1
|
Wang J, Ge Y. Unveiling the latitudinal dependency of global patterns in soil prokaryotic gene content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179224. [PMID: 40147232 DOI: 10.1016/j.scitotenv.2025.179224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Prokaryotic genomic traits offer insights into their functional roles, evolutionary processes, and ecological interactions, but global patterns in soil microbial genomes remain poorly understood. In this study, we examined 6436 metagenome-assembled genomes (MAGs) from global soil environments to explore the driving factors of prokaryotic gene content. Through random forest analysis, we found that, among numerous potential influencing factors such as climate, soil physicochemical properties, and human activities, geographic latitude was the primary factor affecting prokaryotic gene content. Our results showed a marked decrease in gene content from the tropics to the poles, with polar MAGs containing 10.4 % and 13.3 % fewer genes than those in tropical and temperate zones, respectively. This decline correlates with shifts in key metabolic processes, such as nitrogen fixation and energy conversion. Furthermore, we assessed interspecies metabolic interactions using Metabolic Resource Overlap (MRO) and Metabolic Interaction Potential (MIP) metrics. Our analysis revealed significantly lower MRO in high-latitude microbial communities, yet comparable MIP values to those in lower latitudes, indicating that reduced competition may contribute to genomic streamlining. These findings highlight the significant influence of latitude and interspecies interactions on microbial genomic characteristics, advancing our comprehension of microbial ecological adaptations.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Venturini AM, Gontijo JB, Berrios L, Rodrigues JLM, Peay KG, Tsai SM. Linking soil microbial genomic features to forest-to-pasture conversion in the Amazon. Microbiol Spectr 2025; 13:e0156124. [PMID: 40042334 PMCID: PMC11960080 DOI: 10.1128/spectrum.01561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/31/2025] [Indexed: 04/03/2025] Open
Abstract
Amazonian soil microbial communities are known to be altered by land-use change. However, attempts to understand these impacts have focused on broader community alterations or the response of specific microbial groups. Here, we recovered and characterized 69 soil bacterial and archaeal metagenome-assembled genomes (MAGs) from three forests and three pastures of the Eastern Brazilian Amazon and evaluated the impacts of land conversion on their genomic features. Pasture MAGs had significantly higher GC content (64.9% vs 60.2%), genome size (4.0 vs 3.1 Mbp), and number of coding sequences (4,058 vs 3,306) compared to forest genomes. Taxonomically, MAGs belonged to eight phyla; however, most (90%) had low similarity to previously known species, indicating potentially novel taxa at multiple levels. We also observed that the functional profiles associated with biogeochemical cycling and carbohydrate-active enzyme genes were impacted by forest conversion, with pasture MAGs exhibiting a notably higher number of both gene groups. Together, these data constitute the largest single-sourced genomic data set from upland soils of the Brazilian Amazon to date and increase the known MAG richness in these soils by 78%. Our data, therefore, not only add to a neglected yet emerging field but, importantly, highlight that land-use change has drastic impacts on the genomic characteristics and functional traits of dominant soil microbes.IMPORTANCEThe Brazilian Amazon is facing unprecedented threats, including increasing deforestation and degradation, which together impact half of the original forest area. Soil microorganisms are sensitive indicators of land-use change, linked to a rise in microbial methane emissions and antibiotic-resistance genes in the Amazon. However, most Amazonian soil microbes remain unknown, and little attention has been given to their genomes. Using sequencing and bioinformatics, we recovered and characterized 69 soil bacterial and archaeal genomes (metagenome-assembled genomes). These abundant members of the microbial communities diverged across forests and pastures in terms of taxonomic and functional traits. Forest conversion favors organisms with specific genomic features - increased GC content, genome size, and gene number - selecting for microorganisms that can thrive under altered conditions. Our paper helps us understand the intricate relationships between microbes and the environment, which are crucial pieces of information for comprehensive soil health assessments and future policy formulation.
Collapse
Affiliation(s)
- Andressa M. Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Environmental Science, American University, Washington, DC, USA
| | - Júlia B. Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Department of Land, Air, and Water Resources, University of California-Davis, Davis, California, USA
| | - Louis Berrios
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jorge L. Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California-Davis, Davis, California, USA
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Siu M. Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Sraphet S, Javadi B. Prospective identification of extracellular triacylglycerol hydrolase with conserved amino acids in Amycolatopsis tolypomycina's high G+C genomic dataset. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00869. [PMID: 39758972 PMCID: PMC11697127 DOI: 10.1016/j.btre.2024.e00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Extracellular triacylglycerol hydrolases (ETH) play a critical role for microorganisms, acting as essential tools for lipid breakdown and survival in challenging environments. The pursuit of more effective ETH genes and enzymes through evolution holds significant potential for enhancing living conditions. This study employs a proteogenomic approach to identify high G+C ETH in a notable Gram-positive bacterium, Amycolatopsis tolypomycina. Utilizing knowledge from genome and machine learning algorithms, prospective ETH genes/enzymes were identified. Notably, the ETH structural conserved accessibility to solvent clearly indicated the specific sixteen residues (GLY50, PRO93, GLY141, ASP148, GLY151, ASP172, ALA176, GLY195, TYR196, SER197, GLN198, GLY199, GLY200, GLY225, PRO327, ASP336) with no frequency. By pinpointing key residues and understanding their role, this study sets the stage for enhancing ETH performance through computational proteogenomic and contributes to the broader field of enzyme engineering, facilitating the development of more efficient and versatile ETH enzymes tailored to specific industrial or environmental contexts.
Collapse
Affiliation(s)
- Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bagher Javadi
- Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| |
Collapse
|
4
|
Zhang P, Du Q, Wang Y, Wei L, Wang X. Systematic representation and optimization enable the inverse design of cross-species regulatory sequences in bacteria. Nat Commun 2025; 16:1763. [PMID: 39971994 PMCID: PMC11840067 DOI: 10.1038/s41467-025-57031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Regulatory sequences encode crucial gene expression signals, yet the sequence characteristics that determine their functionality across species remain obscure. Deep generative models have demonstrated considerable potential in various inverse design applications, especially in engineering genetic elements. Here, we introduce DeepCROSS, a generative artificial intelligence framework for the inverse design of cross-species and species-preferred 5' regulatory sequences in bacteria. DeepCROSS constructs a meta-representation using 1.8 million regulatory sequences from thousands of bacterial genomes to depict the general constraints of regulatory sequences, employs artificial intelligence-guided massively parallel reporter assay experiments in E. coli and P. aeruginosa to explore the potential sequence space, and performs multi-task optimization to obtain de novo regulatory sequences. The optimized regulatory sequences achieve similar or better performance to functional natural regulatory sequences, with high success rates and low sequence similarities with the natural genome. Collectively, DeepCROSS efficiently navigates the sequence-function landscape and enables the inverse design of cross-species and species-preferred 5' regulatory sequences.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Qixiu Du
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Ye Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Zhang Z. Laws of Genome Nucleotide Composition. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae061. [PMID: 39213341 PMCID: PMC11514846 DOI: 10.1093/gpbjnl/qzae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Bohlin J, Pettersson JHO. Compression rates of microbial genomes are associated with genome size and base composition. Genomics Inform 2024; 22:16. [PMID: 39390533 PMCID: PMC11468749 DOI: 10.1186/s44342-024-00018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND To what degree a string of symbols can be compressed reveals important details about its complexity. For instance, strings that are not compressible are random and carry a low information potential while the opposite is true for highly compressible strings. We explore to what extent microbial genomes are amenable to compression as they vary considerably both with respect to size and base composition. For instance, microbial genome sizes vary from less than 100,000 base pairs in symbionts to more than 10 million in soil-dwellers. Genomic base composition, often summarized as genomic AT or GC content due to the similar frequencies of adenine and thymine on one hand and cytosine and guanine on the other, also vary substantially; the most extreme microbes can have genomes with AT content below 25% or above 85% AT. Base composition determines the frequency of DNA words, consisting of multiple nucleotides or oligonucleotides, and may therefore also influence compressibility. Using 4,713 RefSeq genomes, we examined the association between compressibility, using both a DNA based- (MBGC) and a general purpose (ZPAQ) compression algorithm, and genome size, AT content as well as genomic oligonucleotide usage variance (OUV) using generalized additive models. RESULTS We find that genome size (p < 0.001) and OUV (p < 0.001) are both strongly associated with genome redundancy for both type of file compressors. The DNA-based MBGC compressor managed to improve compression with approximately 3% on average with respect to ZPAQ. Moreover, MBGC detected a significant (p < 0.001) compression ratio difference between AT poor and AT rich genomes which was not detected with ZPAQ. CONCLUSION As lack of compressibility is equivalent to randomness, our findings suggest that smaller and AT rich genomes may have accumulated more random mutations on average than larger and AT poor genomes which, in turn, were significantly more redundant. Moreover, we find that OUV is a strong proxy for genome compressibility in microbial genomes. The ZPAQ compressor was found to agree with the MBGC compressor, albeit with a poorer performance, except for the compressibility of AT-rich and AT-poor/GC-rich genomes.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian Institute of Public Health, Domain for Infection Control, Section for Modeling and Bioinformatics, Oslo, Norway.
