1
|
Chia S, Wen Seow JJ, Peres da Silva R, Suphavilai C, Shirgaonkar N, Murata-Hori M, Zhang X, Yong EY, Pan J, Thangavelu MT, Periyasamy G, Yap A, Anand P, Muliaditan D, Chan YS, Siyu W, Yong CW, Hong N, Ran G, Sim NL, Guo YA, Yi Teh AX, Wei Ling CC, Wei Tan EK, Pei Cherylin FW, Chang M, Han S, Seow-En I, Chen Hui LR, Hsia Gan AH, Yap CK, Ng HH, Skanderup AJ, Chinswangwatanakul V, Riansuwan W, Trakarnsanga A, Pithukpakorn M, Tanjak P, Chaiboonchoe A, Park D, Kim DK, Iyer NG, Tsantoulis P, Tejpar S, Kim JE, Kim TI, Sampattavanich S, Tan IB, Nagarajan N, DasGupta R. CAN-Scan: A multi-omic phenotype-driven precision oncology platform identifies prognostic biomarkers of therapy response for colorectal cancer. Cell Rep Med 2025; 6:102053. [PMID: 40187357 PMCID: PMC12047494 DOI: 10.1016/j.xcrm.2025.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/10/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (Cmax), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments.
Collapse
Affiliation(s)
- Shumei Chia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| | - Justine Jia Wen Seow
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Rafael Peres da Silva
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Niranjan Shirgaonkar
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Maki Murata-Hori
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Xiaoqian Zhang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Elena Yaqing Yong
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Jiajia Pan
- National Cancer Centre, Singapore, Singapore
| | - Matan Thangavelu Thangavelu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Experimental Drug Development Centre (EDDC), A∗STAR, Singapore, Singapore
| | - Giridharan Periyasamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Experimental Drug Development Centre (EDDC), A∗STAR, Singapore, Singapore
| | - Aixin Yap
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Padmaja Anand
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Daniel Muliaditan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yun Shen Chan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Wang Siyu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Chua Wei Yong
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Nguyen Hong
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Gao Ran
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Ngak Leng Sim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | | | | | - Emile Kwong Wei Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Fu Wan Pei Cherylin
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Meihuan Chang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Shuting Han
- National Cancer Centre, Singapore, Singapore
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | | | - Anna Hwee Hsia Gan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Huck Hui Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Vitoon Chinswangwatanakul
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Woramin Riansuwan
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atthaphorn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol, Bangkok, Thailand
| | - Pariyada Tanjak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daye Park
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Keon Kim
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | | - Petros Tsantoulis
- Hôpitaux Universitaires de Genève, University of Geneva, Geneva, Switzerland
| | - Sabine Tejpar
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jung Eun Kim
- R&D center PODO Therapeutics Co. 338 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Tae Il Kim
- R&D center PODO Therapeutics Co. 338 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea; Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; National Cancer Centre, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore.
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; CRUK Scotland Institute, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
2
|
Zhang T, Li S, Tan YA, Chen X, Zhang C, Chen Z, Mishra B, Na JH, Choi S, Shin SJ, Damle P, Chougoni KK, Grossman SR, Wang D, Jiang X, Li Y, Hissong E, Chen YT, Xiang JZ, Du YCN. Bcl-xL is translocated to the nucleus via CtBP2 to epigenetically promote metastasis. Cancer Lett 2024; 604:217240. [PMID: 39265800 PMCID: PMC11471366 DOI: 10.1016/j.canlet.2024.217240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Nuclear Bcl-xL is found to promote cancer metastasis independently of its mitochondria-based anti-apoptotic activity. How Bcl-xL is translocated into the nucleus and how nuclear Bcl-xL regulates histone H3 trimethyl Lys4 (H3K4me3) modification have yet to be understood. Here, we report that C-terminal Binding Protein 2 (CtBP2) binds to Bcl-xL via its N-terminus and translocates Bcl-xL into the nucleus. Knockdown of CtBP2 by shRNA decreases the nuclear portion of Bcl-xL and reverses Bcl-xL-induced invasion and metastasis in mouse models. Furthermore, knockout of CtBP2 not only reduces the nuclear portion of Bcl-xL but also suppresses Bcl-xL transcription. The binding between Bcl-xL and CtBP2 is required for their interaction with MLL1, a histone H3K4 methyltransferase. Pharmacologic inhibition of the MLL1 enzymatic activity reverses Bcl-xL-induced H3K4me3 and TGFβ mRNA upregulation, as well as invasion. Moreover, the cleavage under targets and release using nuclease (CUT&RUN) assay coupled with next-generation sequencing reveals that H3K4me3 modifications are particularly enriched in the promotor regions of genes encoding TGFβ and its signaling pathway members in cancer cells overexpressing Bcl-xL. Altogether, the metastatic function of Bcl-xL is mediated by its interaction with CtBP2 and MLL1 and this study offers new therapeutic strategies to treat Bcl-xL-overexpressing cancer.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sha Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yingcai Adrian Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cheryl Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Bikash Mishra
- Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joseph HyungJoon Na
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Soyoung Choi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra J Shin
- Department of Pathology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Priyadarshan Damle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kranthi Kumar Chougoni
- USC Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Steven R Grossman
- USC Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Cheung CHY, Cheng CK, Leung KT, Zhang C, Ho CY, Luo X, Kam AYF, Xia T, Wan TSK, Pitts HA, Chan NPH, Cheung JS, Wong RSM, Zhang XB, Ng MHL. C-terminal binding protein 2 is a novel tumor suppressor targeting the MYC-IRF4 axis in multiple myeloma. Blood Adv 2024; 8:2217-2234. [PMID: 38457926 PMCID: PMC11061227 DOI: 10.1182/bloodadvances.2023010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.
Collapse
Affiliation(s)
- Coty Hing Yau Cheung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Yan Ho
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xi Luo
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angel Yuet Fong Kam
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tian Xia
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Thomas Shek Kong Wan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Herbert Augustus Pitts
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Natalie Pui Ha Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce Sin Cheung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Siu Ming Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, California
| | - Margaret Heung Ling Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Raicu AM, Suresh M, Arnosti DN. A regulatory role for the unstructured C-terminal domain of the CtBP transcriptional corepressor. J Biol Chem 2024; 300:105490. [PMID: 38000659 PMCID: PMC10788531 DOI: 10.1016/j.jbc.2023.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The C-terminal binding protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C terminus. In the mammalian system, CtBP proteins lacking the C-terminal domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ∼100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Megha Suresh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
5
|
Raicu AM, Suresh M, Arnosti DN. A regulatory role for the unstructured C-terminal domain of the CtBP transcriptional corepressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541472. [PMID: 37292674 PMCID: PMC10245716 DOI: 10.1101/2023.05.19.541472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The C-terminal Binding Protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C-terminus. In the mammalian system, CtBP proteins lacking the C-terminal Domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ~100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally-regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI
| | - Megha Suresh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Saito K, Sekiya M, Kainoh K, Yoshino R, Hayashi A, Han SI, Araki M, Ohno H, Takeuchi Y, Tsuyuzaki T, Yamazaki D, Wanpei C, Hada L, Watanabe S, Paramita Adi Putri PI, Murayama Y, Sugano Y, Osaki Y, Iwasaki H, Yahagi N, Suzuki H, Miyamoto T, Matsuzaka T, Shimano H. Obesity-induced metabolic imbalance allosterically modulates CtBP2 to inhibit PPAR-alpha transcriptional activity. J Biol Chem 2023:104890. [PMID: 37286039 PMCID: PMC10339064 DOI: 10.1016/j.jbc.2023.104890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional co-repressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1 (CPT1). In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2/PPARα complex. Consistent with these in vitro findings, we found that the CtBP2/PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575.
