1
|
Hazelwood OS, Arif Ashraf M. Molecular markers in cell cycle visualisation during development and stress conditions in Arabidopsis thaliana. QUANTITATIVE PLANT BIOLOGY 2024; 5:e14. [PMID: 39777029 PMCID: PMC11706682 DOI: 10.1017/qpb.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Plant growth and development are tightly regulated by cell division, elongation, and differentiation. A visible plant phenotype at the tissue or organ level is coordinated at the cellular level. Among these cellular regulations (cell division, elongation and differentiation), cell division in plants follows the same universal mechanisms across kingdoms of life, and involves conserved cell cycle regulatory proteins (cyclins, cyclin-dependent kinase and cell cycle inhibitors). Cell division is regulated through distinct cell cycle steps (G1, S, G2 and M), and these individual steps are visualised using transgenic marker lines. As a result, a quantitative cell cycle approach in plants during development and stress conditions relies on the accuracy of cell cycle markers. In this perspective article, we highlight the available cell cycle marker lines in plants, common practices within plant biology communities based on existing literature and provide a road map to a thorough quantitative approach of cell cycle regulation in plants.
Collapse
Affiliation(s)
| | - M. Arif Ashraf
- Department of Biology, Howard University, Washington, DC, USA
| |
Collapse
|
2
|
Gaggioli V, Lo CSY, Reverón-Gómez N, Jasencakova Z, Domenech H, Nguyen H, Sidoli S, Tvardovskiy A, Uruci S, Slotman JA, Chai Y, Gonçalves JGSCS, Manolika EM, Jensen ON, Wheeler D, Sridharan S, Chakrabarty S, Demmers J, Kanaar R, Groth A, Taneja N. Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability. Nat Cell Biol 2023; 25:1017-1032. [PMID: 37414849 PMCID: PMC10344782 DOI: 10.1038/s41556-023-01167-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
Chromatin is dynamically reorganized when DNA replication forks are challenged. However, the process of epigenetic reorganization and its implication for fork stability is poorly understood. Here we discover a checkpoint-regulated cascade of chromatin signalling that activates the histone methyltransferase EHMT2/G9a to catalyse heterochromatin assembly at stressed replication forks. Using biochemical and single molecule chromatin fibre approaches, we show that G9a together with SUV39h1 induces chromatin compaction by accumulating the repressive modifications, H3K9me1/me2/me3, in the vicinity of stressed replication forks. This closed conformation is also favoured by the G9a-dependent exclusion of the H3K9-demethylase JMJD1A/KDM3A, which facilitates heterochromatin disassembly upon fork restart. Untimely heterochromatin disassembly from stressed forks by KDM3A enables PRIMPOL access, triggering single-stranded DNA gap formation and sensitizing cells towards chemotherapeutic drugs. These findings may help in explaining chemotherapy resistance and poor prognosis observed in patients with cancer displaying elevated levels of G9a/H3K9me3.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Calvin S Y Lo
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zuzana Jasencakova
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heura Domenech
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hong Nguyen
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Simone Sidoli
- Department of Biochemistry & Molecular Biology, VILLUM Centre for Bioanalytical Sciences and Centre for Epigenetics, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrey Tvardovskiy
- Department of Biochemistry & Molecular Biology, VILLUM Centre for Bioanalytical Sciences and Centre for Epigenetics, University of Southern Denmark, Odense, Denmark
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Sidrit Uruci
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yi Chai
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Eleni Maria Manolika
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology, VILLUM Centre for Bioanalytical Sciences and Centre for Epigenetics, University of Southern Denmark, Odense, Denmark
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sriram Sridharan
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jeroen Demmers
- Proteomics Center and Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Basier C, Nurse P. The cell cycle and cell size influence the rates of global cellular translation and transcription in fission yeast. EMBO J 2023; 42:e113333. [PMID: 36951016 PMCID: PMC10152140 DOI: 10.15252/embj.2022113333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
How the production of biomass is controlled as cells increase in size and proceed through the cell cycle events is important for understanding the regulation of global cellular growth. This has been studied for decades but has not yielded consistent results, probably due to perturbations induced by the synchronisation methods used in most previous studies. To avoid this problem, we have developed a system to analyse unperturbed exponentially growing populations of fission yeast cells. We generated thousands of fixed single-cell measurements of cell size, cell cycle stage and the levels of global cellular translation and transcription. We show that translation scales with size, and additionally, increases at late S-phase/early G2 and early in mitosis and decreases later in mitosis, suggesting that cell cycle controls are also operative over global cellular translation. Transcription increases with both size and the amount of DNA, suggesting that the level of transcription of a cell may be the result of a dynamic equilibrium between the number of RNA polymerases associating and disassociating from DNA.
Collapse
Affiliation(s)
- Clovis Basier
- Cell Cycle LaboratoryThe Francis Crick InstituteLondonUK
| | - Paul Nurse
- Cell Cycle LaboratoryThe Francis Crick InstituteLondonUK
- Laboratory of Yeast Genetics and Cell BiologyRockefeller UniversityNew YorkNYUSA
| |
Collapse
|
4
|
Abstract
Immediately following the discovery of the structure of DNA and the semi-conservative replication of the parental DNA sequence into two new DNA strands, it became apparent that DNA replication is organized in a temporal and spatial fashion during the S phase of the cell cycle, correlated with the large-scale organization of chromatin in the nucleus. After many decades of limited progress, technological advances in genomics, genome engineering, and imaging have finally positioned the field to tackle mechanisms underpinning the temporal and spatial regulation of DNA replication and the causal relationships between DNA replication and other features of large-scale chromosome structure and function. In this review, we discuss these major recent discoveries as well as expectations for the coming decade.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
5
|
Escorcia W, Tripathi VP, Yuan JP, Forsburg SL. A visual atlas of meiotic protein dynamics in living fission yeast. Open Biol 2021; 11:200357. [PMID: 33622106 PMCID: PMC8061692 DOI: 10.1098/rsob.200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Meiosis is a carefully choreographed dynamic process that re-purposes proteins from somatic/vegetative cell division, as well as meiosis-specific factors, to carry out the differentiation and recombination pathway common to sexually reproducing eukaryotes. Studies of individual proteins from a variety of different experimental protocols can make it difficult to compare details between them. Using a consistent protocol in otherwise wild-type fission yeast cells, this report provides an atlas of dynamic protein behaviour of representative proteins at different stages during normal zygotic meiosis in fission yeast. This establishes common landmarks to facilitate comparison of different proteins and shows that initiation of S phase likely occurs prior to nuclear fusion/karyogamy.
