1
|
Shalah R, Marzouk M, Hallumi E, Klopstock N, Yablonski D. Survival and Developmental Progression of Unselected Thymocytes in the Absence of the T-Cell Adaptor Gads. Eur J Immunol 2025; 55:e202451000. [PMID: 39989300 PMCID: PMC11848708 DOI: 10.1002/eji.202451000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Thymocyte β-selection and positive-selection depend on TCR signaling via the immune adaptors SLP-76 and LAT. Gads bridges the recruitment of SLP-76 to LAT, yet is not required for the maturation of single positive (SP) thymocytes. To illuminate this paradox, we performed tamoxifen-induced ablation of Gads (GadsiKO), accompanied by the expression of tdTomato, and compared the development of Gads-expressing (Tom-) and Gads-ablated (Tom+) thymocytes within the same mouse. GadsiKO (Tom+) thymocytes exhibited impaired β- and positive-selection, yet δ-selection was not affected. While susceptible to apoptosis ex vivo, the marked accumulation of self-MHC nonresponding (CD5-) GadsiKO DP thymocytes suggested the possibility of impaired death by neglect in situ. Further supporting this notion, GadsiKO CD5lo DP thymocytes exhibited reduced apoptosis in situ and reduced CD8-induced apoptosis ex vivo. Most GadsiKO CD4 SP thymocytes were positively selected, yet a distinct population of unselected (CD5- TCRβneg/low CCR7lo CD24hi) CD4 SP thymocytes was seen only in the absence of Gads. This unselected population did not include Treg or TCRγδ subsets; rather, it encompassed CD44lo CD25+ cells, resembling pre-β-selection thymocytes. Our results suggest that Gads promotes passage through key TCR-driven developmental checkpoints while repressing the progression of unselected DN and DP thymocytes.
Collapse
Affiliation(s)
- Rose Shalah
- Technion—Israel Institute of TechnologyRappaport Faculty of MedicineHaifaIsrael
| | - Manal Marzouk
- Technion—Israel Institute of TechnologyRappaport Faculty of MedicineHaifaIsrael
| | - Enas Hallumi
- Technion—Israel Institute of TechnologyRappaport Faculty of MedicineHaifaIsrael
| | - Naama Klopstock
- Technion—Israel Institute of TechnologyRappaport Faculty of MedicineHaifaIsrael
| | - Deborah Yablonski
- Technion—Israel Institute of TechnologyRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
2
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Aljedani SS, Aldehaiman A, Sandholu A, Alharbi S, Mak VC, Wu H, Lugari A, Jaremko M, Morelli X, Backer JW, Ladbury JE, Nowakowski M, Cheung LW, Arold ST. Functional selection in SH3-mediated activation of the PI3 kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591319. [PMID: 38746413 PMCID: PMC11092569 DOI: 10.1101/2024.04.30.591319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The phosphoinositide-3 kinase (PI3K), a heterodimeric enzyme, plays a pivotal role in cellular metabolism and survival. Its deregulation is associated with major human diseases, particularly cancer. The p85 regulatory subunit of PI3K binds to the catalytic p110 subunit via its C-terminal domains, stabilising it in an inhibited state. Certain Src homology 3 (SH3) domains can activate p110 by binding to the proline-rich (PR) 1 motif located at the N-terminus of p85. However, the mechanism by which this N-terminal interaction activates the C-terminally bound p110 remains elusive. Moreover, the intrinsically poor ligand selectivity of SH3 domains raises the question of how they can control PI3K. Combining structural, biophysical, and functional methods, we demonstrate that the answers to both these unknown issues are linked: PI3K-activating SH3 domains engage in additional "tertiary" interactions with the C-terminal domains of p85, thereby relieving their inhibition of p110. SH3 domains lacking these tertiary interactions may still bind to p85 but cannot activate PI3K. Thus, p85 uses a functional selection mechanism that precludes nonspecific activation rather than nonspecific binding. This separation of binding and activation may provide a general mechanism for how biological activities can be controlled by promiscuous protein-protein interaction domains.
