1
|
Bründl M, Pellikan S, Stary-Weinzinger A. Simulating PIP 2-Induced Gating Transitions in Kir6.2 Channels. Front Mol Biosci 2021; 8:711975. [PMID: 34447786 PMCID: PMC8384051 DOI: 10.3389/fmolb.2021.711975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels consist of an inwardly rectifying K+ channel (Kir6.2) pore, to which four ATP-sensitive sulfonylurea receptor (SUR) domains are attached, thereby coupling K+ permeation directly to the metabolic state of the cell. Dysfunction is linked to neonatal diabetes and other diseases. K+ flux through these channels is controlled by conformational changes in the helix bundle region, which acts as a physical barrier for K+ permeation. In addition, the G-loop, located in the cytoplasmic domain, and the selectivity filter might contribute to gating, as suggested by different disease-causing mutations. Gating of Kir channels is regulated by different ligands, like Gβγ, H+, Na+, adenosine nucleotides, and the signaling lipid phosphatidyl-inositol 4,5-bisphosphate (PIP2), which is an essential activator for all eukaryotic Kir family members. Although molecular determinants of PIP2 activation of KATP channels have been investigated in functional studies, structural information of the binding site is still lacking as PIP2 could not be resolved in Kir6.2 cryo-EM structures. In this study, we used Molecular Dynamics (MD) simulations to examine the dynamics of residues associated with gating in Kir6.2. By combining this structural information with functional data, we investigated the mechanism underlying Kir6.2 channel regulation by PIP2.
Collapse
Affiliation(s)
| | | | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Structure based analysis of K ATP channel with a DEND syndrome mutation in murine skeletal muscle. Sci Rep 2021; 11:6668. [PMID: 33758250 PMCID: PMC7988048 DOI: 10.1038/s41598-021-86121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, the most severe end of neonatal diabetes mellitus, is caused by mutation in the ATP-sensitive potassium (KATP) channel. In addition to diabetes, DEND patients present muscle weakness as one of the symptoms, and although the muscle weakness is considered to originate in the brain, the pathological effects of mutated KATP channels in skeletal muscle remain elusive. Here, we describe the local effects of the KATP channel on muscle by expressing the mutation present in the KATP channels of the DEND syndrome in the murine skeletal muscle cell line C2C12 in combination with computer simulation. The present study revealed that the DEND mutation can lead to a hyperpolarized state of the muscle cell membrane, and molecular dynamics simulations based on a recently reported high-resolution structure provide an explanation as to why the mutation reduces ATP sensitivity and reveal the changes in the local interactions between ATP molecules and the channel.
Collapse
|
3
|
Öngen YD, Eren E, Demirbaş Ö, Sobu E, Ellard S, De Franco E, Tarım Ö. Genotype and Phenotype Heterogeneity in Neonatal Diabetes: A Single Centre Experience in Turkey. J Clin Res Pediatr Endocrinol 2021; 13:80-87. [PMID: 32820876 PMCID: PMC7947723 DOI: 10.4274/jcrpe.galenos.2020.2020.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Neonatal diabetes mellitus (NDM) may be transient or permanent, and the majority is caused by genetic mutations. Early diagnosis is essential to select the patients who will respond to oral treatment. In this investigation, we aimed to present the phenotype and genotype of our patients with NDM and share our experience in a single tertiary center METHODS A total of 16 NDM patients from 12 unrelated families are included in the study. The clinical presentation, age at diagnosis, perinatal and family history, consanguinity, gender, hemoglobin A1c, C-peptide, insulin, insulin autoantibodies, genetic mutations, and response to treatment are retrospectively evaluated. RESULTS The median age at diagnosis of diabetes was five months (4 days-18 months) although six patients with a confirmed genetic diagnosis were diagnosed >6 months. Three patients had KCNJ11 mutations, six had ABCC8 mutations, three had EIF2AK3 mutations, and one had a de novo INS mutation. All the permanent NDM patients with KCNJ11 and ABCC8 mutations were started on sulfonylurea treatment resulting in a significant increase in C-peptide level, better glycemic control, and discontinuation of insulin. CONCLUSION Although NDM is defined as diabetes diagnosed during the first six months of life, and a diagnosis of type 1 diabetes is more common between the ages of 6 and 24 months, in rare cases NDM may present as late as 12 or even 24 months of age. Molecular diagnosis in NDM is important for planning treatment and predicting prognosis. Therefore, genetic testing is essential in these patients.
Collapse
Affiliation(s)
- Yasemin Denkboy Öngen
- Bursa Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey,* Address for Correspondence: Bursa Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey Phone: +90 224 295 05 33 E-mail:
| | - Erdal Eren
- Bursa Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey
| | - Özgecan Demirbaş
- Bursa Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey
| | - Elif Sobu
- Bursa Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom,Royal Devon and Exeter NHS Foundation Trust, Genomics Laboratory, Exeter, United Kingdom
| | - Elisa De Franco
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Ömer Tarım
- Bursa Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey
| |
Collapse
|
4
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
5
|
Garcin L, Mericq V, Fauret-Amsellem AL, Cave H, Polak M, Beltrand J. Neonatal diabetes due to potassium channel mutation: Response to sulfonylurea according to the genotype. Pediatr Diabetes 2020; 21:932-941. [PMID: 32418263 DOI: 10.1111/pedi.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE A precision medicine approach is used to improve treatment of patients with monogenic diabetes. Herein, we searched SU efficiency according to the genotype-phenotype correlation, dosage used, and side effects. RESEARCH DESIGN AND METHODS Systematic review conducted according the PRISMA control criteria identifying relevant studies evaluating the in vivo and in vitro sensitivity of ATP-dependent potassium channels according to the characteristics of genetic mutation. RESULTS Hundred and three selected articles with complete data in 502 cases in whom 413 (82.3%) had mutations in KCNJ11 (#64) and 89 in ABCC8 (# 56). Successful transfer from insulin to SU was achieved in 91% and 86.5% patients, respectively, at a mean age of 36.5 months (0-63 years). Among patients with KCNJ11 and ABCC8 mutations 64 and 46 were associated with constant success, 5 and 5 to constant failure, and 10 and 4 to variable degrees of reported success rate, respectively. The glibenclamide dosage required for each genotype ranged from 0.017 to 2.8 mg/kg/day. Comparing both the in vivo and in vitro susceptibility results, some mutations appear more sensitive than others to sulfonylurea treatment. Side effects were reported in 17/103 of the included articles: mild gastrointestinal symptoms and hypoglycaemia were the most common. One premature patient had an ulcerative necrotizing enterocolitis which association with SU is difficult to ascertain. CONCLUSIONS Sulfonylureas are an effective treatment for monogenic diabetes due to KCNJ11 and ABCC8 genes mutations. The success of the treatment is conditioned by differences in pharmacogenetics, younger age, pharmacokinetics, compliance, and maximal dose used.