Collapse
Affiliation(s)
- Wilber Escorcia
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 45207, USA
| | - Vishnu P Tripathi
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Ji-Ping Yuan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Vještica A, Bérard M, Liu G, Merlini L, Nkosi PJ, Martin SG. Cell cycle-dependent and independent mating blocks ensure fungal zygote survival and ploidy maintenance. PLoS Biol 2021; 19:e3001067. [PMID: 33406066 PMCID: PMC7815208 DOI: 10.1371/journal.pbio.3001067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/19/2021] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating. During sexual reproduction, fertilization must happen between exactly two gametes to ensure genome stability. This study shows that two mechanisms – establishment of zygotic fate and re-entry to the cell cycle – combine to prevent fission yeast zygotes fusing with further gametes.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AV); (SGM)
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AV); (SGM)
| |
Collapse
|
7
|
Active Replication Checkpoint Drives Genome Instability in Fission Yeast mcm4 Mutant. Mol Cell Biol 2020; 40:MCB.00033-20. [PMID: 32341083 DOI: 10.1128/mcb.00033-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Upon replication fork arrest, the replication checkpoint kinase Cds1 is stimulated to preserve genome integrity. Robust activation of Cds1 in response to hydroxyurea prevents the endonuclease Mus81 from cleaving the stalled replication fork inappropriately. However, we find that the response is different in temperature-sensitive mcm4 mutants, affecting a subunit of the MCM replicative helicase. We show that Cds1 inhibition of Mus81 promotes genomic instability and allows mcm4-dg cells to evade cell cycle arrest. Cds1 regulation of Mus81 activity also contributes to the formation of the replication stress-induced DNA damage markers replication protein A (RPA) and Ku. These results identify a surprising role for Cds1 in driving DNA damage and disrupted chromosomal segregation under certain conditions of replication stress.
Collapse
|
8
|
Vještica A, Marek M, Nkosi PJ, Merlini L, Liu G, Bérard M, Billault-Chaumartin I, Martin SG. A toolbox of stable integration vectors in the fission yeast Schizosaccharomyces pombe. J Cell Sci 2020; 133:jcs.240754. [PMID: 31801797 DOI: 10.1242/jcs.240754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Schizosaccharomyces pombe is a widely used model organism to study many aspects of eukaryotic cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here, we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, give rise to unstable genomic loci. We overcome this problem by designing a new series of stable integration vectors (SIVs) that target four different prototrophy genes. SIVs produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Magdalena Marek
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
10
|
Torfeh E, Simon M, Muggiolu G, Devès G, Vianna F, Bourret S, Incerti S, Barberet P, Seznec H. Monte-Carlo dosimetry and real-time imaging of targeted irradiation consequences in 2-cell stage Caenorhabditis elegans embryo. Sci Rep 2019; 9:10568. [PMID: 31332255 PMCID: PMC6646656 DOI: 10.1038/s41598-019-47122-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Charged-particle microbeams (CPMs) provide a unique opportunity to investigate the effects of ionizing radiation on living biological specimens with a precise control of the delivered dose, i.e. the number of particles per cell. We describe a methodology to manipulate and micro-irradiate early stage C. elegans embryos at a specific phase of the cell division and with a controlled dose using a CPM. To validate this approach, we observe the radiation-induced damage, such as reduced cell mobility, incomplete cell division and the appearance of chromatin bridges during embryo development, in different strains expressing GFP-tagged proteins in situ after irradiation. In addition, as the dosimetry of such experiments cannot be extrapolated from random irradiations of cell populations, realistic three-dimensional models of 2 cell-stage embryo were imported into the Geant4 Monte-Carlo simulation toolkit. Using this method, we investigate the energy deposit in various chromatin condensation states during the cell division phases. The experimental approach coupled to Monte-Carlo simulations provides a way to selectively irradiate a single cell in a rapidly dividing multicellular model with a reproducible dose. This method opens the way to dose-effect investigations following targeted irradiation.
Collapse
Affiliation(s)
- Eva Torfeh
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Marina Simon
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Giovanna Muggiolu
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Guillaume Devès
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - François Vianna
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,François Vianna: Institut de Radioprotection et de Sûreté Nucléaire, Bat.159, BP3, 13115, St-Paul-Lez-Durance, Cedex, France
| | - Stéphane Bourret
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Sébastien Incerti
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Philippe Barberet
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France. .,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.
| | - Hervé Seznec
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France. .,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.
| |
Collapse
|
11
|
Tamang S, Kishkevich A, Morrow CA, Osman F, Jalan M, Whitby MC. The PCNA unloader Elg1 promotes recombination at collapsed replication forks in fission yeast. eLife 2019; 8:47277. [PMID: 31149897 PMCID: PMC6544435 DOI: 10.7554/elife.47277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Protein-DNA complexes can impede DNA replication and cause replication fork collapse. Whilst it is known that homologous recombination is deployed in such instances to restart replication, it is unclear how a stalled fork transitions into a collapsed fork at which recombination proteins can load. Previously we established assays in Schizosaccharomyces pombe for studying recombination induced by replication fork collapse at the site-specific protein-DNA barrier RTS1 (Nguyen et al., 2015). Here, we provide evidence that efficient recruitment/retention of two key recombination proteins (Rad51 and Rad52) to RTS1 depends on unloading of the polymerase sliding clamp PCNA from DNA by Elg1. We also show that, in the absence of Elg1, reduced recombination is partially suppressed by deleting fbh1 or, to a lesser extent, srs2, which encode known anti-recombinogenic DNA helicases. These findings suggest that PCNA unloading by Elg1 is necessary to limit Fbh1 and Srs2 activity, and thereby enable recombination to proceed.
Collapse
Affiliation(s)
- Sanjeeta Tamang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Carl A Morrow
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Manisha Jalan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Carruthers RD, Ahmed SU, Ramachandran S, Strathdee K, Kurian KM, Hedley A, Gomez-Roman N, Kalna G, Neilson M, Gilmour L, Stevenson KH, Hammond EM, Chalmers AJ. Replication Stress Drives Constitutive Activation of the DNA Damage Response and Radioresistance in Glioblastoma Stem-like Cells. Cancer Res 2018; 78:5060-5071. [PMID: 29976574 PMCID: PMC6128404 DOI: 10.1158/0008-5472.can-18-0569] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is a lethal primary brain tumor characterized by treatment resistance and inevitable tumor recurrence, both of which are driven by a subpopulation of GBM cancer stem-like cells (GSC) with tumorigenic and self-renewal properties. Despite having broad implications for understanding GSC phenotype, the determinants of upregulated DNA-damage response (DDR) and subsequent radiation resistance in GSC are unknown and represent a significant barrier to developing effective GBM treatments. In this study, we show that constitutive DDR activation and radiation resistance are driven by high levels of DNA replication stress (RS). CD133+ GSC exhibited reduced DNA replication velocity and a higher frequency of stalled replication forks than CD133- non-GSC in vitro; immunofluorescence studies confirmed these observations in a panel of orthotopic xenografts and human GBM specimens. Exposure of non-GSC to low-level exogenous RS generated radiation resistance in vitro, confirming RS as a novel determinant of radiation resistance in tumor cells. GSC exhibited DNA double-strand breaks, which colocalized with "replication factories" and RNA: DNA hybrids. GSC also demonstrated increased expression of long neural genes (>1 Mbp) containing common fragile sites, supporting the hypothesis that replication/transcription collisions are the likely cause of RS in GSC. Targeting RS by combined inhibition of ATR and PARP (CAiPi) provided GSC-specific cytotoxicity and complete abrogation of GSC radiation resistance in vitro These data identify RS as a cancer stem cell-specific target with significant clinical potential.Significance: These findings shed new light on cancer stem cell biology and reveal novel therapeutics with the potential to improve clinical outcomes by overcoming inherent radioresistance in GBM. Cancer Res; 78(17); 5060-71. ©2018 AACR.