Collapse
Affiliation(s)
- Safia S. Aljedani
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Abdullah Aldehaiman
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Anandsukeerthi Sandholu
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Siba Alharbi
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Victor C.Y. Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiyan Wu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Adrien Lugari
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| | - Xavier Morelli
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Jonathan W. Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John E. Ladbury
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Lydia W.T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Ruminski K, Celis-Gutierrez J, Jarmuzynski N, Maturin E, Audebert S, Malissen M, Camoin L, Voisinne G, Malissen B, Roncagalli R. Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Front Immunol 2023; 14:1139123. [PMID: 37006259 PMCID: PMC10057548 DOI: 10.3389/fimmu.2023.1139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.
Collapse
Affiliation(s)
- Kilian Ruminski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Nicolas Jarmuzynski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Emilie Maturin
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Stephane Audebert
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Luc Camoin
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| |
Collapse
|
5
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Ohoka A, Sarkar CA. Facile Display of Homomultivalent Proteins for In Vitro Selections. ACS Synth Biol 2023; 12:634-638. [PMID: 36655840 PMCID: PMC9985468 DOI: 10.1021/acssynbio.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Low-affinity protein binders are emerging as valuable domains for therapeutic applications because of their higher specificity when presented in multivalent ligands that increase the overall strength and selectivity of receptor binding. De novo discovery of low-affinity binders would be enhanced by the large library sizes attainable with in vitro selection systems, but these platforms generally maximize recovery of high-affinity monovalent binders. Here, we present a facile technology that uses rolling circle amplification to create homomultivalent libraries. We show proof of principle of this approach in ribosome display with off-rate selections of a bivalent ligand against monovalent and bivalent targets, thereby demonstrating high enrichment (up to 166-fold) against a low-affinity target that is bivalent but not monovalent. This approach to homomultivalent library construction can be applied to any binder tolerant of N- and C-terminal fusions and provides a platform for performing in vitro display selections with controlled protein valency and orientation.
Collapse
Affiliation(s)
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Hallumi E, Shalah R, Lo WL, Corso J, Oz I, Beach D, Wittman S, Isenberg A, Sela M, Urlaub H, Weiss A, Yablonski D. Itk Promotes the Integration of TCR and CD28 Costimulation through Its Direct Substrates SLP-76 and Gads. THE JOURNAL OF IMMUNOLOGY 2021; 206:2322-2337. [PMID: 33931484 DOI: 10.4049/jimmunol.2001053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.
Collapse
Affiliation(s)
- Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wan-Lin Lo
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Samuel Wittman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amy Isenberg
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Meirav Sela
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Voisinne G, Kersse K, Chaoui K, Lu L, Chaix J, Zhang L, Goncalves Menoita M, Girard L, Ounoughene Y, Wang H, Burlet-Schiltz O, Luche H, Fiore F, Malissen M, Gonzalez de Peredo A, Liang Y, Roncagalli R, Malissen B. Quantitative interactomics in primary T cells unveils TCR signal diversification extent and dynamics. Nat Immunol 2019; 20:1530-1541. [PMID: 31591574 PMCID: PMC6859066 DOI: 10.1038/s41590-019-0489-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalosomes), the composition of which has not been analyzed at a systems level. Here, we isolated primary CD4+ T cells from 15 gene-targeted mice, each expressing one tagged form of a canonical protein of the TCR-signaling pathway. Using affinity purification coupled with mass spectrometry, we analyzed the composition and dynamics of the signalosomes assembling around each of the tagged proteins over 600 s of TCR engagement. We showed that the TCR signal-transduction network comprises at least 277 unique proteins involved in 366 high-confidence interactions, and that TCR signals diversify extensively at the level of the plasma membrane. Integrating the cellular abundance of the interacting proteins and their interaction stoichiometry provided a quantitative and contextual view of each documented interaction, permitting anticipation of whether ablation of a single interacting protein can impinge on the whole TCR signal-transduction network.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Kristof Kersse
