1
|
Bubna-Litic M, Charras G, Mayor R. Tissue mechanics modulate morphogen signalling to induce the head organiser. Cells Dev 2024:203984. [PMID: 39631565 DOI: 10.1016/j.cdev.2024.203984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning. We investigate the interplay between a single molecular input and a mechanical input using the well-established ex vivo system of Activin-induced explants of the mid-blastula X. laevis animal cap ectoderm. Activin alone induces mesoderm to form a complex elongating tissue with axial patterning, making this system similar to gastruloids generated in other model organisms. We observed an increase in the expression of dorsal mesoderm markers, such as chordin and goosecoid, and loss of elongation, in Activin-induced explants that were mechanically stimulated through uniaxial compression during the induction period. In addition, head mesoderm specific markers, including cerberus 1, were also increased. We show that mechanical stimulation leads to an increase in nuclear β-catenin activity. Activation of β-catenin signalling is sufficient to induce head Organiser gene expression. Furthermore, inhibition of β-catenin is sufficient to rescue the effect of compression on an early Wnt-signalling response gene siamois. Taken together these observations support the role of mechanical stimulation in modulating Activin-dependent mesoderm induction in favour of head Organiser formation. Given the conserved role of β-catenin in the dorsal specification and the dynamic morphogenetic movements of dorsal gastrula regions, mechanics-dependent Organiser induction may be found in other vertebrate species. Finally, the finding that mechanical cues affect β-catenin-dependent axial specification can be applied in the future development of more biologically relevant and robust synthetic organoid systems.
Collapse
Affiliation(s)
- Matyas Bubna-Litic
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillaume Charras
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, Gordon St, London WC1H 0AH, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
2
|
Goutam RS, Kumar V, Lee U, Kim J. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae. Mol Cells 2024; 47:100058. [PMID: 38522664 PMCID: PMC11031840 DOI: 10.1016/j.mocell.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
- Laboratory of Regenerative Medicine, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| |
Collapse
|
3
|
Wang C, Liu Z, Zeng Y, Zhou L, Long Q, Hassan IU, Zhang Y, Qi X, Cai D, Mao B, Lu G, Sun J, Yao Y, Deng Y, Zhao Q, Feng B, Zhou Q, Chan WY, Zhao H. ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation. EMBO Rep 2024; 25:646-671. [PMID: 38177922 PMCID: PMC10897318 DOI: 10.1038/s44319-023-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziran Liu
- Qingdao Municipal Center for Disease Control and Prevention, 266033, Qingdao, Shandong, China
| | - Yelin Zeng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Imtiaz Ul Hassan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Bingyu Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, 750004, Yinchuan, China
| | - Yonggang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Zhou
- School of Basic Medical Sciences, Harbin Medical University, 150081, Harbin, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Eroshkin FM, Fefelova EA, Bredov DV, Orlov EE, Kolyupanova NM, Mazur AM, Sokolov AS, Zhigalova NA, Prokhortchouk EB, Nesterenko AM, Zaraisky AG. Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues. Int J Mol Sci 2024; 25:870. [PMID: 38255964 PMCID: PMC10815341 DOI: 10.3390/ijms25020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
During gastrulation and neurulation, the chordamesoderm and overlying neuroectoderm of vertebrate embryos converge under the control of a specific genetic programme to the dorsal midline, simultaneously extending along it. However, whether mechanical tensions resulting from these morphogenetic movements play a role in long-range feedback signaling that in turn regulates gene expression in the chordamesoderm and neuroectoderm is unclear. In the present work, by using a model of artificially stretched explants of Xenopus midgastrula embryos and full-transcriptome sequencing, we identified genes with altered expression in response to external mechanical stretching. Importantly, mechanically activated genes appeared to be expressed during normal development in the trunk, i.e., in the stretched region only. By contrast, genes inhibited by mechanical stretching were normally expressed in the anterior neuroectoderm, where mechanical stress is low. These results indicate that mechanical tensions may play the role of a long-range signaling factor that regulates patterning of the embryo, serving as a link coupling morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Fedor M. Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Elena A. Fefelova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Denis V. Bredov
- Laboratory of Development Biophysics, Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugeny E. Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Nataliya M. Kolyupanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander M. Mazur
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Alexey S. Sokolov
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Nadezhda A. Zhigalova
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Egor B. Prokhortchouk
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Alexey M. Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- Federal Center of Brain Research and Biotechnologies of Federal Medical-Biological Agency, 1 Build 10 Ostrovityanova Str., 117513 Moscow, Russia
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, 1 Build 70 Ostrovityanova Str., 117513 Moscow, Russia
| |
Collapse
|
5
|
MacColl Garfinkel A, Mnatsakanyan N, Patel JH, Wills AE, Shteyman A, Smith PJS, Alavian KN, Jonas EA, Khokha MK. Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus. Dev Cell 2023; 58:2597-2613.e4. [PMID: 37673063 PMCID: PMC10840693 DOI: 10.1016/j.devcel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.