Collapse
Affiliation(s)
- Ross D Carruthers
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom.
| | - Shafiq U Ahmed
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Shaliny Ramachandran
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Karen Strathdee
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Kathreena M Kurian
- Department of Neuropathology, Brain Tumour Research Group, Frenchay Hospital, North Bristol NHS Trust Bristol, Bristol, United Kingdom
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Natividad Gomez-Roman
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Gabriela Kalna
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Mathew Neilson
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Lesley Gilmour
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Katrina H Stevenson
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ester M Hammond
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anthony J Chalmers
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Ebrahimi H, Masuda H, Jain D, Cooper JP. Distinct 'safe zones' at the nuclear envelope ensure robust replication of heterochromatic chromosome regions. eLife 2018; 7:32911. [PMID: 29722648 PMCID: PMC5933923 DOI: 10.7554/elife.32911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022] Open
Abstract
Chromosome replication and transcription occur within a complex nuclear milieu whose functional subdomains are beginning to be mapped out. Here we delineate distinct domains of the fission yeast nuclear envelope (NE), focusing on regions enriched for the inner NE protein, Bqt4, or the lamin interacting domain protein, Lem2. Bqt4 is relatively mobile around the NE and acts in two capacities. First, Bqt4 tethers chromosome termini and the mat locus to the NE specifically while these regions are replicating. This positioning is required for accurate heterochromatin replication. Second, Bqt4 mobilizes a subset of Lem2 molecules around the NE to promote pericentric heterochromatin maintenance. Opposing Bqt4-dependent Lem2 mobility are factors that stabilize Lem2 beneath the centrosome, where Lem2 plays a crucial role in kinetochore maintenance. Our data prompt a model in which Bqt4-rich nuclear subdomains are 'safe zones' in which collisions between transcription and replication are averted and heterochromatin is reassembled faithfully.
Collapse
Affiliation(s)
- Hani Ebrahimi
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Hirohisa Masuda
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Devanshi Jain
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
14
|
Zhao PA, Rivera-Mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:229-257. [DOI: 10.1007/978-981-10-6955-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Yokoyama R, Hirakawa T, Hayashi S, Sakamoto T, Matsunaga S. Dynamics of plant DNA replication based on PCNA visualization. Sci Rep 2016; 6:29657. [PMID: 27417498 PMCID: PMC4945867 DOI: 10.1038/srep29657] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
Abstract
DNA replication is an essential process for the copying of genomic information in living organisms. Imaging of DNA replication in tissues and organs is mainly performed using fixed cells after incorporation of thymidine analogs. To establish a useful marker line to measure the duration of DNA replication and analyze the dynamics of DNA replication, we focused on the proliferating cell nuclear antigen (PCNA), which functions as a DNA sliding clamp for replicative DNA polymerases and is an essential component of replisomes. In this study we produced an Arabidopsis thaliana line expressing PCNA1 fused with the green fluorescent protein under the control of its own promoter (pAtPCNA1::AtPCNA1-sGFP). The duration of the S phase measured using the expression line was consistent with that measured after incorporation of a thymidine analog. Live cell imaging revealed that three distinct nuclear localization patterns (whole, dotted, and speckled) were sequentially observable. These whole, dotted, and speckled patterns of subnuclear AtPCNA1 signals were indicative of the G1 or G2 phase, early S phase and late S phase, respectively. The results indicate that the pAtPCNA1::AtPCNA1-sGFP line is a useful marker line for visualization of S-phase progression in live plant organs.
Collapse
Affiliation(s)
- Ryohei Yokoyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takeshi Hirakawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Seri Hayashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
16
|
Kuriya K, Higashiyama E, Avşar-Ban E, Tamaru Y, Ogata S, Takebayashi SI, Ogata M, Okumura K. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells. Zebrafish 2015; 12:432-9. [PMID: 26540100 DOI: 10.1089/zeb.2015.1151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.
Collapse
Affiliation(s)
- Kenji Kuriya
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Eriko Higashiyama
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Eriko Avşar-Ban
- 2 Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Yutaka Tamaru
- 2 Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Shin Ogata
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Shin-ichiro Takebayashi
- 3 Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University , Tsu, Japan
| | - Masato Ogata
- 3 Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University , Tsu, Japan
| | - Katsuzumi Okumura
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| |
Collapse
|
17
|
Managing Single-Stranded DNA during Replication Stress in Fission Yeast. Biomolecules 2015; 5:2123-39. [PMID: 26393661 PMCID: PMC4598791 DOI: 10.3390/biom5032123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/27/2023] Open
Abstract
Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.
Collapse
|
18
|
Abstract
Faithful DNA replication is a prerequisite for cell proliferation. Several cytological studies have shown that chromosome structures alter in the S-phase of the cell cycle. However, the molecular mechanisms behind the alteration of chromosome structures associated with DNA replication have not been elucidated. Here, we investigated chromatin structures and acetylation of specific histone residues during DNA replication using the meiotic nucleus of the fission yeast Schizosaccharomyces pombe. The S. pombe meiotic nucleus provides a unique opportunity for measuring the levels of compaction of chromatin along the chromosome in a defined orientation. By direct measurement of chromatin compaction in living cells, we demonstrated that decompaction of chromatin occurs during meiotic DNA replication. This chromatin decompaction was suppressed by depletion of histone acetyltransferase Mst1 or by arginine substitution of specific lysine residues (K8 and K12) of histone H4. These results suggest that acetylation of histone H4 residues K8 and K12 plays a critical role in loosening chromatin structures during DNA replication.