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structurale Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Liaoxun Lu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Julie Chaix
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Lichen Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Marisa Goncalves Menoita
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Youcef Ounoughene
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Hui Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structurale Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Hervé Luche
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structurale Biophysique, Protéomique Génopole Toulouse Midi Pyrénées CNRS UMR 5089, Toulouse, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China. .,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France. .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France. .,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
9
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Arulraj T, Barik D. Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS One 2018; 13:e0206232. [PMID: 30356330 PMCID: PMC6200280 DOI: 10.1371/journal.pone.0206232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Programmed cell death-1 (PD-1) is an inhibitory immune checkpoint receptor that negatively regulates the functioning of T cell. Although the direct targets of PD-1 were not identified, its inhibitory action on the TCR signaling pathway was known much earlier. Recent experiments suggest that the PD-1 inhibits the TCR and CD28 signaling pathways at a very early stage ─ at the level of phosphorylation of the cytoplasmic domain of TCR and CD28 receptors. Here, we develop a mathematical model to investigate the influence of inhibitory effect of PD-1 on the activation of early TCR and CD28 signaling molecules. Proposed model recaptures several quantitative experimental observations of PD-1 mediated inhibition. Model simulations show that PD-1 imposes a net inhibitory effect on the Lck kinase. Further, the inhibitory effect of PD-1 on the activation of TCR signaling molecules such as Zap70 and SLP76 is significantly enhanced by the PD-1 mediated inhibition of Lck. These results suggest a critical role for Lck as a mediator for PD-1 induced inhibition of TCR signaling network. Multi parametric sensitivity analysis explores the effect of parameter uncertainty on model simulations.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Centre for Systems Biology, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
12
|
Molecular mechanisms underlying the evolution of the slp76 signalosome. Sci Rep 2017; 7:1509. [PMID: 28473706 PMCID: PMC5431462 DOI: 10.1038/s41598-017-01660-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The well-defined mammalian slp76-signalosome is crucial for T-cell immune response, yet whether slp76-signalosome exists in invertebrates and how it evolved remain unknown. Here we investigated slp76-signalosome from an evolutionary perspective in amphioxus Branchiostoma belcheri (bb). We proved slp76-signalosome components bbslp76, bbGADS and bbItk are present in amphioxus and bbslp76 interacts with bbGADS and bbItk, but differences exist between the interaction manners within slp76-signalosome components of amphioxus and human (h). Specifically, bbslp76 has a unique WW-domain that blocked its association with hItk and decreased TCR-induced tyrosine-phosphorylation and NFAT-activation. Deletion of WW-domain shifted the constitutive association between bbslp76 and hPLCγ1 to a TCR-enhanced association. Among slp76-signalosome, the interaction between slp76 and PLCγ1 is the most conserved and the binding between Itk and slp76 evolved from constitutive to stimulation-regulated. Sequence alignment and 3D structural analysis of slp76-signalosome molecules from keystone species indicated slp76 evolved into a more unfolded and flexible adaptor due to lack of WW-domain and several low-complexity-regions (LCRs) while GADS turned into a larger protein by a LCR gain, thus preparing more space for nucleating the coevolving slp76-signalosome. Altogether, through deletion of WW-domain and manipulation of LCRs, slp76-signalosome evolves from a rigid and stimulation-insensitive to a more flexible and stimulation-responding complex.
Collapse
|
13
|
Kelil A, Dubreuil B, Levy ED, Michnick SW. Exhaustive search of linear information encoding protein-peptide recognition. PLoS Comput Biol 2017; 13:e1005499. [PMID: 28426660 PMCID: PMC5417721 DOI: 10.1371/journal.pcbi.1005499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL. Here we describe the first strategy for the exhaustive search of the linear information encoding protein-peptide recognition; an approach that has previously been physically unfeasible because the combinatorial space of polypeptide sequences is too vast. The search covers the entire space of sequences with no restriction on motif length or composition, and includes all possible combinations of amino acids at distinct positions of each sequence, as well as positions with correlated preferences for amino acids.
