1
|
da Silva Pescador G, Baia Amaral D, Varberg JM, Zhang Y, Hao Y, Florens L, Bazzini AA. Protein profiling of zebrafish embryos unmasks regulatory layers during early embryogenesis. Cell Rep 2024; 43:114769. [PMID: 39302832 PMCID: PMC11544563 DOI: 10.1016/j.celrep.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
The maternal-to-zygotic transition is crucial in embryonic development, marked by the degradation of maternally provided mRNAs and initiation of zygotic gene expression. However, the changes occurring at the protein level during this transition remain unclear. Here, we conducted protein profiling throughout zebrafish embryogenesis using quantitative mass spectrometry, integrating transcriptomics and translatomics datasets. Our data show that, unlike RNA changes, protein changes are less dynamic. Further, increases in protein levels correlate with mRNA translation, whereas declines in protein levels do not, suggesting active protein degradation processes. Interestingly, proteins from pure zygotic genes are present at fertilization, challenging existing mRNA-based gene classifications. As a proof of concept, we utilized CRISPR-Cas13d to target znf281b mRNA, a gene whose protein significantly accumulates within the first 2 h post-fertilization, demonstrating its crucial role in development. Consequently, our protein profiling, coupled with CRISPR-Cas13d, offers a complementary approach to unraveling maternal factor function during embryonic development.
Collapse
Affiliation(s)
| | | | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
2
|
Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X, Sun L. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience 2024; 27:109944. [PMID: 38784018 PMCID: PMC11111832 DOI: 10.1016/j.isci.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/23/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Hadzhiev Y, Wheatley L, Cooper L, Ansaloni F, Whalley C, Chen Z, Finaurini S, Gustincich S, Sanges R, Burgess S, Beggs A, Müller F. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev Cell 2023; 58:155-170.e8. [PMID: 36693321 PMCID: PMC9904021 DOI: 10.1016/j.devcel.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/10/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.
Collapse
Affiliation(s)
- Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ledean Cooper
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Celina Whalley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sara Finaurini
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Andrew Beggs
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
5
|
Hao X, Wang Q, Hou J, Liu K, Feng B, Shao C. Temporal Transcriptome Analysis Reveals Dynamic Expression Profiles of Gametes and Embryonic Development in Japanese Flounder ( Paralichthys olivaceus). Genes (Basel) 2021; 12:genes12101561. [PMID: 34680958 PMCID: PMC8535655 DOI: 10.3390/genes12101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a crucial event in embryo development. While the features of the MZT across species are shared, the stage of this transition is different among species. We characterized MZT in a flatfish species, Japanese flounder (Paralichthys olivaceus). In this study, we analyzed the 551.57 GB transcriptome data of two types of gametes (sperms and eggs) and 10 embryo developmental stages in Japanese flounder. We identified 2512 maternal factor-related genes and found that most of those maternal factor-related genes expression decreased at the low blastula (LB) stage and remained silent in the subsequent embryonic development period. Meanwhile, we verified that the zygotic genome transcription might occur at the 128-cell stage and large-scale transcription began at the LB stage, which indicates the LB stage is the major wave zygotic genome activation (ZGA) occurs. In addition, we indicated that the Wnt signaling pathway, playing a diverse role in embryonic development, was involved in the ZGA and the axis formation. The results reported the list of the maternal genes in Japanese flounder and defined the stage of MZT, contributing to the understanding of the details of MZT during Japanese flounder embryonic development.
Collapse
Affiliation(s)
- Xiancai Hao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China;
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence:
| |
Collapse
|
6
|
Quelle-Regaldie A, Sobrido-Cameán D, Barreiro-Iglesias A, Sobrido MJ, Sánchez L. Zebrafish Models of Autosomal Dominant Ataxias. Cells 2021; 10:421. [PMID: 33671313 PMCID: PMC7922657 DOI: 10.3390/cells10020421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary dominant ataxias are a heterogeneous group of neurodegenerative conditions causing cerebellar dysfunction and characterized by progressive motor incoordination. Despite many efforts put into the study of these diseases, there are no effective treatments yet. Zebrafish models are widely used to characterize neuronal disorders due to its conserved vertebrate genetics that easily support genetic edition and their optic transparency that allows observing the intact CNS and its connections. In addition, its small size and external fertilization help to develop high throughput assays of candidate drugs. Here, we discuss the contributions of zebrafish models to the study of dominant ataxias defining phenotypes, genetic function, behavior and possible treatments. In addition, we review the zebrafish models created for X-linked repeat expansion diseases X-fragile/fragile-X tremor ataxia. Most of the models reviewed here presented neuronal damage and locomotor deficits. However, there is a generalized lack of zebrafish adult heterozygous models and there are no knock-in zebrafish models available for these diseases. The models created for dominant ataxias helped to elucidate gene function and mechanisms that cause neuronal damage. In the future, the application of new genetic edition techniques would help to develop more accurate zebrafish models of dominant ataxias.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade of Santiago de Compostela, 27002 Lugo, Spain; (A.Q.-R.); (L.S.)
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - María Jesús Sobrido
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servicio Galego de Saúde, 15006 Coruña, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade of Santiago de Compostela, 27002 Lugo, Spain; (A.Q.-R.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Ren F, Lin Q, Gong G, Du X, Dan H, Qin W, Miao R, Xiong Y, Xiao R, Li X, Gui JF, Mei J. Igf2bp3 maintains maternal RNA stability and ensures early embryo development in zebrafish. Commun Biol 2020; 3:94. [PMID: 32127635 PMCID: PMC7054421 DOI: 10.1038/s42003-020-0827-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Early embryogenesis relies on maternally inherited mRNAs. Although the mechanism of maternal mRNA degradation during maternal-to-zygotic transition (MZT) has been extensively studied in vertebrates, how the embryos maintain maternal mRNA stability remains unclear. Here, we identify Igf2bp3 as an important regulator of maternal mRNA stability in zebrafish. Depletion of maternal igf2bp3 destabilizes maternal mRNAs prior to MZT and leads to severe developmental defects, including abnormal cytoskeleton organization and cell division. However, the process of oogenesis and the expression levels of maternal mRNAs in unfertilized eggs are normal in maternal igf2bp3 mutants. Gene ontology analysis revealed that these functions are largely mediated by Igf2bp3-bound mRNAs. Indeed, Igf2bp3 depletion destabilizes while its overexpression enhances its targeting maternal mRNAs. Interestingly, igf2bp3 overexpression in wild-type embryos also causes a developmental delay. Altogether, these findings highlight an important function of Igf2bp3 in controlling early zebrafish embryogenesis by binding and regulating the stability of maternal mRNAs.