Collapse
|
19
|
Abstract
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. DNA damage and replication stress activate cell cycle checkpoint responses that protect the integrity of eukaryotic chromosomes. A well-conserved response involves the reversible phosphorylation of the replicative helicase, MCM2-7, which together with the origin recognition complex (ORC) dictates when and where replication initiates in chromosomes. The central role of ORC and MCMs in DNA replication is illustrated by the fact that small changes in abundance of these pre-replicative complex (pre-RC) components are poorly tolerated from yeast to humans. Here we describe an unprecedented replication stress checkpoint response in the early branching eukaryote, Tetrahymena thermophila, that is triggered by the depletion of dNTP pools with hydroxyurea (HU). Instead of transiently phosphorylating MCM subunits, ORC and MCM proteins are physically degraded in HU-treated Tetrahymena. Unexpectedly, upon HU removal the genome is completely and effortlessly replicated prior to replenishment of ORC and MCM components. Using DNA fiber imaging and 2D gel electrophoresis, we show that ORC-dependent mechanisms are bypassed during the recovery phase to produce bidirectional replication forks throughout the genome. Our findings suggest that Tetrahymena enlists an alternative mechanism for replication initiation, and that the underlying process can operate on a genome-wide scale.
Collapse
Affiliation(s)
- Pamela Y. Sandoval
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 2015; 470:115-29. [PMID: 26251451 DOI: 10.1042/bj20150452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Eukaryotic PCNAs (proliferating-cell nuclear antigens) play diverse roles in nucleic acid metabolism in addition to DNA replication. Plasmodium falciparum, which causes human malaria, harbours two PCNA homologues: PfPCNA1 and PfPCNA2. The functional role of two distinct PCNAs in the parasite still eludes us. In the present study, we show that, whereas both PfPCNAs share structural and biochemical properties, only PfPCNA1 functionally complements the ScPCNA mutant and forms distinct replication foci in the parasite, which PfPCNA2 fails to do. Although PfPCNA1 appears to be the primary replicative PCNA, both PfPCNA1 and PfPCNA2 participate in an active DDR (DNA-damage-response) pathway with significant accumulation in the parasite upon DNA damage induction. Interestingly, PfPCNA genes were found to be regulated not at the transcription level, but presumably at the protein stability level upon DNA damage. Such regulation of PCNA has not been shown in eukaryotes before. Moreover, overexpression of PfPCNA1 and PfPCNA2 in the parasite confers a survival edge on the parasite in a genotoxic environment. This is the first evidence of a PfPCNA-mediated DDR in the parasite and gives new insights and rationale for the presence of two PCNAs as a parasite survival strategy and its probable success.
Collapse
|
21
|
Abstract
Billions of base pairs of DNA must be replicated trillions of times in a human lifetime. Complete and accurate replication once and only once per cell division cycle is essential to maintain genome integrity and prevent disease. Impediments to replication fork progression including difficult to replicate DNA sequences, conflicts with transcription, and DNA damage further add to the genome maintenance challenge. These obstacles frequently cause fork stalling, but only rarely cause a failure to complete replication. Robust mechanisms ensure that stalled forks remain stable and capable of either resuming DNA synthesis or being rescued by converging forks. However, when failures do happen the fork collapses leading to genome rearrangements, cell death and disease. Despite intense interest, the mechanisms to repair damaged replication forks, stabilize them, and ensure successful replication remain only partly understood. Different models of fork collapse have been proposed with varying descriptions of what happens to the DNA and replisome. Here, I will define fork collapse and describe what is known about how the replication checkpoint prevents it to maintain genome stability.
Collapse
|
22
|
Nguyen MO, Jalan M, Morrow CA, Osman F, Whitby MC. Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse. eLife 2015; 4:e04539. [PMID: 25806683 PMCID: PMC4407270 DOI: 10.7554/elife.04539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/24/2015] [Indexed: 11/13/2022] Open
Abstract
The completion of genome duplication during the cell cycle is threatened by the presence of replication fork barriers (RFBs). Following collision with a RFB, replication proteins can dissociate from the stalled fork (fork collapse) rendering it incapable of further DNA synthesis unless recombination intervenes to restart replication. We use time-lapse microscopy and genetic assays to show that recombination is initiated within ∼ 10 min of replication fork blockage at a site-specific barrier in fission yeast, leading to a restarted fork within ∼ 60 min, which is only prevented/curtailed by the arrival of the opposing replication fork. The restarted fork is susceptible to further collapse causing hyper-recombination downstream of the barrier. Surprisingly, in our system fork restart is unnecessary for maintaining cell viability. Seemingly, the risk of failing to complete replication prior to mitosis is sufficient to warrant the induction of recombination even though it can cause deleterious genetic change.
Collapse
Affiliation(s)
- Michael O Nguyen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Manisha Jalan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carl A Morrow
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Kaykov A, Nurse P. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res 2015; 25:391-401. [PMID: 25650245 PMCID: PMC4352884 DOI: 10.1101/gr.180372.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/29/2014] [Indexed: 11/25/2022]
Abstract
Eukaryotes duplicate their genomes using multiple replication origins, but the organization of origin firing along chromosomes and during S-phase is not well understood. Using fission yeast, we report the first genome-wide analysis of the spatial and temporal organization of replication origin firing, analyzed using single DNA molecules that can approach the full length of chromosomes. At S-phase onset, origins fire randomly and sparsely throughout the chromosomes. Later in S-phase, clusters of fired origins appear embedded in the sparser regions, which form the basis of nuclear replication foci. The formation of clusters requires proper histone methylation and acetylation, and their locations are not inherited between cell cycles. The rate of origin firing increases gradually, peaking just before mid S-phase. Toward the end of S-phase, nearly all the available origins within the unreplicated regions are fired, contributing to the timely completion of genome replication. We propose that the majority of origins do not fire as a part of a deterministic program. Instead, origin firing, both individually and as clusters, should be viewed as being mostly stochastic.
Collapse
Affiliation(s)
- Atanas Kaykov
- The Rockefeller University, New York, New York 10065, USA;
| | - Paul Nurse
- The Rockefeller University, New York, New York 10065, USA; The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
24
|
Abstract
Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709;
| | - Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-3290;
| |
Collapse
|
25
|
Ruan K, Yamamoto TG, Asakawa H, Chikashige Y, Masukata H, Haraguchi T, Hiraoka Y. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway. Genes Cells 2014; 20:160-72. [PMID: 25492408 PMCID: PMC4359684 DOI: 10.1111/gtc.12207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022]
Abstract
In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4+ gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.