Collapse
Affiliation(s)
- Laure Garcin
- Pediatric Gynecology Diabetes and Endocrinology, APHP Centre - Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Veronica Mericq
- Faculty of Medicine, Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| | - Anne-Laure Fauret-Amsellem
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France
| | - Helene Cave
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Robert Debré, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France.,Université de Paris, Paris, France
| | - Michel Polak
- Pediatric Gynecology Diabetes and Endocrinology, APHP Centre - Hôpital Universitaire Necker Enfants Malades, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France.,Université de Paris, Paris, France.,Institut IMAGINE, Paris, France.,Inserm U1016, Institut Cochin, Paris, France.,ENDO European Reference Network, Main Thematic Group 3, Genetic Disorders of Glucose and Insulin Homeostasis, European Reference Networks, Paris, France
| | - Jacques Beltrand
- Pediatric Gynecology Diabetes and Endocrinology, APHP Centre - Hôpital Universitaire Necker Enfants Malades, Paris, France.,Centre de référence national des maladies rares de la sécrétion d'insuline et de la sensibilité à l'insuline, PRISIS, Paris, France.,Université de Paris, Paris, France.,Institut IMAGINE, Paris, France.,Inserm U1016, Institut Cochin, Paris, France.,ENDO European Reference Network, Main Thematic Group 3, Genetic Disorders of Glucose and Insulin Homeostasis, European Reference Networks, Paris, France
| |
Collapse
|
6
|
Walczewska-Szewc K, Nowak W. Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. J Phys Chem B 2020; 124:6198-6211. [PMID: 32598150 PMCID: PMC7467719 DOI: 10.1021/acs.jpcb.0c02720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Inward rectifying
potassium ion channels (KATP), sensitive to the
ATP/ADP concentration ratio, play an important, control role in pancreatic
β cells. The channels close upon the increase of this ratio,
which, in turn, triggers insulin release to blood. Numerous mutations
in KATP lead to severe and widespread medical conditions such as diabetes.
The KATP system consists of a pore made of four Kir6.2 subunits and
four accompanying large SUR1 proteins belonging to the ABCC transporters
group. How SUR1 affects KATP function is not yet known; therefore,
we created simplified models of the Kir6.2 tetramer based on recently
determined cryo-EM KATP structures. Using all-atom molecular dynamics
(MD) with the CHARMM36 force field, targeted MD, and molecular docking,
we revealed functionally important rearrangements in the Kir6.2 pore,
induced by the presence of the SUR1 protein. The cytoplasmic domain
of Kir6.2 (CTD) is brought closer to the membrane due to interactions
with SUR1. Each Kir6.2 subunit has a conserved, functionally important,
disordered N-terminal tail. Using molecular docking, we found that
the Kir6.2 tail easily docks to the sulfonylurea drug binding region
located in the adjacent SUR1 protein. We reveal, for the first time,
dynamical behavior of the Kir6.2/SUR1 system, confirming a physiological
role of the Kir6.2 disordered tail, and we indicate structural determinants
of KATP-dependent insulin release from pancreatic β cells.
Collapse
Affiliation(s)
- Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Abstract
The Precision Medicine Initiative defines precision medicine as 'an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment and lifestyle for each person'. This approach will facilitate more accurate treatment and prevention strategies in contrast to a one-size-fits-all approach, in which disease treatment and prevention strategies are developed for generalized usage. Diabetes is clearly more heterogeneous than the conventional subclassification into type 1 and type 2 diabetes. Monogenic forms of diabetes like MODY and neonatal diabetes have paved the way for precision medicine in diabetes, as carriers of unique mutations require unique treatment. Diagnosis of diabetes in the past has been dependent upon measuring one metabolite, glucose. By instead including six variables in a clustering analysis, we could break down diabetes into five distinct subgroups, with better prediction of disease progression and outcome. The severe insulin-resistant diabetes (SIRD) cluster showed the highest risk of kidney disease and highest prevalence of nonalcoholic fatty liver disease, whereas patients in the insulin-deficient cluster 2 (SIDD) had the highest risk of retinopathy. In the future, this will certainly be improved and expanded by including genetic, epigenetic and other biomarker to allow better prediction of outcome and choice of more precise treatment.
Collapse
Affiliation(s)
- R B Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
| | - L Groop
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden.,Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| |
Collapse
|
9
|
Trezza A, Cicaloni V, Porciatti P, Langella A, Fusi F, Saponara S, Spiga O. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel. PeerJ 2018; 6:e4680. [PMID: 29736333 PMCID: PMC5936070 DOI: 10.7717/peerj.4680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. KATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina–like symptoms, cardiovascular diseases. Methods A broader view of the KATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Results Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit KATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Conclusion Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Piera Porciatti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Langella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabio Fusi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Abstract
Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the KATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the KATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.
Collapse
Affiliation(s)
- Kenju Shimomura
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Japan
| | - Yuko Maejima
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
11
|
Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides. Biochem Soc Trans 2016; 43:901-7. [PMID: 26517901 PMCID: PMC4613533 DOI: 10.1042/bst20150096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulphonylureas stimulate insulin secretion from pancreatic β-cells primarily by closing ATP-sensitive K+ channels in the β-cell plasma membrane. The mechanism of channel inhibition by these drugs is unusually complex. As direct inhibitors of channel activity, sulphonylureas act only as partial antagonists at therapeutic concentrations. However, they also exert an additional indirect inhibitory effect via modulation of nucleotide-dependent channel gating. In this review, we summarize current knowledge and recent advances in our understanding of the molecular mechanism of action of these drugs.
Collapse
|
12
|
Bidaux G, Sgobba M, Lemonnier L, Borowiec AS, Noyer L, Jovanovic S, Zholos AV, Haider S. Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophys J 2016; 109:1840-51. [PMID: 26536261 DOI: 10.1016/j.bpj.2015.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Members of the transient receptor potential (TRP) ion channel family act as polymodal cellular sensors, which aid in regulating Ca(2+) homeostasis. Within the TRP family, TRPM8 is the cold receptor that forms a nonselective homotetrameric cation channel. In the absence of TRPM8 crystal structure, little is known about the relationship between structure and function. Inferences of TRPM8 structure have come from mutagenesis experiments coupled to electrophysiology, mainly regarding the fourth transmembrane helix (S4), which constitutes a moderate voltage-sensing domain, and about cold sensor and phosphatidylinositol 4,5-bisphosphate binding sites, which are both located in the C-terminus of TRPM8. In this study, we use a combination of molecular modeling and experimental techniques to examine the structure of the TRPM8 transmembrane and pore helix region including the conducting conformation of the selectivity filter. The model is consistent with a large amount of functional data and was further tested by mutagenesis. We present structural insight into the role of residues involved in intra- and intersubunit interactions and their link with the channel activity, sensitivity to icilin, menthol and cold, and impact on channel oligomerization.
