1
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Iannitti R, Mascanzoni F, Colanzi A, Spano D. The role of Golgi complex proteins in cell division and consequences of their dysregulation. Front Cell Dev Biol 2025; 12:1513472. [PMID: 39839669 PMCID: PMC11747491 DOI: 10.3389/fcell.2024.1513472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The GC (Golgi complex) plays a pivotal role in the trafficking and sorting of proteins and lipids until they reach their final destination. Additionally, the GC acts as a signalling hub to regulate a multitude of cellular processes, including cell polarity, motility, apoptosis, DNA repair and cell division. In light of these crucial roles, the GC has garnered increasing attention, particularly given the evidence that a dysregulation of GC-regulated signalling pathways may contribute to the onset of various pathological conditions. This review examines the functions of the GC and GC-localised proteins in regulating cell cycle progression, in both mitosis and meiosis. It reviews the involvement of GC-resident proteins in the formation and orientation of the spindle during cell division. In light of the roles played by the GC in controlling cell division, this review also addresses the involvement of the GC in cancer development. Furthermore, TCGA (The Cancer Genome Atlas) database has been queried in order to retrieve information on the genetic alterations and the correlation between the expression of GC-localised proteins and the survival of cancer patients. The data presented in this review highlight the relevance of the GC in regulating cell cycle progression, cellular differentiation and tumourigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Spano
- Department of Biomedical Sciences (DSB), Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
3
|
Filograna A, De Tito S, Monte ML, Oliva R, Bruzzese F, Roca MS, Zannetti A, Greco A, Spano D, Ayala I, Liberti A, Petraccone L, Dathan N, Catara G, Schembri L, Colanzi A, Budillon A, Beccari AR, Del Vecchio P, Luini A, Corda D, Valente C. Identification and characterization of a new potent inhibitor targeting CtBP1/BARS in melanoma cells. J Exp Clin Cancer Res 2024; 43:137. [PMID: 38711119 PMCID: PMC11071220 DOI: 10.1186/s13046-024-03044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models. CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.
Collapse
Affiliation(s)
- Angela Filograna
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK. The Study Has Been Previously Performed at IEOS-CNR, Naples, Italy
| | - Matteo Lo Monte
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Francesca Bruzzese
- Animal Facility Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, 80145, Italy
| | - Adelaide Greco
- Interdepartmental Service Center of Veterinary Radiology, University of Naples Federico II, 80137, Naples, Italy
| | - Daniela Spano
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Assunta Liberti
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Laura Schembri
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
- Present address: Dompé Farmaceutici S.P.A, L'Aquila, Italy.
| |
Collapse
|
4
|
Mascanzoni F, Ayala I, Iannitti R, Luini A, Colanzi A. The Golgi checkpoint: Golgi unlinking during G2 is necessary for spindle formation and cytokinesis. Life Sci Alliance 2024; 7:e202302469. [PMID: 38479814 PMCID: PMC10941482 DOI: 10.26508/lsa.202302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.
Collapse
Affiliation(s)
- Fabiola Mascanzoni
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Roberta Iannitti
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
5
|
Rajanala K, Wedegaertner PB. Gβγ signaling regulates microtubule-dependent control of Golgi integrity. Cell Signal 2023; 106:110630. [PMID: 36805843 PMCID: PMC10079639 DOI: 10.1016/j.cellsig.2023.110630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Gβγ subunits regulate several non-canonical functions at distinct intracellular organelles. Previous studies have shown that Gβγ signaling at the Golgi is necessary to mediate vesicular protein transport function and to regulate mitotic Golgi fragmentation. Disruption of Golgi structure also occurs in response to microtubule depolymerizing agents, such as nocodazole. In this study, we use siRNA against Gβ1/2 or specific Gγ subunits to deplete their expression, and show that their knockdown causes a significant reduction in nocodazole-induced Golgi fragmentation. We establish that knockdown of Gβγ or inhibition of Gβγ with gallein resulted in decreased activation of protein kinase D (PKD) in response to nocodazole treatment. We demonstrate that restricting the amount of free Gβγ available for signaling by either inhibiting Gαi activation using pertussis toxin or by knockdown of the non-GPCR GEF, Girdin/GIV protein, results in a substantial decrease in nocodazole-induced Golgi fragmentation and PKD phosphorylation. Our results also indicate that depletion of Gβγ or inhibition with gallein or pertussis toxin significantly reduces the microtubule disruption-dependent Golgi fragmentation phenotype observed in cells transfected with mutant SOD1, a major causative protein in familial amyotrophic lateral sclerosis (ALS). These results provide compelling evidence that Gβγ signaling is critical for the regulation of Golgi integrity.
Collapse
Affiliation(s)
- Kalpana Rajanala
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107, United States of America
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
6
|
Wortzel I, Porat Z. Quantifying Golgi Apparatus Fragmentation Using Imaging Flow Cytometry. Methods Mol Biol 2023; 2635:173-184. [PMID: 37074663 DOI: 10.1007/978-1-0716-3020-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Unlike the common conception of the Golgi apparatus as a static organelle, it is, in fact, a dynamic structure, as well as a sensitive sensor for the cellular status. In response to various stimuli, the intact Golgi structure undergoes fragmentation. This fragmentation can yield either partial fragmentation, resulting in several separated chunks, or complete vesiculation of the organelle. These distinct morphologies form the basis of several methods for the quantification of the Golgi status. In this chapter, we describe our imaging flow cytometry-based method for quantifying changes in the Golgi architecture. This method has all the benefits of imaging flow cytometry-namely, it is rapid, high-throughput, and robust-while affording easy implementation and analysis capabilities.