Collapse
Affiliation(s)
- Kun Ruan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Etheridge TJ, Boulineau RL, Herbert A, Watson AT, Daigaku Y, Tucker J, George S, Jönsson P, Palayret M, Lando D, Laue E, Osborne MA, Klenerman D, Lee SF, Carr AM. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Res 2014; 42:e146. [PMID: 25106872 PMCID: PMC4231725 DOI: 10.1093/nar/gku726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/09/2014] [Accepted: 07/28/2014] [Indexed: 12/25/2022] Open
Abstract
Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds.
Collapse
Affiliation(s)
- Thomas J Etheridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Rémi L Boulineau
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Alex Herbert
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Adam T Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Yasukazu Daigaku
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Jem Tucker
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Sophie George
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Peter Jönsson
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - David Lando
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark A Osborne
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| |
Collapse
|
27
|
Increased meiotic crossovers and reduced genome stability in absence of Schizosaccharomyces pombe Rad16 (XPF). Genetics 2014; 198:1457-72. [PMID: 25293972 DOI: 10.1534/genetics.114.171355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizosaccharomyces pombe Rad16 is the ortholog of the XPF structure-specific endonuclease, which is required for nucleotide excision repair and implicated in the single strand annealing mechanism of recombination. We show that Rad16 is important for proper completion of meiosis. In its absence, cells suffer reduced spore viability and abnormal chromosome segregation with evidence for fragmentation. Recombination between homologous chromosomes is increased, while recombination within sister chromatids is reduced, suggesting that Rad16 is not required for typical homolog crossovers but influences the balance of recombination between the homolog and the sister. In vegetative cells, rad16 mutants show evidence for genome instability. Similar phenotypes are associated with mutants affecting Rhp14(XPA) but are independent of other nucleotide excision repair proteins such as Rad13(XPG). Thus, the XPF/XPA module of the nucleotide excision repair pathway is incorporated into multiple aspects of genome maintenance even in the absence of external DNA damage.
Collapse
|
28
|
Benkemoun L, Descoteaux C, Chartier NT, Pintard L, Labbé JC. PAR-4/LKB1 regulates DNA replication during asynchronous division of the early C. elegans embryo. ACTA ACUST UNITED AC 2014; 205:447-55. [PMID: 24841566 PMCID: PMC4033775 DOI: 10.1083/jcb.201312029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA replication is asymmetrically regulated in the two-cell stage C. elegans embryo by the PAR-4 and PAR-1 polarity proteins, which function independently of known regulators of cell cycle timing to dampen DNA replication dynamics specifically in the posterior blastomere. Regulation of cell cycle duration is critical during development, yet the underlying molecular mechanisms are still poorly understood. The two-cell stage Caenorhabditis elegans embryo divides asynchronously and thus provides a powerful context in which to study regulation of cell cycle timing during development. Using genetic analysis and high-resolution imaging, we found that deoxyribonucleic acid (DNA) replication is asymmetrically regulated in the two-cell stage embryo and that the PAR-4 and PAR-1 polarity proteins dampen DNA replication dynamics specifically in the posterior blastomere, independently of regulators previously implicated in the control of cell cycle timing. Our results demonstrate that accurate control of DNA replication is crucial during C. elegans early embryonic development and further provide a novel mechanism by which PAR proteins control cell cycle progression during asynchronous cell division.
Collapse
Affiliation(s)
- Laura Benkemoun
- Cell Division and Differentiation Laboratory, Institute of Research in Immunology and Cancer, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Catherine Descoteaux
- Cell Division and Differentiation Laboratory, Institute of Research in Immunology and Cancer, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Nicolas T Chartier
- Cell Division and Differentiation Laboratory, Institute of Research in Immunology and Cancer, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Lionel Pintard
- Institut Jacques Monod, Centre National de la Recherche Scientifique and Université Paris Diderot, F-75013 Paris, France
| | - Jean-Claude Labbé
- Cell Division and Differentiation Laboratory, Institute of Research in Immunology and Cancer, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, CanadaCell Division and Differentiation Laboratory, Institute of Research in Immunology and Cancer, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
29
|
Rodriguez A, Bjerling P. The links between chromatin spatial organization and biological function. Biochem Soc Trans 2013; 41:1634-9. [PMID: 24256267 PMCID: PMC3836414 DOI: 10.1042/bst20130213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 02/06/2023]
Abstract
During the last few years, there has been a rapid increase in our knowledge of how chromatin is organized inside the nucleus. Techniques such as FISH (fluorescence in situ hybridization) have proved that chromosomes organize themselves in so-called CTs (chromosome territories). In addition, newly developed 3C (chromatin conformation capture) techniques have revealed that certain chromosomal regions tend to interact with adjacent regions on either the same chromosome or adjacent chromosomes, and also that regions in close proximity are replicated simultaneously. Furthermore, transcriptionally repressed or active areas occupy different nuclear compartments. Another new technique, named DamID (DNA adenine methyltransferase identification), has strengthened the notion that transcriptionally repressed genes are often found in close association with the nuclear membrane, whereas transcriptionally active regions are found in the more central regions of the nucleus. However, in response to various stimuli, transcriptionally repressed regions are known to relocalize from the nuclear lamina to the interior of the nucleus, leading to a concomitant up-regulation of otherwise silenced genes. Taken together, these insights are of great interest for the relationship between chromosomal spatial organization and genome function. In the present article, we review recent advances in this field with a focus on mammalian cells and the eukaryotic model organism Schizosaccharomyces pombe.
Collapse
Key Words
- chromatin
- fission yeast
- heterochromatin
- nuclear organization
- transcriptional regulation
- 3c, chromosome conformation capture
- 4c, circularized chromosome conformation capture
- 5c, carbon copy chromosome conformation capture
- cenp, centromere protein
- chip, chromatin immunoprecipitation
- ct, chromosome territory
- dam, dna adenine methyltansferase
- damid, dna adenine methyltransferase identification
- fish, fluorescence in situ hybridization
- hic, genome-wide chromosome conformation capture
- inm, inner nuclear membrane
- lad, lamina-associated domain
- lem, lap2/emerin/man1
- mps, massive parallel sequencing
- nad, nucleoli-associated domain
- nm, nuclear membrane
- onm, outer nuclear membrane
- tfiiic, transcription factor iiic
- tor, time of replication
Collapse
Affiliation(s)
- Alejandro Rodriguez
- *Department of Medical Biochemistry and Microbiology (IMBIM), Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Pernilla Bjerling
- *Department of Medical Biochemistry and Microbiology (IMBIM), Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
30
|
Saner N, Karschau J, Natsume T, Gierliński M, Retkute R, Hawkins M, Nieduszynski CA, Blow JJ, de Moura AP, Tanaka TU. Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol 2013; 202:1001-12. [PMID: 24062338 PMCID: PMC3787376 DOI: 10.1083/jcb.201306143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023] Open
Abstract
Inside the nucleus, DNA replication is organized at discrete sites called replication factories, consisting of DNA polymerases and other replication proteins. Replication factories play important roles in coordinating replication and in responding to replication stress. However, it remains unknown how replicons are organized for processing at each replication factory. Here we address this question using budding yeast. We analyze how individual replicons dynamically organized a replication factory using live-cell imaging and investigate how replication factories were structured using super-resolution microscopy. Surprisingly, we show that the grouping of replicons within factories is highly variable from cell to cell. Once associated, however, replicons stay together relatively stably to maintain replication factories. We derive a coherent genome-wide mathematical model showing how neighboring replicons became associated stochastically to form replication factories, which was validated by independent microscopy-based analyses. This study not only reveals the fundamental principles promoting replication factory organization in budding yeast, but also provides insight into general mechanisms by which chromosomes organize sub-nuclear structures.