Collapse
Affiliation(s)
- Gabriel Bidaux
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France; Laboratoire Biophotonique Cellulaire Fonctionnelle. Institut de Recherche Interdisciplinaire, Villeneuve d'Ascq, France
| | - Miriam Sgobba
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Loic Lemonnier
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France
| | - Anne-Sophie Borowiec
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France
| | - Lucile Noyer
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France
| | | | - Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre, "Institute of Biology" Taras Shevchenko, Kiev National University, Kiev, Ukraine.
| | | |
Collapse
|
13
|
Cao B, Gong C, Wu D, Lu C, Liu F, Liu X, Zhang Y, Gu Y, Qi Z, Li X, Liu M, Li W, Su C, Liang X, Feng M. Genetic Analysis and Follow-Up of 25 Neonatal Diabetes Mellitus Patients in China. J Diabetes Res 2016; 2016:6314368. [PMID: 26839896 PMCID: PMC4709643 DOI: 10.1155/2016/6314368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
AIMS To study the clinical features, genetic etiology, and the correlation between phenotype and genotype of neonatal diabetes mellitus (NDM) in Chinese patients. METHODS We reviewed the medical records of 25 NDM patients along with their follow-up details. Molecular genetic analysis was performed. We compared the HbA1c levels between PNDM group and infantile-onset T1DM patients. RESULTS Of 25 NDM patients, 18 (72.0%) were PNDM and 7 (28.0%) were TNDM. Among 18 PNDM cases, 6 (33.3%) had known KATP channel mutations (KATP-PNDM). There were six non-KATP mutations, five novel mutations, including INS, EIF2AK3 (n = 2), GLIS3, and SLC19A2, one known EIF2AK3 mutation. There are two ABCC8 mutations in TNDM cases and one paternal UPD6q24. Five of the six KATP-PNDM patients were tried for glyburide transition, and 3 were successfully switched to glyburide. Mean HbA1c of PNDM was not significantly different from infantile onset T1DM (7.2% versus 7.4%, P = 0.41). CONCLUSION PNDM accounted for 72% of NDM patients. About one-third of PNDM and TNDM patients had KATP mutations. The genetic etiology could be determined in 50% of PNDM and 43% of TNDM cases. PNDM patients achieved good glycemic control with insulin or glyburide therapy. The etiology of NDM suggests polygenic inheritance.
Collapse
Affiliation(s)
- Bingyan Cao
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Chunxiu Gong
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
- *Chunxiu Gong:
| | - Di Wu
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Chaoxia Lu
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Fang Liu
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Xiaojing Liu
- Department of Endocrinology and Genetic Metabolism, Zhengzhou Children's Hospital, Zhengzhou 450053, China
| | - Yingxian Zhang
- Department of Endocrinology and Genetic Metabolism, Zhengzhou Children's Hospital, Zhengzhou 450053, China
| | - Yi Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Zhan Qi
- Department of Pediatrics, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaoqiao Li
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Min Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Wenjing Li
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Chang Su
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xuejun Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Mei Feng
- Department of Endocrinology, Shanxi Children's Hospital, Taiyuan 030013, China
| |
Collapse
|
14
|
Proks P, de Wet H, Ashcroft FM. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study. ACTA ACUST UNITED AC 2015; 144:469-86. [PMID: 25348414 PMCID: PMC4210431 DOI: 10.1085/jgp.201411222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulfonylureas suppress the stimulatory effect of Mg-nucleotides on recombinant β-cell (Kir6.2/SUR1) but not cardiac (Kir6.2/SUR2A) KATP channels. Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.
Collapse
Affiliation(s)
- Peter Proks
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| | - Heidi de Wet
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| | - Frances M Ashcroft
- Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK Oxford Centre for Gene Function and Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, England, UK
| |
Collapse
|
15
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
16
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Martin GM, Chen PC, Devaraneni P, Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 2013; 4:386. [PMID: 24399968 PMCID: PMC3870925 DOI: 10.3389/fphys.2013.00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Prasanna Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
19
|
Proks P, de Wet H, Ashcroft FM. Molecular mechanism of sulphonylurea block of K(ATP) channels carrying mutations that impair ATP inhibition and cause neonatal diabetes. Diabetes 2013; 62:3909-19. [PMID: 23835339 PMCID: PMC3806600 DOI: 10.2337/db13-0531] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/20/2013] [Indexed: 12/25/2022]
Abstract
Sulphonylurea drugs are the therapy of choice for treating neonatal diabetes (ND) caused by mutations in the ATP-sensitive K(+) channel (KATP channel). We investigated the interactions between MgATP, MgADP, and the sulphonylurea gliclazide with KATP channels expressed in Xenopus oocytes. In the absence of MgATP, gliclazide block was similar for wild-type channels and those carrying the Kir6.2 ND mutations R210C, G334D, I296L, and V59M. Gliclazide abolished the stimulatory effect of MgATP on all channels. Conversely, high MgATP concentrations reduced the gliclazide concentration, producing a half-maximal block of G334D and R201C channels and suggesting a mutual antagonism between nucleotide and gliclazide binding. The maximal extent of high-affinity gliclazide block of wild-type channels was increased by MgATP, but this effect was smaller for ND channels; channels that were least sensitive to ATP inhibition showed the smallest increase in sulphonylurea block. Consequently, G334D and I296L channels were not fully blocked, even at physiological MgATP concentrations (1 mmol/L). Glibenclamide block was also reduced in β-cells expressing Kir6.2-V59M channels. These data help to explain why patients with some mutations (e.g., G334D, I296L) are insensitive to sulphonylurea therapy, why higher drug concentrations are needed to treat ND than type 2 diabetes, and why patients with severe ND mutations are less prone to drug-induced hypoglycemia.
Collapse
Affiliation(s)
- Peter Proks
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Heidi de Wet
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
20
|
Bushman JD, Zhou Q, Shyng SL. A Kir6.2 pore mutation causes inactivation of ATP-sensitive potassium channels by disrupting PIP2-dependent gating. PLoS One 2013; 8:e63733. [PMID: 23700433 PMCID: PMC3659044 DOI: 10.1371/journal.pone.0063733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
In the absence of intracellular nucleotides, ATP-sensitive potassium (KATP) channels exhibit spontaneous activity via a phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent gating process. Previous studies show that stability of this activity requires subunit-subunit interactions in the cytoplasmic domain of Kir6.2; selective mutagenesis and disease mutations at the subunit interface result in time-dependent channel inactivation. Here, we report that mutation of the central glycine in the pore-lining second transmembrane segment (TM2) to proline in Kir6.2 causes KATP channel inactivation. Unlike C-type inactivation, a consequence of selectivity filter closure, in many K(+) channels, the rate of inactivation in G156P channels was insensitive to changes in extracellular ion concentrations or ion species fluxing through the pore. Instead, the rate of G156P inactivation decreased with exogenous application of PIP2 and increased when PIP2-channel interaction was inhibited with neomycin or poly-L-lysine. These findings indicate the G156P mutation reduces the ability of PIP2 to stabilize the open state of KATP channels, similar to mutations in the cytoplasmic domain that produce inactivation. Consistent with this notion, when PIP2-dependent open state stability was substantially increased by addition of a second gain-of-function mutation, G156P inactivation was abolished. Importantly, bath application and removal of Mg(2+)-free ATP or a nonhydrolyzable analog of ATP, which binds to the cytoplasmic domain of Kir6.2 and causes channel closure, recover G156P channel from inactivation, indicating crosstalk between cytoplasmic and transmembrane domains. The G156P mutation provides mechanistic insight into the structural and functional interactions between the pore and cytoplasmic domains of Kir6.2 during gating.