Collapse
Affiliation(s)
- Abdellali Kelil
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D. Levy
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephen W. Michnick
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Smith SEP, Neier SC, Reed BK, Davis TR, Sinnwell JP, Eckel-Passow JE, Sciallis GF, Wieland CN, Torgerson RR, Gil D, Neuhauser C, Schrum AG. Multiplex matrix network analysis of protein complexes in the human TCR signalosome. Sci Signal 2016; 9:rs7. [PMID: 27485017 DOI: 10.1126/scisignal.aad7279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiprotein complexes transduce cellular signals through extensive interaction networks, but the ability to analyze these networks in cells from small clinical biopsies is limited. To address this, we applied an adaptable multiplex matrix system to physiologically relevant signaling protein complexes isolated from a cell line or from human patient samples. Focusing on the proximal T cell receptor (TCR) signalosome, we assessed 210 pairs of PiSCES (proteins in shared complexes detected by exposed surface epitopes). Upon stimulation of Jurkat cells with superantigen-loaded antigen-presenting cells, this system produced high-dimensional data that enabled visualization of network activity. A comprehensive analysis platform generated PiSCES biosignatures by applying unsupervised hierarchical clustering, principal component analysis, an adaptive nonparametric with empirical cutoff analysis, and weighted correlation network analysis. We generated PiSCES biosignatures from 4-mm skin punch biopsies from control patients or patients with the autoimmune skin disease alopecia areata. This analysis distinguished disease patients from the controls, detected enhanced basal TCR signaling in the autoimmune patients, and identified a potential signaling network signature that may be indicative of disease. Thus, generation of PiSCES biosignatures represents an approach that can provide information about the activity of protein signaling networks in samples including low-abundance primary cells from clinical biopsies.
Collapse
Affiliation(s)
- Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Brendan K Reed
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jason P Sinnwell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Claudia Neuhauser
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Proc Natl Acad Sci U S A 2016; 113:E3862-71. [PMID: 27317745 DOI: 10.1073/pnas.1518469113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.
Collapse
|
16
|
Modulation of TCR responsiveness by the Grb2-family adaptor, Gads. Cell Signal 2014; 27:125-34. [PMID: 25452106 DOI: 10.1016/j.cellsig.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
T cell antigen receptor (TCR) signaling depends on three interacting adaptor proteins: SLP-76, Gads, and LAT. Their mechanisms of signaling have been extensively explored, with the aid of fortuitously isolated LAT- and SLP-76-deficient T cell lines, but no such tools were available for Gads, a Grb2-family adaptor that bridges the TCR-inducible interaction between SLP-76 and LAT. TALEN-directed genome editing was applied to disrupt the first coding exon of human Gads in the Jurkat T cell line. Gads was dispensable for TCR-induced phosphorylation of SLP-76, but was a dose-dependent amplifier of TCR-induced CD69 expression. Gads conferred responsiveness to weak TCR stimuli, leading to PLC-γ1 phosphorylation and calcium flux. TALEN-derived, Gads-deficient T cell lines provide a uniquely tractable genetic platform for exploring its regulatory features, such as Gads phosphorylation at T262, which we observed by mass spectrometry. Upon mutation of this site, TCR responsiveness and sensitivity to weak TCR stimuli were increased. This study demonstrates the feasibility of TALEN-based reverse genetics in Jurkat T cells, while enriching our understanding of Gads as a regulated modulator of TCR sensitivity.
Collapse
|
17
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
18
|
Chylek LA, Holowka DA, Baird BA, Hlavacek WS. An Interaction Library for the FcεRI Signaling Network. Front Immunol 2014; 5:172. [PMID: 24782869 PMCID: PMC3995055 DOI: 10.3389/fimmu.2014.00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/20/2022] Open
Abstract
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions. This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP3 at the plasma membrane and the soluble second messenger IP3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA ; Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - William S Hlavacek
- Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| |
Collapse
|
19
|
Stollar EJ, Lin H, Davidson AR, Forman-Kay JD. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis. PLoS One 2012; 7:e51282. [PMID: 23251481 PMCID: PMC3520974 DOI: 10.1371/journal.pone.0051282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.