Collapse
Affiliation(s)
- Inbal Wortzel
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Frye KB, Zhu X, Khodjakov A, Kaverina I. Unbiased Quantification of Golgi Scattering and Golgi-Centrosome Association. Methods Mol Biol 2023; 2557:529-541. [PMID: 36512235 PMCID: PMC9844073 DOI: 10.1007/978-1-0716-2639-9_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The vertebrate Golgi complex is a large dynamic organelle which undergoes morphological changes and fragmentation both as a part of normal physiological dynamics and under disease conditions. The Golgi is known to have a functionally important relationship with the centrosome. The extent of the spatial association between these two organelles varies in a dynamic and regulated manner. It is essential to have a reliable unbiased approach to evaluate Golgi volume, Golgi extension/scattering in the 3D cell space, and spatial association of the Golgi with the centrosome. It is also important that each of these features is evaluated by a simple metric, one measurement per cell, so that the variability and deviations in the cell population can be easily assessed. Here, we present an approach to analyze confocal microscopy image stacks to easily measure Golgi volume, scattering, and association with the centrosome. The approach is based on a custom MATLAB script, provided here as a supplement, and also uses widely available software (ImageJ and/or Imaris). The output of the script is a table with the following parameters: Golgi volume in voxels, Golgi volume in μm3, "Golgi-Golgi" distance (averaged distance between all Golgi voxels), Golgi-centrosome distance (averaged distance between each Golgi voxel and the nearest mother centriole), and centrosome-centrosome distance (for cells with duplicated centrosome, the distance between the mother centrioles). The approach can also be applied to analyze distribution of any fluorescently- labeled structure within a cell and its association with the centrosome or any single point within the cell volume.
Collapse
Affiliation(s)
- Keyada B Frye
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Ayala I, Colanzi A. In Vitro Methods to Investigate the Disassembly of the Golgi Ribbon During the G2-M Transition of the Cell Cycle. Methods Mol Biol 2022; 2557:333-347. [PMID: 36512225 DOI: 10.1007/978-1-0716-2639-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi complex is the central hub of the secretory pathway. In mammalian cells, it is formed by stacks of flattened cisternae organized in a continuous membrane system, the Golgi ribbon, located near the centrosome. During G2, the Golgi ribbon is disassembled into isolated stacks that, at the onset of mitosis, are further fragmented into small tubular-vesicular clusters that disperse throughout the cytoplasm. Here, we describe a set of methods to study the Golgi complex in different phases of the cell cycle, drawing attention to reproducing the mitotic Golgi fragmentation to gain knowledge and acquire the skills to study the mechanisms that regulate mitotic Golgi reorganization as well as its biological significance. The investigations based on these assays have been instrumental in understanding that Golgi disassembly is not only a consequence of mitosis but is also required for mitotic entry and cell division.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
9
|
Kim K, Kim YJ. RhoBTB3 Regulates Proliferation and Invasion of Breast Cancer Cells via Col1a1. Mol Cells 2022; 45:631-639. [PMID: 35698915 PMCID: PMC9448648 DOI: 10.14348/molcells.2022.2037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide, despite medical and technological advancements. The RhoBTB family consists of three isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. RhoBTB1 and RhoBTB2 have been proposed as tumor suppressors in breast cancer. However, the roles of RhoBTB3 proteins are unknown in breast cancer. Bioinformatics analysis, including Oncomine, cBioportal, was used to evaluate the potential functions and prognostic values of RhoBTB3 and Col1a1 in breast cancer. qRT-PCR analysis and immunoblotting assay were performed to investigate relevant expression. Functional experiments including proliferation assay, invasion assay, and flow cytometry assay were conducted to determine the role of RhoBTB3 and Col1a1 in breast cancer cells. RhoBTB3 mRNA levels were significantly up-regulated in breast cancer tissues as compared to in adjacent normal tissues. Moreover, RhoBTB3 expression was found to be associated with Col1a1 expression. Decreasing RhoBTB3 expression may lead to decreases in the proliferative and invasive properties of breast cancer cells. Further, Col1a1 knockdown in breast cancer cells limited the proliferative and invasive ability of cancer cells. Knockdown of RhoBTB3 may exert inhibit the proliferation, migration, and metastasis of breast cancer cells by repressing the expression of Col1a1, providing a novel therapeutic strategy for treating breast cancer.
Collapse
Affiliation(s)
- Kyungho Kim
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Youn-Jae Kim
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
10
|
Ayala I, Colanzi A. Structural Organization and Function of the Golgi Ribbon During Cell Division. Front Cell Dev Biol 2022; 10:925228. [PMID: 35813197 PMCID: PMC9263219 DOI: 10.3389/fcell.2022.925228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
The Golgi complex has a central role in the secretory traffic. In vertebrate cells it is generally organized in polarized stacks of cisternae that are laterally connected by membranous tubules, forming a structure known as Golgi ribbon. The steady state ribbon arrangement results from a dynamic equilibrium between formation and cleavage of the membrane tubules connecting the stacks. This balance is of great physiological relevance as the unlinking of the ribbon during G2 is required for mitotic entry. A block of this process induces a potent G2 arrest of the cell cycle, indicating that a mitotic “Golgi checkpoint” controls the correct pre-mitotic segregation of the Golgi ribbon. Then, after mitosis onset, the Golgi stacks undergo an extensive disassembly, which is necessary for proper spindle formation. Notably, several Golgi-associated proteins acquire new roles in spindle formation and mitotic progression during mitosis. Here we summarize the current knowledge about the basic principle of the Golgi architecture and its functional relationship with cell division to highlight crucial aspects that need to be addressed to help us understand the physiological significance of the ribbon and the pathological implications of alterations of this organization.