Collapse
Affiliation(s)
- Nazan Saner
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jens Karschau
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Toyoaki Natsume
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Renata Retkute
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Michelle Hawkins
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Nottingham NG7 2UH, England, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alessandro P.S. de Moura
- Institute for Complex Systems and Mathematical Biology, SUPA, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Tomoyuki U. Tanaka
- Centre for Gene Regulation and Expression, and Data Analysis Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
31
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
32
|
Nagai S, Heun P, Gasser SM. Roles for nuclear organization in the maintenance of genome stability. Epigenomics 2012; 2:289-305. [PMID: 22121875 DOI: 10.2217/epi.09.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent findings demonstrate that chromatin dynamics and nuclear organization are not only important for gene regulation but also for the maintenance of genome stability. Thanks to novel techniques that allow the visualization of specific chromatin domains in living cells, recent studies have demonstrated that the spatial dynamics of double-strand breaks and modifying enzymes can influence repair. The importance of the spatial organization in the repair of DNA damage has been confirmed by demonstrating that perturbation of nuclear organization can lead to gene amplifications, deletions, translocations and end-to-end telomere fusion events.
Collapse
Affiliation(s)
- Shigeki Nagai
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | | | | |
Collapse
|
33
|
Knott SRV, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, Tavaré S, Aparicio OM. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 2012; 148:99-111. [PMID: 22265405 DOI: 10.1016/j.cell.2011.12.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/11/2011] [Accepted: 12/09/2011] [Indexed: 12/28/2022]
Abstract
The replication of eukaryotic chromosomes is organized temporally and spatially within the nucleus through epigenetic regulation of replication origin function. The characteristic initiation timing of specific origins is thought to reflect their chromatin environment or sub-nuclear positioning, however the mechanism remains obscure. Here we show that the yeast Forkhead transcription factors, Fkh1 and Fkh2, are global determinants of replication origin timing. Forkhead regulation of origin timing is independent of local levels or changes of transcription. Instead, we show that Fkh1 and Fkh2 are required for the clustering of early origins and their association with the key initiation factor Cdc45 in G1 phase, suggesting that Fkh1 and Fkh2 selectively recruit origins to emergent replication factories. Fkh1 and Fkh2 bind Fkh-activated origins, and interact physically with ORC, providing a plausible mechanism to cluster origins. These findings add a new dimension to our understanding of the epigenetic basis for differential origin regulation and its connection to chromosomal domain organization.
Collapse
Affiliation(s)
- Simon R V Knott
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shankaran H, Weber TJ, von Neubeck C, Sowa MB. Using imaging methods to interrogate radiation-induced cell signaling. Radiat Res 2012; 177:496-507. [PMID: 22380462 DOI: 10.1667/rr2669.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is increasing emphasis on the use of systems biology approaches to define radiation-induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examples to illustrate how imaging approaches have furthered our understanding of radiation-induced cellular signaling. Particular emphasis is placed on protein colocalization, and oscillatory and transient signaling dynamics.
Collapse
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
35
|
Li J, Deng M, Wei Q, Liu T, Tong X, Ye X. Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle. J Biol Chem 2011; 286:39776-85. [PMID: 21965652 DOI: 10.1074/jbc.m111.226464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MCM2-7 proteins form a stable heterohexamer with DNA helicase activity functioning in the DNA replication of eukaryotic cells. The MCM2-7 complex is loaded onto chromatin in a cell cycle-dependent manner. The phosphorylation of MCM2-7 proteins contributes to the formation of the MCM2-7 complex. However, the regulation of specific MCM phosphorylation still needs to be elucidated. In this study, we demonstrate that MCM3 is a substrate of cyclin E/Cdk2 and can be phosphorylated by cyclin E/Cdk2 at Thr-722. We find that the MCM3 T722A mutant binds chromatin much less efficiently when compared with wild type MCM3, suggesting that this phosphorylation site is involved in MCM3 loading onto chromatin. Interestingly, overexpression of MCM3, but not MCM3 T722A mutant, inhibits the S phase entry, whereas it does not affect the exit from mitosis. Knockdown of MCM3 does not affect S phase entry and progression, indicating that a small fraction of MCM3 is sufficient for normal S phase completion. These results suggest that excess accumulation of MCM3 protein onto chromatin may inhibit DNA replication. Other studies indicate that excess of MCM3 up-regulates the phosphorylation of CHK1 Ser-345 and CDK2 Thr-14. These data reveal that the phosphorylation of MCM3 contributes to its function in controlling the S phase checkpoint of cell cycle in addition to the regulation of formation of the MCM2-7 complex.
Collapse
Affiliation(s)
- Junhui Li
- Center for Molecular Immunology, Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
36
|
Izawa N, Wu W, Sato K, Nishikawa H, Kato A, Boku N, Itoh F, Ohta T. HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression. Cancer Res 2011; 71:5621-5. [PMID: 21775519 DOI: 10.1158/0008-5472.can-11-0385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA replication, recombination, and repair are highly interconnected processes the disruption of which must be coordinated in cancer. HERC2, a large HECT protein required for homologous recombination repair, is an E3 ubiquitin ligase that targets breast cancer suppressor BRCA1 for degradation. Here, we show that HERC2 is a component of the DNA replication fork complex that plays a critical role in DNA elongation and origin firing. In the presence of BRCA1, endogenous HERC2 interacts with Claspin, a protein essential for G(2)-M checkpoint activation and replication fork stability. Claspin depletion slowed S-phase progression and additional HERC2 depletion reduced the effect of Claspin depletion. In addition, HERC2 interacts with replication fork complex proteins. Depletion of HERC2 alleviated the slow replication fork progression in Claspin-deficient cells, suppressed enhanced origin firing, and led to a decrease in MCM2 phosphorylation. In a HERC2-dependent manner, treatment of cells with replication inhibitor aphidicolin enhanced MCM2 phosphorylation. Taken together, our results suggest that HERC2 regulates DNA replication progression and origin firing by facilitating MCM2 phosphorylation. These findings establish HERC2 as a critical function in DNA repair, checkpoint activation, and DNA replication.