Collapse
Affiliation(s)
- Elliott J. Stollar
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| | - Hong Lin
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R. Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| |
Collapse
|
20
|
Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. FEBS Lett 2012; 586:2619-30. [DOI: 10.1016/j.febslet.2012.04.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023]
|
21
|
Carducci M, Perfetto L, Briganti L, Paoluzi S, Costa S, Zerweck J, Schutkowski M, Castagnoli L, Cesareni G. The protein interaction network mediated by human SH3 domains. Biotechnol Adv 2011; 30:4-15. [PMID: 21740962 DOI: 10.1016/j.biotechadv.2011.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/31/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Families of conserved protein domains, specialized in mediating interactions with short linear peptide motifs, are responsible for the formation of a variety of dynamic complexes in the cell. An important subclass of these motifs are characterized by a high proline content and play a pivotal role in biological processes requiring the coordinated assembly of multi-protein complexes. This is achieved via interaction of proteins containing modules such as Src Homology-3 (SH3) or WW domains and specific proline rich patterns. Here we make available via a publicly accessible database a synopsis of our current understanding of the interaction landscape of the human SH3 protein family. This is achieved by integrating an information extraction strategy with a new experimental approach. In a first approach we have used a text mining strategy to capture a large number of manuscripts reporting interactions between SH3 domains and target peptides. Relevant information was annotated in the MINT database. In a second experimental approach we have used a variant of the WISE (Whole Interactome Scanning Experiment) strategy to probe a large number of naturally occurring and chemically-synthesized peptides arrayed at high density on a glass surface. By this method we have tested 60 human SH3 domains for their ability to bind a collection of 9192 poly-proline containing peptides immobilized on a glass chip. To evaluate the quality of the resulting interaction dataset, we retested some of the interactions on a smaller scale and performed a series of pull down experiments on native proteins. Peptide chips, pull down assays, SPOT synthesis and phage display experiments have allowed us to further characterize the specificity and promiscuity of proline-rich binding domains and to map their interaction network. Both the information captured from the literature and the interactions inferred from the peptide chip experiments were collected and stored in the PepspotDB (http://mint.bio.uniroma2.it/PepspotDB/).
Collapse
Affiliation(s)
- Martina Carducci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gorelik M, Stanger K, Davidson AR. A Conserved residue in the yeast Bem1p SH3 domain maintains the high level of binding specificity required for function. J Biol Chem 2011; 286:19470-7. [PMID: 21489982 DOI: 10.1074/jbc.m111.229294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The yeast Bem1p SH3b and Nbp2p SH3 domains are unusual because they bind to peptides containing the same consensus sequence, yet they perform different functions and display low sequence similarity. In this work, by analyzing the interactions of these domains with six biologically relevant peptides containing the consensus sequence, they are shown to possess finely tuned and distinct binding specificities. We also identify a residue in the Bem1p SH3b domain that inhibits binding, yet is highly conserved for the purpose of preventing nonspecific interactions. Substitution of this residue results in a marked reduction of in vivo function that is caused by titration of the domain away from its proper targets through nonspecific interactions with other proteins. This work provides a clear illustration of the importance of intrinsic binding specificity for the function of protein-protein interaction modules, and the key role of "negative" interactions in determining the specificity of a domain.
Collapse
Affiliation(s)
- Maryna Gorelik
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Ladbury JE, Arold ST. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling. Methods Enzymol 2011; 488:147-83. [PMID: 21195228 DOI: 10.1016/b978-0-12-381268-1.00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
24
|
Chan PM, Ng YW, Manser E. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3. Mol Cell Proteomics 2010; 10:M110.005157. [PMID: 21189416 DOI: 10.1074/mcp.m110.005157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modern proteomic techniques have identified hundreds of proteins that bind 14-3-3s, the most widespread eukaryotic phosphoserine/threonine sensors, but accurate prediction of the target phospho-sites is difficult. Here we describe a systematic approach using synthetic peptides that tests large numbers of potential binding sites in parallel for human 14-3-3. By profiling the sequence requirements for three diverse 14-3-3 binding sites (from IRS-1, IRSp53 and GIT2), we have generated enhanced bioinformatics tools to score sites and allow more tractable testing by co-immunoprecipitation. This approach has allowed us to identify two additional sites other than Ser216 in the widely studied cell division cycle (Cdc) protein 25C, whose function depends on 14-3-3 binding. These Ser247 and Ser263 sites in human Cdc25C, which were not predicted by the existing Scansite search, are conserved across species and flank the nuclear localization region. Furthermore, we found strong interactions between 14-3-3 and peptides with the sequence Rxx[S/T]xR typical for PKC sites, and which is as abundant as the canonical Rxx[S/T]xP motif in the proteome. Two such sites are required for 14-3-3 binding in the polarity protein Numb. A recent survey of >200 reported sites identified only a handful containing this motif, suggesting that it is currently under-appreciated as a candidate binding site. This approach allows one to rapidly map 14-3-3 binding sites and has revealed alternate motifs.