Collapse
|
11
|
Ji YM, Zhang KH, Pan ZN, Ju JQ, Zhang HL, Liu JC, Wang Y, Sun SC. High-dose zearalenone exposure disturbs G2/M transition during mouse oocyte maturation. Reprod Toxicol 2022; 110:172-179. [DOI: 10.1016/j.reprotox.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
|
12
|
Mascanzoni F, Iannitti R, Colanzi A. Functional Coordination among the Golgi Complex, the Centrosome and the Microtubule Cytoskeleton during the Cell Cycle. Cells 2022; 11:cells11030354. [PMID: 35159164 PMCID: PMC8834581 DOI: 10.3390/cells11030354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
The Golgi complex of mammalian cells is organized in a ribbon-like structure often closely associated with the centrosome during interphase. Conversely, the Golgi complex assumes a fragmented and dispersed configuration away from the centrosome during mitosis. The structure of the Golgi complex and the relative position to the centrosome are dynamically regulated by microtubules. Many pieces of evidence reveal that this microtubule-mediated dynamic association between the Golgi complex and centrosome is of functional significance in cell polarization and division. Here, we summarize findings indicating how the Golgi complex and the centrosome cooperate in organizing the microtubule network for the directional protein transport and centrosome positioning required for cell polarization and regulating fundamental cell division processes.
Collapse
|
13
|
Tankyrase-1-mediated degradation of Golgin45 regulates glycosyltransferase trafficking and protein glycosylation in Rab2-GTP-dependent manner. Commun Biol 2021; 4:1370. [PMID: 34876695 PMCID: PMC8651787 DOI: 10.1038/s42003-021-02899-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Altered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking. Our study indicates that TNKS1 localization to the Golgi apparatus is mediated by Golgin45. TNKS1-dependent control of Golgin45 protein stability influences protein glycosylation, as shown by Glycomic analysis. Further, FRAP experiments indicated that Golgin45 protein level modulates Golgi glycosyltransferease trafficking in Rab2-GTP-dependent manner. Taken together, these results suggest that TNKS1-dependent regulation of Golgin45 may provide a molecular underpinning for altered glycosylation at the Golgi during development or oncogenic transformation.
Collapse
|
14
|
Štimac I, Jug Vučko N, Blagojević Zagorac G, Marcelić M, Mahmutefendić Lučin H, Lučin P. Dynamin Inhibitors Prevent the Establishment of the Cytomegalovirus Assembly Compartment in the Early Phase of Infection. Life (Basel) 2021; 11:876. [PMID: 34575026 PMCID: PMC8469281 DOI: 10.3390/life11090876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) infection initiates massive rearrangement of cytoplasmic organelles to generate assembly compartment (AC). The earliest events, the establishment of the preAC, are initiated in the early phase as an extensive reorganization of early endosomes (EEs), endosomal recycling compartment (ERC), trans-Golgi network (TGN), and the Golgi. Here, we demonstrate that dynamin inhibitors (Dynasore, Dyngo-4a, MiTMAB, and Dynole-34-2) block the establishment of the preAC in murine CMV (MCMV) infected cells. In this study, we extensively analyzed the effect of Dynasore on the Golgi reorganization sequence into the outer preAC. We also monitored the development of the inner preAC using a set of markers that define EEs (Rab5, Vps34, EEA1, and Hrs), the EE-ERC interface (Rab10), the ERC (Rab11, Arf6), three layers of the Golgi (GRASP65, GM130, Golgin97), and late endosomes (Lamp1). Dynasore inhibited the pericentriolar accumulation of all markers that display EE-ERC-TGN interface in the inner preAC and prevented Golgi unlinking and dislocation to the outer preAC. Furthermore, in pulse-chase experiments, we demonstrated that the presence of dynasore only during the early phase of MCMV infection (4-14 hpi) is sufficient to prevent not only AC formation but also the synthesis of late-phase proteins and virion production. Therefore, our results indicate that dynamin-2 acts as a part of the machinery required for AC generation and rearrangement of EE/ERC/Golgi membranes in the early phase of CMV infection.
Collapse
Affiliation(s)
- Igor Štimac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (I.Š.); (N.J.V.); (G.B.Z.); (M.M.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
15
|
Rajanala K, Klayman LM, Wedegaertner PB. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression. Mol Biol Cell 2021; 32:br2. [PMID: 34260268 PMCID: PMC8684744 DOI: 10.1091/mbc.e21-04-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins (αβγ) function at the cytoplasmic surface of a cell’s plasma membrane to transduce extracellular signals into cellular responses. However, numerous studies indicate that G proteins also play noncanonical roles at unique intracellular locations. Previous work has established that G protein βγ subunits (Gβγ) regulate a signaling pathway on the cytoplasmic surface of Golgi membranes that controls the exit of select protein cargo. Now, we demonstrate a novel role for Gβγ in regulating mitotic Golgi fragmentation, a key checkpoint of the cell cycle that occurs in the late G2 phase. We show that small interfering RNA–mediated depletion of Gβ1 and Gβ2 in synchronized cells causes a decrease in the number of cells with fragmented Golgi in late G2 and a delay of entry into mitosis and progression through G2/M. We also demonstrate that during G2/M Gβγ acts upstream of protein kinase D and regulates the phosphorylation of the Golgi structural protein GRASP55. Expression of Golgi-targeted GRK2ct, a Gβγ-sequestering protein used to inhibit Gβγ signaling, also causes a decrease in Golgi fragmentation and a delay in mitotic progression. These results highlight a novel role for Gβγ in regulation of Golgi structure.
