1
|
Brauns F, Iñigo de la Cruz L, Daalman WKG, de Bruin I, Halatek J, Laan L, Frey E. Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast. Nat Commun 2023; 14:6504. [PMID: 37845215 PMCID: PMC10579396 DOI: 10.1038/s41467-023-42100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Leila Iñigo de la Cruz
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Werner K-G Daalman
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Ilse de Bruin
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jacob Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539, Munich, Germany.
| |
Collapse
|
2
|
Mohammadi S, Leduc A, Charette SJ, Barbeau J, Vincent AT. Amino acid substitutions in specific proteins correlate with farnesol unresponsiveness in Candida albicans. BMC Genomics 2023; 24:93. [PMID: 36859182 PMCID: PMC9979538 DOI: 10.1186/s12864-023-09174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.
Collapse
Affiliation(s)
- Sima Mohammadi
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| | - Annie Leduc
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Steve J. Charette
- grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada ,grid.421142.00000 0000 8521 1798Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC Canada
| | - Jean Barbeau
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Antony T. Vincent
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| |
Collapse
|
3
|
Salat-Canela C, Pérez P, Ayté J, Hidalgo E. Stress-induced cell depolarization through the MAP kinase-Cdc42 axis. Trends Cell Biol 2023; 33:124-137. [PMID: 35773059 DOI: 10.1016/j.tcb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
General stress responses, which sense environmental or endogenous signals, aim at promoting cell survival and fitness during adverse conditions. In eukaryotes, mitogen-activated protein (MAP) kinase-driven cascades trigger a shift in the cell's gene expression program as a cellular adaptation to stress. Here, we review another aspect of activated MAP kinase cascades reported in fission yeast: the transient inhibition of cell polarity in response to oxidative stress. The phosphorylation by a stress-activated MAP kinase of regulators of the GTPase cell division cycle 42 (Cdc42) causes a transient inhibition of polarized cell growth. The formation of growth sites depends on limiting and essential polarity components. We summarize here some processes in which inhibition of Cdc42 may be a general mechanism to regulate polarized growth also under physiological conditions.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
4
|
Sharma A, Martoliya Y, Mondal AK. BEM2, a RHO GTPase Activating Protein That Regulates Morphogenesis in S. cerevisiae, Is a Downstream Effector of Fungicidal Action of Fludioxonil. J Fungi (Basel) 2022; 8:jof8070754. [PMID: 35887509 PMCID: PMC9316689 DOI: 10.3390/jof8070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Fludioxonil belongs to the phenylpyrrole group of fungicides with a broad antifungal spectrum that has been widely used in agricultural practices for the past thirty years. Although fludioxonil is known to exert its fungicidal action through group III hybrid histidine kinases, the downstream effector of its cytotoxicity is poorly understood. In this study, we utilized a S. cerevisiae model to decipher the cytotoxic effect of fludioxonil. Through genome wide transposon mutagenesis, we have identified Bem2, a Rho GTPase activating protein, which is involved in this process. The deletion of BEM2 resulted in fludioxonil resistance. Our results showed that both the GAP and morphogenesis checkpoint activities of Bem2 were important for this. We also provided the genetic evidence that the role of Bem2 in the cell wall integrity (CWI) pathway and cell cycle regulation could contribute to the fludioxonil resistance phenotype.
Collapse
Affiliation(s)
- Anupam Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India;
| | - Yogita Martoliya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Alok K. Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
- Correspondence: ; Tel.: +91-1126704514
| |
Collapse
|
5
|
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E. Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 2021; 37:109951. [PMID: 34731607 DOI: 10.1016/j.celrep.2021.109951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Cdc42 GTPase rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its downregulation. We describe here that oxidative stress causes Sty1-kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at tips and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles either by eliminating two Cdc42 GAPs or through the constitutive tethering of Gef1 to cell tips, and we biochemically demonstrate that the GAPs Rga3/6 and the GEF Gef1 are direct substrates of Sty1. We propose that phosphorylation of Rga3/6 and Gef1 mediates the Sty1-dependent inhibition of Cdc42 at cell tips, halting polarized growth during stress adaptation.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain.
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
7
|
Gihana GM, Cross-Najafi AA, Lacefield S. The mitotic exit network regulates the spatiotemporal activity of Cdc42 to maintain cell size. J Cell Biol 2021; 220:211575. [PMID: 33284320 PMCID: PMC7721911 DOI: 10.1083/jcb.202001016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
During G1 in budding yeast, the Cdc42 GTPase establishes a polar front, along which actin is recruited to direct secretion for bud formation. Cdc42 localizes at the bud cortex and then redistributes between mother and daughter in anaphase. The molecular mechanisms that terminate Cdc42 bud-localized activity during mitosis are poorly understood. We demonstrate that the activity of the Cdc14 phosphatase, released through the mitotic exit network, is required for Cdc42 redistribution between mother and bud. Induced Cdc14 nucleolar release results in premature Cdc42 redistribution between mother and bud. Inhibition of Cdc14 causes persistence of Cdc42 bud localization, which perturbs normal cell size and spindle positioning. Bem3, a Cdc42 GAP, binds Cdc14 and is dephosphorylated at late anaphase in a Cdc14-dependent manner. We propose that Cdc14 dephosphorylates and activates Bem3 to allow Cdc42 inactivation and redistribution. Our results uncover a mechanism through which Cdc14 regulates the spatiotemporal activity of Cdc42 to maintain normal cell size at cytokinesis.
Collapse
Affiliation(s)
| | | | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
8
|
Chiou JG, Moran KD, Lew DJ. How cells determine the number of polarity sites. eLife 2021; 10:e58768. [PMID: 33899733 PMCID: PMC8116050 DOI: 10.7554/elife.58768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The diversity of cell morphologies arises, in part, through regulation of cell polarity by Rho-family GTPases. A poorly understood but fundamental question concerns the regulatory mechanisms by which different cells generate different numbers of polarity sites. Mass-conserved activator-substrate (MCAS) models that describe polarity circuits develop multiple initial polarity sites, but then those sites engage in competition, leaving a single winner. Theoretical analyses predicted that competition would slow dramatically as GTPase concentrations at different polarity sites increase toward a 'saturation point', allowing polarity sites to coexist. Here, we test this prediction using budding yeast cells, and confirm that increasing the amount of key polarity proteins results in multiple polarity sites and simultaneous budding. Further, we elucidate a novel design principle whereby cells can switch from competition to equalization among polarity sites. These findings provide insight into how cells with diverse morphologies may determine the number of polarity sites.