Collapse
Affiliation(s)
- Jeremy D. Bushman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Qing Zhou
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
21
|
Bavro VN, De Zorzi R, Schmidt MR, Muniz JRC, Zubcevic L, Sansom MSP, Vénien-Bryan C, Tucker SJ. Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat Struct Mol Biol 2012; 19:158-63. [PMID: 22231399 PMCID: PMC3272479 DOI: 10.1038/nsmb.2208] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/14/2011] [Indexed: 02/04/2023]
Abstract
KirBac channels are prokaryotic homologs of mammalian inwardly rectifying (Kir) potassium channels, and recent crystal structures of both Kir and KirBac channels have provided major insight into their unique structural architecture. However, all of the available structures are closed at the helix bundle crossing, and therefore the structural mechanisms that control opening of their primary activation gate remain unknown. In this study, we engineered the inner pore-lining helix (TM2) of KirBac3.1 to trap the bundle crossing in an apparently open conformation and determined the crystal structure of this mutant channel to 3.05 Å resolution. Contrary to previous speculation, this new structure suggests a mechanistic model in which rotational 'twist' of the cytoplasmic domain is coupled to opening of the bundle-crossing gate through a network of inter- and intrasubunit interactions that involve the TM2 C-linker, slide helix, G-loop and the CD loop.
Collapse
Affiliation(s)
- Vassiliy N Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kefaloyianni E, Bao L, Rindler MJ, Hong M, Patel T, Taskin E, Coetzee WA. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle. J Mol Cell Cardiol 2012; 52:596-607. [PMID: 22245446 DOI: 10.1016/j.yjmcc.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
Abstract
Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc.). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in an electrophysiological laboratory. The focus is on the K(ATP) channel, but many of the techniques described are also used to study other ion channels.
Collapse
|
23
|
Denton JS, Jacobson DA. Channeling dysglycemia: ion-channel variations perturbing glucose homeostasis. Trends Endocrinol Metab 2012; 23:41-8. [PMID: 22134088 PMCID: PMC3733341 DOI: 10.1016/j.tem.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 01/26/2023]
Abstract
Maintaining blood glucose homeostasis is a complex process that depends on pancreatic islet hormone secretion. Hormone secretion from islets is coupled to calcium entry which results from regenerative islet cell electrical activity. Therefore, the ionic mechanisms that regulate calcium entry into islet cells are crucial for maintaining normal glucose homeostasis. Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs), including five located in or near ion-channel or associated subunit genes, which show an association with human diseases characterized by dysglycemia. This review focuses on polymorphisms and mutations in ion-channel genes that are associated with perturbations in human glucose homeostasis and discusses their potential roles in modulating pancreatic islet hormone secretion.
Collapse
Affiliation(s)
- Jerod Scott Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
24
|
Khurana A, Shao ES, Kim RY, Vilin YY, Huang X, Yang R, Kurata HT. Forced gating motions by a substituted titratable side chain at the bundle crossing of a potassium channel. J Biol Chem 2011; 286:36686-93. [PMID: 21878633 DOI: 10.1074/jbc.m111.249110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous inwardly rectifying potassium (Kir) channels possess an aromatic residue in the helix bundle crossing region, forming the narrowest pore constriction in crystal structures. However, the role of the Kir channel bundle crossing as a functional gate remains uncertain. We report a unique phenotype of Kir6.2 channels mutated to encode glutamate at this position (F168E). Despite a prediction of four glutamates in close proximity, Kir6.2(F168E) channels are predominantly closed at physiological pH, whereas alkalization causes rapid and reversible channel activation. These findings suggest that F168E glutamates are uncharged at physiological pH but become deprotonated at alkaline pH, forcing channel opening due to mutual repulsion of nearby negatively charged side chains. The potassium channel pore scaffold likely brings these glutamates close together, causing a significant pK(a) shift relative to the free side chain (as seen in the KcsA selectivity filter). Alkalization also shifts the apparent ATP sensitivity of the channel, indicating that forced motion of the bundle crossing is coupled to the ATP-binding site and may resemble conformational changes involved in wild-type Kir6.2 gating. The study demonstrates a novel mechanism for engineering extrinsic control of channel gating by pH and shows that conformational changes in the bundle crossing region are involved in ligand-dependent gating of Kir channels.
Collapse
Affiliation(s)
- Anu Khurana
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
26
|
Ioannou YS, Ellard S, Hattersley A, Skordis N. KCNJ11 activating mutations cause both transient and permanent neonatal diabetes mellitus in Cypriot patients. Pediatr Diabetes 2011; 12:133-7. [PMID: 21352428 DOI: 10.1111/j.1399-5448.2010.00743.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the KCNJ11 gene encoding the Kir6.2 subunit of the ATP-sensitive potassium channel (K(ATP) channel) of the pancreatic β-cell cause diabetes in about 30-60% of all permanent neonatal diabetes mellitus cases diagnosed before 6 months of age. The K(ATP) channel plays an essential role in the regulation of the electrical status of the membrane through which the secretion of insulin is activated. Transient neonatal diabetes mellitus due to KCNJ11 mutations is less frequent than abnormalities affecting the imprinted region of chromosome 6q24. We studied the genetic basis of two Cypriot patients who developed diabetes before 6 months of age. They both carried mutations of the KCNJ11 gene. The R201H mutation was identified in a patient who developed hyperglycemia and ketoacidosis at the age of 40 d and was successfully transferred to sulphonylureas which activate the channel through an ATP independent route. The R50Q mutation was identified in a child diagnosed at day 45 after birth with remission of his diabetes at 9 months of age. The same defect was identified both in his asymptomatic mother and the recently diagnosed 'type 2' diabetic maternal grandmother. The remission-relapse mechanism in cases of transient neonatal diabetes is not known. Nevertheless, it is possible that the residue of the mutation within the Kir6.2 molecule is associated with the sensitivity to ATP reflecting to the severity of the diabetic phenotype.
Collapse
|
27
|
Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers Med 2010; 3:145-61. [PMID: 23226049 PMCID: PMC3513215 DOI: 10.2147/pgpm.s6969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel Kir6.2 and SUR1 subunits, respectively, are found in ∼50% of NDM patients. In the pancreatic β-cell, K(ATP) channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter K(ATP) channel activity, leading to faulty insulin secretion. Inactivation mutations decrease K(ATP) channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase K(ATP) channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs) that inhibit the K(ATP) channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the K(ATP) channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain K(ATP) channel activation mutations can be successfully switched to SU therapy.
