChT-L activity and IL-8 concentration may indicate the molecular mechanisms regulating glial tumor biology. Thus research on proteasomes may be important and should be carried out to verify if this protein complexes may represent a potential therapeutic target to limit brain tumor invasion.
Collapse
Affiliation(s)
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | | | - Halina Ostrowska
- Department of Biology, Medical University of Białystok, Białystok, Poland
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
33
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
34
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
35
|
Olshina MA, Arkind G, Kumar Deshmukh F, Fainer I, Taranavsky M, Hayat D, Ben-Dor S, Ben-Nissan G, Sharon M. Regulation of the 20S Proteasome by a Novel Family of Inhibitory Proteins. Antioxid Redox Signal 2020; 32:636-655. [PMID: 31903784 DOI: 10.1089/ars.2019.7816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: The protein degradation machinery plays a critical role in the maintenance of cellular homeostasis, preventing the accumulation of damaged or misfolded proteins and controlling the levels of regulatory proteins. The 20S proteasome degradation machinery, which predominates during oxidative stress, is able to cleave any protein with a partially unfolded region, however, uncontrolled degradation of the myriad of potential substrates is improbable. This study aimed to identify and characterize the regulatory mechanism that controls 20S proteasome-mediated degradation. Results: Using a bioinformatic screen based on known 20S proteasome regulators, we have discovered a novel family of 20S proteasome regulators, named catalytic core regulators (CCRs). These regulators share structural and sequence similarities, and coordinate the function of the 20S proteasome by affecting the degradation of substrates. The CCRs are involved in the oxidative stress response via Nrf2, organizing into a feed-forward loop regulatory circuit, with some members stabilizing Nrf2, others being induced by Nrf2, and all of them inhibiting the 20S proteasome. Innovation and Conclusion: These data uncover a new family of regulatory proteins that utilize a fine-tuned mechanism to carefully modulate the activity of the 20S proteasome, in particular under conditions of oxidative stress, ensuring its proper functioning by controlling the degradative flux.
Collapse
Affiliation(s)
- Maya A Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Taranavsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Hayat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Lee WS, Yasuda S, Kono M, Kudo Y, Shimamura S, Kono M, Fujieda Y, Kato M, Oku K, Shimizu T, Onodera T, Iwasaki N, Atsumi T. MicroRNA-9 ameliorates destructive arthritis through down-regulation of NF-κB1-RANKL pathway in fibroblast-like synoviocytes. Clin Immunol 2020; 212:108348. [PMID: 31978557 DOI: 10.1016/j.clim.2020.108348] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022]
Abstract
We investigated the effect of miR-9 on fibroblast-like synoviocytes (FLS) from RA patients and animal arthritis model. The binding of miR-9 to NF-κB1 3'UTR was analyzed by luciferase reporter assay and immunoprecipitation. ChIP assay and luciferase promoter assay were performed to identify the binding of NF-κB1 to RANKL promoter and its activity. FLS were treated with miR-9/anti-miR-9 to evaluate cell proliferation and the expression of RANKL. Therapeutic effect of intra-articular miR-9 was evaluated in type-II collagen-induced arthritis in rats. miR-9 bound to the 3'-UTR of NF-κB1 and downregulated NF-κB1. NF-κB1 bound to RANKL promoter and increased the promoter activity of RANKL. RANKL was downregulated by miR-9. Proliferation of FLS was increased by miR-9 inhibitor. miR-9 dampened experimental arthritis by lowering inflammatory state, reducing RANKL and osteoclasts formation. Our findings revealed miR-9-NF-κB1-RANKL pathway in RA-FLS, further, miR-9 ameliorated inflammatory arthritis in vivo which propose therapeutic implications of miR- 9 in RA.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Michihiro Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Kudo
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sanae Shimamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Abstract
Proteasomes are large, multicatalytic protein complexes that cleave cellular proteins into peptides. There are many distinct forms of proteasomes that differ in catalytically active subunits, regulatory subunits, and associated proteins. Proteasome inhibitors are an important class of drugs for the treatment of multiple myeloma and mantle cell lymphoma, and they are being investigated for other diseases. Bortezomib (Velcade) was the first proteasome inhibitor to be approved by the US Food and Drug Administration. Carfilzomib (Kyprolis) and ixazomib (Ninlaro) have recently been approved, and more drugs are in development. While the primary mechanism of action is inhibition of the proteasome, the downstream events that lead to selective cell death are not entirely clear. Proteasome inhibitors have been found to affect protein turnover but at concentrations that are much higher than those achieved clinically, raising the possibility that some of the effects of proteasome inhibitors are mediated by other mechanisms.