| | - John H-O Pettersson
- Zoonosis Science Center, Clinical Microbiology, Department of Medical Sciences, University of Uppsala, 751 85, Uppsala, Sweden
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, 751 85, Uppsala, Sweden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Flinkstrom Z, Bryson S, Candry P, Winkler MKH. Metagenomic clustering links specific metabolic functions to globally relevant ecosystems. mSystems 2024; 9:e0057324. [PMID: 38980052 PMCID: PMC11334424 DOI: 10.1128/msystems.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Metagenomic sequencing has advanced our understanding of biogeochemical processes by providing an unprecedented view into the microbial composition of different ecosystems. While the amount of metagenomic data has grown rapidly, simple-to-use methods to analyze and compare across studies have lagged behind. Thus, tools expressing the metabolic traits of a community are needed to broaden the utility of existing data. Gene abundance profiles are a relatively low-dimensional embedding of a metagenome's functional potential and are, thus, tractable for comparison across many samples. Here, we compare the abundance of KEGG Ortholog Groups (KOs) from 6,539 metagenomes from the Joint Genome Institute's Integrated Microbial Genomes and Metagenomes (JGI IMG/M) database. We find that samples cluster into terrestrial, aquatic, and anaerobic ecosystems with marker KOs reflecting adaptations to these environments. For instance, functional clusters were differentiated by the metabolism of antibiotics, photosynthesis, methanogenesis, and surprisingly GC content. Using this functional gene approach, we reveal the broad-scale patterns shaping microbial communities and demonstrate the utility of ortholog abundance profiles for representing a rapidly expanding body of metagenomic data. IMPORTANCE Metagenomics, or the sequencing of DNA from complex microbiomes, provides a view into the microbial composition of different environments. Metagenome databases were created to compile sequencing data across studies, but it remains challenging to compare and gain insight from these large data sets. Consequently, there is a need to develop accessible approaches to extract knowledge across metagenomes. The abundance of different orthologs (i.e., genes that perform a similar function across species) provides a simplified representation of a metagenome's metabolic potential that can easily be compared with others. In this study, we cluster the ortholog abundance profiles of thousands of metagenomes from diverse environments and uncover the traits that distinguish them. This work provides a simple to use framework for functional comparison and advances our understanding of how the environment shapes microbial communities.
Collapse
Affiliation(s)
- Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | | | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Rappaport HB, Oliverio AM. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life. Genome Biol Evol 2024; 16:evae160. [PMID: 39101574 PMCID: PMC11299111 DOI: 10.1093/gbe/evae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.
Collapse
Affiliation(s)
- H B Rappaport
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
9
|
Pang S, Zhang Q, Liang L, Qin Y, Li S, Bian X. Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae). INSECTS 2024; 15:413. [PMID: 38921128 PMCID: PMC11204050 DOI: 10.3390/insects15060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 bp, indicating double-stranded circular structures. The length of the control region was the main cause of the difference in mitochondrial genome length among the nine species. All the mitogenomes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (CR). The majority strand encoded 23 genes, and the minority strand encoded 14 genes. A phylogenetic analysis reaffirmed the monophyletic status of each subfamily, but the monophysitism of Xizicus, Xiphidiopsis and Phlugiolopsis was not supported.
Collapse
Affiliation(s)
- Siyu Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Qianwen Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Lili Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Yanting Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Shan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Xun Bian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
10
|
Kifushi M, Nishikawa Y, Hosokawa M, Ide K, Kogawa M, Anai T, Takeyama H. Analysis of microbial dynamics in the soybean root-associated environments from community to single-cell levels. J Biosci Bioeng 2024; 137:429-436. [PMID: 38570219 DOI: 10.1016/j.jbiosc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere, are notably different from non-root-associated soil environments. However, the microbial dynamics in these spatially divided compartments remain unexplored. In this study, we propose a combinational analysis of single-cell genomics with 16S rRNA gene sequencing. This method enabled us to understand the entire soil microbiome and individual root-associated microorganisms. We applied this method to soybean microbiomes and revealed that their composition was different between the rhizoplane and rhizosphere in the early growth stages, but became more similar as growth progressed. In addition, a total of 610 medium- to high-quality single-amplified genomes (SAGs) were acquired, including plant growth-promoting rhizobacteria (PGPR) candidates while genomes with high GC content tended to be missed by SAGs. The whole-genome analyses of the SAGs suggested that rhizoplane-enriched Flavobacterium solubilizes organophosphate actively and Bacillus colonizes roots more efficiently. Single-cell genomics, together with 16S rRNA gene sequencing, enabled us to connect microbial taxonomy and function, and assess microorganisms at a strain resolution even in the complex soil microbiome.
Collapse
Affiliation(s)
- Masako Kifushi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keigo Ide
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruko Takeyama
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
11
|
Wielgoss S, Van Dyken JD, Velicer GJ. Mutation Rate and Effective Population Size of the Model Cooperative Bacterium Myxococcus xanthus. Genome Biol Evol 2024; 16:evae066. [PMID: 38526062 PMCID: PMC11069108 DOI: 10.1093/gbe/evae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Intrinsic rates of genetic mutation have diverged greatly across taxa and exhibit statistical associations with several other parameters and features. These include effective population size (Ne), genome size, and gametic multicellularity, with the latter being associated with both increased mutation rates and decreased effective population sizes. However, data sufficient to test for possible relationships between microbial multicellularity and mutation rate (µ) are lacking. Here, we report estimates of two key population-genetic parameters, Ne and µ, for Myxococcus xanthus, a bacterial model organism for the study of aggregative multicellular development, predation, and social swarming. To estimate µ, we conducted an ∼400-day mutation accumulation experiment with 46 lineages subjected to regular single colony bottlenecks prior to clonal regrowth. Upon conclusion, we sequenced one clonal-isolate genome per lineage. Given collective evolution for 85,323 generations across all lines, we calculate a per base-pair mutation rate of ∼5.5 × 10-10 per site per generation, one of the highest mutation rates among free-living eubacteria. Given our estimate of µ, we derived Ne at ∼107 from neutral diversity at four-fold degenerate sites across two dozen M. xanthus natural isolates. This estimate is below average for eubacteria and strengthens an already clear negative correlation between µ and Ne in prokaryotes. The higher and lower than average mutation rate and Ne for M. xanthus, respectively, amplify the question of whether any features of its multicellular life cycle-such as group-size reduction during fruiting-body development-or its highly structured spatial distribution have significantly influenced how these parameters have evolved.