Collapse
Affiliation(s)
- Alexandra MacColl Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeet H Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Shteyman
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Peter J S Smith
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Kumar V, Umair Z, Lee U, Kim J. Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos. Cells 2023; 12:cells12060874. [PMID: 36980215 PMCID: PMC10047115 DOI: 10.3390/cells12060874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The reciprocal inhibition between two signaling centers, the Spemann organizer (dorsal mesoderm) and ventral region (mesoderm and ectoderm), collectively regulate the overall development of vertebrate embryos. Each center expresses key homeobox transcription factors (TFs) that directly control target gene transcription. Goosecoid (Gsc) is an organizer (dorsal mesoderm)-specific TF known to induce dorsal fate and inhibit ventral/ectodermal specification. Ventx1.1 (downstream of Bmp signaling) induces the epidermal lineage and inhibits dorsal organizer-specific genes from the ventral region. Chordin (Chrd) is an organizer-specific secreted Bmp antagonist whose expression is primarily activated by Gsc. Alternatively, chrd expression is repressed by Bmp/Ventx1.1 in the ventral/epidermal region. However, the regulatory mechanisms underlying the transcription mediated by Gsc and Ventx1.1 remain elusive. Here, we found that the chrd promoter contained two cis-acting response elements that responded negatively to Ventx1.1 and positively to Gsc. In the ventral/ectodermal region, Ventx1.1 was directly bound to the Ventx1.1 response element (VRE) and inhibited chrd transcription. In the organizer region, Gsc was bound to the Gsc response elements (GRE) to activate chrd transcription. The Gsc-mediated positive response on the chrd promoter completely depended on another adjacent Wnt response cis-acting element (WRE), which was the TCF7 (also known as Tcf1) binding element. Site-directed mutagenesis of VRE, GRE, or WRE completely abolished the repressive or activator activity of Ventx1.1 and Gsc, respectively. The ChIP-PCR results confirmed the direct binding of Ventx1.1 and Gsc/Tcf7 to VRE and GRE/WRE, respectively. These results demonstrated that chrd expression is oppositely modulated by homeobox TFs, Ventx1.1, and Gsc/Tcf7 during the embryonic patterning of Xenopus gastrula.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2354 (U.L.); +82-33-248-2544 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2354 (U.L.); +82-33-248-2544 (J.K.)
| |
Collapse
|
7
|
Gipson GR, Nolan K, Kattamuri C, Kenny AP, Agricola Z, Edwards NA, Zinski J, Czepnik M, Mullins MC, Zorn AM, Thompson TB. Formation and characterization of BMP2/GDF5 and BMP4/GDF5 heterodimers. BMC Biol 2023; 21:16. [PMID: 36726183 PMCID: PMC9893541 DOI: 10.1186/s12915-023-01522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Proteins of the TGFβ family, which are largely studied as homodimers, are also known to form heterodimers with biological activity distinct from their component homodimers. For instance, heterodimers of bone morphogenetic proteins, including BMP2/BMP7, BMP2/BMP6, and BMP9/BMP10, among others, have illustrated the importance of these heterodimeric proteins within the context of TGFβ signaling. RESULTS In this study, we have determined that mature GDF5 can be combined with mature BMP2 or BMP4 to form BMP2/GDF5 and BMP4/GDF5 heterodimer. Intriguingly, this combination of a BMP2 or BMP4 monomer, which exhibit high affinity to heparan sulfate characteristic to the BMP class, with a GDF5 monomer with low heparan sulfate affinity produces a heterodimer with an intermediate affinity. Using heparin affinity chromatography to purify the heterodimeric proteins, we then determined that both the BMP2/GDF5 and BMP4/GDF5 heterodimers consistently signaled potently across an array of cellular and in vivo systems, while the activities of their homodimeric counterparts were more context dependent. These differences were likely driven by an increase in the combined affinities for the type 1 receptors, Alk3 and Alk6. Furthermore, the X-ray crystal structure of BMP2/GDF5 heterodimer was determined, highlighting the formation of two asymmetric type 1 receptor binding sites that are both unique relative to the homodimers. CONCLUSIONS Ultimately, this method of heterodimer production yielded a signaling molecule with unique properties relative to the homodimeric ligands, including high affinity to multiple type 1 and moderate heparan binding affinity.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kristof Nolan
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Chandramohan Kattamuri
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alan P Kenny
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zachary Agricola
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole A Edwards
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Magdalena Czepnik
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Zorn
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas B Thompson
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Nakayama J, Makinoshima H, Gong Z. Gastrulation Screening to Identify Anti-metastasis Drugs in Zebrafish Embryos. Bio Protoc 2022; 12:e4525. [PMID: 36313195 PMCID: PMC9548519 DOI: 10.21769/bioprotoc.4525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
Few models exist that allow for rapid and effective screening of anti-metastasis drugs. Here, we present a drug screening protocol utilizing gastrulation of zebrafish embryos for identification of anti-metastasis drugs. Based on the evidence that metastasis proceeds through utilizing the molecular mechanisms of gastrulation, we hypothesized that chemicals interrupting zebrafish gastrulation might suppress the metastasis of cancer cells. Thus, we developed a phenotype-based chemical screen that uses epiboly, the first morphogenetic movement in gastrulation, as a marker. The screen only needs zebrafish embryos and enables hundreds of chemicals to be tested in five hours by observing the epiboly progression of chemical-treated embryos. In the screen, embryos at the two-cell stage are firstly corrected and then developed to the sphere stage. The embryos are treated with a test chemical and incubated in the presence of the chemical until vehicle-treated embryos develop to the 90% epiboly stage. Finally, positive 'hit' chemicals that interrupt epiboly progression are selected by comparing epiboly progression of the chemical-treated and vehicle-treated embryos under a stereoscopic microscope. A previous study subjected 1,280 FDA-approved drugs to the screen and identified adrenosterone and pizotifen as epiboly-interrupting drugs. These were validated to suppress metastasis of breast cancer cells in mice models of metastasis. Furthermore, 11β-hydroxysteroid dehydrogenase 1 (HSD11β1) and serotonin receptor 2C (HTR2C), the primary targets of adrenosterone and pizotifen, respectively, promoted metastasis through induction of epithelial-mesenchymal transition (EMT). Therefore, this screen could be converted into a chemical genetic screening platform for identification of metastasis-promoting genes. Graphical abstract.