Collapse
Affiliation(s)
- Fan Ren
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Qiaohong Lin
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xian Du
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Hong Dan
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wenying Qin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Ran Miao
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Xiaohui Li
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 430072, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
8
|
Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat Commun 2020; 11:168. [PMID: 31924754 PMCID: PMC6954239 DOI: 10.1038/s41467-019-13687-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5’-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5’-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs. The functional significance of start site choice in promoter architectures is little understood. Here the authors identify in zebrafish development and mammalian cells a class of dual-initiation promoters, in which non-canonical YC dinucleotides reflecting 5’-TOP/TCT initiation are intertwined with canonical YR-initiation.
Collapse
|
9
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
10
|
Reisser M, Palmer A, Popp AP, Jahn C, Weidinger G, Gebhardt JCM. Single-molecule imaging correlates decreasing nuclear volume with increasing TF-chromatin associations during zebrafish development. Nat Commun 2018; 9:5218. [PMID: 30523256 PMCID: PMC6283880 DOI: 10.1038/s41467-018-07731-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2018] [Indexed: 11/08/2022] Open
Abstract
Zygotic genome activation (ZGA), the onset of transcription after initial quiescence, is a major developmental step in many species, which occurs after ten cell divisions in zebrafish embryos. How transcription factor (TF)-chromatin interactions evolve during early development to support ZGA is largely unknown. We establish single molecule tracking in live developing zebrafish embryos using reflected light-sheet microscopy to visualize two fluorescently labeled TF species, mEos2-TBP and mEos2-Sox19b. We further develop a data acquisition and analysis scheme to extract quantitative information on binding kinetics and bound fractions during fast cell cycles. The chromatin-bound fraction of both TFs increases during early development, as expected from a physical model of TF-chromatin interactions including a decreasing nuclear volume and increasing DNA accessibility. For Sox19b, data suggests the increase is mainly due to the shrinking nucleus. Our single molecule approach provides quantitative insight into changes of TF-chromatin associations during the developmental period embracing ZGA.
Collapse
Affiliation(s)
- Matthias Reisser
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anja Palmer
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christopher Jahn
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Kong Q, Banaszynski LA, Geng F, Zhang X, Zhang J, Zhang H, O'Neill CL, Yan P, Liu Z, Shido K, Palermo GD, Allis CD, Rafii S, Rosenwaks Z, Wen D. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J Biol Chem 2018; 293:3829-3838. [PMID: 29358330 DOI: 10.1074/jbc.ra117.001150] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.
Collapse
Affiliation(s)
- Qingran Kong
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and.,Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Xiaolei Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Claire L O'Neill
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Peidong Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Koji Shido
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Gianpiero D Palermo
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Zev Rosenwaks
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Duancheng Wen
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| |
Collapse
|
12
|
Despic V, Neugebauer KM. RNA tales – how embryos read and discard messages from mom. J Cell Sci 2018; 131:jcs.201996. [DOI: 10.1242/jcs.201996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following fertilization, embryos develop for a substantial amount of time with a transcriptionally silent genome. Thus, early development is maternally programmed, as it solely relies on RNAs and proteins that are provided by the female gamete. However, these maternal instructions are not sufficient to support later steps of embryogenesis and are therefore gradually replaced by novel products synthesized from the zygotic genome. This switch in the origin of molecular players that drive early development is known as the maternal-to-zygotic transition (MZT). MZT is a universal phenomenon among all metazoans and comprises two interconnected processes: maternal mRNA degradation and the transcriptional awakening of the zygotic genome. The recent adaptation of high-throughput methods for use in embryos has deepened our knowledge of the molecular principles underlying MZT. These mechanisms comprise conserved strategies for RNA regulation that operate in many well-studied cellular contexts but that have adapted differently to early development. In this Review, we will discuss advances in our understanding of post-transcriptional regulatory pathways that drive maternal mRNA clearance during MZT, with an emphasis on recent data in zebrafish embryos on codon-mediated mRNA decay, the contributions of microRNAs (miRNAs) and RNA-binding proteins to this process, and the roles of RNA modifications in the stability control of maternal mRNAs.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
14
|
Wragg J, Müller F. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. ADVANCES IN GENETICS 2016; 95:161-94. [PMID: 27503357 DOI: 10.1016/bs.adgen.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryo development commences with the fusion of two terminally differentiated haploid gametes into the totipotent fertilized egg, which through a series of major cellular and molecular transitions generate a pluripotent cell mass. The activation of the zygotic genome occurs during the so-called maternal to zygotic transition and prepares the embryo for zygotic takeover from maternal factors, in the control of the development of cellular lineages during differentiation. Recent advances in next generation sequencing technologies have allowed the dissection of the genomic and epigenomic processes mediating this transition. These processes include reorganization of the chromatin structure to a transcriptionally permissive state, changes in composition and function of structural and regulatory DNA-binding proteins, and changeover of the transcriptome as it is overhauled from that deposited by the mother in the oocyte to a zygotically transcribed complement. Zygotic genome activation in zebrafish occurs 10 cell cycles after fertilization and provides an ideal experimental platform for elucidating the temporal sequence and dynamics of establishment of a transcriptionally active chromatin state and helps in identifying the determinants of transcription activation at polymerase II transcribed gene promoters. The relatively large number of pluripotent cells generated by the fast cell divisions before zygotic transcription provides sufficient biomass for next generation sequencing technology approaches to establish the temporal dynamics of events and suggest causative relationship between them. However, genomic and genetic technologies need to be improved further to capture the earliest events in development, where cell number is a limiting factor. These technologies need to be complemented with precise, inducible genetic interference studies using the latest genome editing tools to reveal the function of candidate determinants and to confirm the predictions made by classic embryological tools and genome-wide assays. In this review we summarize recent advances in the characterization of epigenetic regulation, transcription control, and gene promoter function during zygotic genome activation and how they fit with old models for the mechanisms of the maternal to zygotic transition. This review will focus on the zebrafish embryo but draw comparisons with other vertebrate model systems and refer to invertebrate models where informative.
Collapse
Affiliation(s)
- J Wragg
- University of Birmingham, Birmingham, United Kingdom
| | - F Müller
- University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Protein palmitoylation activate zygotic gene expression during the maternal-to-zygotic transition. Biochem Biophys Res Commun 2016; 475:194-201. [DOI: 10.1016/j.bbrc.2016.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
|
16
|
Yang KY, Chen Y, Zhang Z, Ng PKS, Zhou WJ, Zhang Y, Liu M, Chen J, Mao B, Tsui SKW. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Sci Rep 2016; 6:23195. [PMID: 26979494 PMCID: PMC4793263 DOI: 10.1038/srep23195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates.