Collapse
Affiliation(s)
- Sébastien Wielgoss
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - James David Van Dyken
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Gregory J Velicer
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Sun W, Wei Z, Gu Y, Wang T, Liu B, Yan Y. Chloroplast genome structure analysis of Equisetum unveils phylogenetic relationships to ferns and mutational hotspot region. FRONTIERS IN PLANT SCIENCE 2024; 15:1328080. [PMID: 38665369 PMCID: PMC11044155 DOI: 10.3389/fpls.2024.1328080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/02/2024] [Indexed: 04/28/2024]
Abstract
Equisetum is one of the oldest extant group vascular plants and is considered to be the key to understanding vascular plant evolution. Equisetum is distributed almost all over the world and has a high degree of adaptability to different environments. Despite the fossil record of horsetails (Equisetum, Equisetaceae) dating back to the Carboniferous, the phylogenetic relationship of this genus is not well, and the chloroplast evolution in Equisetum remains poorly understood. In order to fill this gap, we sequenced, assembled, and annotated the chloroplast genomes of 12 species of Equisetum, and compared them to 13 previously published vascular plants chloroplast genomes to deeply examine the plastome evolutionary dynamics of Equisetum. The chloroplast genomes have a highly conserved quadripartite structure across the genus, but these chloroplast genomes have a lower GC content than other ferns. The size of Equisetum plastomes ranges from 130,773 bp to 133,684 bp and they encode 130 genes. Contraction/expansion of IR regions and the number of simple sequences repeat regions underlie large genomic variations in size among them. Comparative analysis revealed we also identified 13 divergence hotspot regions. Additionally, the genes accD and ycf1 can be used as potential DNA barcodes for the identification and phylogeny of the genus Equisetum. Twelve photosynthesis-related genes were specifically selected in Equisetum. Comparative genomic analyses implied divergent evolutionary patterns between Equisetum and other ferns. Phylogenomic analyses and molecular dating revealed a relatively distant phylogenetic relationship between Equisetum and other ferns, supporting the division of pteridophyte into Lycophytes, Equisetaceae and ferns. The results show that the chloroplast genome can be used to solve phylogenetic problems within or between Equisetum species, and also provide genomic resources for the study of Equisetum systematics and evolution.
Collapse
Affiliation(s)
- Weiyue Sun
- Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin, China
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Zuoying Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Yuefeng Gu
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Ting Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Baodong Liu
- Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin, China
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| |
Collapse
|
13
|
Kyriacou RG, Mulhair PO, Holland PWH. GC Content Across Insect Genomes: Phylogenetic Patterns, Causes and Consequences. J Mol Evol 2024; 92:138-152. [PMID: 38491221 PMCID: PMC10978632 DOI: 10.1007/s00239-024-10160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
The proportions of A:T and G:C nucleotide pairs are often unequal and can vary greatly between animal species and along chromosomes. The causes and consequences of this variation are incompletely understood. The recent release of high-quality genome sequences from the Darwin Tree of Life and other large-scale genome projects provides an opportunity for GC heterogeneity to be compared across a large number of insect species. Here we analyse GC content along chromosomes, and within protein-coding genes and codons, of 150 insect species from four holometabolous orders: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We find that protein-coding sequences have higher GC content than the genome average, and that Lepidoptera generally have higher GC content than the other three insect orders examined. GC content is higher in small chromosomes in most Lepidoptera species, but this pattern is less consistent in other orders. GC content also increases towards subtelomeric regions within protein-coding genes in Diptera, Coleoptera and Lepidoptera. Two species of Diptera, Bombylius major and B. discolor, have very atypical genomes with ubiquitous increase in AT content, especially at third codon positions. Despite dramatic AT-biased codon usage, we find no evidence that this has driven divergent protein evolution. We argue that the GC landscape of Lepidoptera, Diptera and Coleoptera genomes is influenced by GC-biased gene conversion, strongest in Lepidoptera, with some outlier taxa affected drastically by counteracting processes.
Collapse
Affiliation(s)
- Riccardo G Kyriacou
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter O Mulhair
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
14
|
Collins G, Schneider C, Boštjančić LL, Burkhardt U, Christian A, Decker P, Ebersberger I, Hohberg K, Lecompte O, Merges D, Muelbaier H, Romahn J, Römbke J, Rutz C, Schmelz R, Schmidt A, Theissinger K, Veres R, Lehmitz R, Pfenninger M, Bálint M. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun Biol 2023; 6:1241. [PMID: 38066075 PMCID: PMC10709333 DOI: 10.1038/s42003-023-05621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.
Collapse
Affiliation(s)
- Gemma Collins
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Clément Schneider
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ljudevit Luka Boštjančić
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | | | - Axel Christian
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Peter Decker
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ingo Ebersberger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Karin Hohberg
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannah Muelbaier
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Juliane Romahn
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | | | - Alexandra Schmidt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Kathrin Theissinger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | - Robert Veres
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ricarda Lehmitz
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Johannes Gutenberg University, Mainz, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany.
- Department of Insect Biotechnology, Justus-Liebig University, Gießen, Germany.
| |
Collapse
|
15
|
Aliperti L, Aptekmann AA, Farfañuk G, Couso LL, Soler-Bistué A, Sánchez IE. r/K selection of GC content in prokaryotes. Environ Microbiol 2023; 25:3255-3268. [PMID: 37813828 DOI: 10.1111/1462-2920.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.
Collapse
Affiliation(s)
- Lucio Aliperti
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel A Aptekmann
- Marine and Coastal Sciences Department, Rutgers University, New Brunswick, New Jersey, USA
| | - Gonzalo Farfañuk
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana L Couso
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, CONICET, Universidad Nacional de San Martín, San Martin, Argentina
| | - Ignacio E Sánchez
- Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Mino S, Fukazawa S, Tsuchiya J, McNichol JC, Sievert SM, Yamaki S, Ando Y, Sawabe T. Hydrogenimonas cancrithermarum sp. nov., a hydrogen- and thiosulfate-oxidizing mesophilic chemolithoautotroph isolated from diffuse-flow fluids on the East Pacific Rise, and an emended description of the genus Hydrogenimonas. Int J Syst Evol Microbiol 2023; 73. [PMID: 37921642 DOI: 10.1099/ijsem.0.006132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0-4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria, with Hydrogenimonas thermophila EP1-55-1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas, Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales (Nitratiruptor and Nitrosophilus) and Nautiliales (Caminibacter, Nautilia and Lebetimonas), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta-AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas. Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - So Fukazawa
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Jesse C McNichol
- Biology Department, Woods Hole Oceanographic Institution, MA, USA
- Department of Biology, St. Francis Xavier University, NS, Canada
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, MA, USA
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
17
|
Han P, Fan H, Tong Y. Identification of a novel family B DNA polymerase from Enterococcus phage IME199 and its overproduction in Escherichia coli BL21(DE3). Microb Cell Fact 2023; 22:217. [PMID: 37865739 PMCID: PMC10590003 DOI: 10.1186/s12934-023-02228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Identification and characterization of novel, faithful and processive DNA polymerases is a driving force in the development of DNA amplification methods. Purification of proteins from natural phages is often time-consuming, cumbersome and low yielding. Escherichia coli is a host bacterium widely used for the production of recombinant proteins, is the cell factory of choice for in vitro studies of phage protein function. RESULTS We expressed the gene encoding Enterococcus faecium phage IME199 DNA polymerase (IME199 DNAP) in Escherichia coli BL21(DE3), and characterized protein function. IME199 DNAP has 3'-5' exonuclease activity, but does not have 5'-3' exonuclease activity. In addition, IME199 DNAP has dNTP-dependent 5'-3' polymerase activity and can amplify DNA at 15-35 °C and a pH range of 5.5-9.5. The amino acid residues Asp30, Glu32, Asp112 and Asp251 are the 3'-5' exonuclease active sites of IME199 DNAP, while residues Asp596 and Tyr639 are essential for DNA synthesis by IME199 DNAP. More importantly, the IME199 DNAP has strand displacement and processive synthesis capabilities, and can perform rolling circle amplification and multiple displacement amplification with very low error rates (approximately 3.67 × 10-6). CONCLUSIONS A novel family B DNA polymerase was successfully overproduced in Escherichia coli BL21(DE3). Based on the characterized properties, IME199 DNAP is expected to be developed as a high-fidelity polymerase for DNA amplification at room temperature.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
18
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
19
|
Li S, Qi B, Peng X, Wang W, Wang W, Liu P, Liu B, Peng Z, Wang Q, Li Y. Genome size and GC content of myxomycetes. Eur J Protistol 2023; 90:125991. [PMID: 37331249 DOI: 10.1016/j.ejop.2023.125991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
More than 1272 myxomycetes species have been described, accounting for more than half of all Amoebozoa species. However, the genome size of only three myxomycetes species has been reported. Therefore, we used flow cytometry to present an extensive survey and a phylogeny-based analysis of genome size and GC content evolution in 144 myxomycetes species. The genome size of myxomycetes ranged from 18.7 Mb to 470.3 Mb, and the GC content ranged from 38.7% to 70.1%. Bright-spored clade showed larger genome sizes and more intra-order genome size variations than the dark-spored clade. GC content and genome size were positively correlated in both bright-spored and dark-spored clades, and spore size was positively correlated with genome size and GC content in the bright-spored clade. We provided the first genome size data set in Myxomycetes, and our results will provide helpful information for future Myxomycetes studies, such as genome sequencing.