Collapse
Affiliation(s)
- Joji Nakayama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
,
Shonai Regional Industry Promotion Center, Tsuruoka, Japan
,
Department of Biological Science, National University of Singapore, Singapore
,
*For correspondence:
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
,
Division of Translational Research, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, Singapore
| |
Collapse
|
9
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
10
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
11
|
Nakayama J, Tan L, Li Y, Goh BC, Wang S, Makinoshima H, Gong Z. A zebrafish embryo screen utilizing gastrulation identifies the HTR2C inhibitor pizotifen as a suppressor of EMT-mediated metastasis. eLife 2021; 10:e70151. [PMID: 34919051 PMCID: PMC8824480 DOI: 10.7554/elife.70151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Metastasis is responsible for approximately 90% of cancer-associated mortality but few models exist that allow for rapid and effective screening of anti-metastasis drugs. Current mouse models of metastasis are too expensive and time consuming to use for rapid and high-throughput screening. Therefore, we created a unique screening concept utilizing conserved mechanisms between zebrafish gastrulation and cancer metastasis for identification of potential anti-metastatic drugs. We hypothesized that small chemicals that interrupt zebrafish gastrulation might also suppress metastatic progression of cancer cells and developed a phenotype-based chemical screen to test the hypothesis. The screen used epiboly, the first morphogenetic movement in gastrulation, as a marker and enabled 100 chemicals to be tested in 5 hr. The screen tested 1280 FDA-approved drugs and identified pizotifen, an antagonist for serotonin receptor 2C (HTR2C) as an epiboly-interrupting drug. Pharmacological and genetic inhibition of HTR2C suppressed metastatic progression in a mouse model. Blocking HTR2C with pizotifen restored epithelial properties to metastatic cells through inhibition of Wnt signaling. In contrast, HTR2C induced epithelial-to-mesenchymal transition through activation of Wnt signaling and promoted metastatic dissemination of human cancer cells in a zebrafish xenotransplantation model. Taken together, our concept offers a novel platform for discovery of anti-metastasis drugs.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
| | - Lora Tan
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Yan Li
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Shu Wang
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- Institute of Bioengineering and NanotechnologySingaporeSingapore
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer CenterKashiwaJapan
| | - Zhiyuan Gong
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
13
|
Umair Z, Kumar V, Goutam RS, Kumar S, Lee U, Kim J. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos. Mol Cells 2021; 44:723-735. [PMID: 34711690 PMCID: PMC8560583 DOI: 10.14348/molcells.2021.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.
Collapse
Affiliation(s)
- Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
14
|
Kumar V, Goutam RS, Umair Z, Park S, Lee U, Kim J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021; 10:cells10102779. [PMID: 34685759 PMCID: PMC8534798 DOI: 10.3390/cells10102779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Correspondence: (U.L.); (J.K.)
| |
Collapse
|
15
|
DeJong CS, Dichmann DS, Exner CRT, Xu Y, Harland RM. The atypical RNA-binding protein Taf15 regulates dorsoanterior neural development through diverse mechanisms in Xenopus tropicalis. Development 2021; 148:271175. [PMID: 34345915 DOI: 10.1242/dev.191619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.
Collapse
Affiliation(s)
- Caitlin S DeJong
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Darwin S Dichmann
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Satou-Kobayashi Y, Kim JD, Fukamizu A, Asashima M. Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment. Sci Rep 2021; 11:14537. [PMID: 34267234 PMCID: PMC8282838 DOI: 10.1038/s41598-021-93524-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Activin, a member of the transforming growth factor-β (TGF-β) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann's organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.