Collapse
Affiliation(s)
- Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Chen
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA
| | - Zuming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Patrick Kwok-Shing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Chinese Academy of Sciences, Nanjing, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Identification and structural characterization of two peroxisome proliferator activated receptors and their transcriptional changes at different developmental stages and after feeding with different fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2016; 193:9-16. [DOI: 10.1016/j.cbpb.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/20/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
|
18
|
Tan H, Onichtchouk D, Winata C. DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish. Zebrafish 2015; 13:54-60. [PMID: 26671609 PMCID: PMC4742988 DOI: 10.1089/zeb.2015.1179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zebrafish has emerged as a model organism for genomics studies. The symposium “Toward an encyclopedia of DNA elements in zebrafish” held in London in December 2014, was coorganized by Ferenc Müller and Fiona Wardle. This meeting is a follow-up of a similar previous workshop held 2 years earlier and represents a push toward the formalization of a community effort to annotate functional elements in the zebrafish genome. The meeting brought together zebrafish researchers, bioinformaticians, as well as members of established consortia, to exchange scientific findings and experience, as well as to discuss the initial steps toward the formation of a DANIO-CODE consortium. In this study, we provide the latest updates on the current progress of the consortium's efforts, opening up a broad invitation to researchers to join in and contribute to DANIO-CODE.
Collapse
Affiliation(s)
- Haihan Tan
- 1 Randall Division of Cell and Molecular Biophysics, King's College London , London, United Kingdom
| | - Daria Onichtchouk
- 2 Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg , Freiburg, Germany
| | - Cecilia Winata
- 3 International Institute of Molecular and Cell Biology , Warsaw, Poland .,4 Max Planck Institute for Heart and Lung Research , Bad Nauheim, Germany
| |
Collapse
|
19
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
20
|
Yartseva V, Giraldez AJ. The Maternal-to-Zygotic Transition During Vertebrate Development: A Model for Reprogramming. Curr Top Dev Biol 2015; 113:191-232. [PMID: 26358874 DOI: 10.1016/bs.ctdb.2015.07.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular transitions occur at all stages of organismal life from conception to adult regeneration. Changing cellular state involves three main features: activating gene expression necessary to install the new cellular state, modifying the chromatin status to stabilize the new gene expression program, and removing existing gene products to clear out the previous cellular program. The maternal-to-zygotic transition (MZT) is one of the most profound changes in the life of an organism. It involves gene expression remodeling at all levels, including the active clearance of the maternal oocyte program to adopt the embryonic totipotency. In this chapter, we provide an overview of molecular mechanisms driving maternal mRNA clearance during the MZT, describe the developmental consequences of losing components of this gene regulation, and illustrate how remodeling of gene expression during the MZT is common to other cellular transitions with parallels to cellular reprogramming.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
21
|
Diversity in TAF proteomics: consequences for cellular differentiation and migration. Int J Mol Sci 2014; 15:16680-97. [PMID: 25244017 PMCID: PMC4200853 DOI: 10.3390/ijms150916680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of “core transcription machinery” during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Collapse
|
22
|
Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 2014; 30:581-613. [PMID: 25150012 DOI: 10.1146/annurev-cellbio-100913-013027] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryogenesis depends on a highly coordinated cascade of genetically encoded events. In animals, maternal factors contributed by the egg cytoplasm initially control development, whereas the zygotic nuclear genome is quiescent. Subsequently, the genome is activated, embryonic gene products are mobilized, and maternal factors are cleared. This transfer of developmental control is called the maternal-to-zygotic transition (MZT). In this review, we discuss recent advances toward understanding the scope, timing, and mechanisms that underlie zygotic genome activation at the MZT in animals. We describe high-throughput techniques to measure the embryonic transcriptome and explore how regulation of the cell cycle, chromatin, and transcription factors together elicits specific patterns of embryonic gene expression. Finally, we illustrate the interplay between zygotic transcription and maternal clearance and show how these two activities combine to reprogram two terminally differentiated gametes into a totipotent embryo.
Collapse
Affiliation(s)
- Miler T Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520; ,
| | | | | |
Collapse
|
23
|
Kleppe L, Edvardsen RB, Furmanek T, Taranger GL, Wargelius A. Global transcriptome analysis identifies regulated transcripts and pathways activated during oogenesis and early embryogenesis in Atlantic cod. Mol Reprod Dev 2014; 81:619-35. [PMID: 24687555 PMCID: PMC4265210 DOI: 10.1002/mrd.22328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/25/2014] [Indexed: 12/28/2022]
Abstract
The molecular mechanisms underlying oogenesis and maternally controlled embryogenesis in fish are not fully understood, especially in marine species. Our aim was to study the egg and embryo transcriptome during oogenesis and early embryogenesis in Atlantic cod. Follicles from oogenesis stages (pre-, early-, and late-vitellogenic), ovulated eggs, and two embryonic stages (blastula, gastrula) were collected from broodstock fish and fertilized eggs. Gene expression profiles were measured in a 44 K oligo microarray consisting of 23,000 cod genes. Hundreds of differentially expressed genes (DEGs) were identified in the follicle stages investigated, implicating a continuous accumulation and degradation of polyadenylated transcripts throughout oogenesis. Very few DEGs were identified from ovulated egg to blastula, showing a more stable maternal RNA pool in early embryonic stages. The highest induction of expression was observed between blastula and gastrula, signifying the onset of zygotic transcription. During early vitellogenesis, several of the most upregulated genes are linked to nervous system signaling, suggesting increasing requirements for ovarian synaptic signaling to stimulate the rapid growth of oocytes. Highly upregulated genes during late vitellogenesis are linked to protein processing, fat metabolism, osmoregulation, and arrested meiosis. One of the genes with the highest upregulation in the ovulated egg is involved in oxidative phosphorylation, reflecting increased energy requirements during fertilization and the first rapid cell divisions of early embryogenesis. In conclusion, this study provides a large-scale presentation of the Atlantic cod's maternally controlled transcriptome in ovarian follicles through oogenesis, ovulated eggs, and early embryos. Mol. Reprod. Dev. 81: 619–635, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, Bergen, Norway
| | | | | | | | | |
Collapse
|
24
|
Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis. PLoS One 2014; 9:e96818. [PMID: 24820964 PMCID: PMC4018430 DOI: 10.1371/journal.pone.0096818] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/11/2014] [Indexed: 12/11/2022] Open
Abstract
Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic “fingerprint”. Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.
Collapse
|
25
|
Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van IJcken WFJ, Armant O, Ferg M, Strähle U, Carninci P, Müller F, Lenhard B. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 2014; 507:381-385. [PMID: 24531765 PMCID: PMC4820030 DOI: 10.1038/nature12974] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022]
Abstract
A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs1 and recruits general transcription factors to initiate transcription2. The nature and causative relationship of DNA sequence and chromatin signals that govern the selection of most TSS by RNA polymerase II remain unresolved. Maternal to zygotic transition (MZT) represents the most dramatic change of the transcriptome repertoire in vertebrate life cycle3-6. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the 10th cell cycle, marking the midblastula transition (MBT)7. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression (CAGE)8 and determined the positions of H3K4me3-marked promoter-associated nucleosomes9. We show that the transition from maternal to zygotic transcriptome is characterised by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveals their DNA sequence-associated positioning at promoters prior to zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of zygotic TSS. The two TSS-defining grammars coexist often in physical overlap in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.