Collapse
Affiliation(s)
- Veronica Lang
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Proks P, de Wet H, Ashcroft FM. Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1. J Gen Physiol 2010; 136:389-405. [PMID: 20876358 PMCID: PMC2947056 DOI: 10.1085/jgp.201010475] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/03/2010] [Indexed: 01/30/2023] Open
Abstract
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders K(ATP) channels insensitive to nucleotide inhibition and has no apparent effect on their gating. K(ATP) channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC(50) of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC(50) for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (P(O) > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type K(ATP) channels, we conclude that the MgADP sensitivity of the wild-type K(ATP) channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg(2+)) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.
Collapse
Affiliation(s)
- Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, UK
| | | | | |
Collapse
|
29
|
Edghill EL, Flanagan SE, Ellard S. Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. Rev Endocr Metab Disord 2010; 11:193-8. [PMID: 20922570 DOI: 10.1007/s11154-010-9149-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel is composed of two subunits SUR1 and Kir6.2. The channel is key for glucose stimulated insulin release from the pancreatic beta cell. Activating mutations have been identified in the genes encoding these subunits, ABCC8 and KCNJ11, and account for approximately 40% of permanent neonatal diabetes cases. The majority of patients with a K(ATP) mutation present with isolated diabetes however some have presented with the Developmental delay, Epilepsy and Neonatal Diabetes syndrome. This review focuses on mutations in the K(ATP) channel which result in permanent neonatal diabetes, we review the clinical and functional effects as well as the implications for treatment.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Diabetes Mellitus/congenital
- Diabetes Mellitus/genetics
- Diabetes Mellitus/therapy
- Genetic Association Studies
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/therapy
- KATP Channels/genetics
- KATP Channels/metabolism
- KATP Channels/physiology
- Models, Biological
- Mutation/physiology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Inwardly Rectifying/physiology
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Receptors, Drug/physiology
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Emma L Edghill
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Barrack Road, Exeter, UK
| | | | | |
Collapse
|
30
|
Prado SN, Amaral R, Tomé T, Bettencourt A, Pinto F, Rocha T. Neonatal hyperglycaemia: a challenging diagnosis. BMJ Case Rep 2010; 2010:2010/jul16_2/bcr1220081385. [PMID: 22767571 DOI: 10.1136/bcr.12.2008.1385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a very rare disorder occurring between 1:400 000 and 1:500 000 live births and, until recently, little was known about this disease. The authors report a case of transient NDM in a 2-day-old female infant admitted in an intensive care unit with a blood glucose level greater than 400 mg/dl, glycosuria, ketonuria and with no evidence of autoimmunity. Treatment with insulin was necessary until the 51st day of life and many difficulties were found in the management of metabolic control because of the need for tiny quantities of insulin. Hyperglycaemia is sometimes routinely treated with insulin by neonatologists but after excluding the common causes of hyperglycaemia, NDM should be considered as a diagnostic possibility with clinical, genetic and therapeutic implications.
Collapse
Affiliation(s)
- Sara Noéme Prado
- Pediatric Department, Centro Hospitalar de Cascais, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
KCNJ11 activating mutation in an Indian family with remitting and relapsing diabetes. Indian J Pediatr 2010; 77:551-4. [PMID: 20401705 DOI: 10.1007/s12098-010-0062-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To identify the genetic cause of transient neonatal diabetes mellitus in three siblings from an Indian family. METHODS Case reports with clinical and molecular evaluation of an activating mutation in the KCNJ11 gene are presented. We describe an Indian family with two asymptomatic parents with 3 children presenting with hyperglycemia at 6, 1.5 and 1 month of age respectively. Blood glucose levels at presentation were 22.2, 18.3 and 20 mmol/L and the diabetes remitted in all three children by 5 years of age. None of the affected siblings had dysmorphism or neurological abnormalities. Diabetes relapsed in the oldest sibling at 9.4 years of age and she is now euglycemic on 1mg/Kg of Glibenclamide twice a day. RESULTS A novel heterozygous missense mutation (G53V) in the KCNJ11 gene was identified in all 3 affected children and the father. CONCLUSIONS Our report suggests that screening for KCNJ11 mutations is appropriate in patients diagnosed with neonatal diabetes as it provides valuable information concerning possible course of the disease and choice of treatment.
Collapse
|
32
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1142] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Here we give context to new data on neonatal diabetes mellitus, a rare group of insulin-requiring monogenic forms of diabetes presenting at birth or shortly thereafter. Genetic studies are critical in the diagnosis and treatment of these patients. The most common causes of neonatal diabetes are activating mutations in the two protein subunits of the ATP-sensitive potassium channel. These are responsible for about half of all cases of permanent neonatal diabetes and some cases of transient neonatal diabetes. Identification of these mutations allows patients treated with insulin to be transferred to sulfonylureas, but associated conditions and other causes must be considered. RECENT FINDINGS Recent data suggest that neonatal diabetes is more common than previously thought, with variable presentations. Continued studies provide further evidence for amelioration of developmental and neurological dysfunction exhibited by a significant proportion of patients. Abnormalities of chromosome 6q24 remain the most common cause of transient neonatal diabetes. Other causes of neonatal diabetes being studied include mutations in proinsulin, FOXP3 mutations in immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, homozygous glucokinase mutations, and Wolcott-Rallinson/EIF2AK3 diabetes. SUMMARY We still have much to learn about the different forms of neonatal diabetes, their associated clinical features, and the optimization of therapy using a growing number of available therapeutic agents.
Collapse
Affiliation(s)
- Siri Atma W Greeley
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
34
|
Shimomura K, de Nanclares GP, Foutinou C, Caimari M, Castaño L, Ashcroft FM. The first clinical case of a mutation at residue K185 of Kir6.2 (KCNJ11): a major ATP-binding residue. Diabet Med 2010; 27:225-9. [PMID: 20546268 DOI: 10.1111/j.1464-5491.2009.02901.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Closure of the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel plays a key role in insulin secretion from the pancreatic beta-cells. Many mutations in KCNJ11 and ABCC8, which respectively encode the pore-forming (Kir6.2) and regulatory (SUR1) subunits of the K(ATP) channel, cause neonatal diabetes. All such mutations impair the ability of metabolically generated ATP to close the channel. Although lysine 185 is predicted to be a major contributor to the ATP-binding site of Kir6.2, no mutations at this residue have been found to cause neonatal diabetes to date. METHODS We report a 3-year-old girl with permanent neonatal diabetes (PNDM) caused by a novel heterozygous mutation (K185Q) at residue K185 of KCNJ11. The patient presented with marked hyperglycaemia and ketoacidosis at 70 days after birth, and insulin therapy was commenced. RESULTS Wild-type and mutant K(ATP) channels were expressed in Xenopus oocytes and the effects of intracellular ATP on macroscopic K(ATP) currents in inside-out membrane patches were measured. In the simulated heterozygous state, the K185Q mutation caused a substantial reduction in the ability of MgATP to inhibit the channel. Heterozygous K185Q channels were still blocked effectively by the sulphonylurea tolbutamide. CONCLUSIONS We report the first clinical case of a PNDM caused by a mutation at K185. Functional studies indicate that the K185Q mutation causes PNDM by reducing the ATP sensitivity of the K(ATP) channel, probably via a reduction in ATP binding to Kir6.2. Based on the experimental data, the patient was successfully transferred to sulphonylurea therapy.