Collapse
Affiliation(s)
- Yumeko Satou-Kobayashi
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Jun-Dal Kim
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan ,grid.267346.20000 0001 2171 836XDivision of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Akiyoshi Fukamizu
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Makoto Asashima
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| |
Collapse
|
17
|
Kumar S, Umair Z, Kumar V, Kumar S, Lee U, Kim J. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos. Sci Rep 2020; 10:16780. [PMID: 33033315 PMCID: PMC7545198 DOI: 10.1038/s41598-020-73662-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
18
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
19
|
Kumar S, Umair Z, Kumar V, Lee U, Choi SC, Kim J. Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression. BMB Rep 2020. [PMID: 31068250 PMCID: PMC6605524 DOI: 10.5483/bmbrep.2019.52.6.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5′-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
20
|
Kurrle Y, Kunesch K, Bogusch S, Schweickert A. Serotonin and MucXS release by small secretory cells depend on
Xpod
, a SSC specific marker gene. Genesis 2019; 58:e23344. [DOI: 10.1002/dvg.23344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yvonne Kurrle
- Institute of ZoologyUniversity of Hohenheim Stuttgart Germany
| | | | - Susanne Bogusch
- Institute of ZoologyUniversity of Hohenheim Stuttgart Germany
| | | |
Collapse
|
21
|
Sena E, Rocques N, Borday C, Amin HSM, Parain K, Sitbon D, Chesneau A, Durand BC. Barhl2 maintains T-cell factors as repressors, and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation. Development 2019; 146:dev.173112. [DOI: 10.1242/dev.173112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of Wnt/β-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in β-Catenin, which detaches the transcription factor T-cell Factor-7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/β-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/β-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Nathalie Rocques
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Caroline Borday
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Harem Sabr Muhamad Amin
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Béatrice C. Durand
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| |
Collapse
|
22
|
Yasuoka Y, Tando Y, Kubokawa K, Taira M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. ZOOLOGICAL LETTERS 2019; 5:27. [PMID: 31388442 PMCID: PMC6679436 DOI: 10.1186/s40851-019-0143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/12/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND In cephalochordates (amphioxus), the notochord runs along the dorsal to the anterior tip of the body. In contrast, the vertebrate head is formed anterior to the notochord, as a result of head organizer formation in anterior mesoderm during early development. A key gene for the vertebrate head organizer, goosecoid (gsc), is broadly expressed in the dorsal mesoderm of amphioxus gastrula. Amphioxus gsc expression subsequently becomes restricted to the posterior notochord from the early neurula. This has prompted the hypothesis that a change in expression patterns of gsc led to development of the vertebrate head during chordate evolution. However, molecular mechanisms of head organizer evolution involving gsc have never been elucidated. RESULTS To address this question, we compared cis-regulatory modules of vertebrate organizer genes between amphioxus, Branchiostoma japonicum, and frogs, Xenopus laevis and Xenopus tropicalis. Here we show conservation and diversification of gene regulatory mechanisms through cis-regulatory modules for gsc, lim1/lhx1, and chordin in Branchiostoma and Xenopus. Reporter analysis using Xenopus embryos demonstrates that activation of gsc by Nodal/FoxH1 signal through the 5' upstream region, that of lim1 by Nodal/FoxH1 signal through the first intron, and that of chordin by Lim1 through the second intron, are conserved between amphioxus and Xenopus. However, activation of gsc by Lim1 and Otx through the 5' upstream region in Xenopus are not conserved in amphioxus. Furthermore, the 5' region of amphioxus gsc recapitulated the amphioxus-like posterior mesoderm expression of the reporter gene in transgenic Xenopus embryos. CONCLUSIONS On the basis of this study, we propose a model, in which the gsc gene acquired the cis-regulatory module bound with Lim1 and Otx at its 5' upstream region to be activated persistently in anterior mesoderm, in the vertebrate lineage. Because Gsc globally represses trunk (notochord) genes in the vertebrate head organizer, this cooption of gsc in vertebrates appears to have resulted in inhibition of trunk genes and acquisition of the head organizer and its derivative prechordal plate.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Tando
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kaoru Kubokawa
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: SIRC, Teikyo University, 2-11-1, Itabashi-ku, Tokyo, 173-8605 Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present address: Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan
| |
Collapse
|
23
|
Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. Development 2018; 145:dev.159368. [PMID: 29866901 DOI: 10.1242/dev.159368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase 3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina.,Aix Marseille Université, CNRS, IBDM, 13288 Marseille, France
| | - Paula I Encinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - María Verónica Baez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Renato J Monti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Mateo Rodríguez Abinal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| |
Collapse
|
24
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
25
|
Abstract
The creation of mutant lines by genome editing is accelerating genetic analysis in many organisms. CRISPR/Cas9 methods have been adapted for use in the African clawed frog, Xenopus, a longstanding model organism for biomedical research. Traditional breeding schemes for creating homozygous mutant lines with CRISPR/Cas9-targeted mutagenesis have several time-consuming and laborious steps. To facilitate the creation of mutant embryos, particularly to overcome the obstacles associated with knocking out genes that are essential for embryogenesis, a new method called leapfrogging was developed. This technique leverages the robustness of Xenopus embryos to "cut and paste" embryological methods. Leapfrogging utilizes the transfer of primordial germ cells (PGCs) from efficiently-mutagenized donor embryos into PGC-ablated wildtype siblings. This method allows for the efficient mutation of essential genes by creating chimeric animals with wildtype somatic cells that carry a mutant germline. When two F0 animals carrying "leapfrog transplants" (i.e., mutant germ cells) are intercrossed, they produce homozygous, or compound heterozygous, null F1 embryos, thus saving a full generation time to obtain phenotypic data. Leapfrogging also provides a new approach for analyzing maternal effect genes, which are refractory to F0 phenotypic analysis following CRISPR/Cas9 mutagenesis. This manuscript details the method of leapfrogging, with special emphasis on how to successfully perform PGC transplantation.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine;
| |
Collapse
|
26
|
Wu B, Gao H, Le Y, Wu X, Zhu Z. Xom induces proteolysis of β-catenin through GSK3β-mediated pathway. FEBS Lett 2017; 592:299-309. [PMID: 29251764 DOI: 10.1002/1873-3468.12949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Abstract
The dorsal cell fate determination factor β-catenin and its antagonist, the ventral cell fate determination factor Xom, are expressed and distributed in a polarized fashion during early vertebrate embryogenesis. Ubiquitin-mediated proteolysis has been shown to control the abundance of both β-catenin and Xom. However, the mechanism of ubiquitin-mediated proteolysis in regulating dorsoventral patterning remains largely unclear. Our current study shows that Xom induces proteolysis of β-catenin through GSK3-mediated phosphorylation of Ser33/37 of β-catenin. Our findings reveal a novel pathway that regulates β-catenin stability, and suggest, for the first time, a critical function of ubiquitin-mediated proteolysis in balancing the integration of dorsal-ventral signals and the polarized distribution of β-catenin and Xom during dorsoventral axis formation.