Collapse
Affiliation(s)
- Shu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Xueyan Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wei Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wan Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Pu Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
20
|
Dick JM, Meng D. Community- and genome-based evidence for a shaping influence of redox potential on bacterial protein evolution. mSystems 2023; 8:e0001423. [PMID: 37289197 PMCID: PMC10308962 DOI: 10.1128/msystems.00014-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Despite deep interest in how environments shape microbial communities, whether redox conditions influence the sequence composition of genomes is not well known. We predicted that the carbon oxidation state (ZC) of protein sequences would be positively correlated with redox potential (Eh). To test this prediction, we used taxonomic classifications for 68 publicly available 16S rRNA gene sequence data sets to estimate the abundances of archaeal and bacterial genomes in river & seawater, lake & pond, geothermal, hyperalkaline, groundwater, sediment, and soil environments. Locally, ZC of community reference proteomes (i.e., all the protein sequences in each genome, weighted by taxonomic abundances but not by protein abundances) is positively correlated with Eh corrected to pH 7 (Eh7) for the majority of data sets for bacterial communities in each type of environment, and global-scale correlations are positive for bacterial communities in all environments. In contrast, archaeal communities show approximately equal frequencies of positive and negative correlations in individual data sets, and a positive pan-environmental correlation for archaea only emerges after limiting the analysis to samples with reported oxygen concentrations. These results provide empirical evidence that geochemistry modulates genome evolution and may have distinct effects on bacteria and archaea. IMPORTANCE The identification of environmental factors that influence the elemental composition of proteins has implications for understanding microbial evolution and biogeography. Millions of years of genome evolution may provide a route for protein sequences to attain incomplete equilibrium with their chemical environment. We developed new tests of this chemical adaptation hypothesis by analyzing trends of the carbon oxidation state of community reference proteomes for microbial communities in local- and global-scale redox gradients. The results provide evidence for widespread environmental shaping of the elemental composition of protein sequences at the community level and establish a rationale for using thermodynamic models as a window into geochemical effects on microbial community assembly and evolution.
Collapse
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Delong Meng
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
21
|
De la Cruz-Rodríguez Y, Adrián-López J, Martínez-López J, Neri-Márquez BI, García-Pineda E, Alvarado-Gutiérrez A, Fraire-Velázquez S. Biosynthetic Gene Clusters in Sequenced Genomes of Four Contrasting Rhizobacteria in Phytopathogen Inhibition and Interaction with Capsicum annuum Roots. Microbiol Spectr 2023; 11:e0307222. [PMID: 37222590 PMCID: PMC10269915 DOI: 10.1128/spectrum.03072-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Through screening of rhizobacteria, species that effectively suppress phytopathogens and/or promote plant growth are found. Genome sequencing is a crucial step in obtaining a complete characterization of microorganisms for biotechnological applications. This study aimed to sequence the genomes of four rhizobacteria that differ in their inhibition of four root pathogens and in their interaction with chili pepper roots to identify the species and analyze differences in the biosynthetic gene clusters (BGCs) for antibiotic metabolites and to determine possible phenotype-genotype correlations. Results from sequencing and genome alignment identified two bacteria as Paenibacillus polymyxa, one as Kocuria polaris, and one that was previously sequenced as Bacillus velezensis. Analysis with antiSMASH and PRISM tools showed that B. velezensis 2A-2B, the strain with the best performance of referred characteristics, had 13 BGCs, including those related to surfactin, fengycin, and macrolactin, not shared with the other bacteria, whereas P. polymyxa 2A-2A and 3A-25AI, with up to 31 BGCs, showed lower pathogen inhibition and plant hostility; K. polaris showed the least antifungal capacity. P. polymyxa and B. velezensis had the highest number of BGCs for nonribosomal peptides and polyketides. In conclusion, the 13 BGCs in the genome of B. velezensis 2A-2B that were not present in the other bacteria could explain its effective antifungal capacity and could also contribute to its friendly interaction with chili pepper roots. The high number of other BGCs for nonribosomal peptides and polyketide shared by the four bacteria contributed much less to phenotypic differences. IMPORTANCE To advance the characterization of a microorganism as a biocontrol agent against phytopathogens, it is highly recommended to analyze the potential of the profile of secondary metabolites as antibiotics that it produces to counteract pathogens. Some specific metabolites have positive impacts in plants. By analyzing sequenced genomes with bioinformatic tools, such as antiSMASH and PRISM, outstanding bacterial strains with high potential to inhibit phytopathogens and/or promote plant growth can be quickly selected to confirm and expand our knowledge of BGCs of great value in phytopathology.
Collapse
Affiliation(s)
- Yumiko De la Cruz-Rodríguez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jesús Adrián-López
- Lab. MicroRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jazmín Martínez-López
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Bibiana Itzel Neri-Márquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | | | - Alejandro Alvarado-Gutiérrez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Saúl Fraire-Velázquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
22
|
Lee Y, Cho CH, Noh C, Yang JH, Park SI, Lee YM, West JA, Bhattacharya D, Jo K, Yoon HS. Origin of minicircular mitochondrial genomes in red algae. Nat Commun 2023; 14:3363. [PMID: 37291154 PMCID: PMC10250338 DOI: 10.1038/s41467-023-39084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.
Collapse
Affiliation(s)
- Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chanyoung Noh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yu Min Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
23
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
24
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Panda A, Tuller T. Determinants of associations between codon and amino acid usage patterns of microbial communities and the environment inferred based on a cross-biome metagenomic analysis. NPJ Biofilms Microbiomes 2023; 9:5. [PMID: 36693851 PMCID: PMC9873608 DOI: 10.1038/s41522-023-00372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Codon and amino acid usage were associated with almost every aspect of microbial life. However, how the environment may impact the codon and amino acid choice of microbial communities at the habitat level is not clearly understood. Therefore, in this study, we analyzed codon and amino acid usage patterns of a large number of environmental samples collected from diverse ecological niches. Our results suggested that samples derived from similar environmental niches, in general, show overall similar codon and amino acid distribution as compared to samples from other habitats. To substantiate the relative impact of the environment, we considered several factors, such as their similarity in GC content, or in functional or taxonomic abundance. Our analysis demonstrated that none of these factors can fully explain the trends that we observed at the codon or amino acid level implying a direct environmental influence on them. Further, our analysis demonstrated different levels of selection on codon bias in different microbial communities with the highest bias in host-associated environments such as the digestive system or oral samples and the lowest level of selection in soil and water samples. Considering a large number of metagenomic samples here we showed that microorganisms collected from similar environmental backgrounds exhibit similar patterns of codon and amino acid usage irrespective of the location or time from where the samples were collected. Thus our study suggested a direct impact of the environment on codon and amino usage of microorganisms that cannot be explained considering the influence of other factors.