Collapse
Affiliation(s)
- K Shimomura
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
35
|
Clark R, Proks P. ATP-sensitive potassium channels in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:165-92. [PMID: 20217498 DOI: 10.1007/978-90-481-3271-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel plays a crucial role in insulin secretion and thus glucose homeostasis. K(ATP) channel activity in the pancreatic beta-cell is finely balanced; increased activity prevents insulin secretion, whereas reduced activity stimulates insulin release. The beta-cell metabolism tightly regulates K(ATP) channel gating, and if this coupling is perturbed, two distinct disease states can result. Diabetes occurs when the K(ATP) channel fails to close in response to increased metabolism, whereas congenital hyperinsulinism results when K(ATP) channels remain closed even at very low blood glucose levels. In general there is a good correlation between the magnitude of K(ATP) current and disease severity. Mutations that cause a complete loss of K(ATP) channels in the beta-cell plasma membrane produce a severe form of congenital hyperinsulinism, whereas mutations that partially impair channel function produce a milder phenotype. Similarly mutations that greatly reduce the ATP sensitivity of the K(ATP) channel lead to a severe form of neonatal diabetes with associated neurological complications, whilst mutations that cause smaller shifts in ATP sensitivity cause neonatal diabetes alone. This chapter reviews our current understanding of the pancreatic beta-cell K(ATP) channel and highlights recent structural, functional and clinical advances.
Collapse
Affiliation(s)
- Rebecca Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | |
Collapse
|
36
|
Männikkö R, Jefferies C, Flanagan SE, Hattersley A, Ellard S, Ashcroft FM. Interaction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes and neurological symptoms. Hum Mol Genet 2009; 19:963-72. [PMID: 20022885 DOI: 10.1093/hmg/ddp554] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels regulate insulin secretion from pancreatic beta-cells. Gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause neonatal diabetes. We report two novel mutations on the same haplotype (cis), F60Y and V64L, in the slide helix of Kir6.2 in a patient with neonatal diabetes, developmental delay and epilepsy. Functional analysis revealed the F60Y mutation increases the intrinsic channel open probability (Po(0)), thereby indirectly producing a marked decrease in channel inhibition by ATP and an increase in whole-cell K(ATP) currents. When expressed alone, the V64L mutation caused a small reduction in apparent ATP inhibition, by enhancing the ability of MgATP to stimulate channel activity. The V64L mutation also ameliorated the deleterious effects on the F60Y mutation when it was expressed on the same (but not a different) subunit. These data indicate that F60Y is the pathogenic mutation and reveal that interactions between slide helix residues can influence K(ATP) channel gating.
Collapse
Affiliation(s)
- Roope Männikkö
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
37
|
Craig TJ, Shimomura K, Holl RW, Flanagan SE, Ellard S, Ashcroft FM. An in-frame deletion in Kir6.2 (KCNJ11) causing neonatal diabetes reveals a site of interaction between Kir6.2 and SUR1. J Clin Endocrinol Metab 2009; 94:2551-7. [PMID: 19351728 PMCID: PMC7611921 DOI: 10.1210/jc.2009-0159] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Activating mutations in genes encoding the Kir6.2 (KCNJ11) and SUR1 (ABCC8) subunits of the pancreatic ATP-sensitive K(+) channel are a common cause of permanent neonatal diabetes (PNDM). All Kir6.2 mutations identified to date are missense mutations. We describe here a novel in-frame deletion (residues 28-32) in Kir6.2 in a heterozygous patient with PNDM without neurological problems that are detectable by standard evaluation. OBJECTIVE The aim of the study was to identify the mutation responsible for neonatal diabetes in this patient and characterize its functional effects. DESIGN Wild-type and mutant Kir6.2/SUR1 channels were examined by heterologous expression in Xenopus oocytes. RESULTS The Kir6.2-28Delta32 mutation produced a significant decrease in ATP inhibition and an increase in whole-cell K(ATP) currents, explaining the diabetes of the patient. Tolbutamide block was only slightly reduced in the simulated heterozygous state, suggesting that the patient should respond to sulfonylurea therapy. The mutation decreased ATP inhibition indirectly, by increasing the intrinsic (unliganded) channel open probability. Neither effect was observed when Kir6.2 was expressed in the absence of SUR1, suggesting that the mutation impairs coupling between SUR1 and Kir6.2. Coimmunoprecipitation studies further revealed that the mutation disrupted a physical interaction between Kir6.2 and residues 1-288 (but not residues 1-196) of SUR1. CONCLUSIONS We report a novel KCNJ11 mutation causing PNDM. Our results show that residues 28-32 in the N terminus of Kir6.2 interact both physically and functionally with SUR1 and suggest that residues 196-288 of SUR1 are important in this interaction.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Binding Sites/genetics
- Diabetes Mellitus, Type 2/congenital
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Gene Deletion
- Humans
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Male
- Models, Biological
- Open Reading Frames/genetics
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Inwardly Rectifying/physiology
- Protein Binding/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
- Xenopus
Collapse
Affiliation(s)
- Tim J Craig
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Shimomura K, Flanagan SE, Zadek B, Lethby M, Zubcevic L, Girard CAJ, Petz O, Mannikko R, Kapoor RR, Hussain K, Skae M, Clayton P, Hattersley A, Ellard S, Ashcroft FM. Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism. EMBO Mol Med 2009; 1:166-77. [PMID: 20049716 PMCID: PMC3378123 DOI: 10.1002/emmm.200900018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 03/11/2009] [Indexed: 01/10/2023] Open
Abstract
K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.
Collapse
Affiliation(s)
- Kenju Shimomura
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Research, Peninsula Medical SchoolExeter, UK
| | - Brittany Zadek
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| | - Mark Lethby
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| | - Lejla Zubcevic
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| | - Christophe A J Girard
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| | - Oliver Petz
- St. Vincenz Hospital Coesfeld, Childrens HospitalGermany
| | - Roope Mannikko
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| | - Ritika R Kapoor
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust and The Institute of Child Health, University College LondonUK
| | - Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust and The Institute of Child Health, University College LondonUK
| | - Mars Skae
- Department of Endocrinology, Royal Manchester Children's Hospital, Central Manchester & Manchester Children's University Hospitals NHS TrustUK
| | - Peter Clayton
- Department of Endocrinology, Royal Manchester Children's Hospital, Central Manchester & Manchester Children's University Hospitals NHS TrustUK
| | - Andrew Hattersley
- Institute of Biomedical and Clinical Research, Peninsula Medical SchoolExeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Research, Peninsula Medical SchoolExeter, UK
| | - Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of OxfordUK
| |
Collapse
|
39
|
Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297:F849-63. [PMID: 19458126 DOI: 10.1152/ajprenal.00181.2009] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of the renal outer medullary K+ channel (ROMK, K(ir)1.1), the founding member of the inward-rectifying K+ channel (K(ir)) family, by Ho and Hebert in 1993 revolutionized our understanding of potassium channel biology and renal potassium handling. Because of the central role that ROMK plays in the regulation of salt and potassium homeostasis, considerable efforts have been invested in understanding the underlying molecular mechanisms. Here we provide a comprehensive guide to ROMK, spanning from the physiology in the kidney to the organization and regulation by intracellular factors to the structural basis of its function at the atomic level.