Collapse
Affiliation(s)
- Perry M Chan
- sGSK Group, A*Star Neuroscience Research Partnership, Institute of Medical Biology, Singapore
| | | | | |
Collapse
|
25
|
Protein microarray assay for the screening of SH3 domain interactions. Anal Bioanal Chem 2010; 398:1937-46. [PMID: 20859618 DOI: 10.1007/s00216-010-4202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
Analysis of cellular signal transduction processes increasingly focuses on the systematic characterization of complete protein interaction networks. Understanding the interplay of signaling components enables insight into the molecular basis of diverse diseases such as cancer. This paves the way for the rational design of specific therapeutics. Protein interactions are often mediated by conserved modular domains, e.g., SH3-domains, which recognize proline-rich sequences in their cognate ligands. In the course of this study, different microarray formats (reactive silane monolayers and nitrocellulose on glass slides) and assay work flows were evaluated to develop a microarray based screening assay that permits the reliable identification of interactions between certain target proteins with a set of SH3 domains. Nine representative SH3 domains which were produced and purified as GST-fusion proteins were spotted on the microarray substrates and probed with two well-characterized ligands, the Nef protein from HIV-1 and the human protein Sam68. The best results from these low-density model arrays were obtained with nitrocellulose slides. We show that a straightforward and highly robust detection of ligand binding is achieved by staining with a fluorescently labeled antibody directed against the N-terminal His-tag attached to these proteins. The optimized assay protocol reported here allows for the identification of SH3-interactions with high reproducibility and adequate signal-to-background and signal-to-noise ratios, as well as the quantitative determination of relative binding affinities.
Collapse
|
26
|
Koretzky GA. The Role of SH2 Domain-containing Leukocyte Phosphoprotein of 76 kDa in the Regulation of Immune Cell Development and Function. Immune Netw 2009; 9:75-83. [PMID: 20107536 PMCID: PMC2803302 DOI: 10.4110/in.2009.9.3.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 01/14/2023] Open
Abstract
Recent years have seen an explosion of new knowledge defining the molecular events that are critical for development and activation of immune cells. Much of this new information has come from a careful molecular dissection of key signal transduction pathways that are initiated when immune cell receptors are engaged. In addition to the receptors themselves and critical effector molecules, these signaling pathways depend on adapters, proteins that have no intrinsic effector function but serve instead as scaffolds to nucleate multimolecular complexes. This review summarizes some of what has been learned about one such adapter protein, SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), and how it regulates and integrates signals after engagement of immunoreceptors and integrins on various immune cell lineages.
Collapse
Affiliation(s)
- Gary A Koretzky
- Department of Pathology and Laboratory Medicine and Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proc Natl Acad Sci U S A 2008; 106:528-33. [PMID: 19098101 DOI: 10.1073/pnas.0805981105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
T lymphocytes play a key role in adaptive immunity and are activated by interactions of their T cell receptors (TCR) with peptides (p) derived from antigenic proteins bound to MHC gene products. The repertoire of T lymphocytes available in peripheral organs is tuned in the thymus. Immature T lymphocytes (thymocytes) interact with diverse endogenous peptides bound to MHC in the thymus. TCR expressed on thymocytes must bind weakly to endogenous pMHC (positive selection) but must not bind too strongly to them (negative selection) to emerge from the thymus. Negatively selecting pMHC ligands bind TCR with a binding affinity that exceeds a sharply defined (digital) threshold. In contrast, there is no sharp threshold separating positively selecting ligands from those that bind too weakly to elicit a response. We describe results of computer simulations and experiments, which suggest that the contrast between the characters of the positive and negative selection thresholds originates in differences in the way in which Ras proteins are activated by ligands of varying potency. The molecular mechanism suggested by our studies generates hypotheses for how genetic aberrations may dampen the digital negative selection response, with concomitant escape of autoimmune T lymphocytes from the thymus.