Collapse
Affiliation(s)
- Bin Wu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong Gao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Yi Le
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Wu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Scerbo P, Marchal L, Kodjabachian L. Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2. eLife 2017; 6. [PMID: 28654420 PMCID: PMC5487210 DOI: 10.7554/elife.21526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
During early embryogenesis, cells must exit pluripotency and commit to multiple lineages in all germ-layers. How this transition is operated in vivo is poorly understood. Here, we report that MEK1 and the Nanog-related transcription factor Ventx2 coordinate this transition. MEK1 was required to make Xenopus pluripotent cells competent to respond to all cell fate inducers tested. Importantly, MEK1 activity was necessary to clear the pluripotency protein Ventx2 at the onset of gastrulation. Thus, concomitant MEK1 and Ventx2 knockdown restored the competence of embryonic cells to differentiate. Strikingly, MEK1 appeared to control the asymmetric inheritance of Ventx2 protein following cell division. Consistently, when Ventx2 lacked a functional PEST-destruction motif, it was stabilized, displayed symmetric distribution during cell division and could efficiently maintain pluripotency gene expression over time. We suggest that asymmetric clearance of pluripotency regulators may represent an important mechanism to ensure the progressive assembly of primitive embryonic tissues. DOI:http://dx.doi.org/10.7554/eLife.21526.001
Collapse
Affiliation(s)
- Pierluigi Scerbo
- Institut de Biologie du Développement de Marseille, Aix Marseille Univ, CNRS, Marseille, France
| | - Leslie Marchal
- Institut de Biologie du Développement de Marseille, Aix Marseille Univ, CNRS, Marseille, France
| | - Laurent Kodjabachian
- Institut de Biologie du Développement de Marseille, Aix Marseille Univ, CNRS, Marseille, France
| |
Collapse
|
28
|
Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev Biol 2017; 426:301-324. [DOI: 10.1016/j.ydbio.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
29
|
Traylor-Knowles N, Rose NH, Sheets EA, Palumbi SR. Early Transcriptional Responses during Heat Stress in the Coral Acropora hyacinthus. THE BIOLOGICAL BULLETIN 2017; 232:91-100. [PMID: 28654330 DOI: 10.1086/692717] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Corals respond to heat pulses that cause bleaching with massive transcriptional change, but the immediate responses to stress that lead up to these shifts have never been detailed. Understanding these early signals could be important for identifying the regulatory mechanisms responsible for bleaching and how these mechanisms vary between more and less resilient corals. Using RNA sequencing (RNAseq) and sampling every 30 minutes during a short-term heat shock, we found that components of the transcriptome were significantly upregulated within 90 min and after a temperature increase of +2 °C. The developmental transcription factor, Krüppel-like factor 7, was highly expressed within 60 min, and stress-related transcription factors such as Elk-3 were highly expressed starting at 240 min. The sets of genes enriched for early transcriptional response to heat stress included heat shock proteins, small GTPases, and proteasome genes. Retrovirus-related Pol polyproteins from transposons were significantly expressed throughout the whole experiment. Lastly, we propose a model for early transcriptional regulation of protein degradation and cell adhesion response that may ultimately lead to the bleaching and stress response.
Collapse
|
30
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
32
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
33
|
The proteins of Vent-family and their mRNAs are located in different areas of the tails of Zebrafish and Xenopus embryos. Int J Biochem Cell Biol 2016; 79:388-392. [DOI: 10.1016/j.biocel.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
|
34
|
Blitz IL, Fish MB, Cho KWY. Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes. Development 2016; 143:2868-75. [PMID: 27385011 PMCID: PMC5004912 DOI: 10.1242/dev.138057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 01/07/2023]
Abstract
CRISPR/Cas9 genome editing is revolutionizing genetic loss-of-function analysis but technical limitations remain that slow progress when creating mutant lines. First, in conventional genetic breeding schemes, mosaic founder animals carrying mutant alleles are outcrossed to produce F1 heterozygotes. Phenotypic analysis occurs in the F2 generation following F1 intercrosses. Thus, mutant analyses will require multi-generational studies. Second, when targeting essential genes, efficient mutagenesis of founders is often lethal, preventing the acquisition of mature animals. Reducing mutagenesis levels may improve founder survival, but results in lower, more variable rates of germline transmission. Therefore, an efficient approach to study lethal mutations would be useful. To overcome these shortfalls, we introduce 'leapfrogging', a method combining efficient CRISPR mutagenesis with transplantation of mutated primordial germ cells into a wild-type host. Tested using Xenopus tropicalis, we show that founders containing transplants transmit mutant alleles with high efficiency. F1 offspring from intercrosses between F0 animals that carry embryonic lethal alleles recapitulate loss-of-function phenotypes, circumventing an entire generation of breeding. We anticipate that leapfrogging will be transferable to other species.