Collapse
Affiliation(s)
- Kalpana Rajanala
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107
| | - Lauren M Klayman
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA 19107
| |
Collapse
|
16
|
Zhang Y, Seemann J. Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure. J Cell Biol 2021; 220:211583. [PMID: 33301566 PMCID: PMC7735681 DOI: 10.1083/jcb.202007052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
17
|
Uhlorn BL, Gamez ER, Li S, Campos SK. Attenuation of cGAS/STING activity during mitosis. Life Sci Alliance 2020; 3:e201900636. [PMID: 32661021 PMCID: PMC7368095 DOI: 10.26508/lsa.201900636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
The innate immune system recognizes cytosolic DNA associated with microbial infections and cellular stress via the cGAS/STING pathway, leading to activation of phospho-IRF3 and downstream IFN-I and senescence responses. To prevent hyperactivation, cGAS/STING is presumed to be nonresponsive to chromosomal self-DNA during open mitosis, although specific regulatory mechanisms are lacking. Given a role for the Golgi in STING activation, we investigated the state of the cGAS/STING pathway in interphase cells with artificially vesiculated Golgi and in cells arrested in mitosis. We find that whereas cGAS activity is impaired through interaction with mitotic chromosomes, Golgi integrity has little effect on the enzyme's production of cGAMP. In contrast, STING activation in response to either foreign DNA (cGAS-dependent) or exogenous cGAMP is impaired by a vesiculated Golgi. Overall, our data suggest a secondary means for cells to limit potentially harmful cGAS/STING responses during open mitosis via natural Golgi vesiculation.
Collapse
Affiliation(s)
- Brittany L Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
| | - Eduardo R Gamez
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Samuel K Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Wu H, Li T, Zhao J. GRASP55: A Multifunctional Protein. Curr Protein Pept Sci 2020; 21:544-552. [DOI: 10.2174/1389203721666200218105302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
GRASP55 was first found as Golgi cisternae stacking protein. Due to the crucial role of
Golgi in vesicular trafficking and protein modification, GRASP55 was found to function in these two
aspects. Further investigation revealed that GRASP55 also participates in the unconventional secretory
pathway under stress. Moreover, GRASP55 is involved in autophagy initiation and autophagosome
maturation, as well as cell activity.
Collapse
Affiliation(s)
- Hongrong Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Tianjiao Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Jianfeng Zhao
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
19
|
Frye K, Renda F, Fomicheva M, Zhu X, Gong L, Khodjakov A, Kaverina I. Cell Cycle-Dependent Dynamics of the Golgi-Centrosome Association in Motile Cells. Cells 2020; 9:cells9051069. [PMID: 32344866 PMCID: PMC7290758 DOI: 10.3390/cells9051069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Here, we characterize spatial distribution of the Golgi complex in human cells. In contrast to the prevailing view that the Golgi compactly surrounds the centrosome throughout interphase, we observe characteristic differences in the morphology of Golgi ribbons and their association with the centrosome during various periods of the cell cycle. The compact Golgi complex is typical in G1; during S-phase, Golgi ribbons lose their association with the centrosome and extend along the nuclear envelope to largely encircle the nucleus in G2. Interestingly, pre-mitotic separation of duplicated centrosomes always occurs after dissociation from the Golgi. Shortly before the nuclear envelope breakdown, scattered Golgi ribbons reassociate with the separated centrosomes restoring two compact Golgi complexes. Transitions between the compact and distributed Golgi morphologies are microtubule-dependent. However, they occur even in the absence of centrosomes, which implies that Golgi reorganization is not driven by the centrosomal microtubule asters. Cells with different Golgi morphology exhibit distinct differences in the directional persistence and velocity of migration. These data suggest that changes in the radial distribution of the Golgi around the nucleus define the extent of cell polarization and regulate cell motility in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Keyada Frye
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Maria Fomicheva
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Lisa Gong
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Correspondence: ; Tel.: +1-615-936-5567
| |
Collapse
|
20
|
The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochem Soc Trans 2020; 48:245-256. [PMID: 32010930 DOI: 10.1042/bst20190646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.
Collapse
|
21
|
Smith EP, Cotto-Rosario A, Borghesan E, Held K, Miller CN, Celli J. Epistatic Interplay between Type IV Secretion Effectors Engages the Small GTPase Rab2 in the Brucella Intracellular Cycle. mBio 2020; 11:e03350-19. [PMID: 32234817 PMCID: PMC7157780 DOI: 10.1128/mbio.03350-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/20/2022] Open
Abstract
Intracellular bacterial pathogens remodel cellular functions during their infectious cycle via the coordinated actions of effector molecules delivered through dedicated secretion systems. While the function of many individual effectors is known, how they interact to promote pathogenesis is rarely understood. The zoonotic bacterium Brucella abortus, the causative agent of brucellosis, delivers effector proteins via its VirB type IV secretion system (T4SS) which mediate biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV). Here, we show that T4SS effectors BspB and RicA display epistatic interactions in Brucella replication. Defects in rBCV biogenesis and Brucella replication caused by deletion of bspB were dependent on the host GTPase Rab2a and suppressed by the deletion of ricA, indicating a role of Rab2-binding effector RicA in these phenotypic defects. Rab2a requirements for rBCV biogenesis and Brucella intracellular replication were abolished upon deletion of both bspB and ricA, demonstrating that the functional interaction of these effectors engages Rab2-dependent transport in the Brucella intracellular cycle. Expression of RicA impaired host secretion and caused Golgi fragmentation. While BspB-mediated changes in ER-to-Golgi transport were independent of RicA and Rab2a, BspB-driven alterations in Golgi vesicular traffic also involved RicA and Rab2a, defining BspB and RicA's functional interplay at the Golgi interface. Altogether, these findings support a model where RicA modulation of Rab2a functions impairs Brucella replication but is compensated by BspB-mediated remodeling of Golgi apparatus-associated vesicular transport, revealing an epistatic interaction between these T4SS effectors.IMPORTANCE Bacterial pathogens with an intracellular lifestyle modulate many host cellular processes to promote their infectious cycle. They do so by delivering effector proteins into host cells via dedicated secretion systems that target specific host functions. While the roles of many individual effectors are known, how their modes of action are coordinated is rarely understood. Here, we show that the zoonotic bacterium Brucella abortus delivers the BspB effector that mitigates the negative effect on bacterial replication that the RicA effector exerts via modulation of the host small GTPase Rab2. These findings provide an example of functional integration between bacterial effectors that promotes proliferation of pathogens.