Collapse
Affiliation(s)
- Naoki Izawa
- Department of Translational Oncology, Gastroenterology and Hepatology, Clinical Oncology, and Breast and Endocrine Surgery, Institute of Advanced Medical Science, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dzyubachyk O, Essers J, van Cappellen WA, Baldeyron C, Inagaki A, Niessen WJ, Meijering E. Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci. Bioinformatics 2010; 26:2424-30. [PMID: 20702399 DOI: 10.1093/bioinformatics/btq434] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MOTIVATION Complete, accurate and reproducible analysis of intracellular foci from fluorescence microscopy image sequences of live cells requires full automation of all processing steps involved: cell segmentation and tracking followed by foci segmentation and pattern analysis. Integrated systems for this purpose are lacking. RESULTS Extending our previous work in cell segmentation and tracking, we developed a new system for performing fully automated analysis of fluorescent foci in single cells. The system was validated by applying it to two common tasks: intracellular foci counting (in DNA damage repair experiments) and cell-phase identification based on foci pattern analysis (in DNA replication experiments). Experimental results show that the system performs comparably to expert human observers. Thus, it may replace tedious manual analyses for the considered tasks, and enables high-content screening. AVAILABILITY AND IMPLEMENTATION The described system was implemented in MATLAB (The MathWorks, Inc., USA) and compiled to run within the MATLAB environment. The routines together with four sample datasets are available at http://celmia.bigr.nl/. The software is planned for public release, free of charge for non-commercial use, after publication of this article.
Collapse
Affiliation(s)
- Oleh Dzyubachyk
- Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleus and how this spatial organization is linked to temporal regulation. We focus on DNA replication in budding yeast and fission yeast and, where applicable, compare yeast DNA replication with that in bacteria and metazoans.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
40
|
Koegler E, Bonnon C, Waldmeier L, Mitrovic S, Halbeisen R, Hauri HP. p28, a novel ERGIC/cis Golgi protein, required for Golgi ribbon formation. Traffic 2010; 11:70-89. [PMID: 19948005 DOI: 10.1111/j.1600-0854.2009.01009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mammalian Golgi apparatus consists of individual cisternae that are stacked in a polarized manner to form the compact zones of the Golgi. Several stacks are linked to form a ribbon via dynamic lateral bridges. The determinants required for maintaining the characteristic Golgi structure are incompletely understood. Here, we have characterized p28, a new gamma-subfamily member of p24 membrane proteins. p28 localized to endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and cis Golgi and accumulated in the ERGIC upon Brefeldin A treatment, typical for a protein cycling in the early secretory pathway. p28 interacted with a subset of p24 proteins. Its depletion by small interfering RNA (siRNA) led to fragmentation of the Golgi without affecting the overall organization of microtubules but considerably reducing the amount of acetylated tubulin. The distribution of COPI and tethers, including GM130, was not affected. At the ultrastructural level, the Golgi fragments appeared as mini-stacks with apparently unchanged cis-trans topology. Golgi fragmentation did not impair anterograde or retrograde traffic. Fluorescence recovery after photobleaching (FRAP) experiments revealed that silencing p28 prevents protein exchange between Golgi stacks during reassembly after Brefeldin A-induced Golgi breakdown. These results show that the formation of a Golgi ribbon requires the structural membrane protein p28 in addition to previously identified SNAREs, coat proteins and tethers.
Collapse
Affiliation(s)
- Eva Koegler
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Dubey DD, Srivastava VK, Pratihar AS, Yadava MP. High density of weak replication origins in a 75-kb region of chromosome 2 of fission yeast. Genes Cells 2009; 15:1-12. [PMID: 20002499 DOI: 10.1111/j.1365-2443.2009.01363.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a two-dimensional gel electrophoresis origin mapping technique and cell synchronization, we have studied replication timing and mapped origins in a 75-kb region of chromosome 2 of Schizosaccharomyces pombe. Three of the five mapped origins are moderately active and the other two are very weak. DNA fragments containing the three moderately active origins and one weak origin are ARS-positive whereas that containing the other weak origin is ARS-negative. Three ARS elements reported earlier from this region appear to be inactive as chromosomal origins. The centromere-proximal 45 kb of this region replicates earlier than the telomere-proximal 30 kb. A transition from early to late replication occurs within 10 kb of the chromosomally inactive ars727, suggesting a possible role of the previously reported late-replication-enforcing region in determining chromosomal replication timing of the region. These results in conjunction with those from some other studies suggest that, in S. pombe, the actual number of potential origins may be significantly higher than previously detected in many genome-wide studies, and the relationship between ARS activity and chromosomal origin activity is not as simple as in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Dharani D Dubey
- Department of Biotechnology, Veer Bahadur Singh Purvanchal University, Jaunpur-222001, UP, India.