Collapse
Affiliation(s)
- Ira L Blitz
- 4410 Natural Sciences Building 2, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Margaret B Fish
- 4410 Natural Sciences Building 2, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- 4410 Natural Sciences Building 2, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
36
|
Suzuki DG, Fukumoto Y, Yoshimura M, Yamazaki Y, Kosaka J, Kuratani S, Wada H. Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head. ZOOLOGICAL LETTERS 2016; 2:10. [PMID: 27081572 PMCID: PMC4831119 DOI: 10.1186/s40851-016-0046-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/06/2016] [Indexed: 05/16/2023]
Abstract
The ancestral configuration of the vertebrate head has long been an intriguing topic in comparative morphology and evolutionary biology. One peculiar component of the vertebrate head is the presence of extra-ocular muscles (EOMs), the developmental mechanism and evolution of which remain to be determined. The head mesoderm of elasmobranchs undergoes local epithelialization into three head cavities, precursors of the EOMs. In contrast, in avians, these muscles appear to develop mainly from the mesenchymal head mesoderm. Importantly, in the basal vertebrate lamprey, the head mesoderm does not show overt head cavities or signs of segmental boundaries, and the development of the EOMs is not well described. Furthermore, the disposition of the lamprey EOMs differs from those the rest of vertebrates, in which the morphological pattern of EOMs is strongly conserved. To better understand the evolution and developmental origins of the vertebrate EOMs, we explored the development of the head mesoderm and EOMs of the lamprey in detail. We found that the disposition of lamprey EOM primordia differed from that in gnathostomes, even during the earliest period of development. We also found that three components of the paraxial head mesoderm could be distinguished genetically (premandibular mesoderm: Gsc+/TbxA-; mandibular mesoderm: Gsc-/TbxA-; hyoid mesoderm: Gsc-/TbxA+), indicating that the genetic mechanisms of EOMs are conserved in all vertebrates. We conclude that the tripartite developmental origin of the EOMs is likely to have been possessed by the latest common ancestor of the vertebrates. This ancestor's EOM developmental pattern was also suggested to have resembled more that of the lamprey, and the gnathostome EOMs' disposition is likely to have been established by a secondary modification that took place in the common ancestor of crown gnathostomes.
Collapse
Affiliation(s)
- Daichi G. Suzuki
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yuma Fukumoto
- />Laboratory for Evolutionary Morphology, RIKEN, Kobe, 650-0047 Japan
- />Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
- />Sumitomo Besshi Hospital, 3-1 Oji-cho, Niihama, Ehime 792-8543 Japan
| | - Miho Yoshimura
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yuji Yamazaki
- />Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan
| | - Jun Kosaka
- />Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
- />Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501 Japan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, Kobe, 650-0047 Japan
| | - Hiroshi Wada
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
37
|
Zhang S, Li J, Lea R, Vleminckx K, Amaya E. Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development. Development 2015; 141:4794-805. [PMID: 25468942 PMCID: PMC4299278 DOI: 10.1242/dev.115691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain regionalisation, neuronal subtype diversification and circuit connectivity are crucial events in the establishment of higher cognitive functions. Here we report the requirement for the transcriptional repressor Fezf2 for proper differentiation of neural progenitor cells during the development of the Xenopus forebrain. Depletion of Fezf2 induces apoptosis in postmitotic neural progenitors, with concomitant reduction in forebrain size and neuronal differentiation. Mechanistically, we found that Fezf2 stimulates neuronal differentiation by promoting Wnt/β-catenin signalling in the developing forebrain. In addition, we show that Fezf2 promotes activation of Wnt/β-catenin signalling by repressing the expression of two negative regulators of Wnt signalling, namely lhx2 and lhx9. Our findings suggest that Fezf2 plays an essential role in controlling when and where neuronal differentiation occurs within the developing forebrain and that it does so by promoting local Wnt/β-catenin signalling via a double-repressor model.
Collapse
Affiliation(s)
- Siwei Zhang
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jingjing Li
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kris Vleminckx
- Department for Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Enrique Amaya
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
38
|
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Nat Commun 2014; 5:4322. [PMID: 25005894 DOI: 10.1038/ncomms5322] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/06/2014] [Indexed: 12/11/2022] Open
Abstract
Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.