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Ryunosuke Yoshino
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Akio Hayashi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Tomomi Tsuyuzaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Daichi Yamazaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Chen Wanpei
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Lisa Hada
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Sho Watanabe
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Putu Indah Paramita Adi Putri
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| |
Collapse
|
7
|
Bu W, Creighton CJ, Heavener KS, Gutierrez C, Dou Y, Ku AT, Zhang Y, Jiang W, Urrutia J, Jiang W, Yue F, Jia L, Ibrahim AA, Zhang B, Huang S, Li Y. Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice. SCIENCE ADVANCES 2023; 9:eade0059. [PMID: 37172086 PMCID: PMC10181191 DOI: 10.1126/sciadv.ade0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
Collapse
Affiliation(s)
- Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey S. Heavener
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jazmin Urrutia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Wen Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luyu Jia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Zhang T, Li S, Tan YA, Na JH, Chen Z, Damle P, Chen X, Choi S, Mishra B, Wang D, Grossman SR, Jiang X, Li Y, Chen YT, Xiang JZ, Du YCN. Bcl-xL is translocated to the nucleus via CtBP2 to epigenetically promote metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538373. [PMID: 37163116 PMCID: PMC10168309 DOI: 10.1101/2023.04.26.538373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Besides its mitochondria-based anti-apoptotic role, Bcl-xL also travels to the nucleus to promote cancer metastasis by upregulating global histone H3 trimethyl Lys4 (H3K4me3) and TGFβ transcription. How Bcl-xL is translocated into the nucleus and how nuclear Bcl-xL regulates H3K4me3 modification are not understood. Here, we report that C-terminal Binding Protein 2 (CtBP2) binds Bcl-xL via its N-terminus and translocates Bcl-xL into the nucleus. Knockdown of CtBP2 by shRNA decreases the nuclear portion of Bcl-xL and reverses Bcl-xL-induced cell migration and metastasis in mouse models. Furthermore, knockout of CtBP2 suppresses Bcl-xL transcription. The binding between Bcl-xL and CtBP2 is required for their interaction with MLL1, a histone H3K4 methyltransferase. Pharmacologic inhibition of MLL1 enzymatic activity reverses Bcl-xL-induced H3K4me3 and TGFβ mRNA upregulation as well as cell invasion. Moreover, cleavage under targets and release using nuclease (CUT&RUN) coupled with next generation sequencing reveals that H3K4me3 modifications are particularly enriched in the promotor region of genes encoding TGFβ and its signaling pathway in the cancer cells overexpressing Bcl-xL. Altogether, the metastatic function of Bcl-xL is mediated by its interaction with CtBP2 and MLL1.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sha Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yingcai Adrian Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joseph HyungJoon Na
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priyadarshan Damle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Soyoung Choi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bikash Mishra
- Immunology & Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven R. Grossman
- USC Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
9
|
Yamaguchi K, Horie C, Takane K, Ikenoue T, Nakagawa S, Isobe Y, Ota Y, Ushiku T, Tanaka M, Fujishiro J, Hoshino N, Arisue A, Nishizuka S, Aikou S, Shida D, Furukawa Y. Identification of odontogenic ameloblast associated as a novel target gene of the Wnt/β-catenin signaling pathway. Cancer Sci 2023; 114:948-960. [PMID: 36382598 PMCID: PMC9986071 DOI: 10.1111/cas.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a key role in development and carcinogenesis. Although some target genes of this signaling have been identified in various tissues and neoplasms, the comprehensive understanding of the target genes and their roles in the development of human cancer, including hepatoma and colorectal cancer remain to be fully elucidated. In this study, we searched for genes regulated by the Wnt signaling in liver cancer using HuH-7 hepatoma cells. A comparison of the expression profiles between cells expressing an active form of mutant β-catenin and cells expressing enhanced green fluorescent protein (EGFP) identified seven genes upregulated by the mutant β-catenin gene (CTNNB1). Among the seven genes, we focused in this study on ODAM, odontogenic, ameloblast associated, as a novel target gene. Interestingly, its expression was frequently upregulated in hepatocellular carcinoma, colorectal adenocarcinoma, and hepatoblastoma. We additionally identified a distant enhancer region that was associated with the β-catenin/TCF7L2 complex. Further analyses revealed that ODAM plays an important role in the regulation of the cell cycle, DNA synthesis, and cell proliferation. These data may be useful for clarification of the main molecular mechanism(s) underlying these cancers.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Chiaki Horie
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Kiyoko Takane
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Saya Nakagawa
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yumiko Isobe
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Noriko Hoshino
- Department of Pediatric Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Atsuhiro Arisue
- Department of SurgeryIwate Medical University School of MedicineYahabaJapan
| | - Satoshi Nishizuka
- Division of Biomedical Research and DevelopmentIwate Medical University Institute for Biomedical SciencesYahabaJapan
| | - Susumu Aikou
- Division of Frontier Surgery, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Dai Shida
- Division of Frontier Surgery, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Raicu AM, Kadiyala D, Niblock M, Jain A, Yang Y, Bird KM, Bertholf K, Seenivasan A, Siddiq M, Arnosti DN. The Cynosure of CtBP: Evolution of a Bilaterian Transcriptional Corepressor. Mol Biol Evol 2023; 40:msad003. [PMID: 36625090 PMCID: PMC9907507 DOI: 10.1093/molbev/msad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Evolution of sequence-specific transcription factors clearly drives lineage-specific innovations, but less is known about how changes in the central transcriptional machinery may contribute to evolutionary transformations. In particular, transcriptional regulators are rich in intrinsically disordered regions that appear to be magnets for evolutionary innovation. The C-terminal Binding Protein (CtBP) is a transcriptional corepressor derived from an ancestral lineage of alpha hydroxyacid dehydrogenases; it is found in mammals and invertebrates, and features a core NAD-binding domain as well as an unstructured C-terminus (CTD) of unknown function. CtBP can act on promoters and enhancers to repress transcription through chromatin-linked mechanisms. Our comparative phylogenetic study shows that CtBP is a bilaterian innovation whose CTD of about 100 residues is present in almost all orthologs. CtBP CTDs contain conserved blocks of residues and retain a predicted disordered property, despite having variations in the primary sequence. Interestingly, the structure of the C-terminus has undergone radical transformation independently in certain lineages including flatworms and nematodes. Also contributing to CTD diversity is the production of myriad alternative RNA splicing products, including the production of "short" tailless forms of CtBP in Drosophila. Additional diversity stems from multiple gene duplications in vertebrates, where up to five CtBP orthologs have been observed. Vertebrate lineages show fewer major modifications in the unstructured CTD, possibly because gene regulatory constraints of the vertebrate body plan place specific constraints on this domain. Our study highlights the rich regulatory potential of this previously unstudied domain of a central transcriptional regulator.
Collapse
Affiliation(s)
- Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
| | - Dhruva Kadiyala
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Madeline Niblock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | | | - Yahui Yang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kalynn M Bird
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kayla Bertholf
- Biochemistry and Molecular Biology Program, College of Wooster
| | - Akshay Seenivasan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Mohammad Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - David N Arnosti
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
Xie H, Liu S, Fu Y, Cheng Q, Wang P, Bi CL, Wang R, Chen MM, Fang M. Nuclear access of DNlg3 c-terminal fragment and its function in regulating innate immune response genes. Biochem Biophys Res Commun 2023; 641:93-101. [PMID: 36525929 DOI: 10.1016/j.bbrc.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Neuroligins (NLGNs) are one of the autism susceptibility genes, however, the mechanism that how dysfunction of NLGNs leads to Autism remains unclear. More and more studies have shown that the transcriptome alteration may be one of the important factors to generate Autism. Therefore, we are very concerned about whether Neuroligins would affect transcriptional regulation, which may at last lead to Autism. As a single-transmembrane receptor, proteolytic cleavage is one of the most important posttranslational modifications of NLGN proteins. In this study, we demonstrated the existence of DNlg3 C-terminal fragment. Studies in the S2 cells and HEK293T cells showed the evidence for nuclear access of the DNlg3 C-terminal fragment. Then we identified the possible targets of DNlg3 C-terminal fragment after its nuclear access by RNA-seq. The bioinformatics analysis indicated the transcriptome alteration between dnlg3 null flies and wild type flies focused on genes for the innate immune responses. These results were consistent with the infection hypotheses for autism. Our study revealed the nuclear access ability of DNlg3 c-terminal fragment and its possible function in transcriptional regulation of the innate immune response genes. This work provides the new links between synaptic adhesion molecule NLGNs and immune activation, which may help us to get a deeper understanding on the relationship between NLGNs and Autism.