Collapse
Affiliation(s)
- Arup Panda
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
26
|
Shi F, Yu T, Xu Y, Zhang S, Niu Y, Ge S, Tao J, Zong S. Comparative mitochondrial genomic analysis provides new insights into the evolution of the subfamily Lamiinae (Coleoptera: Cerambycidae). Int J Biol Macromol 2023; 225:634-647. [PMID: 36403761 DOI: 10.1016/j.ijbiomac.2022.11.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The genus Monochamus within the subfamily Lamiinae is the main vector of Bursaphelenchus xylophilus, which causes pine wilt disease and induces substantial economic and ecological losses. Only three complete mitochondrial genomes of the genus Monochamus have been sequenced to date, and no comparative mitochondrial genomic studies of Lamiinae have been conducted. Here, the mitochondrial genomes of two Monochamus species, M. saltuarius and M. urussovi, were newly sequenced and annotated. The composition and order of genes in the mitochondrial genomes of Monochamus species are conserved. All transfer RNAs exhibit the typical clover-leaf secondary structure, with the exception of trnS1. Similar to other longhorn beetles, Lamiinae mitochondrial genomes have an A + T bias. All 13 protein-coding genes have experienced purifying selection, and tandem repeat sequences are abundant in the A + T-rich region. Phylogenetic analyses revealed congruent topologies among trees inferred from the five datasets, with the monophyly of Acanthocinini, Agapanthiini, Batocerini, Dorcaschematini, Pteropliini, and Saperdini receiving high support. The findings of this study enhance our understanding of mitochondrial genome evolution and will provide a basis for future studies of population genetics and phylogenetic investigations in this group.
Collapse
Affiliation(s)
- Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Tao Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China.
| | - Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
27
|
Barceló-Antemate D, Fontove-Herrera F, Santos W, Merino E. The effect of the genomic GC content bias of prokaryotic organisms on the secondary structures of their proteins. PLoS One 2023; 18:e0285201. [PMID: 37141209 PMCID: PMC10159118 DOI: 10.1371/journal.pone.0285201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
One of the main characteristics of prokaryotic genomes is the ratio in which guanine-cytosine bases are used in their DNA sequences. This is known as the genomic GC content and varies widely, from values below 20% to values greater than 74%. It has been demonstrated that the genomic GC content varies in accordance with the phylogenetic distribution of organisms and influences the amino acid composition of their corresponding proteomes. This bias is particularly important for amino acids that are coded by GC content-rich codons such as alanine, glycine, and proline, as well as amino acids that are coded by AT-rich codons, such as lysine, asparagine, and isoleucine. In our study, we extend these results by considering the effect of the genomic GC content on the secondary structure of proteins. On a set of 192 representative prokaryotic genomes and proteome sequences, we identified through a bioinformatic study that the composition of the secondary structures of the proteomes varies in relation to the genomic GC content; random coils increase as the genomic GC content increases, while alpha-helices and beta-sheets present an inverse relationship. In addition, we found that the tendency of an amino acid to form part of a secondary structure of proteins is not ubiquitous, as previously expected, but varies according to the genomic GC content. Finally, we discovered that for some specific groups of orthologous proteins, the GC content of genes biases the composition of secondary structures of the proteins for which they code.
Collapse
Affiliation(s)
- Diana Barceló-Antemate
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
| | | | - Walter Santos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
28
|
Liu L, Liu H, Zhang W, Chen Y, Shen J, Li Y, Pan Y, Lin W. Microbial diversity and adaptive strategies in the Mars-like Qaidam Basin, North Tibetan Plateau, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:873-885. [PMID: 35925018 DOI: 10.1111/1758-2229.13111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/15/2022] [Indexed: 06/17/2023]
Abstract
The Qaidam Basin on the northern Tibetan Plateau, China, is one of the driest deserts at high elevations, and it has been considered a representative Mars analogue site. Despite recent advances in the diversity of microbial communities in the Qaidam Basin, our understanding of their genomic information, functional potential and adaptive strategies remains very limited. Here, we conducted a combination of physicochemical and metagenomic analyses to investigate the taxonomic composition and adaptive strategies of microbial life in the regolith across the Qaidam Basin. 16S ribosomal RNA (rRNA) gene-based and metagenomic analyses both reveal that microbial communities in the Qaidam Basin are dominated by the bacterial phylum Actinobacteria. The low levels of moisture and organic carbon contents appear to have essential constraints on microbial biomass and diversity. A total of 50 high-quality metagenome-assembled genomes were reconstructed and analysed. Our results reveal the potential of microorganisms to use ambient trace gases to meet energy and carbon needs in this nutrient-limited desert. Furthermore, we find that DNA repair mechanisms and protein protection are likely essential for microbial life in response to stressors of hyperaridity, intense ultraviolet radiation and tremendous temperature fluctuations in this Mars analogue. These findings shed light on the diversity and survival strategies of microbial life inhabiting Mar-like environments, which provide implications for potential life on early Mars.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyun Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Bohlin J. A simple stochastic model describing the evolution of genomic GC content in asexually reproducing organisms. Sci Rep 2022; 12:18569. [PMID: 36329129 PMCID: PMC9631610 DOI: 10.1038/s41598-022-21709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A genome's nucleotide composition can usually be summarized with (G)uanine + (C)ytosine (GC) or (A)denine + (T)hymine (AT) frequencies as GC% = 100% - AT%. Genomic AT/GC content has been linked to environment and selective processes in asexually reproducing organisms. A model is presented relating the evolution of genomic GC content over time to AT [Formula: see text] GC and GC [Formula: see text] AT mutation rates. By employing Itô calculus it is shown that if mutation rates are subject to random perturbations, that can vary over time, several implications follow. In particular, an extra Brownian motion term appears influencing genomic nucleotide variability; the greater the random perturbations the more genomic nucleotide variability. This can have several interpretations depending on the context. For instance, reducing the influence of the random perturbations on the AT/GC mutation rates and thus genomic nucleotide variability, to limit fitness decreasing and deleterious mutations, will likely suggest channeling of resources. On the other hand, increased genomic nucleotide diversity may be beneficial in variable environments. In asexually reproducing organisms, the Brownian motion term can be considered to be inversely reflective of the selective pressures an organism is subjected to at the molecular level. The presented model is a generalization of a previous model, limited to microbial symbionts, to all asexually reproducing, non-recombining organisms. Last, a connection between the presented model and the classical Luria-Delbrück mutation model is presented in an Itô calculus setting.
Collapse
Affiliation(s)
- Jon Bohlin
- grid.418193.60000 0001 1541 4204Division of Infection Control, Department of Methods Development and Analysis, Norwegian Institute of Public Health, Oslo, Norway ,grid.418193.60000 0001 1541 4204Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. Box 4404, Lovisenberggata 8, 0403 Oslo, Norway
| |
Collapse
|
30
|
Williams DJ, Grimont PAD, Cazares A, Grimont F, Ageron E, Pettigrew KA, Cazares D, Njamkepo E, Weill FX, Heinz E, Holden MTG, Thomson NR, Coulthurst SJ. The genus Serratia revisited by genomics. Nat Commun 2022; 13:5195. [PMID: 36057639 PMCID: PMC9440931 DOI: 10.1038/s41467-022-32929-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The genus Serratia has been studied for over a century and includes clinically-important and diverse environmental members. Despite this, there is a paucity of genomic information across the genus and a robust whole genome-based phylogenetic framework is lacking. Here, we have assembled and analysed a representative set of 664 genomes from across the genus, including 215 historic isolates originally used in defining the genus. Phylogenomic analysis of the genus reveals a clearly-defined population structure which displays deep divisions and aligns with ecological niche, as well as striking congruence between historical biochemical phenotyping data and contemporary genomics data. We highlight the genomic, phenotypic and plasmid diversity of Serratia, and provide evidence of different patterns of gene flow across the genus. Our work provides a framework for understanding the emergence of clinical and other lineages of Serratia.