Collapse
Affiliation(s)
- Jian-geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Kyle D Moran
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
9
|
Wang J, Li L, Ming Z, Wu L, Yan L. Crystal Structure of the Epo1-Bem3 Complex for Bud Growth. Int J Mol Sci 2021; 22:ijms22083812. [PMID: 33917059 PMCID: PMC8067709 DOI: 10.3390/ijms22083812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 02/05/2023] Open
Abstract
Tubules of the endoplasmic reticulum (ER) spread into the buds of yeast by an actin-based mechanism and, upon entry, become attached to the polarisome, a proteinaceous micro-compartment below the tip of the bud. The minimal tether between polarisome and cortical ER is formed by a protein complex consisting of Epo1, a member of the polarisome, Scs2, a membrane protein of the ER and Cdc42 guanosine triphosphatase-activating protein Bem3. Here, we report the crystal structure of a complex between Epo1 and Bem3. In addition, we characterize through the hydrogen/deuterium (H/D) exchange assay the interface between Scs2 and Epo1. Our findings provide a first structural insight into the molecular architecture of the link between cortical ER and the polarisome.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China; (J.W.); (L.L.)
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China; (J.W.); (L.L.)
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530000, China;
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China;
| | - Liming Yan
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
10
|
The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells 2020; 9:cells9122534. [PMID: 33255231 PMCID: PMC7760196 DOI: 10.3390/cells9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
A bottom-up route towards predicting evolution relies on a deep understanding of the complex network that proteins form inside cells. In a rapidly expanding panorama of experimental possibilities, the most difficult question is how to conceptually approach the disentangling of such complex networks. These can exhibit varying degrees of hierarchy and modularity, which obfuscate certain protein functions that may prove pivotal for adaptation. Using the well-established polarity network in budding yeast as a case study, we first organize current literature to highlight protein entrenchments inside polarity. Following three examples, we see how alternating between experimental novelties and subsequent emerging design strategies can construct a layered understanding, potent enough to reveal evolutionary targets. We show that if you want to understand a cell’s evolutionary capacity, such as possible future evolutionary paths, seemingly unimportant proteins need to be mapped and studied. Finally, we generalize this research structure to be applicable to other systems of interest.
Collapse
|
11
|
Grinhagens S, Dünkler A, Wu Y, Rieger L, Brenner P, Gronemeyer T, Mulaw MA, Johnsson N. A time-resolved interaction analysis of Bem1 reconstructs the flow of Cdc42 during polar growth. Life Sci Alliance 2020; 3:e202000813. [PMID: 32737079 PMCID: PMC7409549 DOI: 10.26508/lsa.202000813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cdc42 organizes cellular polarity and directs the formation of cellular structures in many organisms. By locating Cdc24, the source of active Cdc42, to the growing front of the yeast cell, the scaffold protein Bem1, is instrumental in shaping the cellular gradient of Cdc42. This gradient instructs bud formation, bud growth, or cytokinesis through the actions of a diverse set of effector proteins. To address how Bem1 participates in these transformations, we systematically tracked its protein interactions during one cell cycle to define the ensemble of Bem1 interaction states for each cell cycle stage. Mutants of Bem1 that interact with only a discrete subset of the interaction partners allowed to assign specific functions to different interaction states and identified the determinants for their cellular distributions. The analysis characterizes Bem1 as a cell cycle-specific shuttle that distributes active Cdc42 from its source to its effectors. It further suggests that Bem1 might convert the PAKs Cla4 and Ste20 into their active conformations.
Collapse
Affiliation(s)
- Sören Grinhagens
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Alexander Dünkler
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Yehui Wu
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Lucia Rieger
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Philipp Brenner
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, Ulm, Germany
| | - Nils Johnsson
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Farkašovský M. Septin architecture and function in budding yeast. Biol Chem 2020; 401:903-919. [PMID: 31913844 DOI: 10.1515/hsz-2019-0401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
The septins constitute a conserved family of guanosine phosphate-binding and filament-forming proteins widespread across eukaryotic species. Septins appear to have two principal functions. One is to form a cortical diffusion barrier, like the septin collar at the bud neck of Saccharomyces cerevisiae, which prevents movement of membrane-associated proteins between the mother and daughter cells. The second is to serve as a polymeric scaffold for recruiting the proteins required for critical cellular processes to particular subcellular areas. In the last decade, structural information about the different levels of septin organization has appeared, but crucial structural determinants and factors responsible for septin assembly remain largely unknown. This review highlights recent findings on the architecture and function of septins and their remodeling with an emphasis on mitotically dividing budding yeasts.
Collapse
Affiliation(s)
- Marian Farkašovský
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology SAS, Dubravska cesta 21, 84551 Bratislava, Slovak Republic
| |
Collapse
|
13
|
Roles of the PH, coiled-coil and SAM domains of the yeast polarity protein Boi2 in polarity-site localization and function in polarized growth. Curr Genet 2020; 66:1101-1115. [PMID: 32656574 DOI: 10.1007/s00294-020-01093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Boi1 and Boi2 are paralogous proteins essential for bud formation in budding yeast. So far, the domains that target Boi1/Boi2 to the polarity sites and function in bud formation are not well understood. Here, we report that a coiled-coil domain of Boi2 cooperates with the adjacent PH domain to confer Boi2's bud-cortex localization and major function in cell growth. The PH domain portion of the PH-CC bi-domain interacts with the Rho GTPases Cdc42 and Rho3 and both interactions are independent of the GTP/GDP-bound state of each GTPase. Interestingly, high-copy RHO3 and BOI2 but not CDC42 suppressed the growth defect of RGA1-C538 overexpression and the sec15-1 mutant and this BOI2 function depends on RHO3, suggesting that Boi2 may function in the Rho3 pathway. The SAM domain of Boi2 plays an essential role in high-copy suppression of the two mutants as well as in the early bud-neck localization of Boi2. The SAM domain and the CC domain also interact homotypically. They are likely involved in the formation of Boi2-containing protein complex. Our results provide new insights in the localization and function of Boi2 and highlight the importance of the PH-CC bi-domain and the SAM domain in Boi2's localization and function.