Collapse
Affiliation(s)
- Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| | - Si Liu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Yiqiu Fu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Meng-Meng Chen
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
12
|
Fan L, Yang X, Zheng M, Yang X, Ning Y, Gao M, Zhang S. Regulation of SUMOylation Targets Associated With Wnt/β-Catenin Pathway. Front Oncol 2022; 12:943683. [PMID: 35847921 PMCID: PMC9280480 DOI: 10.3389/fonc.2022.943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Wnt/β-catenin signaling is a delicate and complex signal transduction pathway mediated by multiple signaling molecules, which plays a significant role in regulating human physiology and pathology. Abnormally activated Wnt/β-catenin signaling pathway plays a crucial role in promoting malignant tumor occurrence, development, recurrence, and metastasis, particularly in cancer stem cells. Studies have shown that the Wnt/β-catenin signaling pathway controls cell fate and function through the transcriptional and post-translational regulation of omics networks. Therefore, precise regulation of Wnt/β-catenin signaling as a cancer-targeting strategy may contribute to the treatment of some malignancies. SUMOylation is a post-translational modification of proteins that has been found to play a major role in the Wnt/β-catenin signaling pathway. Here, we review the complex regulation of Wnt/β-catenin signaling by SUMOylation and discuss the potential targets of SUMOylation therapy.
Collapse
Affiliation(s)
- Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ming Gao
- Department of Thyroid Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
13
|
Cheng Q, Xie H, Zhang X, Wang M, Bi C, Wang Q, Wang R, Fang M. An essential role for
PTIP
in mediating Hox gene regulation along
PcG
and
trxG
pathways. FEBS J 2022; 289:6324-6341. [DOI: 10.1111/febs.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Xiao‐Yan Zhang
- Department of Genetic Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Ming‐Ying Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Cai‐Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
- Institute of Translational Medicine, Medical College Yangzhou University China
| | - Qiang Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases Southeast University Nanjing China
| |
Collapse
|
14
|
Bi CL, Cheng Q, Yan LY, Wu HY, Wang Q, Wang P, Cheng L, Wang R, Yang L, Li J, Tie F, Xie H, Fang M. A prominent gene activation role for C-terminal binding protein in mediating PcG/trxG proteins through Hox gene regulation. Development 2022; 149:275613. [DOI: 10.1242/dev.200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The evolutionarily conserved C-terminal binding protein (CtBP) has been well characterized as a transcriptional co-repressor. Herein, we report a previously unreported function for CtBP, showing that lowering CtBP dosage genetically suppresses Polycomb group (PcG) loss-of-function phenotypes while enhancing that of trithorax group (trxG) in Drosophila, suggesting that the role of CtBP in gene activation is more pronounced in fly development than previously thought. In fly cells, we show that CtBP is required for the derepression of the most direct PcG target genes, which are highly enriched by homeobox transcription factors, including Hox genes. Using ChIP and co-IP assays, we demonstrate that CtBP is directly required for the molecular switch between H3K27me3 and H3K27ac in the derepressed Hox loci. In addition, CtBP physically interacts with many proteins, such as UTX, CBP, Fs(1)h and RNA Pol II, that have activation roles, potentially assisting in their recruitment to promoters and Polycomb response elements that control Hox gene expression. Therefore, we reveal a prominent activation function for CtBP that confers a major role for the epigenetic program of fly segmentation and development.
Collapse
Affiliation(s)
- Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
- Institute of Translational Medicine 2 , , , Yangzhou 225001 , China
- Medical College 2 , , , Yangzhou 225001 , China
- Yangzhou University 2 , , , Yangzhou 225001 , China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ling-Yue Yan
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Hong-Yan Wu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Qiang Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Yang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Jian Li
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Feng Tie
- Case Western Reserve University 3 Department of Genetics and Genome Sciences , , Cleveland, OH 44106, USA
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| |
Collapse
|
15
|
Torres-Aguila NP, Salonna M, Hoppler S, Ferrier DEK. Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates. Dev Growth Differ 2022; 64:120-137. [PMID: 35048372 PMCID: PMC9303524 DOI: 10.1111/dgd.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
Wnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T‐cell factor/lymphoid enhancer factor (TCF/LEF) proteins being the major mediators of Wnt/β‐catenin‐regulated gene expression. In comparison with invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy, and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny, and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole‐genome duplications that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2‐like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre‐whole‐genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/β‐catenin signaling in vertebrate evolution.
Collapse
Affiliation(s)
- Nuria P Torres-Aguila
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Marika Salonna
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
16
|
Erlandsen H, Jecrois AM, Nichols JC, Cole JL, Royer WE. NADH/NAD + binding and linked tetrameric assembly of the oncogenic transcription factors CtBP1 and CtBP2. FEBS Lett 2022; 596:479-490. [PMID: 34997967 DOI: 10.1002/1873-3468.14276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
The activation of oncogenic C-terminal binding Protein (CtBP) transcriptional activity is coupled with NAD(H) binding and homo-oligomeric assembly, although the level of CtBP assembly and nucleotide binding affinity continues to be debated. Here, we apply biophysical techniques to address these fundamental issues for CtBP1 and CtBP2. Our ultracentrifugation results unambiguously demonstrate that CtBP assembles into tetramers in the presence of saturating NAD+ or NADH with tetramer to dimer dissociation constants about 100 nm. Isothermal titration calorimetry measurements of NAD(H) binding to CtBP show dissociation constants between 30 and 500 nm, depending on the nucleotide and paralog. Given cellular levels of NAD+ , CtBP is likely to be fully saturated with NAD under physiological concentrations suggesting that CtBP is unable to act as a sensor for NADH levels.
Collapse
Affiliation(s)
- Heidi Erlandsen
- Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, USA
| | - Anne M Jecrois
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Jeffry C Nichols
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA.,Chemistry Department, Worcester State University, MA, USA
| | - James L Cole
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, CT, USA
| | - William E Royer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
17
|
Kis D, Csordás IB, Persa E, Jezsó B, Hargitai R, Szatmári T, Sándor N, Kis E, Balázs K, Sáfrány G, Lumniczky K. Extracellular Vesicles Derived from Bone Marrow in an Early Stage of Ionizing Radiation Damage Are Able to Induce Bystander Responses in the Bone Marrow. Cells 2022; 11:cells11010155. [PMID: 35011718 PMCID: PMC8750882 DOI: 10.3390/cells11010155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
Ionizing radiation (IR)-induced bystander effects contribute to biological responses to radiation, and extracellular vesicles (EVs) play important roles in mediating these effects. In this study we investigated the role of bone marrow (BM)-derived EVs in the bystander transfer of radiation damage. Mice were irradiated with 0.1Gy, 0.25Gy and 2Gy, EVs were extracted from the BM supernatant 24 h or 3 months after irradiation and injected into bystander mice. Acute effects on directly irradiated or EV-treated mice were investigated after 4 and 24 h, while late effects were investigated 3 months after treatment. The acute effects of EVs on the hematopoietic stem and progenitor cell pools were similar to direct irradiation effects and persisted for up to 3 months, with the hematopoietic stem cells showing the strongest bystander responses. EVs isolated 3 months after irradiation elicited no bystander responses. The level of seven microRNAs (miR-33a-3p, miR-140-3p, miR-152-3p, miR-199a-5p, miR-200c-5p, miR-375-3p and miR-669o-5p) was altered in the EVs isolated 24 hour but not 3 months after irradiation. They regulated pathways highly relevant for the cellular response to IR, indicating their role in EV-mediated bystander responses. In conclusion, we showed that only EVs from an early stage of radiation damage could transmit IR-induced bystander effects.
Collapse
Affiliation(s)
- Dávid Kis
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
- Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ilona Barbara Csordás
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Eszter Persa
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Bálint Jezsó
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary;
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary
| | - Rita Hargitai
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Tünde Szatmári
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Nikolett Sándor
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Enikő Kis
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Katalin Balázs
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
- Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Géza Sáfrány
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
| | - Katalin Lumniczky
- National Public Health Center, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, 1097 Budapest, Hungary; (D.K.); (I.B.C.); (E.P.); (R.H.); (T.S.); (N.S.); (E.K.); (K.B.); (G.S.)