Collapse
Affiliation(s)
- Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
38
|
Ivanova IG, Perkins ND. Hypoxia induces rapid, STAT3 and ROS dependent, mitochondrial translocation of RelA(p65) and IκBα. Biosci Rep 2019; 39:BSR20192101. [PMID: 31484794 PMCID: PMC6746997 DOI: 10.1042/bsr20192101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors can directly or indirectly regulate many important areas of biology, including immunity, inflammation and cell survival. One intriguing aspect of NF-κB crosstalk with other cell signalling pathways is its regulation of mitochondrial biology, including biogenesis, metabolism and apoptosis. In addition to regulating the expression of mitochondrial genes encoded in the nucleus, NF-κB signalling components are also found within mitochondria themselves and associated with mitochondrial DNA. However, complete biochemical analysis of mitochondrial and sub-mitochondrial localisation of all NF-κB subunits has not been undertaken. Here, we show that only the RelA NF-κB subunit and its inhibitor IκBα reside within mitochondria, whilst p50 is found in the endoplasmic reticulum (ER). Fractionation of mitochondria revealed that only RelA was found in the mitoplast, the location of the mtDNA. We demonstrate that hypoxia leads to a very rapid but transient accumulation of RelA and IκBα in mitochondria. This effect required reactive oxygen species (ROS) but was not dependent on the hypoxia sensing transcription factor subunit HIF1α or intracellular Ca2+ release. We also observed rapid mitochondrial localisation of transcription factor STAT3 following hypoxia. Inhibition of STAT3 blocked RelA and IκBα mitochondrial localisation revealing a previously unknown aspect of crosstalk between these key cellular regulators.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle Upon Tyne, U.K
| | - Neil D Perkins
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle Upon Tyne, U.K.
| |
Collapse
|
39
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
40
|
The Contribution of the 20S Proteasome to Proteostasis. Biomolecules 2019; 9:biom9050190. [PMID: 31100951 PMCID: PMC6571867 DOI: 10.3390/biom9050190] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022] Open
Abstract
The last decade has seen accumulating evidence of various proteins being degraded by the core 20S proteasome, without its regulatory particle(s). Here, we will describe recent advances in our knowledge of the functional aspects of the 20S proteasome, exploring several different systems and processes. These include neuronal communication, post-translational processing, oxidative stress, intrinsically disordered protein regulation, and extracellular proteasomes. Taken together, these findings suggest that the 20S proteasome, like the well-studied 26S proteasome, is involved in multiple biological processes. Clarifying our understanding of its workings calls for a transformation in our perception of 20S proteasome-mediated degradation—no longer as a passive and marginal path, but rather as an independent, coordinated biological process. Nevertheless, in spite of impressive progress made thus far, the field still lags far behind the front lines of 26S proteasome research. Therefore, we also touch on the gaps in our knowledge of the 20S proteasome that remain to be bridged in the future.
Collapse
|
41
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon 2018; 4:e00894. [PMID: 30417153 PMCID: PMC6218844 DOI: 10.1016/j.heliyon.2018.e00894] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.
Collapse
Affiliation(s)
- Alexey V Morozov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| | - Vadim L Karpov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| |
Collapse
|
43
|
Dynamic changes of proteasome and protective effect of bortezomib, a proteasome inhibitor, in mice with acute pancreatitis. Biochem Biophys Res Commun 2018; 505:126-133. [DOI: 10.1016/j.bbrc.2018.09.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
44
|
Olshina MA, Ben-Nissan G, Sharon M. Functional regulation of proteins by 20S proteasome proteolytic processing. Cell Cycle 2018; 17:393-394. [PMID: 29231132 DOI: 10.1080/15384101.2017.1414682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Maya A Olshina
- a Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot , Israel
| | - Gili Ben-Nissan
- a Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot , Israel
| | - Michal Sharon
- a Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
45
|
Solomon H, Bräuning B, Fainer I, Ben-Nissan G, Rabani S, Goldfinger N, Moscovitz O, Shakked Z, Rotter V, Sharon M. Post-translational regulation of p53 function through 20S proteasome-mediated cleavage. Cell Death Differ 2017; 24:2187-2198. [PMID: 28885617 DOI: 10.1038/cdd.2017.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of a range of target genes in response to cellular stress. Adding to the complexity of understanding its cellular function is that in addition to the full-length protein, several p53 isoforms are produced in humans, harboring diverse expression patterns and functionalities. One isoform, Δ40p53, which lacks the first transactivation domain including the binding region for the negative regulator MDM2, was shown to be a product of alternative translation initiation. Here we report the discovery of an alternative cellular mechanism for Δ40p53 formation. We show that the 20S proteasome specifically cleaves the full-length protein (FLp53) to generate the Δ40p53 isoform. Moreover, we demonstrate that a dimer of FLp53 interacts with a Δ40p53 dimer, creating a functional hetero-tetramer. Consequently, the co-expression of both isoforms attenuates the transcriptional activity of FLp53 in a dominant negative manner. Finally, we demonstrate that following oxidative stress, at the time when the 20S proteasome becomes the major degradation machinery and FLp53 is activated, the formation of Δ40p53 is enhanced, creating a negative feedback loop that balances FLp53 activation. Overall, our results suggest that Δ40p53 can be generated by a 20S proteasome-mediated post-translational mechanism so as to control p53 function. More generally, the discovery of a specific cleavage function for the 20S proteasome may represent a more general cellular regulatory mechanism to produce proteins with distinct functional properties.