Collapse
|
14
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Ghose D, Lew D. Mechanistic insights into actin-driven polarity site movement in yeast. Mol Biol Cell 2020; 31:1085-1102. [PMID: 32186970 PMCID: PMC7346724 DOI: 10.1091/mbc.e20-01-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
Directed cell growth or migration are critical for the development and function of many eukaryotic cells. These cells develop a dynamic "front" (also called "polarity site") that can change direction. Polarity establishment involves autocatalytic accumulation of polarity regulators, including the conserved Rho-family GTPase Cdc42, but the mechanisms underlying polarity reorientation remain poorly understood. The tractable model yeast, Saccharomyces cerevisiae, relocates its polarity site when searching for mating partners. Relocation requires polymerized actin, and is thought to involve actin-mediated vesicle traffic to the polarity site. In this study, we provide a quantitative characterization of spontaneous polarity site movement as a search process and use a mechanistic computational model that combines polarity protein biochemical interactions with vesicle trafficking to probe how various processes might affect polarity site movement. Our findings identify two previously documented features of yeast vesicle traffic as being particularly relevant to such movement: tight spatial focusing of exocytosis enhances the directional persistence of movement, and association of Cdc42-directed GTPase-Activating Proteins with secretory vesicles increases the distance moved. Furthermore, we suggest that variation in the rate of exocytosis beyond simple Poisson dynamics may be needed to fully account for the characteristics of polarity site movement in vivo.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
16
|
Halatek J, Brauns F, Frey E. Self-organization principles of intracellular pattern formation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0107. [PMID: 29632261 PMCID: PMC5904295 DOI: 10.1098/rstb.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli, Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans. By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as ‘activators’, ‘inhibitors’ or ‘substrate depletion’. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction–diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- J Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - F Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - E Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
17
|
Daniels CN, Zyla TR, Lew DJ. A role for Gic1 and Gic2 in Cdc42 polarization at elevated temperature. PLoS One 2018; 13:e0200863. [PMID: 30566437 PMCID: PMC6300207 DOI: 10.1371/journal.pone.0200863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
The conserved Rho-family GTPase Cdc42 is a master regulator of polarity establishment in many cell types. Cdc42 becomes activated and concentrated in a region of the cell cortex, and recruits a variety of effector proteins to that site. In turn, many effectors participate in regulation of cytoskeletal elements in order to remodel the cytoskeleton in a polarized manner. The budding yeast Saccharomyces cerevisiae has served as a tractable model system for studies of cell polarity. In yeast cells, Cdc42 polarization involves a positive feedback loop in which effectors called p21-activated kinases (PAKs) act to recruit a Cdc42-directed guanine nucleotide exchange factor (GEF), generating more GTP-Cdc42 in areas that already have GTP-Cdc42. The GTPase-interacting components (GICs) Gic1 and Gic2 are also Cdc42 effectors, and have been implicated in regulation of the actin and septin cytoskeleton. However, we report that cells lacking GICs are primarily defective in polarizing Cdc42 itself, suggesting that they act upstream as well as downstream of Cdc42 in yeast. Our findings suggest that feedback pathways involving GTPase effectors may be more prevalent than had been appreciated.
Collapse
Affiliation(s)
- Christine N. Daniels
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Trevin R. Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Moran KD, Kang H, Araujo AV, Zyla TR, Saito K, Tsygankov D, Lew DJ. Cell-cycle control of cell polarity in yeast. J Cell Biol 2018; 218:171-189. [PMID: 30459262 PMCID: PMC6314536 DOI: 10.1083/jcb.201806196] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 11/30/2022] Open
Abstract
In Saccharomyces cerevisiae, polarization of Cdc42 is regulated by the cell cycle, but the regulatory mechanisms are not well understood. Moran et al. show that G1 cyclin–dependent kinase activity enables localization of a subset of Cdc42 effectors to sites enriched for Cdc42. In many cells, morphogenetic events are coordinated with the cell cycle by cyclin-dependent kinases (CDKs). For example, many mammalian cells display extended morphologies during interphase but round up into more spherical shapes during mitosis (high CDK activity) and constrict a furrow during cytokinesis (low CDK activity). In the budding yeast Saccharomyces cerevisiae, bud formation reproducibly initiates near the G1/S transition and requires activation of CDKs at a point called “start” in G1. Previous work suggested that CDKs acted by controlling the ability of cells to polarize Cdc42, a conserved Rho-family GTPase that regulates cell polarity and the actin cytoskeleton in many systems. However, we report that yeast daughter cells can polarize Cdc42 before CDK activation at start. This polarization operates via a positive feedback loop mediated by the Cdc42 effector Ste20. We further identify a major and novel locus of CDK action downstream of Cdc42 polarization, affecting the ability of several other Cdc42 effectors to localize to the polarity site.
Collapse
Affiliation(s)
- Kyle D Moran
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Hui Kang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Ana V Araujo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Koji Saito
- Department of Biosciences, School of Science, Kitasato University, Kitasato, Sagamihara, Kanagawa, Japan
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
19
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
20
|
Goryachev AB, Leda M. Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity. Mol Biol Cell 2017; 28:370-380. [PMID: 28137950 PMCID: PMC5341721 DOI: 10.1091/mbc.e16-10-0739] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Mathematical modeling has been instrumental in identifying common principles of cell polarity across diverse systems. These principles include positive feedback loops that are required to destabilize a spatially uniform state of the cell. The conserved small G-protein Cdc42 is a master regulator of eukaryotic cellular polarization. Here we discuss recent developments in studies of Cdc42 polarization in budding and fission yeasts and demonstrate that models describing symmetry-breaking polarization can be classified into six minimal classes based on the structure of positive feedback loops that activate and localize Cdc42. Owing to their generic system-independent nature, these model classes are also likely to be relevant for the G-protein–based symmetry-breaking systems of higher eukaryotes. We review experimental evidence pro et contra different theoretically plausible models and conclude that several parallel and non–mutually exclusive mechanisms are likely involved in cellular polarization of yeasts. This potential redundancy needs to be taken into consideration when interpreting the results of recent cell-rewiring studies.