Collapse
Affiliation(s)
- Vanja Haberle
- Department of Biology, University of Bergen, Thormøhlensgate 53A, N-5008 Bergen, Norway.,Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Nan Li
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yavor Hadzhiev
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charles Plessy
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Christopher Previti
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Chirag Nepal
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Jochen Gehrig
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Xianjun Dong
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Altuna Akalin
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Ana Maria Suzuki
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Wilfred F J van IJcken
- Erasmus Medical Center, Center for Biomics, Room Ee679b, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Piero Carninci
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Department of Informatics, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
26
|
Sarropoulou E, Moghadam HK, Papandroulakis N, De la Gándara F, Ortega Garcia A, Makridis P. The Atlantic Bonito (Sarda sarda, Bloch 1793) transcriptome and detection of differential expression during larvae development. PLoS One 2014; 9:e87744. [PMID: 24503907 PMCID: PMC3913633 DOI: 10.1371/journal.pone.0087744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/28/2013] [Indexed: 01/06/2023] Open
Abstract
The Atlantic bonito (Sarda sarda, Bloch 1793) belongs to the important marine fish species with a wide geographical distribution covering the Atlantic Ocean, the Mediterranean and its bordering seas. Aquaculture practices for this species are still in their infancies and scientific studies are seldom undertaken, mainly because of difficulties in sampling. Thus for small tuna species like the Atlantic bonito only little is known about its biology and regarding the molecular background even less information is available. In the production of marine fish it is known that the most critical period is the larval stages, as high growth rates as well as significant developmental changes take place. In this study we have investigated the transcriptome of the Atlantic bonito of five larvae stages applying Illumina sequencing technology. For non-model species like aquaculture species, transcriptome analysis of RNA samples from individuals using Illumina sequencing technology is technically efficient and cost effective. In the present study a total number of 169,326,711 paired-end reads with a read length of 100 base pairs were generated resulting in a reference transcriptome of 68,220 contigs with an average length of 2054 base pairs. For differential expression analyses single end reads were obtained from different developmental stages and mapped to the constructed reference transcriptome. Differential expression analyses revealed in total 18,657 differentially expressed transcripts and were assigned to five distinguished groups. Each of the five clusters shows stage specific gene expression. We present for the first time in the Atlantic bonito an extensive RNA-Seq based characterization of its transcriptome as well as significant information on differential expression among five developmental larvae stages. The generated transcripts, including SNP and microsatellite information for candidate molecular markers and gene expression information will be a valuable resource for future genetic and molecular studies.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- * E-mail:
| | - Hooman K. Moghadam
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Fernando De la Gándara
- Instituto Español de Oceanografia (IEO), Centro Oceanografico de Murcia, Carretera de La Azohia, Puerto de Mazarron, Spain
| | - Aurelio Ortega Garcia
- Instituto Español de Oceanografia (IEO), Centro Oceanografico de Murcia, Carretera de La Azohia, Puerto de Mazarron, Spain
| | - Pavlos Makridis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
27
|
Chen L, Dumelie JG, Li X, Cheng MH, Yang Z, Laver JD, Siddiqui NU, Westwood JT, Morris Q, Lipshitz HD, Smibert CA. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. Genome Biol 2014; 15:R4. [PMID: 24393533 PMCID: PMC4053848 DOI: 10.1186/gb-2014-15-1-r4] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Background Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. Results To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Conclusions Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.
Collapse
|
28
|
Aanes H, Collas P, Aleström P. Transcriptome dynamics and diversity in the early zebrafish embryo. Brief Funct Genomics 2013; 13:95-105. [PMID: 24335756 DOI: 10.1093/bfgp/elt049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent years advances in high-throughput sequencing have improved our understanding of how transcripts regulate early vertebrate development. Here, we review the transcriptome dynamics and diversity during early stages of zebrafish embryogenesis. Transcriptome dynamics is characterized by different patterns of mRNA degradation, activation of dormant transcripts and onset of transcription. Several studies have shown a striking diversity of both coding and non-coding transcripts. However, in the aftermath of this immense increase in data, functional studies of both protein-coding and non-coding transcripts are lagging behind. We anticipate that the forthcoming years will see studies relying on different high-throughput sequencing technologies and genomic tools developed for zebrafish embryos to further pin down yet un-annotated transcript-function relationships.
Collapse
Affiliation(s)
- Håvard Aanes
- BasAM, Norwegian School of Veterinary Science, Dep., 0033 Oslo, Norway.
| | | | | |
Collapse
|
29
|
Ferg M, Armant O, Yang L, Dickmeis T, Rastegar S, Strähle U. Gene transcription in the zebrafish embryo: regulators and networks. Brief Funct Genomics 2013; 13:131-43. [PMID: 24152666 DOI: 10.1093/bfgp/elt044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The precise spatial and temporal control of gene expression is a key process in the development, maintenance and regeneration of the vertebrate body. A substantial proportion of vertebrate genomes encode genes that control the transcription of the genetic information into mRNA. The zebrafish is particularly well suited to investigate gene regulatory networks underlying the control of gene expression during development due to the external development of its transparent embryos and the increasingly sophisticated tools for genetic manipulation available for this model system. We review here recent data on the analysis of cis-regulatory modules, transcriptional regulators and their integration into gene regulatory networks in the zebrafish, using the developing spinal cord as example.
Collapse
Affiliation(s)
- Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Fernández CG, Roufidou C, Antonopoulou E, Sarropoulou E. Expression of developmental-stage-specific genes in the gilthead sea bream Sparus aurata L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:313-320. [PMID: 23053055 DOI: 10.1007/s10126-012-9486-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
The mechanism of early fish development as well as the control of egg quality is of great importance for the ability of the oocyte to develop after fertilization. Embryonic development is initially regulated by maternally provided mRNAs and later by the zygotic genome. Maternal mRNAs have an important role in initiating processes crucial to patterning the developing fish embryo. Furthermore, it has been shown that maternal RNA plays an important role in egg quality. The identification and characterization of candidate maternal genes in non-model fish species with important aquaculture interest like the gilthead sea bream Sparus aurata L. is of importance for future studies related to egg quality. The broodstock of the gilthead sea bream produces large quantities of eggs with a high and non-controllable quality variation. In the present study, we have studied the gene expression of 16 genes (gapdh 1 and 2, cathepsin D, L, S and Z, erk1, jnk1, p38 alpha and p38 delta, ppar alpha, beta and gamma, tubulin beta, ferritin M, cyclinA2) of different functional categories in seven developmental stages. The 16 genes were chosen based on their putative involvement in egg quality and regulation of early development. In total, 11 showed a characteristic gene expression pattern pinpointing to the possible function as maternal genes and thus may function as molecular biomarker for egg quality.