- Correspondence:
| |
Collapse
|
18
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
19
|
Naked cuticle inhibits wingless signaling in Drosophila wing development. Biochem Biophys Res Commun 2021; 576:1-6. [PMID: 34474244 DOI: 10.1016/j.bbrc.2021.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Wnt signaling is one of the major signaling pathways that regulate cell differentiation, tissue patterning and stem cell homeostasis and its dysfunction causes many human diseases, such as cancer. It is of tremendous interests to understand how Wnt signaling is regulated in a precise manner both temporally and spatially. Naked cuticle (Nkd) acts as a negative-feedback inhibitor for Wingless (Wg, a fly Wnt) signaling in Drosophila embryonic development. However, the role of Nkd remains controversial in later fly development, particularly on the canonical Wg pathway. In the present study, we show that nkd is essential for wing pattern formation, such that both gain and loss of nkd result in the disruption of Wg target expression in larvae stage and abnormal adult wing morphologies. Furthermore, we demonstrate that a thirty amino acid fragment in Nkd, identified previously in Wharton lab, is critical for the canonical Wg signaling, but is dispensable for Wg/planar cell polarity pathway. Putting aside the pleiotropic nature of nkd function, i.e. its role in the Decapentaplegic signaling, we conclude that Nkd universally inhibits the canonical Wg pathway across a life span of Drosophila development.
Collapse
|
20
|
Wu C, Ding X, Li Z, Huang Y, Xu Q, Zou R, Zhao M, Chang H, Jiang C, La X, Lin G, Li W, Xue L. CtBP modulates Snail-mediated tumor invasion in Drosophila. Cell Death Discov 2021; 7:202. [PMID: 34349099 PMCID: PMC8339073 DOI: 10.1038/s41420-021-00516-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.
Collapse
Affiliation(s)
- Chenxi Wu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiang Ding
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuojie Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Huang
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qian Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rui Zou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingyang Zhao
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hong Chang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chunhua Jiang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China. .,Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 51900, China.
| |
Collapse
|
21
|
Kelleher ES. Protein-Protein Interactions Shape Genomic Autoimmunity in the Adaptively Evolving Rhino-Deadlock-Cutoff Complex. Genome Biol Evol 2021; 13:6296839. [PMID: 34115120 PMCID: PMC8290110 DOI: 10.1093/gbe/evab132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway is a genomic defense system that controls the movement of transposable elements (TEs) through transcriptional and post-transcriptional silencing. Although TE defense is critical to ensuring germline genome integrity, it is equally critical that the piRNA pathway avoids autoimmunity in the form of silencing host genes. Ongoing cycles of selection for expanded control of invading TEs, followed by selection for increased specificity to reduce impacts on host genes, are proposed to explain the frequent signatures of adaptive evolution among piRNA pathway proteins. However, empirical tests of this model remain limited, particularly with regards to selection against genomic autoimmunity. I examined three adaptively evolving piRNA proteins, Rhino, Deadlock, and Cutoff, for evidence of interspecific divergence in autoimmunity between Drosophila melanogaster and Drosophila simulans. I tested a key prediction of the autoimmunity hypothesis that foreign heterospecific piRNA proteins will exhibit enhanced autoimmunity, due to the absence of historical selection against off-target effects. Consistent with this prediction, full-length D. simulans Cutoff, as well as the D. simulans hinge and chromo domains of Rhino, exhibit expanded regulation of D. melanogaster genes. I further demonstrate that this autoimmunity is dependent on known incompatibilities between D. simulans proteins or domains and their interacting partners in D. melanogaster. My observations reveal that the same protein–protein interaction domains that are interfaces of adaptive evolution in Rhino and Cutoff also determine their potential for autoimmunity.
Collapse
|
22
|
Deng Y, Xie K, Logothetis CJ, Thompson TC, Kim J, Huang M, Chang DW, Gu J, Wu X, Ye Y. Genetic variants in epithelial-mesenchymal transition genes as predictors of clinical outcomes in localized prostate cancer. Carcinogenesis 2021; 41:1057-1064. [PMID: 32215555 DOI: 10.1093/carcin/bgaa026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a pivotal role in the progression of prostate cancer (PCa). However, little is known about genetic variants in the EMT pathway as predictors of aggressiveness, biochemical recurrence (BCR) and disease reclassification in localized PCa. PATIENTS AND METHODS In this multistage study, we evaluated 5186 single nucleotide polymorphisms (SNPs) from 264 genes related to EMT pathway to identify SNPs associated with PCa aggressiveness and BCR in the MD Anderson PCa (MDA-PCa) patient cohort (N = 1762), followed by assessment of the identified SNPs with disease reclassification in the active surveillance (AS) cohort (N = 392). RESULTS In the MDA-PCa cohort, 312 SNPs were associated with high D'Amico risk (P < 0.05), among which, 14 SNPs in 10 genes were linked to BCR risk. In the AS cohort, 2 of 14 identified SNPs (rs76779889 and rs7083961) in C-terminal Binding Proteins 2 gene were associated with reclassification risk. The associations of rs76779889 with different endpoints were: D'Amico high versus low, odds ratio [95% confidence interval (CI)] = 2.89 (1.32-6.34), P = 0.008; BCR, hazard ratio (HR) (95% CI) = 2.88 (1.42-5.85), P = 0.003; and reclassification, HR (95% CI) = 2.83 (1.40-5.74), P = 0.004. For rs7083961, the corresponding risk estimates were: D'Amico high versus low, odds ratio (95% CI) = 1.69 (1.12-2.57), P = 0.013; BCR, HR (95% CI) = 1.87 (1.15-3.02), P = 0.011 and reclassification, HR (95% CI) = 1.72 (1.09-2.72), P = 0.020. There were cumulative effects of these two SNPs on modulating these endpoints. CONCLUSION Genetic variants in EMT pathway may influence the risks of localized PCa's aggressiveness, BCR and disease reclassification, suggesting their potential role in the assessment and management of localized PCa.
Collapse
Affiliation(s)
- Yang Deng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunlin Xie
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Biostatistics, Bioinformatics, and Big Data, Second Affiliated Hospital and Department of Epidemiology and Health Statistics School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Kainoh K, Takano R, Sekiya M, Saito K, Sugasawa T, Ma Y, Murayama Y, Sugano Y, Osaki Y, Iwasaki H, Takeuchi Y, Yahagi N, Suzuki H, Miyamoto T, Nakagawa Y, Matsuzaka T, Shimano H. CtBP2 confers protection against oxidative stress through interactions with NRF1 and NRF2. Biochem Biophys Res Commun 2021; 562:146-153. [PMID: 34052660 DOI: 10.1016/j.bbrc.2021.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022]
Abstract
While molecular oxygen is essential for aerobic organisms, its utilization is inseparably connected with generation of oxidative insults. To cope with the detrimental aspects, cells evolved antioxidative defense systems, and insufficient management of the oxidative insults underlies the pathogenesis of a wide range of diseases. A battery of genes for this antioxidative defense are regulated by the transcription factors nuclear factor-erythroid 2-like 1 and 2 (NRF1 and NRF2). While the regulatory steps for the activation of NRFs have been investigated with particular emphasis on nuclear translocation and proteosomal degradation, unknown redundancy may exist considering the indispensable nature of these defense systems. Here we unraveled that C-terminal binding protein 2 (CtBP2), a transcriptional cofactor with redox-sensing capability, is an obligate partner of NRFs. CtBP2 forms transcriptional complexes with NRF1 and NRF2 that is required to promote the expression of antioxidant genes in response to oxidative insults. Our findings illustrate a basis for understanding the transcriptional regulation of antioxidative defense systems that may be exploited therapeutically.