Collapse
Affiliation(s)
- Andrew B Goryachev
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcin Leda
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
21
|
Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophys Rev 2017; 9:375-387. [PMID: 28812259 PMCID: PMC5578929 DOI: 10.1007/s12551-017-0286-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Polarity establishment underlies proper cell cycle completion across virtually all organisms. Much progress has been made in generating an understanding of the structural and functional components of this process, especially in model species. Here we focus on the evolutionary dynamics of the fungal polarization protein network in order to determine general components and mechanistic principles, species- or lineage-specific adaptations and the evolvability of the network. The currently available genomic and proteomic screens in a variety of fungal species have shown three main characteristics: (1) certain proteins, processes and functions are conserved throughout the fungal clade; (2) orthologous functions can never be assumed, as various cases have been observed of homologous loci with dissimilar functions; (3) species have, typically, various species- or lineage-specific proteins incorporated in their polarization network. Further large-scale comparative and experimental studies, including those on non-model species representing the great fungal diversity, are needed to gain a better understanding of the evolutionary dynamics and generalities of the polarization network in fungi.
Collapse
|
22
|
Witte K, Strickland D, Glotzer M. Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization. eLife 2017; 6. [PMID: 28682236 PMCID: PMC5536948 DOI: 10.7554/elife.26722] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/04/2017] [Indexed: 12/27/2022] Open
Abstract
Cell polarization underlies many cellular and organismal functions. The GTPase Cdc42 orchestrates polarization in many contexts. In budding yeast, polarization is associated with a focus of Cdc42•GTP which is thought to self sustain by recruiting a complex containing Cla4, a Cdc42-binding effector, Bem1, a scaffold, and Cdc24, a Cdc42 GEF. Using optogenetics, we probe yeast polarization and find that local recruitment of Cdc24 or Bem1 is sufficient to induce polarization by triggering self-sustaining Cdc42 activity. However, the response to these perturbations depends on the recruited molecule, the cell cycle stage, and existing polarization sites. Before cell cycle entry, recruitment of Cdc24, but not Bem1, induces a metastable pool of Cdc42 that is sustained by positive feedback. Upon Cdk1 activation, recruitment of either Cdc24 or Bem1 creates a stable site of polarization that induces budding and inhibits formation of competing sites. Local perturbations have therefore revealed unexpected features of polarity establishment. DOI:http://dx.doi.org/10.7554/eLife.26722.001 Living cells are not always symmetrical. Instead they are often polarized, with a distinct front and back or top and bottom. Cell polarization influences many processes, including how a cell moves and grows, and where it will divide. Breaking symmetry – in other words, making one part of a cell different from the rest – regularly involves a small protein called Cdc42, which can switch between an active and inactive form. This protein is found in a range of organisms from fungi to animals. Budding yeast is a valuable model to study cell polarization. This single-celled fungus polarizes in order to produce a daughter cell or ‘bud’ that emerges out of one end of the mother cell. To become polarized, the mother cell accumulates active Cdc42 in a small area of the cell membrane. This region then becomes the front of the cell, from where the future bud will emerge. However, it is not fully understood how active Cdc42 accumulates at only one place. One model proposed that some molecules of active Cdc42 that are already present on the membrane, recruit polarity proteins that in turn activate other, inactive Cdc42 molecules. This self-amplifying loop could eventually build up a local pool of active Cdc42. However, it has proved challenging to directly test this model. Optogenetics is a technique in which a beam of light is used to manipulate proteins inside cells in a precise manner. The method was first developed in the field of neuroscience over a decade ago, and has more recently been applied to cell biology. Now, Witte et al. have used optogenetics to move polarity proteins to defined places on the membrane of yeast cells and analyse how this change affected the pattern of Cdc42 activation. The experiments showed that polarity proteins not only activate Cdc42 but they also recruit more polarity proteins to the same place. The resulting positive feedback loop leads to active Cdc42 accumulating at one site on the membrane. Further work showed that this mechanism only operates in this manner just before the mother cell replicates its DNA, which is when a yeast cell will normally polarize. These results provide a new perspective on how cells can make one part of the cell different from the rest. Beyond yeast, cell polarization plays a major role when animals, including humans, are developing as embryos or healing wounds. These processes are often controlled by a protein that is equivalent to Cdc42 or by other highly related switch-like proteins. This means that yeast will continue to provide a useful model to study these processes in the laboratory. Lastly, the optogenetics approach developed Witte et al. will be useful to dissect other processes that involve molecules being located at specific place in a cell at specific time. DOI:http://dx.doi.org/10.7554/eLife.26722.002
Collapse
Affiliation(s)
- Kristen Witte
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Devin Strickland
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
23
|
Hegemann B, Peter M. Local sampling paints a global picture: Local concentration measurements sense direction in complex chemical gradients. Bioessays 2017; 39. [PMID: 28556309 DOI: 10.1002/bies.201600134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detecting and interpreting extracellular spatial signals is essential for cellular orientation within complex environments, such as during directed cell migration or growth in multicellular development. Although the molecular understanding of how cells read spatial signals like chemical gradients is still lacking, recent work has revealed that stochastic processes at different temporal and spatial scales are at the core of this gradient sensing process in a wide range of eukaryotes. Fast biochemical reactions like those underlying GTPase activity dynamics form a functional module together with slower cell morphological changes driven by membrane remodelling. This biochemical-morphological module explores the environment by stochastic local concentration sampling to determine the source of the gradient signal, enabling efficient signal detection and interpretation before polarised growth or migration towards the gradient source is initiated. Here we review recent data describing local sampling and propose a model of local fast and slow feedback counteracted by gradient-dependent substrate limitation to be at the core of gradient sensing by local sampling.