Collapse
Affiliation(s)
- David J Williams
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick A D Grimont
- Unité Biodiversité des Bactéries Pathogènes Emergentes, INSERM Unité 389, Institut Pasteur, Paris, France
| | - Adrián Cazares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Francine Grimont
- Unité Biodiversité des Bactéries Pathogènes Emergentes, INSERM Unité 389, Institut Pasteur, Paris, France
| | - Elisabeth Ageron
- Unité Biodiversité des Bactéries Pathogènes Emergentes, INSERM Unité 389, Institut Pasteur, Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | | | - Daniel Cazares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elisabeth Njamkepo
- Institut Pasteur, Université de Paris, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - François-Xavier Weill
- Institut Pasteur, Université de Paris, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
31
|
Mitochondrial Genomes Provide New Phylogenetic and Evolutionary Insights into Psilidae (Diptera: Brachycera). INSECTS 2022; 13:insects13060518. [PMID: 35735855 PMCID: PMC9224655 DOI: 10.3390/insects13060518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
Psilidae (Diptera: Brachycera) is a moderate-sized family currently placed in the superfamily Diopsoidea and contains some destructive agricultural and forestry pests. The systematic position and intrafamilial classification of rust flies are in need of further study, and the available molecular data of Psilidae are still limited. In this study, we present the mitochondrial genomes of 6 Psilidae species (Chamaepsilatestudinaria Wang and Yang, Chyliza bambusae Wang and Yang, Chy. chikuni Wang, Loxocera lunata Wang and Yang, L. planivena Wang and Yang and L. sinica Wang and Yang). Comparative analyses show a conserved genome structure, in terms of gene composition and arrangement, and a highly Adenine plus Thymine biased nucleotide composition of the 6 psilid mitogenomes. Mitochondrial evolutionary rates vary among the 6 species, with species of Chylizinae exhibiting a slower average rate than species of Psilinae. The length, the nucleotide composition, and the copy number of repeat units of the control region are variable among the 6 species, which may offer useful information for phylogenetic and evolutionary studies of Psilidae. Phylogenetic analyses based on 4 mitogenomic datasets (AA, PCG, PCG12RNA, and PCGRNA) support the monophyly of Psilidae, and the sister relationship between Chylizinae and Psilinae, while Diopsoidea is suggested to be non-monophyletic. Our study enlightens the future application of mitogenomic data in the phylogenetic and evolutionary studies of Psilidae, based on denser taxon sampling.
Collapse
|
32
|
Halter T, Köstlbacher S, Collingro A, Sixt BS, Tönshoff ER, Hendrickx F, Kostanjšek R, Horn M. Ecology and evolution of chlamydial symbionts of arthropods. ISME COMMUNICATIONS 2022; 2:45. [PMID: 37938728 PMCID: PMC9723776 DOI: 10.1038/s43705-022-00124-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/08/2023]
Abstract
The phylum Chlamydiae consists of obligate intracellular bacteria including major human pathogens and diverse environmental representatives. Here we investigated the Rhabdochlamydiaceae, which is predicted to be the largest and most diverse chlamydial family, with the few described members known to infect arthropod hosts. Using published 16 S rRNA gene sequence data we identified at least 388 genus-level lineages containing about 14 051 putative species within this family. We show that rhabdochlamydiae are mainly found in freshwater and soil environments, suggesting the existence of diverse, yet unknown hosts. Next, we used a comprehensive genome dataset including metagenome assembled genomes classified as members of the family Rhabdochlamydiaceae, and we added novel complete genome sequences of Rhabdochlamydia porcellionis infecting the woodlouse Porcellio scaber, and of 'Candidatus R. oedothoracis' associated with the linyphiid dwarf spider Oedothorax gibbosus. Comparative analysis of basic genome features and gene content with reference genomes of well-studied chlamydial families with known host ranges, namely Parachlamydiaceae (protist hosts) and Chlamydiaceae (human and other vertebrate hosts) suggested distinct niches for members of the Rhabdochlamydiaceae. We propose that members of the family represent intermediate stages of adaptation of chlamydiae from protists to vertebrate hosts. Within the genus Rhabdochlamydia, pronounced genome size reduction could be observed (1.49-1.93 Mb). The abundance and genomic distribution of transposases suggests transposable element expansion and subsequent gene inactivation as a mechanism of genome streamlining during adaptation to new hosts. This type of genome reduction has never been described before for any member of the phylum Chlamydiae. This study provides new insights into the molecular ecology, genomic diversity, and evolution of representatives of one of the most divergent chlamydial families.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Barbara S Sixt
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Elena R Tönshoff
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| | | | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Comparative Analyses of Chloroplast Genomes Provide Comprehensive Insights into the Adaptive Evolution of Paphiopedilum (Orchidaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An elucidation of how the selection pressures caused by habitat environments affect plant plastid genomes and lead to the adaptive evolution of plants, is a very intense area of research in evolutionary biology. The genus Paphiopedilum is a predominant group of orchids that includes over 66 species with high horticultural and ornamental value. However, owing to the destructive exploitation and habitat deterioration of wild germplasm resources of Paphiopedilum, it needs more molecular genetic resources and studies on this genus. The chloroplast is cytoplasmically inherited and often used in evolutionary studies. Thus, for this study, we newly sequenced, assembled and annotated five chloroplast genomes of the Paphiopedilum species. The size of these genomes ranged from 155,886 bp (P. henryanum) to 160,503 bp (P. ‘GZSLKY’ Youyou) and they contained 121–122 genes, which consisted of 76 protein coding genes, eight ribosomal RNAs, and 37–38 transfer RNAs. Combined with the other 14 Paphiopedilum species, the characteristics of the repeat sequences, divergent hotspot regions, and the condo usage bias were evaluated and identified, respectively. The gene transfer analysis showed that some fragments of the ndh and ycf gene families were shared by both the chloroplast and nucleus. Although the genomic structure and gene content was conserved, there was a significant boundary shift caused by the inverted repeat (IR) expansion and small single copy (SSC) contraction. The lower GC content and loss of ndh genes could be the result of adaptive evolutionary responses to its unique habitats. The genes under positive selection, including accD, matK, psbM, rpl20, rps12, ycf1, and ycf2 might be regarded as potential candidate genes for further study, which significantly contribute to the adaptive evolution of Paphiopedilum.
Collapse
|
34
|
Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110. [PMID: 35139824 PMCID: PMC8827189 DOI: 10.1186/s12864-022-08353-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Collapse
Affiliation(s)
- En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jie Gao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
35
|
Ho AT, Hurst LD. Variation in Release Factor Abundance Is Not Needed to Explain Trends in Bacterial Stop Codon Usage. Mol Biol Evol 2022; 39:msab326. [PMID: 34751397 PMCID: PMC8789281 DOI: 10.1093/molbev/msab326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In bacteria stop codons are recognized by one of two class I release factors (RF1) recognizing TAG, RF2 recognizing TGA, and TAA being recognized by both. Variation across bacteria in the relative abundance of RF1 and RF2 is thus hypothesized to select for different TGA/TAG usage. This has been supported by correlations between TAG:TGA ratios and RF1:RF2 ratios across multiple bacterial species, potentially also explaining why TAG usage is approximately constant despite extensive variation in GC content. It is, however, possible that stop codon trends are determined by other forces and that RF ratios adapt to stop codon usage, rather than vice versa. Here, we determine which direction of the causal arrow is the more parsimonious. Our results support the notion that RF1/RF2 ratios become adapted to stop codon usage as the same trends, notably the anomalous TAG behavior, are seen in contexts where RF1:RF2 ratios cannot be, or are unlikely to be, causative, that is, at 3'untranslated sites never used for translation termination, in intragenomic analyses, and across archaeal species (that possess only one RF1). We conclude that specifics of RF biology are unlikely to fully explain TGA/TAG relative usage. We discuss why the causal relationships for the evolution of synonymous stop codon usage might be different from those affecting synonymous sense codon usage, noting that transitions between TGA and TAG require two-point mutations one of which is likely to be deleterious.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
36
|
Kolařík M, Wei IC, Hsieh SY, Piepenbring M, Kirschner R. Nucleotide composition bias of rDNA sequences as a source of phylogenetic artifacts in Basidiomycota—a case of a new lineage of a uredinicolous Ramularia-like anamorph with affinities to Ustilaginomycotina. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Li Y, Wang R, Wang H, Pu F, Feng X, Jin L, Ma Z, Ma XX. Codon Usage Bias in Autophagy-Related Gene 13 in Eukaryotes: Uncovering the Genetic Divergence by the Interplay Between Nucleotides and Codon Usages. Front Cell Infect Microbiol 2021; 11:771010. [PMID: 34804999 PMCID: PMC8602353 DOI: 10.3389/fcimb.2021.771010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.