Collapse
Affiliation(s)
- Paul A Welling
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
40
|
Tammaro P, Ashcroft FM. A cytosolic factor that inhibits KATP channels expressed in Xenopus oocytes by impairing Mg-nucleotide activation by SUR1. J Physiol 2009; 587:1649-56. [PMID: 19237428 PMCID: PMC2683953 DOI: 10.1113/jphysiol.2008.165126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive K(+) (K(ATP)) channels couple cell metabolism to cell electrical activity. Wild-type (Kir6.2/SUR1) K(ATP) channels heterologously expressed in Xenopus oocytes give rise to very small inward currents in cell-attached patches. A large increase in the current is observed on patch excision into zero ATP solution. This is presumably due to loss of intracellular ATP leading to unblock of K(ATP) channels. In contrast, channels containing Kir6.2 mutations associated with reduced ATP-sensitivity display non-zero cell-attached currents. Unexpectedly, these cell-attached currents are significantly smaller (by approximately 40%) than those observed when excised patches are exposed to physiological ATP concentrations (1-10 mm). Cramming the patch back into the oocyte cytoplasm restores mutant K(ATP) current amplitude to that measured in the cell-attached mode. This implies that the magnitude of the cell-attached current is regulated not only by intracellular ATP but also by another cytoplasmic factor/s. This factor seems to require the nucleotide-binding domains of SUR1 to be effective. Thus a mutant Kir6.2 (Kir6.2DeltaC-I296L) expressed in the absence of SUR1 exhibited currents of similar magnitude in cell-attached patches as in inside-out patches exposed to 10 mm MgATP. Similar results were found when Kir6.2-I296L was coexpressed with an SUR1 mutant that is insensitive to MgADP or MgATP activation. This suggests the oocyte contains a cytoplasmic factor that reduces nucleotide binding/hydrolysis at the NBDs of SUR1. In conclusion, our results reveal a novel regulatory mechanism for the K(ATP) channel. This was not evident for wild-type channels because of their high sensitivity to block by ATP.
Collapse
Affiliation(s)
- Paolo Tammaro
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
41
|
Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80. [PMID: 18767144 DOI: 10.1002/humu.20838] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis it is therefore not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1 (SUR1). It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinism of infancy, while activating mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment on diagnosing patients with mutations in these genes.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Remedi MS, Kurata HT, Scott A, Wunderlich FT, Rother E, Kleinridders A, Tong A, Brüning JC, Koster JC, Nichols CG. Secondary consequences of beta cell inexcitability: identification and prevention in a murine model of K(ATP)-induced neonatal diabetes mellitus. Cell Metab 2009; 9:140-51. [PMID: 19187772 PMCID: PMC4793729 DOI: 10.1016/j.cmet.2008.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/09/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
ATP-insensitive K(ATP) channel mutations cause neonatal diabetes mellitus (NDM). To explore the mechanistic etiology, we generated transgenic mice carrying an ATP-insensitive mutant K(ATP) channel subunit. Constitutive expression in pancreatic beta cells caused neonatal hyperglycemia and progression to severe diabetes and growth retardation, with loss of islet insulin content and beta cell architecture. Tamoxifen-induced expression in adult beta cells led to diabetes within 2 weeks, with similar secondary consequences. Diabetes was prevented by transplantation of normal islets under the kidney capsule. Moreover, the endogenous islets maintained normal insulin content and secretion in response to sulfonylureas, but not glucose, consistent with reduced ATP sensitivity of beta cell K(ATP) channels. In NDM, transfer to sulfonylurea therapy is less effective in older patients. This may stem from poor glycemic control or lack of insulin because glibenclamide treatment prior to tamoxifen induction prevented diabetes and secondary complications in mice but failed to halt disease progression after diabetes had developed.
Collapse
Affiliation(s)
- Maria Sara Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
ATP-sensitive potassium (K(ATP)) channels play a key role in glucose-dependent insulin secretion in pancreatic beta-cells. Recently, activating mutations in beta-cell K(ATP) channels were found to be an important cause of neonatal diabetes. In some patients, these mutations may also affect K(ATP) channel function in muscles, nerves and brain which can result in a severe disease termed DEND syndrome (Developmental delay, Epilepsy and Neonatal Diabetes). This review focuses on mutations in the pore-forming K(ATP) channel subunit (Kir6.2) that cause neonatal diabetes and discusses recent advances in our understanding of clinical features of neonatal diabetes, its underlying molecular mechanisms and their impact on treatment.
Collapse
Affiliation(s)
- Kenju Shimomura
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Modeling K(ATP) channel gating and its regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:7-19. [PMID: 18983870 DOI: 10.1016/j.pbiomolbio.2008.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to plasmalemmal potassium fluxes in a variety of cell types. The activity of these channels is primarily determined by intracellular adenosine nucleotides, which have both inhibitory and stimulatory effects. The role of K(ATP) channels has been studied most extensively in pancreatic beta-cells, where they link glucose metabolism to insulin secretion. Many mutations in K(ATP) channel subunits (Kir6.2, SUR1) have been identified that cause either neonatal diabetes or congenital hyperinsulinism. Thus, a mechanistic understanding of K(ATP) channel behavior is necessary for modeling beta-cell electrical activity and insulin release in both health and disease. Here, we review recent advances in the K(ATP) channel structure and function. We focus on the molecular mechanisms of K(ATP) channel gating by adenosine nucleotides, phospholipids and sulphonylureas and consider the advantages and limitations of various mathematical models of macroscopic and single-channel K(ATP) currents. Finally, we outline future directions for the development of more realistic models of K(ATP) channel gating.
Collapse
|
45
|
Waterfield T, Gloyn AL. Monogenic β-cell dysfunction in children: clinical phenotypes, genetic etiology and mutational pathways. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17455111.2.4.517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Monogenic diabetes accounts for 1–2% of all cases of diabetes mellitus and presentation is often in childhood. Recognizing the clinical features of monogenic β-cell dysfunction prevents misdiagnosis and allows for more effective management and genetic counseling. Monogenic β-cell dysfunction is a diverse collection of clinical phenotypes underpinned by common mutational pathways. Mutations affecting the glycolytic glucokinase enzyme, the mitochondria, the KATP channels and transcription factors have been known for some time. Until recently, the role of endoplasmic reticulum stress was underestimated in the pathogenesis of diabetes. It is becoming increasingly clear that endoplasmic reticulum stress is an important etiological factor in the development of monogenic and polygenic diabetes. In this article, we aim to define the etiology of pediatric monogenic β-cell dysfunction and provide guidance on the investigation and management of children presenting with monogenic β-cell dysfunction.