Collapse
Affiliation(s)
- Björn Hegemann
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
24
|
Pedraza N, Cemeli T, Monserrat MV, Garí E, Ferrezuelo F. Regulation of small GTPase activity by G1 cyclins. Small GTPases 2017; 10:47-53. [PMID: 28129038 DOI: 10.1080/21541248.2016.1268665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle entry by phosphorylating a number of nuclear targets and releasing a transcriptional program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets involved in the polarization of the cytoskeleton and vesicle trafficking. These processes are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity of this and other small GTPases through the modulation of their regulators and effectors. This regulation is key for different developmental outcomes in unicellular organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with cell migration and morphogenesis, important processes not only during normal development and organogenesis but also for tumor formation and metastasis. Here we briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of the activity of small GTPases, emphasizing their functional relevance both in budding yeast and in mammalian cells.
Collapse
Affiliation(s)
- Neus Pedraza
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Tània Cemeli
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Ma Ventura Monserrat
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Eloi Garí
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Francisco Ferrezuelo
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| |
Collapse
|
25
|
Ly N, Cyert MS. Calcineurin, the Ca 2+-dependent phosphatase, regulates Rga2, a Cdc42 GTPase-activating protein, to modulate pheromone signaling. Mol Biol Cell 2017; 28:576-586. [PMID: 28077617 PMCID: PMC5328617 DOI: 10.1091/mbc.e16-06-0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 11/11/2022] Open
Abstract
Calcineurin, the conserved Ca2+/calmodulin-activated phosphatase, is required for viability during prolonged exposure to pheromone and acts through multiple substrates to down-regulate yeast pheromone signaling. Calcineurin regulates Dig2 and Rod1/Art4 to inhibit mating-induced gene expression and activate receptor internalization, respectively. Recent systematic approaches identified Rga2, a GTPase-activating protein (GAP) for the Cdc42 Rho-type GTPase, as a calcineurin substrate. Here we establish a physiological context for this regulation and show that calcineurin dephosphorylates and positively regulates Rga2 during pheromone signaling. Mating factor activates the Fus3/MAPK kinase, whose substrates induce gene expression, cell cycle arrest, and formation of the mating projection. Our studies demonstrate that Fus3 also phosphorylates Rga2 at inhibitory S/TP sites, which are targeted by Cdks during the cell cycle, and that calcineurin opposes Fus3 to activate Rga2 and decrease Cdc42 signaling. Yeast expressing an Rga2 mutant that is defective for regulation by calcineurin display increased gene expression in response to pheromone. This work is the first to identify cross-talk between Ca2+/calcineurin and Cdc42 signaling and to demonstrate modulation of Cdc42 activity through a GAP during mating.
Collapse
Affiliation(s)
- Nina Ly
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
26
|
Nie WC, He F, Yuan SM, Jia ZW, Wang RR, Gao XD. Roles of an N-terminal coiled-coil-containing domain in the localization and function of Bem3, a Rho GTPase-activating protein in budding yeast. Fungal Genet Biol 2017; 99:40-51. [PMID: 28064039 DOI: 10.1016/j.fgb.2016.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
GTPase-activating proteins (GAPs) play critical roles in the spatial and temporal control of small GTPases. The budding yeast Bem3 is a GAP for Cdc42, a Rho GTPase crucial for actin and septin organization. Bem3 localizes to the sites of polarized growth. However, the amino acid sequence determinants mediating recruitment of Bem3 to its physiological sites of action and those important for Bem3 function are not clear. Here, we show that Bem3's localization is guided by two distinct targeting regions-the PX-PH-domain-containing TD1 and the coiled-coil-containing TD2. TD2 localization is largely mediated by its interaction with the polarisome component Epo1 via heterotypic coiled-coil interaction. This finding reveals a novel role for the polarisome in linking Bem3 to its functional target, Cdc42. We also show that the coiled-coil domain of Bem3 interacts homotypically and this interaction is important for the regulation of Cdc42 by Bem3. Moreover, we show that overexpression of a longer version of the TD2 domain disrupts septin-ring assembly in a RhoGAP-independent manner, suggesting that TD2 may be capable of interacting with proteins implicated in septin-ring assembly. Furthermore, we show that the longer version of TD2 interacts with Kss1, a MAPK involved in filamentous growth. Kss1 is reported to localize mainly in the nucleus. We find that Kss1 also localizes to the sites of polarized growth and Bem3 interacts with Kss1 at the septin-ring assembly site. Our study provides new insights in Bem3's localization and function.
Collapse
Affiliation(s)
- Wen-Chao Nie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Si-Min Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui-Rui Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China.
| |
Collapse
|
27
|
Pérez-Martín J, Bardetti P, Castanheira S, de la Torre A, Tenorio-Gómez M. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 2016; 57:93-99. [PMID: 27032479 DOI: 10.1016/j.semcdb.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
Abstract
To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.
Collapse
Affiliation(s)
- José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.
| | - Paola Bardetti
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Antonio de la Torre
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - María Tenorio-Gómez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
28
|
McClure AW, Minakova M, Dyer JM, Zyla TR, Elston TC, Lew DJ. Role of Polarized G Protein Signaling in Tracking Pheromone Gradients. Dev Cell 2016; 35:471-82. [PMID: 26609960 DOI: 10.1016/j.devcel.2015.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial and illuminate a novel mechanism for gradient tracking.
Collapse
Affiliation(s)
- Allison W McClure
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Maria Minakova
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jayme M Dyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol 2016; 54:170-7. [PMID: 26920877 DOI: 10.1007/s12275-016-5550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1's roles and regulation in C. albicans hyphal development and other traits important for infection.
Collapse
Affiliation(s)
- Yue Wang
- Candida albicans Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
30
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio 2015; 6:e00647. [PMID: 26106079 PMCID: PMC4479701 DOI: 10.1128/mbio.00647-15] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.