Collapse
Affiliation(s)
- Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
38
|
Péguilhan R, Besaury L, Rossi F, Enault F, Baray JL, Deguillaume L, Amato P. Rainfalls sprinkle cloud bacterial diversity while scavenging biomass. FEMS Microbiol Ecol 2021; 97:6420242. [PMID: 34734249 DOI: 10.1093/femsec/fiab144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Bacteria circulate in the atmosphere, through clouds and precipitation to surface ecosystems. Here, we conducted a coordinated study of bacteria assemblages in clouds and precipitation at two sites distant of ∼800 m in elevation in a rural vegetated area around puy de Dôme Mountain, France, and analysed them in regard to meteorological, chemical and air masses' history data. In both clouds and precipitation, bacteria generally associated with vegetation or soil dominated. Elevated ATP-to-cell ratio in clouds compared with precipitation suggested a higher proportion of viable cells and/or specific biological processes. The increase of bacterial cell concentration from clouds to precipitation indicated strong below-cloud scavenging. Using ions as tracers, we derive that 0.2 to 25.5% of the 1.1 × 107 to 6.6 × 108 bacteria cell/m2/h1 deposited with precipitation originated from the source clouds. Yet, the relative species richness decreased with the proportion of inputs from clouds, pointing them as sources of distant microbial diversity. Biodiversity profiles, thus, differed between clouds and precipitation in relation with distant/local influencing sources, and potentially with bacterial phenotypic traits. Notably Undibacterium, Bacillus and Staphylococcus were more represented in clouds, while epiphytic bacteria such as Massilia, Sphingomonas, Rhodococcus and Pseudomonas were enriched in precipitation.
Collapse
Affiliation(s)
- Raphaëlle Péguilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Ludovic Besaury
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Florent Rossi
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - François Enault
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 CLERMONT-FERRAND, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| |
Collapse
|
39
|
Comparative Analysis of Eight Mitogenomes of Bark Beetles and Their Phylogenetic Implications. INSECTS 2021; 12:insects12100949. [PMID: 34680718 PMCID: PMC8538572 DOI: 10.3390/insects12100949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Many bark beetles are destructive pests in coniferous forests and cause extensive ecological and economic losses worldwide. Comparative studies of the structural characteristics of mitogenomes and phylogenetic relationships of bark beetles can improve our understanding of mitogenome evolution. In this study, we sequenced eight mitogenomes of bark beetles. Our results show that the use of start and stop codons, the abundance of amino acids, and the relative frequency of codon use are conserved among the eight bark beetles. Different regions of tRNA exhibit different degrees of conservatism. Together with the analysis of evolutionary rates and genetic distance among bark beetle species, our results reveal phylogenetic relationships among bark beetles of the subfamily Scolytinae. Abstract Many bark beetles of the subfamily Scolytinae are the most economically important insect pests of coniferous forests worldwide. In this study, we sequenced the mitochondrial genomes of eight bark beetle species, including Dendroctonus micans, Orthotomicus erosus, Polygraphus poligraphus, Dryocoetes hectographus, Ips nitidus, Ips typographus, Ips subelongatus, and Ips hauseri, to examine their structural characteristics and determine their phylogenetic relationships. We also used previously published mitochondrial genome sequence data from other Scolytinae species to identify and localize the eight species studied within the bark beetle phylogeny. Their gene arrangement matched the presumed ancestral pattern of these bark beetles. Start and stop codon usage, amino acid abundance, and the relative codon usage frequencies were conserved among bark beetles. Genetic distances between species ranged from 0.037 to 0.418, and evolutionary rates of protein-coding genes ranged from 0.07 for COI to 0.69 for ND2. Our results shed light on the phylogenetic relationships and taxonomic status of several bark beetles in the subfamily Scolytinae and highlight the need for further sequencing analyses and taxonomic revisions in additional bark beetle species.
Collapse
|
40
|
Kaur I, Gaur VK, Regar RK, Roy A, Srivastava PK, Gaur R, Manickam N, Barik SK. Plants exert beneficial influence on soil microbiome in a HCH contaminated soil revealing advantage of microbe-assisted plant-based HCH remediation of a dumpsite. CHEMOSPHERE 2021; 280:130690. [PMID: 34162081 DOI: 10.1016/j.chemosphere.2021.130690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Persistence of hexachlorocyclohexane (HCH) pesticide is a major problem for its disposal. Soil microflora plays an important role in remediating contaminated sites. Keeping concepts of microbial- and phyto-remediation together, the difference between soil microflora with and without association of HCH accumulating plant species was studied. Metagenomic analysis among the non-plant soil (BS) (∑HCH 434.19 mg/g), rhizospheric soil of shrubs (RSS) (∑HCH 157.31 mg/g), and rhizospheric soil of trees (RSD) (∑HCH 105.39 mg/g) revealed significant differences in microbial communities. Shrubs and trees occurred at a long-term dumpsite accumulated α- and β- HCH residues. Plant rhizospheric soils exhibited high richness and evenness with higher diversity indices compared to the non-plant soil. Order Rhizobiales was most abundant in all soils and Streptomycetales was absent in the BS soil. Proteobacteria and Ascomycota were highest in BS soil, while Actinobacteria was enriched in both the plant rhizospheric soil samples. In BS soil, Pseudomonas, Sordaria, Caulobacter, Magnetospirillum, Rhodospirillum were abundant. While, genera Actinoplanes, Streptomyces, Bradyrhizobium, Rhizobium, Azospirillum, Agrobacterium are abundant in RSD soil. Selected plants have accumulated HCH residues from soil and exerted positive impacts on soil microbial communities in HCH contaminated site. This study advocates microbe-assisted plant-based bioremediation strategy to remediate HCH contamination.
Collapse
Affiliation(s)
- Ispreet Kaur
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Vivek Kumar Gaur
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Raj Kumar Regar
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Aditi Roy
- National Botanical Research Institute, Lucknow, India
| | - Pankaj Kumar Srivastava
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India.
| | - Rajeev Gaur
- Ram Manohar Lohia Avadh University, Faizabad, India
| | - Natesan Manickam
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Saroj Kanta Barik
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
41
|
The Mutational Robustness of the Genetic Code and Codon Usage in Environmental Context: A Non-Extremophilic Preference? Life (Basel) 2021; 11:life11080773. [PMID: 34440517 PMCID: PMC8398314 DOI: 10.3390/life11080773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The genetic code was evolved, to some extent, to minimize the effects of mutations. The effects of mutations depend on the amino acid repertoire, the structure of the genetic code and frequencies of amino acids in proteomes. The amino acid compositions of proteins and corresponding codon usages are still under selection, which allows us to ask what kind of environment the standard genetic code is adapted to. Using simple computational models and comprehensive datasets comprising genomic and environmental data from all three domains of Life, we estimate the expected severity of non-synonymous genomic mutations in proteins, measured by the change in amino acid physicochemical properties. We show that the fidelity in these physicochemical properties is expected to deteriorate with extremophilic codon usages, especially in thermophiles. These findings suggest that the genetic code performs better under non-extremophilic conditions, which not only explains the low substitution rates encountered in halophiles and thermophiles but the revealed relationship between the genetic code and habitat allows us to ponder on earlier phases in the history of Life.