Collapse
|
28
|
Chiang YJ, Jordan MS, Horai R, Schwartzberg PL, Koretzky GA, Hodes RJ. Cbl enforces an SLP76-dependent signaling pathway for T cell differentiation. J Biol Chem 2008; 284:4429-38. [PMID: 19074136 PMCID: PMC2640981 DOI: 10.1074/jbc.m808679200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A signaling pathway involving ZAP-70, LAT, and SLP76 has been regarded as
essential for receptor-driven T cell development and activation. Consistent
with this model, mice deficient in SLP76 have a complete block at the double
negative 3 stage of T cell development. Recently, however, it has been
reported that inactivation of Cbl, a ubiquitin-protein isopeptide ligase,
partially rescues T cell development in SLP76-deficient mice. To probe the
influence of Cbl on domain-specific SLP76 functions, we reconstituted
SLP76-/- Cbl-/- mice with Slp76 transgenes
bearing mutations in each of three functional domains of SLP76 as follows:
Y3F, in which the amino-terminal tyrosine residues of SLP76 were mutated,
eliminating sites of SLP76 interaction with Vav, Nck, and Itk; Δ20, in
which 20 amino acids in the proline-rich region of SLP76 were deleted,
removing a binding site for Gads; and RK, in which arginine 448 of SLP76 was
replaced by lysine, abolishing function of the Src homology 2 domain. Although
each of these transgenes has been shown to partially rescue T cell development
in SLP76-/- mice, we report here that Cbl inactivation completely
reverses the severe double negative 3 developmental block that occurs in
SLP76-deficient mice expressing the Y3F transgene (Y3F mice) and
partially rescues the defect in positive selection in T cell receptor
transgenic Y3F mice, but in contrast fails to rescue thymic development of
SLP76-deficient mice expressing the Δ20 or RK transgene. Rescue in
SLP76-/-Cbl-/-Y3F double-positive thymocytes is
associated with enhanced tyrosine phosphorylation of signaling molecules,
including Lck, Vav, PLC-γ1, and ERKs, but not Itk, in response to T cell
receptor stimulation. Thus, our data demonstrate that Cbl suppresses
activation of a bypass signaling pathway and thereby enforces SLP76 dependence
of early T cell development.
Collapse
Affiliation(s)
- Y Jeffrey Chiang
- Experimental Immunology Branch, NCI, and NIA, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hughes CE, Auger JM, McGlade J, Eble JA, Pearce AC, Watson SP. Differential roles for the adapters Gads and LAT in platelet activation by GPVI and CLEC-2. J Thromb Haemost 2008; 6:2152-9. [PMID: 18826392 PMCID: PMC2710801 DOI: 10.1111/j.1538-7836.2008.03166.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 08/25/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND The adapter proteins SLP-76 and LAT have been shown to play critical roles in the activation of PLCgamma2 in platelets downstream of GPVI/FcRgamma and the C-type lectin receptor CLEC-2. SLP-76 is constitutively associated with the adapter Gads in platelets, which also binds to tyrosine phosphorylated LAT, thereby providing a potential pathway of regulation of SLP-76. OBJECTIVE In the present study, we have compared the role of Gads alongside that of LAT following activation of the major platelet glycoprotein receptors using mice deficient in the two adapter proteins. RESULTS Gads was found to be required for the efficient onset of aggregation and secretion in response to submaximal stimulation of GPVI and CLEC-2, but to be dispensable for activation following stronger stimulation of the two receptors. Gads was also dispensable for spreading induced through integrin alpha(IIb)beta(3) or the GPIb-IX-V complex. Further, Gads plays a negligible role in aggregate formation on collagen at an arteriolar rate of shear. In stark contrast, platelets deficient in the adapter LAT exhibit a marked decrease in aggregation and secretion following activation of GPVI and CLEC-2, and are unable to form stable aggregates on collagen at arteriolar shear. CONCLUSIONS The results demonstrate that Gads plays a key role in linking the adapter LAT to SLP-76 in response to weak activation of GPVI and CLEC-2 whereas LAT is required for full activation over a wider range of agonist concentrations. These results reveal the presence of a Gads-independent pathway of platelet activation downstream of LAT.