| | | | | | | |
Collapse
|
42
|
Kumar D, Minocha N, Rajanala K, Saha S. The distribution pattern of proliferating cell nuclear antigen in the nuclei of Leishmania donovani. MICROBIOLOGY-SGM 2009; 155:3748-3757. [PMID: 19729406 DOI: 10.1099/mic.0.033217-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA replication in eukaryotes is a highly conserved process marked by the licensing of multiple origins, with pre-replication complex assembly in G1 phase, followed by the onset of replication at these origins in S phase. The two strands replicate by different mechanisms, and DNA synthesis is brought about by the activity of the replicative DNA polymerases Pol delta and Pol epsilon. Proliferating cell nuclear antigen (PCNA) augments the processivity of these polymerases by serving as a DNA sliding clamp protein. This study reports the cloning of PCNA from the protozoan Leishmania donovani, which is the causative agent of the systemic disease visceral leishmaniasis. PCNA was demonstrated to be robustly expressed in actively proliferating L. donovani promastigotes. We found that the protein was present primarily in the nucleus throughout the cell cycle, and it was found in both proliferating procyclic and metacyclic promastigotes. However, levels of expression of PCNA varied through cell cycle progression, with maximum expression evident in G1 and S phases. The subnuclear pattern of expression of PCNA differed in different stages of the cell cycle; it formed distinct subnuclear foci in S phase, while it was distributed in a more diffuse pattern in G2/M phase and post-mitotic phase cells. These subnuclear foci are the sites of active DNA replication, suggesting that replication factories exist in Leishmania, as they do in higher eukaryotes, thus opening avenues for investigating other Leishmania proteins that are involved in DNA replication as part of these replication factories.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Neha Minocha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
43
|
Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 2009; 5:e1000397. [PMID: 19390600 PMCID: PMC2666264 DOI: 10.1371/journal.ppat.1000397] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 03/25/2009] [Indexed: 11/18/2022] Open
Abstract
In HPV–related cancers, the “high-risk” human papillomaviruses (HPVs) are frequently found integrated into the cellular genome. The integrated subgenomic HPV fragments express viral oncoproteins and carry an origin of DNA replication that is capable of initiating bidirectional DNA re-replication in the presence of HPV replication proteins E1 and E2, which ultimately leads to rearrangements within the locus of the integrated viral DNA. The current study indicates that the E1- and E2-dependent DNA replication from the integrated HPV origin follows the “onion skin”–type replication mode and generates a heterogeneous population of replication intermediates. These include linear, branched, open circular, and supercoiled plasmids, as identified by two-dimensional neutral-neutral gel-electrophoresis. We used immunofluorescence analysis to show that the DNA repair/recombination centers are assembled at the sites of the integrated HPV replication. These centers recruit viral and cellular replication proteins, the MRE complex, Ku70/80, ATM, Chk2, and, to some extent, ATRIP and Chk1 (S317). In addition, the synthesis of histone γH2AX, which is a hallmark of DNA double strand breaks, is induced, and Chk2 is activated by phosphorylation in the HPV–replicating cells. These changes suggest that the integrated HPV replication intermediates are processed by the activated cellular DNA repair/recombination machinery, which results in cross-chromosomal translocations as detected by metaphase FISH. We also confirmed that the replicating HPV episomes that expressed the physiological levels of viral replication proteins could induce genomic instability in the cells with integrated HPV. We conclude that the HPV replication origin within the host chromosome is one of the key factors that triggers the development of HPV–associated cancers. It could be used as a starting point for the “onion skin”–type of DNA replication whenever the HPV plasmid exists in the same cell, which endangers the host genomic integrity during the initial integration and after the de novo infection. High-risk human papillomavirus infection can cause several types of cancers. During the normal virus life cycle, these viruses maintain their genomes as multicopy nuclear plasmids in infected cells. However, in cancer cells, the viral plasmids are lost, which leaves one of the HPV genomes to be integrated into the genome of the host cell. We suggest that the viral integration and the coexistence of episomal and integrated HPV genomes in the same cell play key roles in early events that lead to the formation of HPV–dependent cancer cells. We show that HPV replication proteins expressed at the physiological level from the viral extrachromosomal genome are capable of replicating episomal and integrated HPV simultaneously. Unscheduled replication of the integrated HPV induces a variety of changes in the host genome, such as excision, repair, recombination, and amplification, which also involve the flanking cellular DNA. As a result, genomic modifications occur, which could have a role in reprogramming the HPV–infected cells that leads to the development of cancer. We believe that the mechanism described in this study may reflect the underlying processes that take place in the genome of the HPV–infected cells and may also play a role in the formation of other types of cancers.
Collapse
Affiliation(s)
- Meelis Kadaja
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
44
|
Wu PYJ, Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell 2009; 136:852-64. [PMID: 19269364 DOI: 10.1016/j.cell.2009.01.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 07/17/2008] [Accepted: 01/05/2009] [Indexed: 01/04/2023]
Abstract
Initiation of eukaryotic DNA synthesis occurs at origins of replication that are utilized with characteristic times and frequencies during S phase. We have investigated origin usage by evaluating the kinetics of replication factor binding in fission yeast and show that similar to metazoa, ORC binding is periodic during the cell cycle, increasing during mitosis and peaking at M/G1. At an origin, the timing of ORC binding in M and pre-RC assembly in G1 correlates with the timing of firing during S, and the level of pre-IC formation reflects origin efficiency. Extending mitosis allows ORC to become more equally associated with origins and leads to genome-wide changes in origin usage, while overproduction of pre-IC factors increases replication of both efficient and inefficient origins. We propose that differential recruitment of ORC to origins during mitosis followed by competition among origins for limiting replication factors establishes the timing and efficiency of origin firing.
Collapse
|
45
|
Koszul R, Fischer G. A prominent role for segmental duplications in modeling Eukaryotic genomes. C R Biol 2009; 332:254-66. [DOI: 10.1016/j.crvi.2008.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/12/2008] [Indexed: 01/22/2023]
|
46
|
Abstract
We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.
Collapse
Affiliation(s)
- Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | |
Collapse
|
47
|
Yang SCH, Bechhoefer J. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041917. [PMID: 18999465 DOI: 10.1103/physreve.78.041917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Indexed: 05/27/2023]
Abstract
DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time ( approximately 25 min) . Surprisingly, although the typical replication time is about 20 min , in vivo experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this "random-completion problem." The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-completion times for a finite genome. We then argue that the biologists' first solution to the problem is not only consistent with experiment but also nearly optimizes the use of replicative proteins. We also show that spatial regularity in origin placement does not alter significantly the distribution of replication times and, thus, is not needed for the control of replication timing.
Collapse
Affiliation(s)
- Scott Cheng-Hsin Yang
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| | | |
Collapse
|
48
|
Labit H, Perewoska I, Germe T, Hyrien O, Marheineke K. DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts. Nucleic Acids Res 2008; 36:5623-34. [PMID: 18765475 PMCID: PMC2553594 DOI: 10.1093/nar/gkn533] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Replication origins in Xenopus egg extracts are located at apparently random sequences but are activated in clusters that fire at different times during S phase under the control of ATR/ATM kinases. We investigated whether chromosomal domains and single sequences replicate at distinct times during S phase in egg extracts. Replication foci were found to progressively appear during early S phase and foci labelled early in one S phase colocalized with those labelled early in the next S phase. However, the distribution of these two early labels did not coincide between single origins or origin clusters on single DNA fibres. The 4 Mb Xenopus rDNA repeat domain was found to replicate later than the rest of the genome and to have a more nuclease-resistant chromatin structure. Replication initiated more frequently in the transcription unit than in the intergenic spacer. These results suggest for the first time that in this embryonic system, where transcription does not occur, replication timing is deterministic at the scale of large chromatin domains (1–5 Mb) but stochastic at the scale of replicons (10 kb) and replicon clusters (50–100 kb).
Collapse
Affiliation(s)
- Hélène Labit
- Ecole Normale Supérieure, Biology Department, Laboratory of Molecular Genetics, CNRS UMR 8541, 46, rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.
Collapse
|
50
|
Gupta A, Mehra P, Dhar SK. Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 2008; 69:646-65. [PMID: 18554328 PMCID: PMC2610387 DOI: 10.1111/j.1365-2958.2008.06316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2008] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiaeorigin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.
Collapse
Affiliation(s)
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru UniversityNew Delhi 110067, India
| |
Collapse
|