Collapse
Affiliation(s)
- Kenta Kainoh
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryo Takano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kenji Saito
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takehito Sugasawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yang Ma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Department of Complex Biosystem Research, Division of Research and Development, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
24
|
Nichols JC, Schiffer CA, Royer WE. NAD(H) phosphates mediate tetramer assembly of human C-terminal binding protein (CtBP). J Biol Chem 2021; 296:100351. [PMID: 33524397 PMCID: PMC7949142 DOI: 10.1016/j.jbc.2021.100351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are cotranscriptional factors that play key roles in cell fate. We have previously shown that NAD(H) promotes the assembly of similar tetramers from either human CtBP1 and CtBP2 and that CtBP2 tetramer destabilizing mutants are defective for oncogenic activity. To assist structure-based design efforts for compounds that disrupt CtBP tetramerization, it is essential to understand how NAD(H) triggers tetramer assembly. Here, we investigate the moieties within NAD(H) that are responsible for triggering tetramer formation. Using multiangle light scattering (MALS), we show that ADP is able to promote tetramer formation of both CtBP1 and CtBP2, whereas AMP promotes tetramer assembly of CtBP1, but not CtBP2. Other NAD(H) moieties that lack the adenosine phosphate, including adenosine and those incorporating nicotinamide, all fail to promote tetramer assembly. Our crystal structures of CtBP1 with AMP reveal participation of the adenosine phosphate in the tetrameric interface, pinpointing its central role in NAD(H)-linked assembly. CtBP1 and CtBP2 have overlapping but unique roles, suggesting that a detailed understanding of their unique structural properties might have utility in the design of paralog-specific inhibitors. We investigated the different responses to AMP through a series of site-directed mutants at 13 positions. These mutations reveal a central role for a hinge segment, which we term the 120s hinge that connects the substrate with coenzyme-binding domains and influences nucleotide binding and tetramer assembly. Our results provide insight into suitable pockets to explore in structure-based drug design to interfere with cotranscriptional activity of CtBP in cancer.
Collapse
Affiliation(s)
- Jeffry C Nichols
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Chemistry Department, Worcester State University, Worcester, Massachusetts, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - William E Royer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
25
|
Sinha A, Fan VB, Ramakrishnan AB, Engelhardt N, Kennell J, Cadigan KM. Repression of Wnt/β-catenin signaling by SOX9 and Mastermind-like transcriptional coactivator 2. SCIENCE ADVANCES 2021; 7:7/8/eabe0849. [PMID: 33597243 PMCID: PMC7888933 DOI: 10.1126/sciadv.abe0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 05/06/2023]
Abstract
Wnt/β-catenin signaling requires inhibition of a multiprotein destruction complex that targets β-catenin for proteasomal degradation. SOX9 is a potent antagonist of the Wnt pathway and has been proposed to act through direct binding to β-catenin or the β-catenin destruction complex. Here, we demonstrate that SOX9 promotes turnover of β-catenin in mammalian cell culture, but this occurs independently of the destruction complex and the proteasome. This activity requires SOX9's ability to activate transcription. Transcriptome analysis revealed that SOX9 induces the expression of the Notch coactivator Mastermind-like transcriptional activator 2 (MAML2), which is required for SOX9-dependent Wnt/β-catenin antagonism. MAML2 promotes β-catenin turnover independently of Notch signaling, and MAML2 appears to associate directly with β-catenin in an in vitro binding assay. This work defines a previously unidentified pathway that promotes β-catenin degradation, acting in parallel to established mechanisms. SOX9 uses this pathway to restrict Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Vinson B Fan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Aravinda-Bharathi Ramakrishnan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Nicole Engelhardt
- Department of Biology, Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604, USA
| | - Jennifer Kennell
- Department of Biology, Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604, USA
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Development of structure-based pharmacophore to target the β-catenin-TCF protein–protein interaction. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02693-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Serra-Almeida C, Saraiva C, Esteves M, Ferreira R, Santos T, Cristóvão AC, Bernardino L. C-Terminal Binding Proteins Promote Neurogenesis and Oligodendrogenesis in the Subventricular Zone. Front Cell Dev Biol 2021; 8:584220. [PMID: 33490060 PMCID: PMC7815648 DOI: 10.3389/fcell.2020.584220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are transcriptional modulators that can regulate gene expression through the recruitment of a corepressor complex composed of chromatin-modifying enzymes and transcriptional factors. In the brain, CtBPs have been described as regulators of cell proliferation, differentiation, and survival. Nevertheless, the role of CtBPs on postnatal neural stem cells (NSCs) fate is not known yet. Herein, we evaluate the expression and functions of CtBPs in postnatal NSCs from the subventricular zone (SVZ). We found that CtBPs were expressed in immature/progenitor cells, neurons and glial cells in the SVZ niche. Using the CtBPs modulator 4-methylthio 2-oxobutyric acid (MTOB), our results showed that 1 mM of MTOB induced cell death, while 5, 25, and 50 μM increased the number of proliferating neuroblasts, mature neurons, and oligodendrocytes. Interestingly, it also increased the dendritic complexity of immature neurons. Altogether, our results highlight CtBPs putative application for brain regenerative applications.
Collapse
Affiliation(s)
- Catarina Serra-Almeida
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Cláudia Saraiva
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Marta Esteves
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Raquel Ferreira
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Tiago Santos
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Ana Clara Cristóvão
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal.,NeuroSoV, UBImedical, University of Beira Interior, Covilhã, Portugal
| | - Liliana Bernardino
- Faculty of Health Sciences, Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
28
|
Vijayalingam S, Ezekiel UR, Xu F, Subramanian T, Geerling E, Hoelscher B, San K, Ganapathy A, Pemberton K, Tycksen E, Pinto AK, Brien JD, Beck DB, Chung WK, Gurnett CA, Chinnadurai G. Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks. Front Neurosci 2020; 14:562292. [PMID: 33192249 PMCID: PMC7653094 DOI: 10.3389/fnins.2020.562292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
A recurrent de novo mutation in the transcriptional corepressor CTBP1 is associated with neurodevelopmental disabilities in children (Beck et al., 2016, 2019; Sommerville et al., 2017). All reported patients harbor a single recurrent de novo heterozygous missense mutation (p.R342W) within the cofactor recruitment domain of CtBP1. To investigate the transcriptional activity of the pathogenic CTBP1 mutant allele in physiologically relevant human cell models, we generated induced pluripotent stem cells (iPSC) from the dermal fibroblasts derived from patients and normal donors. The transcriptional profiles of the iPSC-derived “early” neurons were determined by RNA-sequencing. Comparison of the RNA-seq data of the neurons from patients and normal donors revealed down regulation of gene networks involved in neurodevelopment, synaptic adhesion and anti-viral (interferon) response. Consistent with the altered gene expression patterns, the patient-derived neurons exhibited morphological and electrophysiological abnormalities, and susceptibility to viral infection. Taken together, our studies using iPSC-derived neuron models provide novel insights into the pathological activities of the CTBP1 p.R342W allele.
Collapse
Affiliation(s)
- S Vijayalingam
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Uthayashanker R Ezekiel
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Fenglian Xu
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - T Subramanian
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - Brittany Hoelscher
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - KayKay San
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Aravinda Ganapathy
- Department of Clinical Health Sciences, Doisy College of Health Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Kyle Pemberton
- Department of Biology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Eric Tycksen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, United States
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - G Chinnadurai
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States
| |
Collapse
|
29
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
30
|
Prabhakar K, Rodrίguez CI, Jayanthy AS, Mikheil DM, Bhasker AI, Perera RJ, Setaluri V. Role of miR-214 in regulation of β-catenin and the malignant phenotype of melanoma. Mol Carcinog 2019; 58:1974-1984. [PMID: 31338875 DOI: 10.1002/mc.23089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Wnt/β-catenin signaling plays an important role in melanocyte biology, especially in the early stages of melanocyte transformation and melanomagenesis. β-catenin, encoded by the gene CTNNB1, is an intracellular signal transducer of Wnt signaling and activates transcription of genes important for cell proliferation and survival. Wnt/β-catenin signaling is frequently activated in melanoma through oncogenic mutations of β-catenin and elevated β-catenin levels are positively correlated with melanoma aggressiveness. Molecular mechanisms that regulate β-catenin expression in melanoma are not fully understood. MicroRNA-214 is known to function as a tumor suppressor by targeting β-catenin in several types of cancer cells. Here, we investigated the regulation of β-catenin by miR-214 and its role in melanoma. We show that β-catenin mRNA levels are negatively correlated with miR-214 in melanoma. However, overexpression of miR-214 paradoxically increased β-catenin protein levels and promoted malignant properties of melanoma cells including resistance to mitogen-activated protein kinase inhibitors (MAPKi). RNA-seq analysis revealed that melanoma cells predominantly express a β-catenin mRNA isoform lacking miR-214 target site. Using matched miRNA and mRNA-seq and bioinformatics analysis, we identified novel miR-214 targets, ankyrin repeat domain 6 (ANKRD6) and C-terminal binding protein 1 (CTBP1), that are involved in negative regulation of Wnt signaling. Overexpression of miR-214 or knockdown of the novel miR-214 targets, ANKRD6 or CTBP1, increased melanoma cell proliferation, migration, and decreased sensitivity to MAPKi. Our data suggest that in melanoma cells β-catenin is not regulated by miR-214 and the functions of miR-214 in melanoma are mediated partly by regulating proteins involved in attenuation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carlos I Rodrίguez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ashika S Jayanthy
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dareen M Mikheil
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aishwarya Iyer Bhasker
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ranjan J Perera
- Sanford-Burham Prebys Medical Discovery Institute, Orlando, Florida
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
31
|
Beck DB, Subramanian T, Vijayalingam S, Ezekiel UR, Donkervoort S, Yang ML, Dubbs HA, Ortiz-Gonzalez XR, Lakhani S, Segal D, Au M, Graham JM, Verma S, Waggoner D, Shinawi M, Bönnemann CG, Chung WK, Chinnadurai G. A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity. Neurogenetics 2019; 20:129-143. [PMID: 31041561 DOI: 10.1007/s10048-019-00578-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes.