Collapse
Affiliation(s)
- Thomas Waterfield
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| | - Anna L Gloyn
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
46
|
Tammaro P, Flanagan SE, Zadek B, Srinivasan S, Woodhead H, Hameed S, Klimes I, Hattersley AT, Ellard S, Ashcroft FM. A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications. Diabetologia 2008; 51:802-10. [PMID: 18335204 PMCID: PMC2292422 DOI: 10.1007/s00125-008-0923-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/10/2007] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Heterozygous activating mutations in the pancreatic ATP-sensitive K+ channel cause permanent neonatal diabetes mellitus (PNDM). This results from a decrease in the ability of ATP to close the channel, which thereby suppresses insulin secretion. PNDM mutations that cause a severe reduction in ATP inhibition may produce additional symptoms such as developmental delay and epilepsy. We identified a heterozygous mutation (L164P) in the pore-forming (Kir6.2) subunit of the channel in three unrelated patients and examined its functional effects. METHODS The patients (currently aged 2, 8 and 20 years) developed diabetes shortly after birth. The two younger patients attempted transfer to sulfonylurea therapy but were unsuccessful (up to 1.1 mg kg(-1) day(-1)). They remain insulin dependent. None of the patients displayed neurological symptoms. Functional properties of wild-type and mutant channels were examined by electrophysiology in Xenopus oocytes. RESULTS Heterozygous (het) and homozygous L164P K(ATP) channels showed a marked reduction in channel inhibition by ATP. Consistent with its predicted location within the pore, L164P enhanced the channel open state, which explains the reduction in ATP sensitivity. HetL164P currents exhibited greatly increased whole-cell currents that were unaffected by sulfonylureas. This explains the inability of sulfonylureas to ameliorate the diabetes of affected patients. CONCLUSIONS/INTERPRETATION Our results provide the first demonstration that mutations such as L164P, which produce a severe reduction in ATP sensitivity, do not inevitably cause developmental delay or neurological problems. However, the neonatal diabetes of these patients is unresponsive to sulfonylurea therapy. Functional analysis of PNDM mutations can predict the sulfonylurea response.
Collapse
Affiliation(s)
- P. Tammaro
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| | - S. E. Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | - B. Zadek
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| | - S. Srinivasan
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Westmead, New South Wales Australia
| | - H. Woodhead
- Department of Paediatric Diabetes and Endocrinology, Sydney Children’s Hospital, Sydney, New South Wales Australia
| | - S. Hameed
- Department of Paediatric Diabetes and Endocrinology, Sydney Children’s Hospital, Sydney, New South Wales Australia
| | - I. Klimes
- DIABGENE and Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - A. T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | - S. Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | - F. M. Ashcroft
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT UK
| |
Collapse
|
47
|
Abstract
An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Collapse
Affiliation(s)
- Lydia Aguilar-Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| | | |
Collapse
|
48
|
Bahi-Buisson N, El Sabbagh S, Soufflet C, Escande F, Boddaert N, Valayannopoulos V, Bellané-Chantelot C, Lascelles K, Dulac O, Plouin P, de Lonlay P. Myoclonic absence epilepsy with photosensitivity and a gain of function mutation in glutamate dehydrogenase. Seizure 2008; 17:658-64. [PMID: 18321734 DOI: 10.1016/j.seizure.2008.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/19/2007] [Accepted: 01/23/2008] [Indexed: 02/02/2023] Open
Abstract
Activating mutations in glutamate dehydrogenase (GDH), de novo or dominantly inherited, are responsible for the hyperinsulinism/hyperammonemia (HI/HA) syndrome. Epilepsy has been frequently reported in association with mutations in GDH, but the epilepsy phenotype has not been clearly determined. Here, we describe a family with a dominantly inherited mutation in GDH. The mother, brother and both sisters had myoclonic absence seizures, but only the mother and one sister had the complete HI/HA pattern. For the two sisters with myoclonic absences, epilepsy started during the second year of life while the brother, it started at 6 years. All 3 children showed the same EEG pattern characterized by photosensitive generalized and irregular spike-wave discharges and runs of multiple spikes. The mother's EEG recordings were normal without photosensitivity. Magnetic resonance imaging (MRI) and spectroscopy (MRS) were normal. A direct effect of the GDH mutation, perhaps in combination with recurrent hypoglycemia and chronic hyperammonemia could provide a pathophysiological explanation for the epilepsy observed in this syndrome and these are discussed.
Collapse
Affiliation(s)
- Nadia Bahi-Buisson
- Service de Neurologie Pediatrique et Maladies Metaboliques, Departement de Pediatrie, Hopital Necker Enfants Malades, AP-HP, Université Paris Descartes, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gurgel LC, Moisés RS. [Neonatal diabetes mellitus]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2008; 52:181-187. [PMID: 18438528 DOI: 10.1590/s0004-27302008000200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/21/2008] [Indexed: 05/26/2023]
Abstract
Neonatal diabetes is a rare condition characterized by hyperglycemia, requiring insulin treatment, diagnosed within the first months of life. The disorder may be either transient, resolving in infancy or early childhood with possible relapse later, or permanent in which case lifelong treatment is necessary. Both conditions are genetically heterogeneous; however, the majority of the cases of transient neonatal diabetes are due to abnormalities of an imprinted region of chromosome 6q24. For permanent neonatal diabetes, the most common causes are heterozygous activating mutations of KCNJ11, the gene encoding the Kir6.2 sub-unit of the ATP-sensitive potassium channel. In this article we discuss the clinical features of neonatal diabetes, the underlying genetic defects and the therapeutic implications.
Collapse
Affiliation(s)
- Lucimary C Gurgel
- Escola Paulista de Medicina, Universidade Federal de São PauloSP, Brasil
| | | |
Collapse
|
50
|
Abstract
Inheritance plays a significant role in defining drug response and toxicity. Advances in molecular pharmacology and modern genomics emphasize genetic variation in dictating inter-individual pharmacokinetics and pharmacodynamics. A case in point is the homeostatic ATP-sensitive potassium (K(ATP)) channel, an established drug target that adjusts membrane excitability to match cellular energetic demand. There is an increased recognition that genetic variability of the K(ATP) channel impacts therapeutic decision-making in human disease.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/drug effects
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/therapeutic use
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Congenital Hyperinsulinism/drug therapy
- Congenital Hyperinsulinism/genetics
- Congenital Hyperinsulinism/metabolism
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Drug Design
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- KATP Channels/drug effects
- KATP Channels/genetics
- KATP Channels/metabolism
- Patient Selection
- Pharmacogenetics
- Polymorphism, Genetic
- Potassium Channel Blockers/pharmacology
- Potassium Channel Blockers/therapeutic use
- Potassium Channels/drug effects
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/drug effects
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Receptors, Drug/drug effects
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- S Sattiraju
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - S Reyes
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - GC Kane
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - A Terzic
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|