Collapse
Affiliation(s)
- Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Mansa Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Arielle Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Iwao Ojima
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Erika Bullesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Ashbaugh
- Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | - Margaret Collins
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Larry Sallans
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Pankaj B Desai
- Department of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan P Wiederhold
- Department of Pathology, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Annette W Fothergill
- Department of Pathology, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William R Kirkpatrick
- Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Thomas Patterson
- Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Patrick Flaherty
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Xuewen Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Gabriele Vargas Cesar
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia de Melo Tavares
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
32
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|
33
|
Bendezú FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol 2015; 13:e1002097. [PMID: 25837586 PMCID: PMC4383620 DOI: 10.1371/journal.pbio.1002097] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules. This study of fission yeast reveals that the active and inactive forms of the small GTPase Cdc42 have different rates of lateral diffusion in the membrane, providing insights into how it becomes spontaneously polarized, thereby determining the polarity of the cell. Cell polarization is a critical feature of most cells that underlies their functional organization. A central polarity factor called Cdc42, a small GTPase targeted to the plasma membrane by prenylation, promotes cell polarization in its active GTP-bound form. Cdc42 is a key polarity factor because it accumulates at presumptive sites of polarity, which previous work suggested involves Cdc42 recycling on and off the plasma membrane. In addition, its activity can spontaneously polarize cells in a single location by self-enhancing positive feedback mechanisms, even in the absence of any pre-localized landmarks. In this study, we constructed the first functional fluorescently tagged allele of Cdc42 that replaces the endogenous genomic copy in Schizosaccharomyces pombe. This allowed measurements of Cdc42 dynamics at the plasma membrane by live microscopy. Unexpectedly, this approach revealed that Cdc42 primarily moves through lateral diffusion, rather than on and off the plasma membrane. Engineered Cdc42 alleles with alternative membrane-targeting mechanisms demonstrated that Cdc42 activity, indeed, polarizes in the absence of known pathways that recycle Cdc42 on and off the membrane. We further show that the active form, Cdc42-GTP, is less mobile than Cdc42-GDP. We thus propose that Cdc42 polarization occurs as a consequence of its local activation—either through self-enhanced feedback or in response to upstream cues—by a reduction in the active Cdc42 diffusion rate.
Collapse
Affiliation(s)
- Felipe O. Bendezú
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Romain Wyss
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Abstract
Morphogenesis in fungi is often induced by extracellular factors and executed by fungal genetic factors. Cell surface changes and alterations of the microenvironment often accompany morphogenetic changes in fungi. In this review, we will first discuss the general traits of yeast and hyphal morphotypes and how morphogenesis affects development and adaptation by fungi to their native niches, including host niches. Then we will focus on the molecular machinery responsible for the two most fundamental growth forms, yeast and hyphae. Last, we will describe how fungi incorporate exogenous environmental and host signals together with genetic factors to determine their morphotype and how morphogenesis, in turn, shapes the fungal microenvironment.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - J Andrew Alspaugh
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Steven Harris
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
35
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
36
|
Rego A, Duarte AM, Azevedo F, Sousa MJ, Côrte-Real M, Chaves SR. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:303-314. [PMID: 28357256 PMCID: PMC5349133 DOI: 10.15698/mic2014.09.164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetic acid triggers apoptotic cell death in Saccharomyces
cerevisiae, similar to mammalian apoptosis. To uncover novel
regulators of this process, we analyzed whether impairing MAPK signaling
affected acetic acid-induced apoptosis and found the mating-pheromone response
and, especially, the cell wall integrity pathways were the major mediators,
especially the latter, which we characterized further. Screening downstream
effectors of this pathway, namely targets of the transcription factor Rlm1p,
highlighted decreased cell wall remodeling as particularly important for acetic
acid resistance. Modulation of cell surface dynamics therefore emerges as a
powerful strategy to increase acetic acid resistance, with potential application
in industrial fermentations using yeast, and in biomedicine to exploit the
higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate
produced by intestinal propionibacteria.
Collapse
Affiliation(s)
- António Rego
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Ana M Duarte
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Flávio Azevedo
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Maria J Sousa
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| | - Susana R Chaves
- Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Braga, Portugal
| |
Collapse
|
37
|
Mukherjee D, Sen A, Aguilar RC. RhoGTPase-binding proteins, the exocyst complex and polarized vesicle trafficking. Small GTPases 2014; 5:e28453. [PMID: 24691289 DOI: 10.4161/sgtp.28453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell polarity, the asymmetric distribution of proteins and lipids, is essential for a variety of cellular functions. One mechanism orchestrating cell polarity is polarized vesicle trafficking; whereby cargo loaded secretory vesicles are specifically transported to predetermined areas of the cell. The evolutionarily conserved exocyst complex and its small GTPase regulators play crucial roles in spatiotemporal control of polarized vesicle trafficking. In studies on neuronal membrane remodeling and synaptic plasticity, conserved mechanisms of exocyst regulation and cargo recycling during polarized vesicle trafficking are beginning to emerge as well. Recently, our lab demonstrated that RhoGTPase-binding proteins in both yeast (Bem3) and mammals (Ocrl1) are also required for the efficient traffic of secretory vesicles to sites of polarized growth and signaling. Together with our studies, we highlight the evolutionary conservation of the basic elements essential for polarized vesicle traffic across different cellular functions and model systems. In conclusion, we emphasize that studies on RhoGTPase-binding proteins in these processes should be included in the next level of investigation, for a more complete understanding of their hitherto unknown roles in polarized membrane traffic and exocyst regulation.
Collapse
Affiliation(s)
| | - Arpita Sen
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - R Claudio Aguilar
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| |
Collapse
|
38
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
39
|
Abstract
Polarized cell growth requires a well-orchestrated number of events, namely selection of growth site, organization of cytoskeleton elements and delivery of new material to the growth region. The small Rho GTPase Cdc42 has emerged as a major organizer of polarized growth through its participation in many of these events. In the present short review, we focus on the regulation of Cdc42 activity and localization as well as how it controls downstream events necessary for polarized cell growth in Schizosaccharomyces pombe. Owing to the high level of similarity of the polarity pathways, analogies between fission yeast and other model systems can be useful to decipher how cells can actively define their shape by polarized growth.