Collapse
Affiliation(s)
- David B Beck
- National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Room B3-4129, Bethesda, MD, 20892, USA
| | - T Subramanian
- Institute for Molecular Virology, Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, E. A. Doisy Research Center, 6th Floor, St. Louis, MO, 63104, USA
| | - S Vijayalingam
- Institute for Molecular Virology, Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, E. A. Doisy Research Center, 6th Floor, St. Louis, MO, 63104, USA
| | - Uthayashankar R Ezekiel
- Clinical Health Sciences, Saint Louis University, 3437 Caroline Street, Allied Health Building, Suite 3025, Saint Louis, MO, 63104, USA
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, 10 Center Drive Room 2B39, MSC 1477, Bethesda, MD, 20892, USA
| | - Michele L Yang
- University of Colorado Denver, 13123 E. 16th Ave; Box B155, Aurora, CO, 80238, USA
| | - Holly A Dubbs
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xilma R Ortiz-Gonzalez
- Department of Neurology, Pereleman School of Medicine, University of Pennsylvania; Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shenela Lakhani
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, 413 E 69th Street, New York, NY, 10021, USA
| | - Devorah Segal
- Department of Pediatrics, Division of Child Neurology, Weill Cornell Medicine, 525 E. 68th St, Box 91, New York, NY, 10065, USA
| | - Margaret Au
- Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90068, USA
| | - John M Graham
- Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90068, USA
| | - Sumit Verma
- Division of Pediatric Neurology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine,, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, 10 Center Drive Room 2B39, MSC 1477, Bethesda, MD, 20892, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA.
| | - G Chinnadurai
- Institute for Molecular Virology, Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, E. A. Doisy Research Center, 6th Floor, St. Louis, MO, 63104, USA.
| |
Collapse
|
32
|
Arthur SA, Blaydes JP, Houghton FD. Glycolysis Regulates Human Embryonic Stem Cell Self-Renewal under Hypoxia through HIF-2α and the Glycolytic Sensors CTBPs. Stem Cell Reports 2019; 12:728-742. [PMID: 30880076 PMCID: PMC6450050 DOI: 10.1016/j.stemcr.2019.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Glycolysis and hypoxia are key regulators of human embryonic stem cell (hESC) self-renewal, but how changes in metabolism affect gene expression is poorly understood. C-terminal binding proteins (CTBPs) are glycolytic sensors that through NADH binding link the metabolic state of the cell to its gene expression, by acting as transcriptional corepressors, or coactivators. However, the role of CTBPs in hESCs has not previously been investigated. A direct interaction between hypoxia-inducible factor 2α (HIF-2α) and the CTBP proximal promoters in hESCs cultured only under hypoxia was demonstrated. Decreasing the rate of flux through glycolysis in hESCs maintained under hypoxia resulted in a reduction of CTBPs, OCT4, SOX2, and NANOG, but also in the expression of HIF-2α. Silencing CTBP expression resulted in the loss of pluripotency marker expression demonstrating that CTBPs are involved in hESC maintenance. These data suggest that under hypoxia, glycolysis regulates self-renewal through HIF-2α and the induction of the metabolic sensors CTBPs.
Collapse
Affiliation(s)
- Sophie A Arthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
33
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
34
|
Xun Q, Bi C, Cui X, Wu H, Wang M, Liao Y, Wang R, Xie H, Shen Z, Fang M. MagT1 is essential for Drosophila development through the shaping of Wingless and Decapentaplegic signaling pathways. Biochem Biophys Res Commun 2018; 503:1148-1153. [PMID: 29959918 DOI: 10.1016/j.bbrc.2018.06.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/23/2018] [Indexed: 12/01/2022]
Abstract
Magnesium transporter subtype 1 (MagT1) is a magnesium membrane transporter with channel like properties. We have previously identified MagT1 (CG7830) in Drosophila genome and characterized its protein product by electrophysiological means. Here, we report the generation of fly MagT1 mutants and show that MagT1 is essential for early embryonic development. In wings and primordial wings, by clonal analysis and RNAi knock down of MagT1, we have found that loss of MagT1 results in enhanced/ectopic Wingless (Wg, a fly Wnt) signaling and disrupted Decapentaplegic (Dpp) signaling, indicating the crucial role of MagT1 for fly development at later stages. Finally, we demonstrate directly that magnesium transportations are proportional with the MagT1 expressional levels in Drosophila S2 cells. Taken together, these findings may suggest that MagT1 is a major magnesium transporter/channel profoundly involved in fly development by affecting developmental signaling pathways, such as Wg and Dpp signaling.
Collapse
Affiliation(s)
- Qingying Xun
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China; Southeast University Medical School, Nanjing, 210009, China
| | - Caili Bi
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Xiaoying Cui
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Hongyan Wu
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Mingying Wang
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Yanlin Liao
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Hao Xie
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Zhijun Shen
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ming Fang
- Institute of Life Sciences, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
35
|
Wojciechowski M, Lowe R, Maleszka J, Conn D, Maleszka R, Hurd PJ. Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Res 2018; 28:1532-1542. [PMID: 30135090 PMCID: PMC6169885 DOI: 10.1101/gr.236497.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
The capacity of the honey bee to produce three phenotypically distinct organisms (two female castes; queens and sterile workers, and haploid male drones) from one genotype represents one of the most remarkable examples of developmental plasticity in any phylum. The queen-worker morphological and reproductive divide is environmentally controlled during post-embryonic development by differential feeding. Previous studies implicated metabolic flux acting via epigenetic regulation, in particular DNA methylation and microRNAs, in establishing distinct patterns of gene expression underlying caste-specific developmental trajectories. We produce the first genome-wide maps of chromatin structure in the honey bee at a key larval stage in which developmental canalization into queen or worker is virtually irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac, and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key chromatin modification, with caste-specific regions of intronic H3K27ac directing the worker caste. These regions may harbor the first examples of caste-specific enhancer elements in the honey bee. Our results demonstrate a key role for chromatin modifications in the establishment and maintenance of caste-specific transcriptional programs in the honey bee. We show that at 96 h of larval growth, the queen-specific chromatin pattern is already established, whereas the worker determination is not, thus providing experimental support for the perceived timing of this critical point in developmental heterochrony in two types of honey bee females. In a broader context, our study provides novel data on environmentally regulated organismal plasticity and the molecular foundation of the evolutionary origins of eusociality.
Collapse
Affiliation(s)
- Marek Wojciechowski
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Robert Lowe
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Joanna Maleszka
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Danyal Conn
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Paul J Hurd
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
36
|
Bellesis AG, Jecrois AM, Hayes JA, Schiffer CA, Royer WE. Assembly of human C-terminal binding protein (CtBP) into tetramers. J Biol Chem 2018; 293:9101-9112. [PMID: 29700119 DOI: 10.1074/jbc.ra118.002514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
C-terminal binding protein 1 (CtBP1) and CtBP2 are transcriptional coregulators that repress numerous cellular processes, such as apoptosis, by binding transcription factors and recruiting chromatin-remodeling enzymes to gene promoters. The NAD(H)-linked oligomerization of human CtBP is coupled to its co-transcriptional activity, which is implicated in cancer progression. However, the biologically relevant level of CtBP assembly has not been firmly established; nor has the stereochemical arrangement of the subunits above that of a dimer. Here, multi-angle light scattering (MALS) data established the NAD+- and NADH-dependent assembly of CtBP1 and CtBP2 into tetramers. An examination of subunit interactions within CtBP1 and CtBP2 crystal lattices revealed that both share a very similar tetrameric arrangement resulting from assembly of two dimeric pairs, with specific interactions probably being sensitive to NAD(H) binding. Creating a series of mutants of both CtBP1 and CtBP2, we tested the hypothesis that the crystallographically observed interdimer pairing stabilizes the solution tetramer. MALS data confirmed that these mutants disrupt both CtBP1 and CtBP2 tetramers, with the dimer generally remaining intact, providing the first stereochemical models for tetrameric assemblies of CtBP1 and CtBP2. The crystal structure of a subtle destabilizing mutant suggested that small structural perturbations of the hinge region linking the substrate- and NAD-binding domains are sufficient to weaken the CtBP1 tetramer. These results strongly suggest that the tetramer is important in CtBP function, and the series of CtBP mutants reported here can be used to investigate the physiological role of the tetramer.