Collapse
Affiliation(s)
- Erin P Smith
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Alexis Cotto-Rosario
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Elizabeth Borghesan
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Kiara Held
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Cheryl N Miller
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
22
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
23
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
24
|
Ayala I, Crispino R, Colanzi A. GRASP65 controls Golgi position and structure during G2/M transition by regulating the stability of microtubules. Traffic 2019; 20:785-802. [DOI: 10.1111/tra.12682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Inmaculada Ayala
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR) Naples Italy
| | - Roberta Crispino
- Telethon Institute of Genetics and Medicine (TIGEM) Pozzuoli Italy
| | - Antonino Colanzi
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR) Naples Italy
| |
Collapse
|
25
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
26
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ). Front Cell Dev Biol 2019; 7:147. [PMID: 31428612 PMCID: PMC6688108 DOI: 10.3389/fcell.2019.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the trans-Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for Lpaatδ show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the trans-Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
28
|
Mascanzoni F, Ayala I, Colanzi A. Organelle Inheritance Control of Mitotic Entry and Progression: Implications for Tissue Homeostasis and Disease. Front Cell Dev Biol 2019; 7:133. [PMID: 31396510 PMCID: PMC6664238 DOI: 10.3389/fcell.2019.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi complex (GC), in addition to its well-known role in membrane traffic, is also actively involved in the regulation of mitotic entry and progression. In particular, during the G2 phase of the cell cycle, the Golgi ribbon is unlinked into isolated stacks. Importantly, this ribbon cleavage is required for G2/M transition, indicating that a "Golgi mitotic checkpoint" controls the correct segregation of this organelle. Then, during mitosis, the isolated Golgi stacks are disassembled, and this process is required for spindle formation. Moreover, recent evidence indicates that also proper mitotic segregation of other organelles, such as mitochondria, endosomes, and peroxisomes, is required for correct mitotic progression and/or spindle formation. Collectively, these observations imply that in addition to the control of chromosomes segregation, which is required to preserve the genetic information, the cells actively monitor the disassembly and redistribution of subcellular organelles in mitosis. Here, we provide an overview of the major structural reorganization of the GC and other organelles during G2/M transition and of their regulatory mechanisms, focusing on novel findings that have shed light on the basic processes that link organelle inheritance to mitotic progression and spindle formation, and discussing their implications for tissue homeostasis and diseases.
Collapse
Affiliation(s)
| | | | - Antonino Colanzi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
29
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
30
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
32
|
Iwamoto M, Okazaki A, Murata S, Hirukawa M, Miyamoto K, Murata T, Ishikawa E, Yoshida T, Horiuchi T. Peritoneal Dialysis Fluid-Induced Fragmentation of Golgi Apparatus as a Biocompatibility Marker. Artif Organs 2018; 42:E90-E101. [PMID: 29473183 DOI: 10.1111/aor.13092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
In vitro biocompatibility assessments that consider physiologically appropriate conditions of cell exposure to peritoneal dialysis fluids (PDFs) are still awaited. In this study, we found that fragmentation of Golgi apparatus occurred in a pH-dependent manner within 30-min exposure to five distinct commercially available PDFs, which showed no marked difference in their effects on cell viability in the conventional MTT assay. Fluorescence microscopy analysis of labeling antibody against cis-Golgi protein GM130 indicated that the stacked cisternal structure was maintained in the perinuclear area of both M199 culture medium and a neutral-pH PDF groups. However, this specific structure became partially disassembled over time even in a neutral-pH PDF, and fragmentation was markedly enhanced in cells exposed to neutralized-pH PDFs in correspondence with their intracellular pH; moreover, in acidic PDFs, Golgi staining was diffuse and scattered in the entire cytoplasm and showed partial aggregation. The Golgi fragmentation markedly observed with the neutralized PDFs could be reversed by replacing either the media with a neutral-pH medium or a mixture of PDF and PD effluent (PDF) in a gradient manner mimicking clinical conditions. Furthermore, although weaker than pH effect, notable effects of other PDF-related factors were also observed after 30-min exposure to pH-adjusted PDFs. Lastly, the results of studies conducted using MAPK/SAPK inhibitors indicated that the mechanism underlying the Golgi fragmentation described here differs from that associated with the fragmentation that occurs at the G2/M checkpoint in the cell cycle. We conclude that Golgi fragmentation is suitable for rapid biocompatibility assessment of PDF not only because of its strong pH dependence but also because the fragmentation is recognizably affected by PDF constituents.