Collapse
|
39
|
Schlosser G. Early embryonic specification of vertebrate cranial placodes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:349-63. [PMID: 25124756 DOI: 10.1002/wdev.142] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Cranial placodes contribute to many sensory organs and ganglia of the vertebrate head. The olfactory, otic, and lateral line placodes form the sensory receptor cells and neurons of the nose, ear, and lateral line system; the lens placode develops into the lens of the eye; epibranchial, profundal, and trigeminal placodes contribute sensory neurons to cranial nerve ganglia; and the adenohypophyseal placode gives rise to the anterior pituitary, a major endocrine control organ. Despite these differences in fate, all placodes are now known to originate from a common precursor, the preplacodal ectoderm (PPE). The latter is a horseshoe-shaped domain of ectoderm surrounding the anterior neural plate and neural crest and is defined by expression of transcription factor Six1, its cofactor Eya1, and other members of the Six and Eya families. Studies in zebrafish, Xenopus, and chick reveal that the PPE is specified together with other ectodermal territories (epidermis, neural crest, and neural plate) during early embryogenesis. During gastrulation, domains of ventrally (e.g., Dlx3/Dlx5, GATA2/GATA3, AP2, Msx1, FoxI1, and Vent1/Vent2) and dorsally (e.g., Zic1, Sox3, and Geminin) restricted transcription factors are established in response to a gradient of BMP and help to define non-neural and neural competence territories, respectively. At neural plate stages, the PPE is then induced in the non-neural competence territory by signals from the adjacent neural plate and mesoderm including FGF, BMP inhibitors, and Wnt inhibitors. Subsequently, signals from more localized signaling centers induce restricted expression domains of various transcription factors within the PPE, which specify multiplacodal areas and ultimately individual placodes. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
40
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hu J, Sun S, Jiang Q, Sun S, Wang W, Gui Y, Song H. Yes-associated protein (yap) is required for early embryonic development in zebrafish (danio rerio). Int J Biol Sci 2013; 9:267-78. [PMID: 23494967 PMCID: PMC3596712 DOI: 10.7150/ijbs.4887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/26/2013] [Indexed: 11/11/2022] Open
Abstract
The hippo (Hpo) signaling pathway plays a critical role in regulation of organ size. The kinase cascade ultimately antagonizes the transcriptional co-activator Yki/YAP, which is a key regulator of cell proliferation and apoptosis. In this study, we performed a knocking down study using antisense morpholino (MO) reagents and found that zebrafish YAP, a key transcriptional co-activator of Hpo pathway, plays a critical role in early embryonic development. At the cellular level, yap inhibition increases apoptosis and decreases cell proliferation. Reduction of yap function severely delays several developmental events, including gastrulation, cardiogenesis and hematopoiesis. Knockdown of yap showed some evidence of ventralization, including reduction of dorsally expressed marker goosecoid (gsc), expansion of ventral marker gata2, disruption of the somites, and reduction in head size. Finally, we performed a preliminary analysis with real-time polymerase chain reaction (qPCR) for the candidate targets of zebrafish Hpo pathway. In conclusion, our results revealed that zebrafish yap coordinately regulates cell proliferation and apoptosis and is required for dorsoventral axis formation, gastrulation, cardiogenesis, hematopoiesis, and somitogenesis.
Collapse
Affiliation(s)
- Jingying Hu
- Department of Biochemistry and Molecular Biology, Shanghai Medical School and Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
43
|
De Ingeniis J, Ratnikov B, Richardson AD, Scott DA, Aza-Blanc P, De SK, Kazanov M, Pellecchia M, Ronai Z, Osterman AL, Smith JW. Functional specialization in proline biosynthesis of melanoma. PLoS One 2012; 7:e45190. [PMID: 23024808 PMCID: PMC3443215 DOI: 10.1371/journal.pone.0045190] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of (13)C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.
Collapse
Affiliation(s)
- Jessica De Ingeniis
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Boris Ratnikov
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Adam D. Richardson
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - David A. Scott
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Pedro Aza-Blanc
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Surya K. De
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Marat Kazanov
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Maurizio Pellecchia
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ze'ev Ronai
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrei L. Osterman
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeffrey W. Smith
- Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
44
|
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS One 2012; 7:e36855. [PMID: 22606298 PMCID: PMC3351468 DOI: 10.1371/journal.pone.0036855] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/10/2012] [Indexed: 11/23/2022] Open
Abstract
Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.
Collapse
|
45
|
Liu C, Goswami M, Talley J, Chesser-Martinez PL, Lou CH, Sater AK. TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network. Differentiation 2012; 83:210-9. [PMID: 22387344 DOI: 10.1016/j.diff.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 12/05/2011] [Accepted: 12/31/2011] [Indexed: 01/22/2023]
Abstract
FGFs and BMPs act in concert to regulate a wide range of processes in vertebrate development. In most cases, FGFs and BMPs have opposing effects, and specific developmental outcomes arise out of a balance between the two growth factors. We and others have previously demonstrated that signaling pathways activated by FGFs and BMPs interact via inhibitory crosstalk. Here we demonstrate a role for the BMP effector TGF-β Activated Kinase 1 (TAK1) in the maintenance of Smad1 activity in Xenopus embryos, via the inhibition of erk MAPK. Up- or downregulation of TAK1 levels produces an inverse alteration in the amount of activated erk MAPK. The inhibition of erk MAPK by TAK1 is mediated by p38 and a corresponding decrease in phosphorylation of MEK. TAK1 morphant embryos show a decrease in the nuclear accumulation of Smad1. Conversely, reduction of erk MAPK activity via overexpression of MAP Kinase Phosphatase1 (MKP1) leads to an increase in nuclear Smad1. Both TAK1 morphant ectoderm and ectoderm treated with FGF show a decrease in the expression of several Smad1-inducible genes. Neural-specific gene expression is inhibited in isolated ectoderm coexpressing noggin and TAK1, suggesting that TAK1 is sufficient to inhibit neural specification. Introduction of TAK1 morpholino oligonucleotide expands the expression of organizer genes, disrupts formation of the boundary between organizer and non-organizer mesoderm, and increases the spatial range of MAPK activation in response to localized FGF. Our results indicate that inhibitory interactions between FGF and BMP4 effector pathways increase the robustness of BMP signaling via a feed-forward mechanism.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
46
|
Gilchrist MJ. From expression cloning to gene modeling: the development of Xenopus gene sequence resources. Genesis 2012; 50:143-54. [PMID: 22344767 PMCID: PMC3488295 DOI: 10.1002/dvg.22008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/09/2011] [Accepted: 12/21/2011] [Indexed: 11/08/2022]
Abstract
The Xenopus community has made concerted efforts over the last 10–12 years systematically to improve the available sequence information for this amphibian model organism ideally suited to the study of early development in vertebrates. Here I review progress in the collection of both sequence data and physical clone reagents for protein coding genes. I conclude that we have cDNA sequences for around 50% and full-length clones for about 35% of the genes in Xenopus tropicalis, and similar numbers but a smaller proportion for Xenopus laevis. In addition, I demonstrate that the gaps in the current genome assembly create problems for the computational elucidation of gene sequences, and suggest some ways to ameliorate the effects of this. genesis 50:143–154, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Gilchrist
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| |
Collapse
|
47
|
Kalisz M, Winzi M, Bisgaard HC, Serup P. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol 2011; 362:94-103. [PMID: 22178155 DOI: 10.1016/j.ydbio.2011.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1 (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1 expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region. Significantly, we found that intact EVX1 binding sites were required for BMP4-mediated repression of GSC reporter constructs. We conclude that BMP4-induced EVX1 repress GSC directly and the two genes form the core of a gene regulatory network (GRN) controlling cell fates in streak-like human ES cell progeny.