Collapse
Affiliation(s)
- Andrew G Bellesis
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and.,the Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610
| | - Anne M Jecrois
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Janelle A Hayes
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Celia A Schiffer
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - William E Royer
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| |
Collapse
|
37
|
Dai F, Xuan Y, Jin JJ, Yu S, Long ZW, Cai H, Liu XW, Zhou Y, Wang YN, Chen Z, Huang H. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis. Oncotarget 2018; 8:28736-28749. [PMID: 28404932 PMCID: PMC5438687 DOI: 10.18632/oncotarget.15661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
C-terminal binding protein-2 (CtBP2), a transcriptional corepressor, has been reported to correlate with tumorigenesis and progression and predict a poor prognosis in several human cancers. However, few studies on CtBP2 in gastric cancer (GC) have been performed. In this research, we evaluated the correlations between CtBP2 expression and the clinicopathological characteristics, as well as prognosis of GC patients. The effects of silencing CtBP2 expression on GC cells biology activity were also assessed. The results showed that CtBP2 was overexpressed in GC tissues and closely correlated with poor differentiation, advanced tumor stage and poor prognosis in GC patients. CtBP2 induced epithelial-to-mesenchymal transition (EMT) and repressed PTEN to increase proliferation rate, migration, and invasion in GC cells. Silencing CtBP2 inhibited GC growth in nude mice model. In conclusion, CtBP2 is overexpressed in GC and may accelerate GC tumorigenesis and metastasis, which could represent an independent prognostic marker and promising therapeutic target for GC.
Collapse
Affiliation(s)
- Faxiang Dai
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong 226001, China
| | - Yi Xuan
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie-Jie Jin
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shengjia Yu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zi-Wen Long
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hong Cai
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Wen Liu
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ya-Nong Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong 226001, China
| | - Hua Huang
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
38
|
Bi C, Meng F, Yang L, Cheng L, Wang P, Chen M, Fang M, Xie H. CtBP represses Dpp signaling as a dimer. Biochem Biophys Res Commun 2018; 495:1980-1985. [DOI: 10.1016/j.bbrc.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
39
|
Ramakrishnan AB, Sinha A, Fan VB, Cadigan KM. The Wnt Transcriptional Switch: TLE Removal or Inactivation? Bioessays 2017; 40. [PMID: 29250807 DOI: 10.1002/bies.201700162] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/12/2017] [Indexed: 01/06/2023]
Abstract
Many targets of the Wnt/β-catenin signaling pathway are regulated by TCF transcription factors, which play important roles in animal development, stem cell biology, and oncogenesis. TCFs can regulate Wnt targets through a "transcriptional switch," repressing gene expression in unstimulated cells and promoting transcription upon Wnt signaling. However, it is not clear whether this switch mechanism is a general feature of Wnt gene regulation or limited to a subset of Wnt targets. Co-repressors of the TLE family are known to contribute to the repression of Wnt targets in the absence of signaling, but how they are inactivated or displaced by Wnt signaling is poorly understood. In this mini-review, we discuss several recent reports that address the prevalence and molecular mechanisms of the Wnt transcription switch, including the finding of Wnt-dependent ubiquitination/inactivation of TLEs. Together, these findings highlight the growing complexity of the regulation of gene expression by the Wnt pathway.
Collapse
Affiliation(s)
| | - Abhishek Sinha
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048
| | - Vinson B Fan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048
| |
Collapse
|
40
|
Ctbp2-mediated β-catenin regulation is required for exit from pluripotency. Exp Mol Med 2017; 49:e385. [PMID: 29026198 PMCID: PMC5668466 DOI: 10.1038/emm.2017.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
The canonical Wnt pathway is critical for embryonic stem cell (ESC) pluripotency and aberrant control of β-catenin leads to failure of exit from pluripotency and lineage commitments. Hence, maintaining the appropriate level of β-catenin is important for the decision to commit to the appropriate lineage. However, how β-catenin links to core transcription factors in ESCs remains elusive. C-terminal-binding protein (CtBP) in Drosophila is essential for Wnt-mediated target gene expression. In addition, Ctbp acts as an antagonist of β-catenin/TCF activation in mammals. Recently, Ctbp2, a core Oct4-binding protein in ESCs, has been reported to play a key role in ESC pluripotency. However, the significance of the connection between Ctbp2 and β-catenin with regard to ESC pluripotency remains elusive. Here, we demonstrate that C-terminal-binding protein 2 (Ctbp2) associates with major components of the β-catenin destruction complex and limits the accessibility of β-catenin to core transcription factors in undifferentiated ESCs. Ctbp2 knockdown leads to stabilization of β-catenin, which then interacts with core pluripotency-maintaining factors that are occupied by Ctbp2, leading to incomplete exit from pluripotency. These findings suggest a suppressive function for Ctbp2 in reducing the protein level of β-catenin, along with priming its position on core pluripotency genes to hinder β-catenin deposition, which is central to commitment to the appropriate lineage.
Collapse
|
41
|
Zhang T, Hsu FN, Xie XJ, Li X, Liu M, Gao X, Pei X, Liao Y, Du W, Ji JY. Reversal of hyperactive Wnt signaling-dependent adipocyte defects by peptide boronic acids. Proc Natl Acad Sci U S A 2017; 114:E7469-E7478. [PMID: 28827348 PMCID: PMC5594642 DOI: 10.1073/pnas.1621048114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deregulated Wnt signaling and altered lipid metabolism have been linked to obesity, diabetes, and various cancers, highlighting the importance of identifying inhibitors that can modulate Wnt signaling and aberrant lipid metabolism. We have established a Drosophila model with hyperactivated Wnt signaling caused by partial loss of axin, a key component of the Wnt cascade. The Axin mutant larvae are transparent and have severe adipocyte defects caused by up-regulation of β-catenin transcriptional activities. We demonstrate pharmacologic mitigation of these phenotypes in Axin mutants by identifying bortezomib and additional peptide boronic acids. We show that the suppressive effect of peptide boronic acids on hyperactive Wnt signaling is dependent on α-catenin; the rescue effect is completely abolished with the depletion of α-catenin in adipocytes. These results indicate that rather than targeting the canonical Wnt signaling pathway directly, pharmacologic modulation of β-catenin activity through α-catenin is a potentially attractive approach to attenuating Wnt signaling in vivo.
Collapse
Affiliation(s)
- Tianyi Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
| | - Xun Pei
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Yang Liao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637;
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
| |
Collapse
|
42
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
43
|
Franz A, Shlyueva D, Brunner E, Stark A, Basler K. Probing the canonicity of the Wnt/Wingless signaling pathway. PLoS Genet 2017; 13:e1006700. [PMID: 28369070 PMCID: PMC5393890 DOI: 10.1371/journal.pgen.1006700] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/17/2017] [Accepted: 03/15/2017] [Indexed: 02/02/2023] Open
Abstract
The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin) and Pangolin (Pan, Drosophila TCF) in the Wnt/Wingless(Wg)-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system. Our manuscript addresses the question of whether either of the canonical transduction components, beta-catenin or TCF, can be bypassed when the Wnt pathway is activated. By using somatic cell genetics in Drosophila cells (via CRISPR/Cas9 editing) in combination with RNA-seq and STARR-seq (Self-transcribing-active-regulatory-region-sequencing) as functional read-outs, we provide firm evidence against the existence of distal branches in the Wnt pathway.