Collapse
Affiliation(s)
- Masanao Iwamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| | - Alice Okazaki
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| | - Sayaka Murata
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| | - Masaki Hirukawa
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| | - Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| | - Tomohiro Murata
- Department of Blood Purification Therapy, Mie University Hospital, Mie, Japan
| | - Eiji Ishikawa
- Department of Blood Purification Therapy, Mie University Hospital, Mie, Japan
| | - Toshimichi Yoshida
- Department of Pathology, Faculty of Medicine, Mie University, Mie, Japan
| | - Takashi Horiuchi
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Mie, Japan
| |
Collapse
|
33
|
Huang S, Wang Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 2017; 6:2050. [PMID: 29225785 PMCID: PMC5710388 DOI: 10.12688/f1000research.11900.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Ayala I, Colanzi A. Mitotic inheritance of the Golgi complex and its role in cell division. Biol Cell 2017; 109:364-374. [PMID: 28799169 DOI: 10.1111/boc.201700032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
The Golgi apparatus plays essential roles in the processing and sorting of proteins and lipids, but it can also act as a signalling hub and a microtubule-nucleation centre. The Golgi complex (GC) of mammalian cells is composed of stacks connected by tubular bridges to form a continuous membranous system. In spite of this structural complexity, the GC is highly dynamic, and this feature becomes particularly evident during mitosis, when the GC undergoes a multi-step disassembly process that allows its correct partitioning and inheritance by daughter cells. Strikingly, different steps of Golgi disassembly control mitotic entry and progression, indicating that cells actively monitor Golgi integrity during cell division. Here, we summarise the basic mechanisms and the molecular players that are involved in Golgi disassembly, focussing in particular on recent studies that have revealed the fundamental signalling pathways that connect Golgi inheritance to mitotic entry and progression.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| |
Collapse
|
35
|
Calton CM, Bronnimann MP, Manson AR, Li S, Chapman JA, Suarez-Berumen M, Williamson TR, Molugu SK, Bernal RA, Campos SK. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis. PLoS Pathog 2017; 13:e1006200. [PMID: 28463988 PMCID: PMC5412990 DOI: 10.1371/journal.ppat.1006200] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.
Collapse
Affiliation(s)
- Christine M. Calton
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Ariana R. Manson
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Shuaizhi Li
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Janice A. Chapman
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Marcela Suarez-Berumen
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Tatum R. Williamson
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Sudheer K. Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ricardo A. Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Samuel K. Campos
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
36
|
Ferguson S, Steyer AM, Mayhew TM, Schwab Y, Lucocq JM. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput. Histochem Cell Biol 2017; 147:653-669. [PMID: 28429122 PMCID: PMC5429891 DOI: 10.1007/s00418-017-1564-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5–10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell–cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.
Collapse
Affiliation(s)
- Sophie Ferguson
- Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, Fife, KY16 9TF, Scotland, UK
| | - Anna M Steyer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - John Milton Lucocq
- Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, Fife, KY16 9TF, Scotland, UK.
| |
Collapse
|
37
|
Wortzel I, Koifman G, Rotter V, Seger R, Porat Z. High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry. Sci Rep 2017; 7:788. [PMID: 28400563 PMCID: PMC5429768 DOI: 10.1038/s41598-017-00909-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 11/24/2022] Open
Abstract
The Golgi apparatus is a dynamic organelle, which regulates the vesicular trafficking. While cellular trafficking requires active changes of the Golgi membranes, these are not accompanied by changes in the general Golgi’s structure. However, cellular processes such as mitosis, apoptosis and migration require fragmentation of the Golgi complex. Currently, these changes are most commonly studied by basic immunofluorescence and quantified by manual and subjective classification of the Golgi structure in 100–500 stained cells. Several other high-throughput methods exist as well, but those are either complicated or do not provide enough morphological information. Therefore, a simple and informative high content methodology should be beneficial for the study of Golgi architecture. Here we describe the use of high-throughput imaging flow cytometry for quantification of Golgi fragmentation, which provides a simple way to analyze the changes in an automated, quantitative and non-biased manner. Furthermore, it provides a rapid and accurate way to analyze more than 50,000 cells per sample. Our results demonstrate that this method is robust and statistically powerful, thus, providing a much-needed analytical tool for future studies on Golgi dynamics, and can be adapted to other experimental systems.
Collapse
Affiliation(s)
- Inbal Wortzel
- Dept. of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Gabriela Koifman
- Dept. Of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Dept. Of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Rony Seger
- Dept. of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Dept. of Life Sciences Core Facilities, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
38
|
Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 2017; 47:43-51. [PMID: 28390244 DOI: 10.1016/j.ceb.2017.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles required for a variety of cellular processes. Its vital functions include not only processing and sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the cellular state or environmental demands and stress. For instance, its most dramatic change takes place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be detached and positioned at specific cellular locations to gain additional functionalities during differentiation, or fragmented to different degrees along disease progression or upon cell death. Here, we describe the major morphological alterations of Golgi ribbon disassembly under physiological and pathological conditions and discuss the underlying mechanisms that drive these changes.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017; 49:186-201. [DOI: 10.1016/j.tice.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
|
40
|
STK16 regulates actin dynamics to control Golgi organization and cell cycle. Sci Rep 2017; 7:44607. [PMID: 28294156 PMCID: PMC5353726 DOI: 10.1038/srep44607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 11/30/2022] Open
Abstract
STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression.
Collapse
|
41
|
Ayala I, Colanzi A. Alterations of Golgi organization in Alzheimer's disease: A cause or a consequence? Tissue Cell 2016; 49:133-140. [PMID: 27894594 DOI: 10.1016/j.tice.2016.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 11/06/2016] [Indexed: 01/24/2023]
Abstract
The Golgi apparatus is a central organelle of the secretory pathway involved in the post-translational modification and sorting of lipids and proteins. In mammalian cells, the Golgi apparatus is composed of stacks of cisternae organized in polarized manner, which are interconnected by membrane tubules to constitute the Golgi ribbon, located in the proximity of the centrosome. Besides the processing and transport of cargo, the Golgi complex is actively involved in the regulation of mitotic entry, cytoskeleton organization and dynamics, calcium homeostasis, and apoptosis, representing a signalling platform for the control of several cellular functions, including signalling initiated by receptors located at the plasma membrane. Alterations of the conventional Golgi organization are associated to many disorders, such as cancer or different neurodegenerative diseases. In this review, we examine the functional implications of modifications of Golgi structure in neurodegenerative disorders, with a focus on the role of Golgi fragmentation in the development of Alzheimer's disease. The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy.