Collapse
|
40
|
Freisinger T, Klünder B, Johnson J, Müller N, Pichler G, Beck G, Costanzo M, Boone C, Cerione RA, Frey E, Wedlich-Söldner R. Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat Commun 2013; 4:1807. [PMID: 23651995 PMCID: PMC3674238 DOI: 10.1038/ncomms2795] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/22/2013] [Indexed: 01/06/2023] Open
Abstract
Establishment of cell polarity—or symmetry breaking—relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast Saccharomyces cerevisiae a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops. A positive feedback loop which results in localized accumulation of the small GTPase Cdc42 generates cell polarity in budding yeast; however, such loops are inherently susceptible to noise. Here the authors demonstrate how two pathways that mediate Cdc42 recycling work together to ensure the robustness of symmetry breaking.
Collapse
Affiliation(s)
- Tina Freisinger
- Max-Planck-Institute of Biochemistry, Cellular Dynamics and Cell Patterning, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Klünder B, Freisinger T, Wedlich-Söldner R, Frey E. GDI-mediated cell polarization in yeast provides precise spatial and temporal control of Cdc42 signaling. PLoS Comput Biol 2013; 9:e1003396. [PMID: 24348237 PMCID: PMC3861033 DOI: 10.1371/journal.pcbi.1003396] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/31/2013] [Indexed: 01/19/2023] Open
Abstract
Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast Saccharomyces cerevisiae under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding of yeast polarization we establish a detailed mechanistic model of GDI-mediated polarization. We show that GDI-mediated polarization provides precise spatial and temporal control of Cdc42 signaling and give experimental evidence for our findings. Cell cycle induced changes of Cdc42 regulation enhance positive feedback loops of active Cdc42 production, and thereby allow simultaneous switch-like regulation of focused polarity and Cdc42 activation. This regulation drives the direct formation of a unique polarity cluster with characteristic narrowing dynamics, as opposed to the previously proposed competition between transient clusters. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms. Cell polarization is a fundamental cellular process that defines a single orientation axis within prokaryotic or eukaryotic cells and is a prerequisite for developmental processes such as cell migration, proliferation or differentiation. In the yeast Saccharomyces cerevisiae cell polarization determines the position of a new growth or bud site. Although many studies have focused on identifying polarity regulators and their interactions, the fundamental mechanisms and features of cell polarity still remain controversial. Here, we develop a detailed mathematical model of diffusion-driven cell polarization, which we verify experimentally. We show that this polarization mechanism provides precise spatial and temporal control of signals, which determine the place of a new growth site. Changes induced by the cell cycle allow simultaneous switch-like regulation of polarization and activation of the GTPase Cdc42, the central polarity regulator which initiates formation of a new bud. This regulation drives direct formation of a unique Cdc42 cluster with characteristic narrowing dynamics and robustly narrow spatial focus. Hence, our analysis reveals fundamental design principles that allow cell polarization to reliably initiate developmental processes at a specific time and place. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms.
Collapse
Affiliation(s)
- Ben Klünder
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Tina Freisinger
- Max Planck Institute of Biochemistry, Cellular Dynamics and Cell Patterning, Martinsried, Germany
| | - Roland Wedlich-Söldner
- Max Planck Institute of Biochemistry, Cellular Dynamics and Cell Patterning, Martinsried, Germany
- * E-mail: (RWS); (EF)
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail: (RWS); (EF)
| |
Collapse
|
42
|
Okada S, Leda M, Hanna J, Savage N, Bi E, Goryachev A. Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev Cell 2013; 26:148-61. [PMID: 23906065 PMCID: PMC3730058 DOI: 10.1016/j.devcel.2013.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/23/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
Asymmetric cell division plays a crucial role in cell differentiation, unequal replicative senescence, and stem cell maintenance. In budding yeast, the identities of mother and daughter cells begin to diverge at bud emergence when distinct plasma-membrane domains are formed and separated by a septin ring. However, the mechanisms underlying this transformation remain unknown. Here, we show that septins recruited to the site of polarization by Cdc42-GTP inhibit Cdc42 activity in a negative feedback loop, and this inhibition depends on Cdc42 GTPase-activating proteins. Combining live-cell imaging and computational modeling, we demonstrate that the septin ring is sculpted by polarized exocytosis, which creates a hole in the accumulating septin density and relieves the inhibition of Cdc42. The nascent ring generates a sharp boundary that confines the Cdc42 activity and exocytosis strictly to its enclosure and thus clearly delineates the daughter cell identity. Our findings define a fundamental mechanism underlying eukaryotic cell fate differentiation. Septins provide negative feedback to Cdc42 activity that depends on Cdc42 GAPs Septin ring is formed by highly focused polarized exocytosis Suppression of exocytosis causes chasing behavior of septins Septin ring size is primarily determined by size of the underlying Cdc42 cluster
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcin Leda
- SynthSys—Centre for Systems and Synthetic Biology and Institute for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Julia Hanna
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S. Savage
- SynthSys—Centre for Systems and Synthetic Biology and Institute for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Andrew B. Goryachev
- SynthSys—Centre for Systems and Synthetic Biology and Institute for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
- Corresponding author
| |
Collapse
|
43
|
Atkins BD, Yoshida S, Saito K, Wu CF, Lew DJ, Pellman D. Inhibition of Cdc42 during mitotic exit is required for cytokinesis. ACTA ACUST UNITED AC 2013; 202:231-40. [PMID: 23878274 PMCID: PMC3718968 DOI: 10.1083/jcb.201301090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A decrease in Cdc42 activation during mitotic exit is necessary to allow localization of key cytokinesis regulators and proper septum formation. The role of Cdc42 and its regulation during cytokinesis is not well understood. Using biochemical and imaging approaches in budding yeast, we demonstrate that Cdc42 activation peaks during the G1/S transition and during anaphase but drops during mitotic exit and cytokinesis. Cdc5/Polo kinase is an important upstream cell cycle regulator that suppresses Cdc42 activity. Failure to down-regulate Cdc42 during mitotic exit impairs the normal localization of key cytokinesis regulators—Iqg1 and Inn1—at the division site, and results in an abnormal septum. The effects of Cdc42 hyperactivation are largely mediated by the Cdc42 effector p21-activated kinase Ste20. Inhibition of Cdc42 and related Rho guanosine triphosphatases may be a general feature of cytokinesis in eukaryotes.