Collapse
Affiliation(s)
- Carmen García Fernández
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
31
|
Soni K, Choudhary A, Patowary A, Singh AR, Bhatia S, Sivasubbu S, Chandrasekaran S, Pillai B. miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res 2013; 41:4470-80. [PMID: 23470996 PMCID: PMC3632126 DOI: 10.1093/nar/gkt139] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, regulatory RNA molecules that can bind to partially complementary regions on target messenger RNAs and impede their expression or translation. We rationalized that miRNAs, being localized to the cytoplasm, will be maternally inherited during fertilization and may play a role in early development. Although Dicer is known to be essential for the transition from single-celled zygote to two-cell embryo, a direct role for miRNAs has not yet been demonstrated. We identified miRNAs with targets in zygotically expressed transcripts in Drosophila using a combination of transcriptome analysis and miRNA target prediction. We experimentally established that Drosophila miRNA dme-miR-34, the fly homologue of the cancer-related mammalian miRNA miR-34, involved in somatic-cell reprogramming and having critical role in early neuronal differentiation, is present in Drosophila embryos before initiation of zygotic transcription. We also show that the Drosophila miR-34 is dependent on maternal Dicer-1 for its expression in oocytes. Further, we show that miR-34 is also abundant in unfertilized oocytes of zebrafish. Its temporal expression profile during early development showed abundant expression in unfertilized oocytes that gradually decreased by 5 days post-fertilization (dpf). We find that knocking down the maternal, but not the zygotic, miR-34 led to developmental defects in the neuronal system during early embryonic development in zebrafish. Here, we report for the first time, the maternal inheritance of an miRNA involved in development of the neuronal system in a vertebrate model system.
Collapse
Affiliation(s)
- Kartik Soni
- CSIR-Institute of Genomics and Integrative Biology, Delhi 110 007, India, Ambedkar Centre for Biomedical Research, Delhi University, Delhi 110007, India
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Barckmann B, Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:714-24. [PMID: 23298642 DOI: 10.1016/j.bbagrm.2012.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
mRNA regulation is essential in germ cells and early embryos. In particular, late oogenesis and early embryogenesis occur in the absence of transcription and rely on maternal mRNAs stored in oocytes. These maternal mRNAs subsequently undergo a general decay in embryos during the maternal-to-zygotic transition in which the control of development switches from the maternal to the zygotic genome. Regulation of mRNA stability thus plays a key role during these early stages of development and is tightly interconnected with translational regulation and mRNA localization. A common mechanism in these three types of regulation implicates variations in mRNA poly(A) tail length. Recent advances in the control of mRNA stability include the widespread and essential role of regulated deadenylation in early developmental processes, as well as the mechanisms regulating mRNA stability which involve RNA binding proteins, microRNAs and interplay between the two. Also emerging are the roles that other classes of small non-coding RNAs, endo-siRNAs and piRNAs play in the control of mRNA decay, including connections between the regulation of transposable elements and cellular mRNA regulation through the piRNA pathway. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institute of Human Genetics, Montpellier Cedex 5, France
| | | |
Collapse
|
33
|
Li M, Leatherland JF, Vijayan MM, King WA, Madan P. Glucocorticoid receptor activation following elevated oocyte cortisol content is associated with zygote activation, early embryo cell division, and IGF system gene responses in rainbow trout. J Endocrinol 2012; 215:137-49. [PMID: 22782383 DOI: 10.1530/joe-12-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased in ovo cortisol content of rainbow trout oocytes from ~3·5 to ~5·0 ng.oocyte(-1) before fertilization enhances the growth of embryos and juveniles and changes the long-term expression pattern of IGF-related genes. This study used embryos reared from oocytes enriched with cortisol and the glucocorticoid receptor (GR) antagonist, RU486, to determine whether the growth-promoting actions of cortisol involve GR protein activation and modulation of gr expression. Whole-mount in situ immunohistofluorescence studies of zygotes showed that enhanced oocyte cortisol increased the immunofluorescent GR signal and activated the relocation of GR from a general distribution throughout the cytoplasm to an accumulation in the peri-nuclear cytoplasm. In ovo cortisol treatment increased the number of embryonic cells within 48-h post-fertilization, and RU486 partially suppressed this cortisol stimulation of cell duplication. In addition, there was complex interplay between the expression of gr and igf system-related genes spatiotemporally in the different treatment groups, suggesting a role for GR in the regulation of the expression of development. Taken together, these findings indicate an essential role for GR in the regulation of epigenomic events in very early embryos that promoted the long-term growth effects of the embryos and juvenile fish. Moreover, the pretreatment of the oocyte with RU486 had a significant suppressive effect on the maternal mRNA transcript number of gr and igf system-related genes in oocytes and very early stage embryos, suggesting an action of antagonist on the stability of the maternal transcriptome.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Division/physiology
- Cleavage Stage, Ovum/cytology
- Cleavage Stage, Ovum/metabolism
- Cleavage Stage, Ovum/physiology
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/physiology
- Female
- Gene Expression Regulation, Developmental
- Hydrocortisone/analysis
- Hydrocortisone/metabolism
- Oncorhynchus mykiss/embryology
- Oncorhynchus mykiss/genetics
- Oncorhynchus mykiss/metabolism
- Oncorhynchus mykiss/physiology
- Oocytes/chemistry
- Oocytes/metabolism
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Signal Transduction/genetics
- Somatomedins/genetics
- Somatomedins/metabolism
- Time Factors
- Up-Regulation/physiology
- Zygote/metabolism
- Zygote/physiology
Collapse
Affiliation(s)
- Mao Li
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
34
|
Kleppe L, Edvardsen RB, Kuhl H, Malde K, Furmanek T, Drivenes Ø, Reinhardt R, Taranger GL, Wargelius A. Maternal 3'UTRs: from egg to onset of zygotic transcription in Atlantic cod. BMC Genomics 2012; 13:443. [PMID: 22937762 PMCID: PMC3462720 DOI: 10.1186/1471-2164-13-443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Zygotic transcription in fish embryos initiates around the time of gastrulation, and all prior development is initiated and controlled by maternally derived messenger RNAs. Atlantic cod egg and embryo viability is variable, and it is hypothesized that the early development depends upon the feature of these maternal RNAs. Both the length and the presence of specific motifs in the 3'UTR of maternal RNAs are believed to regulate expression and stability of the maternal transcripts. Therefore, the aim of this study was to characterize the overall composition and 3'UTR structure of the most common maternal RNAs found in cod eggs and pre-zygotic embryos. RESULTS 22229 Sanger-sequences were obtained from 3'-end sequenced cDNA libraries prepared from oocyte, 1-2 cell, blastula and gastrula stages. Quantitative PCR revealed that EST copy number below 9 did not reflect the gene expression profile. Consequently genes represented by less than 9 ESTs were excluded from downstream analyses, in addition to sequences with low-quality gene hits. This provided 12764 EST sequences, encoding 257 unique genes, for further analysis. Mitochondrial transcripts accounted for 45.9-50.6% of the transcripts isolated from the maternal stages, but only 12.2% of those present at the onset of zygotic transcription. 3'UTR length was predicted in nuclear sequences with poly-A tail, which identified 191 3'UTRs. Their characteristics indicated a more complex regulation of transcripts that are abundant prior to the onset of zygotic transcription. Maternal and stable transcripts had longer 3'UTR (mean 187.1 and 208.8 bp) and more 3'UTR isoforms (45.7 and 34.6%) compared to zygotic transcripts, where 15.4% had 3'UTR isoforms and the mean 3'UTR length was 76 bp. Also, diversity and the amount of putative polyadenylation motifs were higher in both maternal and stable transcripts. CONCLUSIONS We report on the most pronounced processes in the maternally transferred cod transcriptome. Maternal stages are characterized by a rich abundance of mitochondrial transcripts. Maternal and stable transcripts display longer 3'UTRs with more variation of both polyadenylation motifs and 3'UTR isoforms. These data suggest that cod eggs possess a complex array of maternal RNAs which likely act to tightly regulate early developmental processes in the newly fertilized egg.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Heiner Kuhl