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
42
|
Villeneuve J, Duran J, Scarpa M, Bassaganyas L, Van Galen J, Malhotra V. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis. Mol Biol Cell 2016; 28:141-151. [PMID: 27807044 PMCID: PMC5221618 DOI: 10.1091/mbc.e16-08-0560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
The question of whether the Golgi complex is a stable compartment or is constantly regenerated from the endoplasmic reticulum (ER) is an important issue under debate. Using an ER trapping procedure and Golgi-specific O-linked glycosylation of a resident ER protein, this study demonstrates that Golgi enzymes do not cycle through the ER during secretion and mitosis. Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi–cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor–mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain–containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.
Collapse
Affiliation(s)
- Julien Villeneuve
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Juan Duran
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Margherita Scarpa
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Laia Bassaganyas
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Josse Van Galen
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Vivek Malhotra
- Cell and Developmental Biology Department, Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003 Barcelona, Spain .,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
43
|
Mitotic Golgi disassembly is required for bipolar spindle formation and mitotic progression. Proc Natl Acad Sci U S A 2016; 113:E6590-E6599. [PMID: 27791030 DOI: 10.1073/pnas.1610844113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During mitosis, the mammalian Golgi vesiculates and, upon partitioning, reassembles in each daughter cell; however, it is not clear whether the disassembly process per se is important for partitioning or is merely an outcome of mitotic entry. Here, we show that Golgi vesiculation is required for progression to metaphase. To prevent Golgi disassembly, we expressed HRP linked to a Golgi-resident protein and acutely triggered the polymerization of 3,3'-diaminobenzidine (DAB) in the Golgi lumen. The DAB polymer does not affect interphase cell viability, but inhibits Golgi fragmentation by nocodazole and brefeldin A and also halts cells in early mitosis. The arrest is Golgi specific and does not occur when DAB is polymerized in the endosomes. Cells with a DAB polymer in the Golgi enter mitosis normally but arrest with an intact Golgi clustered at a monopolar spindle and an active spindle assembly checkpoint (SAC). Mitotic progression is restored upon centrosome depletion by the Polo-like kinase 4 inhibitor, centrinone, indicating that the link between the Golgi and the centrosomes must be dissolved to reach metaphase. These results demonstrate that Golgi disassembly is required for mitotic progression because failure to vesiculate the Golgi activates the canonical SAC. This requirement suggests that cells actively monitor Golgi integrity in mitosis.
Collapse
|
44
|
Pagliuso A, Valente C, Giordano LL, Filograna A, Li G, Circolo D, Turacchio G, Marzullo VM, Mandrich L, Zhukovsky MA, Formiggini F, Polishchuk RS, Corda D, Luini A. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat Commun 2016; 7:12148. [PMID: 27401954 PMCID: PMC4945875 DOI: 10.1038/ncomms12148] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Lucia Laura Giordano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Guiling Li
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Diego Circolo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Manuel Marzullo
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mikhail A. Zhukovsky
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| |
Collapse
|
45
|
CDK-1 Inhibition in G2 Stabilizes Kinetochore-Microtubules in the following Mitosis. PLoS One 2016; 11:e0157491. [PMID: 27281342 PMCID: PMC4900577 DOI: 10.1371/journal.pone.0157491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Cell proliferation is driven by cyclical activation of cyclin-dependent kinases (CDKs), which produce distinct biochemical cell cycle phases. Mitosis (M phase) is orchestrated by CDK-1, complexed with mitotic cyclins. During M phase, chromosomes are segregated by a bipolar array of microtubules called the mitotic spindle. The essential bipolarity of the mitotic spindle is established by the kinesin-5 Eg5, but factors influencing the maintenance of spindle bipolarity are not fully understood. Here, we describe an unexpected link between inhibiting CDK-1 before mitosis and bipolar spindle maintenance. Spindles in human RPE-1 cells normally collapse to monopolar structures when Eg5 is inhibited at metaphase. However, we found that inhibition of CDK-1 in the G2 phase of the cell cycle improved the ability of RPE-1 cells to maintain spindle bipolarity without Eg5 activity in the mitosis immediately after release from CDK-1 inhibition. This improved bipolarity maintenance correlated with an increase in the stability of kinetochore-microtubules, the subset of microtubules that link chromosomes to the spindle. The improvement in bipolarity maintenance after CDK-1 inhibition in G2 required both the kinesin-12 Kif15 and increased stability of kinetochore-microtubules. Consistent with increased kinetochore-microtubule stability, we find that inhibition of CDK-1 in G2 impairs mitotic fidelity by increasing the incidence of lagging chromosomes in anaphase. These results suggest that inhibition of CDK-1 in G2 causes unpredicted effects in mitosis, even after CDK-1 inhibition is relieved.