Collapse
Affiliation(s)
- Mark Kalisz
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | |
Collapse
|
48
|
Schuff M, Siegel D, Philipp M, Bundschu K, Heymann N, Donow C, Knöchel W. Characterization of Danio rerio Nanog and functional comparison to Xenopus Vents. Stem Cells Dev 2011; 21:1225-38. [PMID: 21967637 DOI: 10.1089/scd.2011.0285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanog is a homeodomain transcription factor associated with the acquisition of pluripotency. Genome analyses of lower and higher vertebrates revealed that the existence of Nanog is restricted to gnathostomata but absent from agnatha and invertebrates. To elucidate the function of Nanog in nonmammalia, we identified the Danio rerio ortholog of Nanog and characterized its role in gain and loss of function experiments. We found Nanog to be crucial for survival of early zebrafish embryos, because depletion of Nanog led to gastrulation defects with subsequent lethality. Mouse Nanog overexpression could rescue these defects. Vice versa, zebrafish Nanog was found to promote proliferation and to inhibit differentiation of mouse embryonic stem cells in the absence of leukemia inhibitory factor. These findings indicate functional conservation of Nanog from teleost fishes to mammals. However, Nanog was lost in the genome of the anurans Xenopus laevis and Xenopus tropicalis. Phylogenetic analysis revealed that deletion probably occurred in a common anuran ancestor along with chromosomal translocations. The closest homologs of Nanog in Xenopus are the Vent proteins. We, therefore, investigated whether the Xvent genes might substitute for Nanog function in Xenopus. Although we found some similarities in phenotypes after overexpression and in the regulation of several marker genes, Xvent1/2 and Nanog cannot substitute each other. Depletion of Nanog in zebrafish cannot be rescued by ectopic expression of Xvent, and Xvent depletion in Xenopus cannot be overcome by ectopic expression of zebrafish Nanog.
Collapse
|
49
|
Abstract
Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target genes. A major consequence of Wnt signaling is stabilization of β-catenin, which associates with T-cell factors (TCFs) and 'converts' them from repressors into transcriptional activators. The molecular mechanisms responsible for this conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation, yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in others Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-dependent post-translational regulation of TCF function by Wnt signaling.
Collapse
|
50
|
Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev Biol 2011; 352:367-81. [PMID: 21295564 DOI: 10.1016/j.ydbio.2011.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 02/03/2023]
Abstract
The Spemann organizer is an essential signaling center in Xenopus germ layer patterning and axis formation. Organizer formation occurs in dorsal blastomeres receiving both maternal Wnt and zygotic Nodal signals. In response to stabilized βcatenin, dorsal blastomeres express the closely related transcriptional activators, Siamois (Sia) and Twin (Twn), members of the paired homeobox family. Sia and Twn induce organizer formation and expression of organizer-specific genes, including Goosecoid (Gsc). In spite of the similarity of Sia and Twn sequence and expression pattern, it is unclear whether these factors function equivalently in promoter binding and subsequent transcriptional activation, or if Sia and Twn are required for all aspects of organizer function. Here we report that Sia and Twn activate Gsc transcription by directly binding to a conserved P3 site within the Wnt-responsive proximal element of the Gsc promoter. Sia and Twn form homodimers and heterodimers by direct homeodomain interaction and dimer forms are indistinguishable in both DNA-binding and activation functions. Sequential chromatin immunoprecipitation reveals that the endogenous Gsc promoter can be occupied by either Sia or Twn homodimers or Sia-Twn heterodimers. Knockdown of Sia and Twn together, but not individually, results in a failure of organizer gene expression and a disruption of axis formation, consistent with a redundant role for Sia and Twn in organizer formation. Furthermore, simultaneous knockdown of Sia and Twn blocks axis induction in response to ectopic Wnt signaling, demonstrating an essential role for Sia and Twn in mediating the transcriptional response to the maternal Wnt pathway. The results demonstrate the functional redundancy of Sia and Twn and their essential role in direct transcriptional responses necessary for Spemann organizer formation.
Collapse
|