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195, Berlin-Dahlem, Germany
| | - Ketil Malde
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Øyvind Drivenes
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Richard Reinhardt
- Max-Planck Genome centre, MPI fuer Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-80829, Koeln, Germany
| | - Geir L Taranger
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Anna Wargelius
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| |
Collapse
|
35
|
Wang K, Otu HH, Chen Y, Lee Y, Latham K, Cibelli JB. Reprogrammed transcriptome in rhesus-bovine interspecies somatic cell nuclear transfer embryos. PLoS One 2011; 6:e22197. [PMID: 21799794 PMCID: PMC3143123 DOI: 10.1371/journal.pone.0022197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive. Methodology/Principal Findings In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos. Conclusions/Significance Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Kai Wang
- Michigan State University, East Lansing, Michigan, United States of America
| | - Hasan H. Otu
- BIDMC Genomics Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Ying Chen
- Michigan State University, East Lansing, Michigan, United States of America
| | - Young Lee
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Keith Latham
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jose B. Cibelli
- Michigan State University, East Lansing, Michigan, United States of America
- Programa Andaluz de Terapia Celular, Andalucia, Spain
- * E-mail:
| |
Collapse
|
36
|
Akhtar W, Veenstra GJC. TBP-related factors: a paradigm of diversity in transcription initiation. Cell Biosci 2011; 1:23. [PMID: 21711503 PMCID: PMC3142196 DOI: 10.1186/2045-3701-1-23] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/27/2011] [Indexed: 01/24/2023] Open
Abstract
TATA binding protein (TBP) is a key component of the eukaryotic transcription initiation machinery. It functions in several complexes involved in core promoter recognition and assembly of the pre-initiation complex. Through gene duplication eukaryotes have expanded their repertoire of TATA binding proteins, leading to a variable composition of the transcription machinery. In vertebrates this repertoire consists of TBP, TBP-like factor (TLF, also known as TBPL1, TRF2) and TBP2 (also known as TBPL2, TRF3). All three factors are essential, with TLF and TBP2 playing important roles in development and differentiation, in particular gametogenesis and early embryonic development, whereas TBP dominates somatic cell transcription. TBP-related factors may compete for promoters when co-expressed, but also show preferential interactions with subsets of promoters. Initiation factor switching occurs on account of differential expression of these proteins in gametes, embryos and somatic cells. Paralogs of TFIIA and TAF subunits account for additional variation in the transcription initiation complex. This variation in core promoter recognition accommodates the expanded regulatory capacity and specificity required for germ cells and embryonic development in higher eukaryotes.
Collapse
Affiliation(s)
- Waseem Akhtar
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | |
Collapse
|
37
|
Putiri E, Pelegri F. The zebrafish maternal-effect gene mission impossible encodes the DEAH-box helicase Dhx16 and is essential for the expression of downstream endodermal genes. Dev Biol 2011; 353:275-89. [PMID: 21396359 PMCID: PMC3088167 DOI: 10.1016/j.ydbio.2011.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 01/26/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Early animal embryonic development requires maternal products that drive developmental processes prior to the activation of the zygotic genome at the mid-blastula transition. During and after this transition, maternal products may continue to act within incipient zygotic developmental programs. Mechanisms that control maternally-inherited products to spatially and temporally restrict developmental responses remain poorly understood, but necessarily depend on posttranscriptional regulation. We report the functional analysis and molecular identification of the zebrafish maternal-effect gene mission impossible (mis). Our studies suggest requirements for maternally-derived mis function in events that occur during gastrulation, including cell movement and the activation of some endodermal target genes. Cell transplantation experiments show that the cell movement defect is cell autonomous. Within the endoderm induction pathway, mis is not required for the activation of early zygotic genes, but is essential to implement nodal activity downstream of casanova/sox 32 but upstream of sox17 expression. Activation of nodal signaling in blastoderm explants shows that the requirement for mis function in endoderm gene induction is independent of the underlying yolk cell. Positional cloning of mis, including genetic rescue and complementation analysis, shows that it encodes the DEAH-box RNA helicase Dhx16, shown in other systems to act in RNA regulatory processes such as splicing and translational control. Analysis of a previously identified insertional dhx16 mutation shows that the zygotic component of this gene is also essential for embryonic viability. Our studies provide a striking example of the interweaving of maternal and zygotic genetic functions during the egg-to-embryo transition. Maternal RNA helicases have long been known to be involved in the development of the animal germ line, but our findings add to growing evidence that these factors may also control specific gene expression programs in somatic tissues.
Collapse
Affiliation(s)
- Emily Putiri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Madison, WI 53706
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Madison, WI 53706
| |
Collapse
|
38
|
Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SGP, Lim AYM, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 2011; 21:1328-38. [PMID: 21555364 DOI: 10.1101/gr.116012.110] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%-60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Håvard Aanes
- BasAM, Norwegian School of Veterinary Science, 0033 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Walser CB, Lipshitz HD. Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev 2011; 21:431-43. [PMID: 21497081 DOI: 10.1016/j.gde.2011.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 02/04/2023]
Abstract
In all animals, a key event in the transition from maternal control of development to control by products of the zygotic genome is the elimination of a significant fraction of the mRNAs loaded into the egg by the mother. Clearance of these maternal mRNAs is accomplished by two activities: the first is maternally encoded while the second requires zygotic transcription. Recent advances include identification of RNA-binding proteins that function as specificity factors to direct the maternal degradation machinery to its target mRNAs; small RNAs-most notably microRNAs-that function as components of the zygotically encoded activity; signaling pathways that trigger production and/or activation of the clearance mechanism in early embryos; and mechanisms for spatial control of transcript clearance.