Collapse
Affiliation(s)
- Alexandra Franz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Daria Shlyueva
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Erich Brunner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Ray SK, Li HJ, Leiter AB. Oligomeric form of C-terminal-binding protein coactivates NeuroD1-mediated transcription. FEBS Lett 2016; 591:205-212. [PMID: 27880001 DOI: 10.1002/1873-3468.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
The mechanism underlying transcriptional coactivation by the corepressor C-terminal-binding protein (CtBP) is not established. We previously found that CtBP co-occupies several actively transcribed endocrine genes with the transcription factor NeuroD1 to paradoxically increase transcription by recruiting KDM1A and CoREST. While the importance of the oligomeric form of CtBP for corepression is well established, the role of oligomerization in transcriptional coactivation has received little attention. Here, we examined the importance of the oligomeric state of CtBP for coactivation of NeuroD1-dependent transcription by expressing a CtBP dimerization mutant in cells depleted of endogenous CtBP. Dimerization mutants failed to increase transcription or to associate with KDM1A and CoREST, suggesting that oligomeric, but not monomeric CtBP is required to recruit other proteins needed to activate transcription.
Collapse
Affiliation(s)
- Subir K Ray
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hui J Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
45
|
Hrckulak D, Kolar M, Strnad H, Korinek V. TCF/LEF Transcription Factors: An Update from the Internet Resources. Cancers (Basel) 2016; 8:cancers8070070. [PMID: 27447672 PMCID: PMC4963812 DOI: 10.3390/cancers8070070] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.
Collapse
Affiliation(s)
- Dusan Hrckulak
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Michal Kolar
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| |
Collapse
|
46
|
Zheng X, Song T, Dou C, Jia Y, Liu Q. CtBP2 is an independent prognostic marker that promotes GLI1 induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2016; 6:3752-69. [PMID: 25686837 PMCID: PMC4414151 DOI: 10.18632/oncotarget.2915] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
C-terminal binding protein 2 (CtBP2) is a transcriptional co-repressor that promotes cancer cell migration and invasion by inhibiting multiple tumor suppressor genes that contribute to cell mobility and adhesion. In this investigation, we showed thatCtBP2 expression was increased significantly in HCC tissues when compared to matched normal adjacent liver tissues. We also showed that CtBP2 expression is associated with worse HCC patient prognosis after liver resection. CtBP2 over-expression induced epithelial-mesenchymal transition (EMT) in Huh7 cells and, correspondingly, silencing CtBP2 suppressed EMT in MHCC97H cells. ChIP assays revealed that GLI1 increased CtBP2 transcription by directly binding its promoter. Furthermore, interaction of CtBP2 and Snail Family Zinc Finger 1 (SNAI1), both of which were found to be positively regulated by GLI1, was confirmed by Co-IP assay. SNAI1 knockdown revealed that SNAI1 was essential for CtBP2 induction of the EMT phenotype of HCC cells, and CtBP2 knockdown reversed GLI1-SNAI1 driven EMT in Huh7 cells. Finally, in vivo experiments demonstrated that enhanced CtBP2expression promoted HCC xenograft growth and induced EMT. In conclusion, CtBP2 may serve as a prognostic marker for post liver resection HCC and may play a role during GLI1-driven EMT as a transcriptional co-repressor of SNAI1.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tao Song
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuli Jia
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
47
|
Reid A, Sherry TJ, Yücel D, Llamosas E, Nicholas HR. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans. Neuroscience 2015; 311:216-30. [PMID: 26480814 DOI: 10.1016/j.neuroscience.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans.
Collapse
Affiliation(s)
- A Reid
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - T J Sherry
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - D Yücel
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - E Llamosas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - H R Nicholas
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
48
|
Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle 2015; 13:3506-18. [PMID: 25483087 DOI: 10.4161/15384101.2014.958407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Selective targeting of cancer stem cells (CSCs), implicated in tumor relapse, holds great promise in the treatment of colorectal cancer. Overexpression of C-terminal binding protein (CtBP), an NADH dependent transcriptional regulator, is often observed in colon cancer. Of note, TCF-4 signaling is also up-regulated in colonic CSCs. We hypothesized that CtBP, whose dehydrogenase activity is amenable to pharmacological inhibition by 4-methylthio-2-oxobutyric acid (MTOB), positively regulates TCF-4 signaling, leading to CSC growth and self-renewal. CSCs demonstrated significant upregulation of CtBP1 and CtBP2 levels (mRNA and protein) and activity partly due to increased NADH/NAD ratio, as well as increased TCF/LEF transcriptional activity, compared to respective controls. Depletion of CtBP2 inhibited, while its overexpression enhanced, CSC growth (1° spheroids) and self-renewal (2°/3° spheroids). Similarly, MTOB caused a robust inhibition of spheroid growth and self-renewal in a dose dependent manner. MTOB displayed significantly greater selectivity for growth inhibition in the spheroids, at least in part through induction of apoptosis, compared to monolayer controls. Moreover, MTOB inhibited basal as well as induced (by GSK-3β inhibitor) TCF/LEF activity while suppressing mRNA and protein levels of several β-catenin target genes (CD44, Snail, C-MYC and LGR5). Lastly, CtBP physically interacted with TCF-4, and this interaction was significantly inhibited in the presence of MTOB. The above findings point to a novel role of CtBPs in the promotion of CSC growth and self-renewal through direct regulation of TCF/LEF transcription. Moreover, small molecular inhibition of its function can selectively target CSCs, presenting a novel approach for treatment of colorectal cancer focused on targeting of CSCs.
Collapse
Affiliation(s)
- Jagrut Patel
- a Hunter Holmes McGuire VA Medical Center ; Richmond , VA USA
| | | | | | | | | | | |
Collapse
|
49
|
Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts 2015; 5:489-511. [PMID: 25429601 DOI: 10.1515/bmc-2014-0027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/07/2014] [Indexed: 01/06/2023] Open
Abstract
C-terminal binding proteins (CtBPs) were initially identified as binding partners for the E1A-transforming proteins. Although the invertebrate genome encodes one CtBP protein, two CtBPs (CtBP1 and CtBP2) are encoded by the vertebrate genome and perform both unique and duplicative functions. CtBP1 and CtBP2 are closely related and act as transcriptional corepressors when activated by nicotinamide adenine dinucleotide binding to their dehydrogenase domains. CtBPs exert transcriptional repression primarily via recruitment of a corepressor complex to DNA that consists of histone deacetylases (HDACs) and histone methyltransferases, although CtBPs can also repress transcription through HDAC-independent mechanisms. More recent studies have demonstrated a critical function for CtBPs in the transcriptional repression of pro-apoptotic genes such as Bax, Puma, Bik, and Noxa. Nonetheless, although recent efforts have characterized the essential involvement of CtBPs in promoting cellular survival, the dysregulation of CtBPs in both neurodegenerative disease and cancers remains to be fully elucidated.
Collapse
|
50
|
Luo L, Wang H, Fan C, Liu S, Cai Y. Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche. ACTA ACUST UNITED AC 2015; 209:595-608. [PMID: 26008746 PMCID: PMC4442805 DOI: 10.1083/jcb.201409142] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple Wnt ligands produced by cap cells regulate the expression of Tkv, which acts as a receptor sink to remove excess cap cell–expressed Dpp and to restrict niche-associated Dpp activity, in escort cells. Stem cell self-renewal versus differentiation is regulated by the niche, which provides localized molecules that favor self-renewal. In the Drosophila melanogaster female germline stem cell (GSC) niche, Decapentaplegic (Dpp), a fly transforming growth factor β molecule and well-established long-range morphogen, acts over one cell diameter to maintain the GSCs. Here, we show that Thickveins (Tkv; a type I receptor of Dpp) is highly expressed in stromal cells next to Dpp-producing cells and functions to remove excess Dpp outside the niche, thereby spatially restricting its activity. Interestingly, Tkv expression in these stromal cells is regulated by multiple Wnt ligands that are produced by the niche. Our data demonstrate a self-restraining mechanism by which the Drosophila ovarian GSC niche acts to define its own boundary.
Collapse
Affiliation(s)
- Lichao Luo
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604 Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Huashan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Chao Fan
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Sen Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| | - Yu Cai
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604 Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, 117604
| |
Collapse
|