Collapse
|
46
|
Barretta ML, Spano D, D'Ambrosio C, Cervigni RI, Scaloni A, Corda D, Colanzi A. Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nat Commun 2016; 7:11727. [PMID: 27242098 PMCID: PMC4895030 DOI: 10.1038/ncomms11727] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 04/25/2016] [Indexed: 02/02/2023] Open
Abstract
The Golgi apparatus is composed of stacks of cisternae laterally connected by tubules to form a ribbon-like structure. At the onset of mitosis, the Golgi ribbon is broken down into discrete stacks, which then undergo further fragmentation. This ribbon cleavage is required for G2/M transition, which thus indicates that a ‘Golgi mitotic checkpoint' couples Golgi inheritance with cell cycle transition. We previously showed that the Golgi-checkpoint regulates the centrosomal recruitment of the mitotic kinase Aurora-A; however, how the Golgi unlinking regulates this recruitment was unknown. Here we show that, in G2, Aurora-A recruitment is promoted by activated Src at the Golgi. Our data provide evidence that Src and Aurora-A interact upon Golgi ribbon fragmentation; Src phosphorylates Aurora-A at tyrosine 148 and this specific phosphorylation is required for Aurora-A localization at the centrosomes. This process, pivotal for centrosome maturation, is a fundamental prerequisite for proper spindle formation and chromosome segregation. The Golgi mitotic checkpoint couples Golgi inheritance with cell cycle transition, and regulates centrosomal recruitment of the mitotic kinase Aurora-A. Here the authors show that upon Golgi ribbon fragmentation in G2, Src phosphorylates Aurora-A at the Golgi, driving its localization to the centrosomes.
Collapse
Affiliation(s)
- Maria Luisa Barretta
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, ISPAAM, National Research Council (CNR), Via Argine 1085, 80147 Naples, Italy
| | - Romina Ines Cervigni
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, ISPAAM, National Research Council (CNR), Via Argine 1085, 80147 Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
47
|
Varadarajan R, Ayeni J, Jin Z, Homola E, Campbell SD. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes. Mol Biol Cell 2016; 27:2051-63. [PMID: 27170181 PMCID: PMC4927279 DOI: 10.1091/mbc.e16-02-0104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
Drosophila Myt1 is essential for male fertility. Loss of Myt1 activity causes defective fusomes and premature centriole disengagement during premeiotic G2 phase due to lack of Myt1 inhibition of Cyclin A/Cdk1. These functions are distinct from known roles for Myt1 inhibition of Cyclin B/Cdk1 used to regulate G2/MI timing. Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing.
Collapse
Affiliation(s)
- Ramya Varadarajan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Joseph Ayeni
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zhigang Jin
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Ellen Homola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
48
|
Novel Coronin7 interactions with Cdc42 and N-WASP regulate actin organization and Golgi morphology. Sci Rep 2016; 6:25411. [PMID: 27143109 PMCID: PMC4855144 DOI: 10.1038/srep25411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
The contribution of the actin cytoskeleton to the unique architecture of the Golgi complex is manifold. An important player in this process is Coronin7 (CRN7), a Golgi-resident protein that stabilizes F-actin assembly at the trans-Golgi network (TGN) thereby facilitating anterograde trafficking. Here, we establish that CRN7-mediated association of F-actin with the Golgi apparatus is distinctly modulated via the small Rho GTPase Cdc42 and N-WASP. We identify N-WASP as a novel interaction partner of CRN7 and demonstrate that CRN7 restricts spurious F-actin reorganizations by repressing N-WASP 'hyperactivity' upon constitutive Cdc42 activation. Loss of CRN7 leads to increased cellular F-actin content and causes a concomitant disruption of the Golgi structure. CRN7 harbours a Cdc42- and Rac-interactive binding (CRIB) motif in its tandem β-propellers and binds selectively to GDP-bound Cdc42N17 mutant. We speculate that CRN7 can act as a cofactor for active Cdc42 generation. Mutation of CRIB motif residues that abrogate Cdc42 binding to CRN7 also fail to rescue the cellular defects in fibroblasts derived from CRN7 KO mice. Cdc42N17 overexpression partially rescued the KO phenotypes whereas N-WASP overexpression failed to do so. We conclude that CRN7 spatiotemporally influences F-actin organization and Golgi integrity in a Cdc42- and N-WASP-dependent manner.
Collapse
|
49
|
Miserey-Lenkei S, Colombo MI. Small RAB GTPases Regulate Multiple Steps of Mitosis. Front Cell Dev Biol 2016; 4:2. [PMID: 26925400 PMCID: PMC4756281 DOI: 10.3389/fcell.2016.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis.
Collapse
Affiliation(s)
- Stéphanie Miserey-Lenkei
- Institut Curie, PSL Research University, Molecular Mechanisms of Intracellular Transport Group, CNRS UMR 144 Paris, France
| | - María I Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo Mendoza, Argentina
| |
Collapse
|
50
|
Ayala I, Colanzi A. Assays to Study the Fragmentation of the Golgi Complex During the G2-M Transition of the Cell Cycle. Methods Mol Biol 2016; 1496:173-185. [PMID: 27632010 DOI: 10.1007/978-1-4939-6463-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Golgi complex of mammalian cells is composed of stacks of flattened cisternae that are connected by tubules to form a continuous membrane system, also known as the Golgi ribbon. At the onset of mitosis, the Golgi ribbon is progressively fragmented into small tubular-vesicular clusters and it is reconstituted before completion of cytokinesis. The investigation of the mechanisms behind this reversible cycle of disassembly and reassembly has led to the identification of structural Golgi proteins and regulators. Moreover, these studies allowed to discover that disassembly of the ribbon is necessary for cell entry into mitosis. Here, we describe an in vitro assay that reproduces the mitotic Golgi fragmentation and that has been successfully employed to identify many important mechanisms and proteins involved in the mitotic Golgi reorganization.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council of Italy, Via P. Castellino 111, 80131, Naples, Italy.
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council of Italy, Via P. Castellino 111, 80131, Naples, Italy
| |
Collapse
|