Collapse
Affiliation(s)
- Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bastian Bräuning
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stav Rabani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Moscovitz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
46
|
Morozov AV, Astakhova TM, Garbuz DG, Krasnov GS, Bobkova NV, Zatsepina OG, Karpov VL, Evgen'ev MB. Interplay between recombinant Hsp70 and proteasomes: proteasome activity modulation and ubiquitin-independent cleavage of Hsp70. Cell Stress Chaperones 2017; 22:687-697. [PMID: 28447215 PMCID: PMC5573687 DOI: 10.1007/s12192-017-0792-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.
Collapse
Affiliation(s)
- Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | - Tatiana M Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str. 26, Moscow, 124319, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Institutskaya st. 3, Pushchino, Moscow Region, 142290, Russia
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - Vadim L Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - Michail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
47
|
Begalli F, Bennett J, Capece D, Verzella D, D'Andrea D, Tornatore L, Franzoso G. Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity. Biomedicines 2017; 5:E50. [PMID: 28829404 PMCID: PMC5618308 DOI: 10.3390/biomedicines5030050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor κB (NF-κB) family are central coordinating regulators of the host defence responses to stress, injury and infection. Aberrant NF-κB activation also contributes to the pathogenesis of some of the most common current threats to global human health, including chronic inflammatory diseases, autoimmune disorders, diabetes, vascular diseases and the majority of cancers. Accordingly, the NF-κB pathway is widely considered an attractive therapeutic target in a broad range of malignant and non-malignant diseases. Yet, despite the aggressive efforts by the pharmaceutical industry to develop a specific NF-κB inhibitor, none has been clinically approved, due to the dose-limiting toxicities associated with the global suppression of NF-κB. In this review, we summarise the main strategies historically adopted to therapeutically target the NF-κB pathway with an emphasis on oncology, and some of the emerging strategies and newer agents being developed to pharmacologically inhibit this pathway.
Collapse
Affiliation(s)
- Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
48
|
Zhao C, Zhao Q, Zhang C, Wang G, Yao Y, Huang X, Zhan F, Zhu Y, Shi J, Chen J, Yan F, Zhang Y. miR-15b-5p resensitizes colon cancer cells to 5-fluorouracil by promoting apoptosis via the NF-κB/XIAP axis. Sci Rep 2017. [PMID: 28646148 PMCID: PMC5482850 DOI: 10.1038/s41598-017-04172-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drug resistance, which is closely correlated with an imbalance in apoptosis, endows colorectal cancer (CRC) with enhanced progression capacity irrespective of the treatment with therapeutics. We report that miR-15b-5p is a tumor suppressor whose level is globally decreased in CRC cells and tissues. Over-expression of miR-15b-5p not only promoted 5-fluorouracil (5-FU)-induced cellular apoptosis but also reversed the chemoresistance of 5-FU in vitro and in vivo. As a key mediator of inflammation-induced cancer, miR-15b-5p enhances these therapeutic effects are mainly attributed to targeting of the NF-κB signaling pathway through negative regulation of NF-κB1 and one of its kinase complexes IKK-α. miR-15b-5p mediates NF-ĸB regulation by targeting the anti-apoptosis protein XIAP in vitro. Together, these results establish an axis of miR-15b-mediated apoptosis regulation, which reverses chemoresistance and suppresses CRC progression. These findings suggest that miR-15b-5p may be a potential agent for CRC treatment, particularly for 5-FU-resistant CRC.
Collapse
Affiliation(s)
- Ci Zhao
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China.,Translation Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, China
| | - Qi Zhao
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China.,Translation Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, China
| | - Chunhui Zhang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Xiaoyi Huang
- Translation Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, China.,Department of Biotherapy, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Fei Zhan
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yuanyuan Zhu
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Jiaqi Shi
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Jianan Chen
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Feihu Yan
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
49
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
50
|
Leibowitz SM, Yan J. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications. Front Mol Neurosci 2016; 9:84. [PMID: 27695399 PMCID: PMC5023675 DOI: 10.3389/fnmol.2016.00084] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future.
Collapse
Affiliation(s)
- Saskia M Leibowitz
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|