Collapse
Affiliation(s)
- Benjamin D Atkins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mukherjee D, Sen A, Boettner DR, Fairn GD, Schlam D, Bonilla Valentin FJ, Michael McCaffery J, Hazbun T, Staiger CJ, Grinstein S, Lemmon SK, Claudio Aguilar R. Bem3, a Cdc42 GTPase-activating protein, traffics to an intracellular compartment and recruits the secretory Rab GTPase Sec4 to endomembranes. J Cell Sci 2013; 126:4560-71. [PMID: 23943876 DOI: 10.1242/jcs.117663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell polarity is essential for many cellular functions including division and cell-fate determination. Although RhoGTPase signaling and vesicle trafficking are both required for the establishment of cell polarity, the mechanisms by which they are coordinated are unclear. Here, we demonstrate that the yeast RhoGAP (GTPase activating protein), Bem3, is targeted to sites of polarized growth by the endocytic and recycling pathways. Specifically, deletion of SLA2 or RCY1 led to mislocalization of Bem3 to depolarized puncta and accumulation in intracellular compartments, respectively. Bem3 partitioned between the plasma membrane and an intracellular membrane-bound compartment. These Bem3-positive structures were polarized towards sites of bud emergence and were mostly observed during the pre-mitotic phase of apical growth. Cell biological and biochemical approaches demonstrated that this intracellular Bem3 compartment contained markers for both the endocytic and secretory pathways, which were reminiscent of the Spitzenkörper present in the hyphal tips of growing fungi. Importantly, Bem3 was not a passive cargo, but recruited the secretory Rab protein, Sec4, to the Bem3-containing compartments. Moreover, Bem3 deletion resulted in less efficient localization of Sec4 to bud tips during early stages of bud emergence. Surprisingly, these effects of Bem3 on Sec4 were independent of its GAP activity, but depended on its ability to efficiently bind endomembranes. This work unveils unsuspected and important details of the relationship between vesicle traffic and elements of the cell polarity machinery: (1) Bem3, a cell polarity and peripherally associated membrane protein, relies on vesicle trafficking to maintain its proper localization; and (2) in turn, Bem3 influences secretory vesicle trafficking.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lo WC, Lee ME, Narayan M, Chou CS, Park HO. Polarization of diploid daughter cells directed by spatial cues and GTP hydrolysis of Cdc42 budding yeast. PLoS One 2013; 8:e56665. [PMID: 23437206 PMCID: PMC3577668 DOI: 10.1371/journal.pone.0056665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model.
Collapse
Affiliation(s)
- Wing-Cheong Lo
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Mid Eum Lee
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Monisha Narayan
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ching-Shan Chou
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
46
|
Gong T, Liao Y, He F, Yang Y, Yang DD, Chen XD, Gao XD. Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2. EUKARYOTIC CELL 2013; 12:368-77. [PMID: 23264647 PMCID: PMC3571307 DOI: 10.1128/ec.00277-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4(Q131L) mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4(Δ)(61) cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.
Collapse
Affiliation(s)
- Ting Gong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Many cells are remarkably proficient at tracking very shallow chemical gradients, despite considerable noise from stochastic receptor-ligand interactions. Motile cells appear to undergo a biased random walk: spatial noise in receptor activity may determine the instantaneous direction, but because noise is spatially unbiased, it is filtered out by time averaging, resulting in net movement upgradient. How nonmotile cells might filter out noise is unknown. RESULTS Using yeast chemotropic mating as a model, we demonstrate that a polarized patch of polarity regulators "wanders" along the cortex during gradient tracking. Computational and experimental findings suggest that actin-directed membrane traffic contributes to wandering by diluting local polarity factors. The pheromone gradient appears to bias wandering via interactions between receptor-activated Gβγ and polarity regulators. Artificially blocking patch wandering impairs gradient tracking. CONCLUSIONS We suggest that the polarity patch undergoes an intracellular biased random walk that enables noise filtering by time averaging, allowing nonmotile cells to track shallow gradients.
Collapse
|
48
|
McCusker D, Royou A, Velours C, Kellogg D. Cdk1-dependent control of membrane-trafficking dynamics. Mol Biol Cell 2012; 23:3336-47. [PMID: 22767578 PMCID: PMC3431941 DOI: 10.1091/mbc.e11-10-0834] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which trigger polarization of the actin cytoskeleton for delivery of membrane to growth sites. It is found that Cdk1's function in polarized growth extends beyond that of actin organization. Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression.
Collapse
Affiliation(s)
- Derek McCusker
- European Institute of Chemistry and Biology, 33607 Pessac, France
| | | | | | | |
Collapse
|
49
|
Howell AS, Jin M, Wu CF, Zyla TR, Elston TC, Lew DJ. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 2012; 149:322-33. [PMID: 22500799 DOI: 10.1016/j.cell.2012.03.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/12/2011] [Accepted: 02/13/2012] [Indexed: 11/26/2022]
Abstract
Many cells undergo symmetry-breaking polarization toward a randomly oriented "front" in the absence of spatial cues. In budding yeast, such polarization involves a positive feedback loop that enables amplification of stochastically arising clusters of polarity factors. Previous mathematical modeling suggested that, if more than one cluster were amplified, the clusters would compete for limiting resources and the largest would "win," explaining why yeast cells always make one and only one bud. Here, using imaging with improved spatiotemporal resolution, we show the transient coexistence of multiple clusters during polarity establishment, as predicted by the model. Unexpectedly, we also find that initial polarity factor clustering is oscillatory, revealing the presence of a negative feedback loop that disperses the factors. Mathematical modeling predicts that negative feedback would confer robustness to the polarity circuit and make the kinetics of competition between polarity factor clusters relatively insensitive to polarity factor concentration. These predictions are confirmed experimentally.
Collapse
Affiliation(s)
- Audrey S Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|