Collapse
Affiliation(s)
- C E Hughes
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
31
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Kim J, Lee CD, Rath A, Davidson AR. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. J Mol Biol 2008; 377:889-901. [PMID: 18280496 DOI: 10.1016/j.jmb.2008.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/18/2007] [Accepted: 01/14/2008] [Indexed: 01/14/2023]
Abstract
The yeast Fus1p SH3 domain binds to peptides containing the consensus motif, R(S/T)(S/T)SL, which is a sharp contrast to most SH3 domains, which bind to PXXP-containing peptides. Here, we have demonstrated that this domain binds to R(S/T)(S/T)SL-containing peptides derived from two putative in vivo binding partners from yeast proteins, Bnr1p and Ste5p, with K(d) values in the low micromolar range. The R(S/T)(S/T)SL consensus motif is necessary, but not sufficient for binding to the Fus1p SH3 domain, as residues lying N-terminal to the consensus motif also play a critical role in the binding reaction. Through mutagenesis studies and comparisons to other SH3 domains, we have discovered that the Fus1p SH3 domain utilizes a portion of the same binding surface as typical SH3 domains. However, the PXXP-binding surface, which plays the predominant role in binding for most SH3 domains, is debilitated in the WT domain by the substitution of unusual residues at three key conserved positions. By replacing these residues, we created a version of the Fus1p SH3 domain that binds to a PXXP-containing peptide with extremely high affinity (K(d)= 40 nM). Based on our data and analysis, we have clearly delineated two distinct surfaces comprising the typical SH3-domain-binding interface and show that one of these surfaces is the primary mediator of almost every "non-canonical" SH3-domain-mediated interaction described in the literature. Within this framework, dramatic alterations in SH3 domain specificity can be simply explained as a modulation of the binding strengths of these two surfaces.
Collapse
Affiliation(s)
- JungMin Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
33
|
Jordan MS, Maltzman JS, Kliche S, Shabason J, Smith JE, Obstfeld A, Schraven B, Koretzky GA. In vivo disruption of T cell development by expression of a dominant-negative polypeptide designed to abolish the SLP-76/Gads interaction. Eur J Immunol 2007; 37:2961-72. [PMID: 17823979 DOI: 10.1002/eji.200636855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multi-molecular complexes nucleated by adaptor proteins play a central role in signal transduction. In T cells, one central axis consists of the assembly of several signaling proteins linked together by the adaptors linker of activated T cells (LAT), Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), and Grb2-related adaptor downstream of Shc (Gads). Each of these adaptors has been shown to be important for normal T cell development, and their proper sub-cellular localization is critical for optimal function in cell lines. We previously demonstrated in Jurkat T cells and a rat basophilic leukemic cell line that expression of a 50-amino acid polypeptide identical to the site on SLP-76 that binds to Gads blocks proper localization of SLP-76 and SLP-76-dependent signaling events. Here we extend these studies to investigate the ability of this polypeptide to inhibit TCR-induced integrin activity in Jurkat cells and to inhibit in vivo thymocyte development and primary T cell function. These data provide evidence for the in vivo function of a dominant-negative peptide based upon the biology of SLP-76 action and suggest the possibility of therapeutic potential of targeting the SLP-76/Gads interaction.
Collapse
Affiliation(s)
- Martha S Jordan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|