Collapse
Affiliation(s)
- Claudia B Walser
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
40
|
Müller F, Zaucker A, Tora L. Developmental regulation of transcription initiation: more than just changing the actors. Curr Opin Genet Dev 2010; 20:533-40. [PMID: 20598874 DOI: 10.1016/j.gde.2010.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 11/29/2022]
Abstract
The traditional model of transcription initiation nucleated by the TFIID complex has suffered significant erosion in the last decade. The discovery of cell-specific paralogs of TFIID subunits and a variety of complexes that replace TFIID in transcription initiation of protein coding genes have been paralleled by the description of diverse core promoter sequences. These observations suggest an additional level of regulation of developmental and tissue-specific gene expression at the core promoter level. Recent work suggests that this regulation may function through specific roles of distinct TBP-type factors and TBP-associated factors (TAFs), however the picture emerging is still far from complete. Here we summarize the proposed models of transcription initiation by alternative initiation complexes in distinct stages of developmental specialization during vertebrate ontogeny.
Collapse
Affiliation(s)
- Ferenc Müller
- Department of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, B15 2TT Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
41
|
Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW. Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS One 2010; 5:e10367. [PMID: 20442775 PMCID: PMC2860987 DOI: 10.1371/journal.pone.0010367] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/28/2010] [Indexed: 12/04/2022] Open
Abstract
Protein transport from endoplasmic reticulum (ER) to Golgi is primarily conducted by coated vesicular carriers such as COPII. Here, we describe zebrafish bulldog mutations that disrupt the function of the cargo adaptor Sec24D, an integral component of the COPII complex. We show that Sec24D is essential for secretion of cartilage matrix proteins, whereas the preceding development of craniofacial primordia and pre-chondrogenic condensations does not depend on this isoform. Bulldog chondrocytes fail to secrete type II collagen and matrilin to extracellular matrix (ECM), but membrane bound receptor β1-Integrin and Cadherins appear to leave ER in Sec24D-independent fashion. Consequently, Sec24D-deficient cells accumulate proteins in the distended ER, although a subset of ER compartments and Golgi complexes as visualized by electron microscopy and NBD C6-ceramide staining appear functional. Consistent with the backlog of proteins in the ER, chondrocytes activate the ER stress response machinery and significantly upregulate BiP transcription. Failure of ECM secretion hinders chondroblast intercalations thus resulting in small and malformed cartilages and severe craniofacial dysmorphology. This defect is specific to Sec24D mutants since knockdown of Sec24C, a close paralog of Sec24D, does not result in craniofacial cartilage dysmorphology. However, craniofacial development in double Sec24C/Sec24D-deficient animals is arrested earlier than in bulldog/sec24d, suggesting that Sec24C can compensate for loss of Sec24D at initial stages of chondrogenesis, but Sec24D is indispensable for chondrocyte maturation. Our study presents the first developmental perspective on Sec24D function and establishes Sec24D as a strong candidate for cartilage maintenance diseases and craniofacial birth defects.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Medicine, Division of Genetic Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alejandro Barrallo-Gimeno
- Department of Medicine, Division of Genetic Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Developmental Biology, Institute Biology I, University of Freiburg, Freiburg, Germany
| | - David B. Melville
- Department of Medicine, Division of Genetic Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacek Topczewski
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ela W. Knapik
- Department of Medicine, Division of Genetic Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Developmental Biology, Institute Biology I, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Licastro D, Gennarino VA, Petrera F, Sanges R, Banfi S, Stupka E. Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements. BMC Genomics 2010; 11:151. [PMID: 20202189 PMCID: PMC2847969 DOI: 10.1186/1471-2164-11-151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ultraconserved elements (UCEs) are highly constrained elements of mammalian genomes, whose functional role has not been completely elucidated yet. Previous studies have shown that some of them act as enhancers in mouse, while some others are expressed in both normal and cancer-derived human tissues. Only one UCE element so far was shown to present these two functions concomitantly, as had been observed in other isolated instances of single, non ultraconserved enhancer elements. RESULTS We used a custom microarray to assess the levels of UCE transcription during mouse development and integrated these data with published microarray and next-generation sequencing datasets as well as with newly produced PCR validation experiments. We show that a large fraction of non-exonic UCEs is transcribed across all developmental stages examined from only one DNA strand. Although the nature of these transcripts remains a mistery, our meta-analysis of RNA-Seq datasets indicates that they are unlikely to be short RNAs and that some of them might encode nuclear transcripts. In the majority of cases this function overlaps with the already established enhancer function of these elements during mouse development. Utilizing several next-generation sequencing datasets, we were further able to show that the level of expression observed in non-exonic UCEs is significantly higher than in random regions of the genome and that this is also seen in other regions which act as enhancers. CONCLUSION Our data shows that the concurrent presence of enhancer and transcript function in non-exonic UCE elements is more widespread than previously shown. Moreover through our own experiments as well as the use of next-generation sequencing datasets, we were able to show that the RNAs encoded by non-exonic UCEs are likely to be long RNAs transcribed from only one DNA strand.
Collapse
Affiliation(s)
- Danilo Licastro
- CBM scrl - Genomics, Area Science Park, Basovizza, Trieste, Italy
| | - Vincenzo A Gennarino
- Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131, Napoli, Italy
| | | | - Remo Sanges
- CBM scrl - Genomics, Area Science Park, Basovizza, Trieste, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131, Napoli, Italy
| | - Elia Stupka
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Centre for Gastroenterology, Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| |
Collapse
|
43
|
|
44
|
Gehrig J, Reischl M, Kalmár É, Ferg M, Hadzhiev Y, Zaucker A, Song C, Schindler S, Liebel U, Müller F. Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nat Methods 2009; 6:911-6. [DOI: 10.1038/nmeth.1396] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/22/2009] [Indexed: 12/14/2022]
|
45
|
Collart C, Ramis JM, Down TA, Smith JC. Smicl is required for phosphorylation of RNA polymerase II and affects 3'-end processing of RNA at the midblastula transition in Xenopus. Development 2009; 136:3451-61. [PMID: 19783735 DOI: 10.1242/dev.027714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Smicl (Smad-interacting CPSF 30-like) is an unusual protein that interacts with transcription factors as well as with the cleavage and polyadenylation specificity factor (CPSF). Previous work has shown that Smicl is expressed maternally in the Xenopus embryo and is later required for transcription of Chordin. In this paper we search for additional targets of Smicl. We identify many genes whose onset of expression at the midblastula transition (MBT) requires Smicl and is correlated with the translocation of Smicl from cytoplasm to nucleus. At least one such gene, Xiro1, is regulated via 3'-end processing. In searching for a general mechanism by which Smicl might regulate gene expression at the MBT, we have discovered that it interacts with the tail of Rpb1, the largest subunit of RNA polymerase II. Our results show that Smicl is required for the phosphorylation of the Rpb1 tail at serine 2 of the repeated heptapeptide YSPTSPS. This site becomes hyperphosphorylated at the MBT, thus allowing the docking of proteins required for elongation of transcription and RNA processing. Our work links the onset of zygotic gene expression in the Xenopus embryo with the translocation of Smicl from cytoplasm to nucleus, the phosphorylation of Rpb1 and the 3'-end processing of newly transcribed mRNAs.
Collapse
Affiliation(s)
- Clara Collart
- Wellcome Trust/CR-UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
46
|
Abstract
All animal embryos pass through a stage during which developmental control is handed from maternally provided gene products to those synthesized from the zygotic genome. This maternal-to-zygotic transition (MZT) has been extensively studied in model organisms, including echinoderms, nematodes, insects, fish,amphibians and mammals. In all cases, the MZT can be subdivided into two interrelated processes: first, a subset of maternal mRNAs and proteins is eliminated; second, zygotic transcription is initiated. The timing and scale of these two events differ across species, as do the cellular and morphogenetic processes that sculpt their embryos. In this article, we discuss conserved and distinct features within the two component processes of the MZT.
Collapse
Affiliation(s)
- Wael Tadros
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, TMDT Building, 101 College Street, Toronto,Ontario, Canada M5G 1L7
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, TMDT Building, 101 College Street, Toronto,Ontario, Canada M5G 1L7
| |
Collapse
|
47
|
Gazdag E, Santenard A, Ziegler-Birling C, Altobelli G, Poch O, Tora L, Torres-Padilla ME. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes Dev 2009; 23:2210-23. [PMID: 19759265 PMCID: PMC2751983 DOI: 10.1101/gad.535209] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/27/2009] [Indexed: 02/05/2023]
Abstract
Development of the germline requires consecutive differentiation events. Regulation of these has been associated with germ cell-specific and pluripotency-associated transcription factors, but the role of general transcription factors (GTFs) remains elusive. TATA-binding protein (TBP) is a GTF involved in transcription by all RNA polymerases. During ovarian folliculogenesis in mice the vertebrate-specific member of the TBP family, TBP2/TRF3, is expressed exclusively in oocytes. To determine TBP2 function in vivo, we generated TBP2-deficient mice. We found that Tbp2(-/-) mice are viable with no apparent phenotype. However, females lacking TBP2 are sterile due to defective folliculogenesis, altered chromatin organization, and transcriptional misregulation of key oocyte-specific genes. TBP2 binds to promoters of misregulated genes, suggesting that TBP2 directly regulates their expression. In contrast, TBP ablation in the female germline results in normal ovulation and fertilization, indicating that in these cells TBP is dispensable. We demonstrate that TBP2 is essential for the differentiation of female germ cells, and show the mutually exclusive functions of these key core promoter-binding factors, TBP and TBP2, in the mouse.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Angèle Santenard
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Department of Developmental and Cell Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Céline Ziegler-Birling
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Department of Developmental and Cell Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Gioia Altobelli
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Bioinformatics and Integrative Biology Laboratory, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Olivier Poch
- Bioinformatics and Integrative Biology Laboratory, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Làszlò Tora
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Department of Developmental and Cell Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|
48
|
Hsu JY, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT. TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes Dev 2008; 22:2353-8. [PMID: 18703680 DOI: 10.1101/gad.1681808] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.
Collapse
Affiliation(s)
- Jer-Yuan Hsu
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
49
|
Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT. The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol 2008; 20:253-9. [PMID: 18436437 PMCID: PMC2586601 DOI: 10.1016/j.ceb.2008.03.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
The RNA polymerase II core promoter is generally defined to be the sequence that directs the initiation of transcription. This simple definition belies a diverse and complex transcriptional module. There are two major types of core promoters - focused and dispersed. Focused promoters contain either a single transcription start site or a distinct cluster of start sites over several nucleotides, whereas dispersed promoters contain several start sites over 50-100 nucleotides and are typically found in CpG islands in vertebrates. Focused promoters are more ancient and widespread throughout nature than dispersed promoters; however, in vertebrates, dispersed promoters are more common than focused promoters. In addition, core promoters may contain many different sequence motifs, such as the TATA box, BRE, Inr, MTE, DPE, DCE, and XCPE1, that specify different mechanisms of transcription and responses to enhancers. Thus, the core promoter is a sophisticated gateway to transcription that determines which signals will lead to transcription initiation.
Collapse
Affiliation(s)
- Tamar Juven-Gershon
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0347, USA
| | | | | | | |
Collapse
|
50
|
Ramachandra RK, Salem M, Gahr S, Rexroad CE, Yao J. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): their expression during early embryonic development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:41. [PMID: 18412968 PMCID: PMC2374770 DOI: 10.1186/1471-213x-8-41] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/15/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Current literature and our previous results on expression patterns of oocyte-specific genes and transcription factors suggest a global but highly regulated maternal mRNA degradation at the time of embryonic genome activation (EGA). MicroRNAs (miRNAs) are small, non-coding regulatory RNAs (19-23 nucleotides) that regulate gene expression by guiding target mRNA cleavage or translational inhibition. These regulatory RNAs are potentially involved in the degradation of maternally inherited mRNAs during early embryogenesis. RESULTS To identify miRNAs that might be important for early embryogenesis in rainbow trout, we constructed a miRNA library from a pool of unfertilized eggs and early stage embryos. Sequence analysis of random clones from the library identified 14 miRNAs, 4 of which are novel to rainbow trout. Real-time PCR was used to measure the expression of all cloned miRNAs during embryonic development. Four distinct expression patterns were observed and some miRNAs showed up-regulated expression during EGA. Analysis of tissue distribution of these miRNAs showed that some are present ubiquitously, while others are differentially expressed among different tissues. We also analyzed the expression patterns of Dicer, the enzyme required for the processing of miRNAs and Stat3, a transcription factor involved in activating the transcription of miR-21. Dicer is abundantly expressed during EGA and Stat3 is up-regulated before the onset of EGA. CONCLUSION This study led to the discovery of 14 rainbow trout miRNAs. Our data support the notion that Dicer processes miRNAs and Stat3 induces expression of miR-21 and possibly other miRNAs during EGA. These miRNAs in turn guide maternal mRNAs for degradation, which is required for normal embryonic development.
Collapse
Affiliation(s)
- Raghuveer K Ramachandra
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|