Collapse
|
42
|
Simón D, Cristina J, Musto H. Nucleotide Composition and Codon Usage Across Viruses and Their Respective Hosts. Front Microbiol 2021; 12:646300. [PMID: 34262534 PMCID: PMC8274242 DOI: 10.3389/fmicb.2021.646300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The genetic material of the three domains of life (Bacteria, Archaea, and Eukaryota) is always double-stranded DNA, and their GC content (molar content of guanine plus cytosine) varies between ≈ 13% and ≈ 75%. Nucleotide composition is the simplest way of characterizing genomes. Despite this simplicity, it has several implications. Indeed, it is the main factor that determines, among other features, dinucleotide frequencies, repeated short DNA sequences, and codon and amino acid usage. Which forces drive this strong variation is still a matter of controversy. For rather obvious reasons, most of the studies concerning this huge variation and its consequences, have been done in free-living organisms. However, no recent comprehensive study of all known viruses has been done (that is, concerning all available sequences). Viruses, by far the most abundant biological entities on Earth, are the causative agents of many diseases. An overview of these entities is important also because their genetic material is not always double-stranded DNA: indeed, certain viruses have as genetic material single-stranded DNA, double-stranded RNA, single-stranded RNA, and/or retro-transcribing. Therefore, one may wonder if what we have learned about the evolution of GC content and its implications in prokaryotes and eukaryotes also applies to viruses. In this contribution, we attempt to describe compositional properties of ∼ 10,000 viral species: base composition (globally and according to Baltimore classification), correlations among non-coding regions and the three codon positions, and the relationship of the nucleotide frequencies and codon usage of viruses with the same feature of their hosts. This allowed us to determine how the base composition of phages strongly correlate with the value of their respective hosts, while eukaryotic viruses do not (with fungi and protists as exceptions). Finally, we discuss some of these results concerning codon usage: reinforcing previous results, we found that phages and hosts exhibit moderate to high correlations, while for eukaryotes and their viruses the correlations are weak or do not exist.
Collapse
Affiliation(s)
- Diego Simón
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.,Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
43
|
Ge X, Yuan L, Kang Y, Liu T, Liu H, Yang Y. Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies. INSECTS 2021; 12:570. [PMID: 34206376 PMCID: PMC8307346 DOI: 10.3390/insects12070570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022]
Abstract
Complete mitochondrial genomes are valuable resources for phylogenetics in insects. The Cyphonoceridae represents an important lineage of fireflies. However, no complete mitogenome is available until now. Here, the first complete mitochondrial genome from this subfamily was reported, with Cyphonocerus sanguineus klapperichi as a representative. The mitogenome of C. sanguineus klapperichi was conserved in the structure and comparable to that of others in size and A+T content. Nucleotide composition was A+T-biased, and all genes exhibited a positive AT-skew and negative GC-skew. Two types of tandem repeat sequence units were present in the control region (136 bp × 2; 171 bp × 2 + 9 bp). For reconstruction of Lampyridae's phylogeny, three different datasets were analyzed by both maximum likelihood (ML) and Bayesian inference (BI) methods. As a result, the same topology was produced by both ML analysis of 13 protein-coding genes and 2rRNA and BI analysis of 37 genes. The results indicated that Lampyridae, Lampyrinae, Luciolinae (excluding Emeia) were monophyletic, but Ototretinae was paraphyletic, of which Stenocladius was recovered as the sister taxon to all others, while Drilaster was more closely related to Cyphonocerinae; Phturinae + Emeia were included in a monophyletic clade, which comprised sister groups with Lampyridae. Vesta was deeply rooted in the Luciolinae.
Collapse
Affiliation(s)
- Xueying Ge
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Lilan Yuan
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ya Kang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Tong Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.G.); (L.Y.); (Y.K.); (T.L.)
| |
Collapse
|
44
|
Phylogenetic analysis of mutational robustness based on codon usage supports that the standard genetic code does not prefer extreme environments. Sci Rep 2021; 11:10963. [PMID: 34040064 PMCID: PMC8154912 DOI: 10.1038/s41598-021-90440-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The mutational robustness of the genetic code is rarely discussed in the context of biological diversity, such as codon usage and related factors, often considered as independent of the actual organism's proteome. Here we put the living beings back to picture and use distortion as a metric of mutational robustness. Distortion estimates the expected severities of non-synonymous mutations measuring it by amino acid physicochemical properties and weighting for codon usage. Using the biological variance of codon frequencies, we interpret the mutational robustness of the standard genetic code with regards to their corresponding environments and genomic compositions (GC-content). Employing phylogenetic analyses, we show that coding fidelity in physicochemical properties can deteriorate with codon usages adapted to extreme environments and these putative effects are not the artefacts of phylogenetic bias. High temperature environments select for codon usages with decreased mutational robustness of hydrophobic, volumetric, and isoelectric properties. Selection at high saline concentrations also leads to reduced fidelity in polar and isoelectric patterns. These show that the genetic code performs best with mesophilic codon usages, strengthening the view that LUCA or its ancestors preferred lower temperature environments. Taxonomic implications, such as rooting the tree of life, are also discussed.
Collapse
|
45
|
Duan B, Ding P, Navarre WW, Liu J, Xia B. Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers. Mol Biol Evol 2021; 38:4135-4148. [PMID: 34003286 PMCID: PMC8476142 DOI: 10.1093/molbev/msab136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force for bacterial evolution. To avoid the deleterious effects due to the unregulated expression of newly acquired foreign genes, bacteria have evolved specific proteins named xenogeneic silencers to recognize foreign DNA sequences and suppress their transcription. As there is considerable diversity in genomic base compositions among bacteria, how xenogeneic silencers distinguish self- from nonself DNA in different bacteria remains poorly understood. This review summarizes the progress in studying the DNA binding preferences and the underlying molecular mechanisms of known xenogeneic silencer families, represented by H-NS of Escherichia coli, Lsr2 of Mycobacterium, MvaT of Pseudomonas, and Rok of Bacillus. Comparative analyses of the published data indicate that the differences in DNA recognition mechanisms enable these xenogeneic silencers to have clear characteristics in DNA sequence preferences, which are further correlated with different host genomic features. These correlations provide insights into the mechanisms of how these xenogeneic silencers selectively target foreign DNA in different genomic backgrounds. Furthermore, it is revealed that the genomic AT contents of bacterial species with the same xenogeneic silencer family proteins are distributed in a limited range and are generally lower than those species without any known xenogeneic silencers in the same phylum/class/genus, indicating that xenogeneic silencers have multifaceted roles on bacterial genome evolution. In addition to regulating horizontal gene transfer, xenogeneic silencers also act as a selective force against the GC to AT mutational bias found in bacterial genomes and help the host genomic AT contents maintained at relatively low levels.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing, 100871, China
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
46
|
Reyes-Cortes JL, Azaola-Espinosa A, Lozano-Aguirre L, Ponce-Alquicira E. Physiological and Genomic Analysis of Bacillus pumilus UAMX Isolated from the Gastrointestinal Tract of Overweight Individuals. Microorganisms 2021; 9:microorganisms9051076. [PMID: 34067853 PMCID: PMC8156450 DOI: 10.3390/microorganisms9051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.
Collapse
Affiliation(s)
- José Luis Reyes-Cortes
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
| | - Alejandro Azaola-Espinosa
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México 04960, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos del Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico;
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
47
|
Gao NL, He Z, Zhu Q, Jiang P, Hu S, Chen WH. Selection for Cheaper Amino Acids Drives Nucleotide Usage at the Start of Translation in Eukaryotic Genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:949-957. [PMID: 33741525 PMCID: PMC9403032 DOI: 10.1016/j.gpb.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 05/30/2019] [Accepted: 08/18/2019] [Indexed: 12/04/2022]
Abstract
Coding regions have complex interactions among multiple selective forces, which are manifested as biases in nucleotide composition. Previous studies have revealed a decreasing GC gradient from the 5′-end to 3′-end of coding regions in various organisms. We confirmed that this gradient is universal in eukaryotic genes, but the decrease only starts from the ∼ 25th codon. This trend is mostly found in nonsynonymous (ns) sites at which the GC gradient is universal across the eukaryotic genome. Increased GC contents at ns sites result in cheaper amino acids, indicating a universal selection for energy efficiency toward the N-termini of encoded proteins. Within a genome, the decreasing GC gradient is intensified from lowly to highly expressed genes (more and more protein products), further supporting this hypothesis. This reveals a conserved selective constraint for cheaper amino acids at the translation start that drives the increased GC contents at ns sites. Elevated GC contents can facilitate transcription but result in a more stable local secondary structure around the start codon and subsequently impede translation initiation. Conversely, the GC gradients at four-fold and two-fold synonymous sites vary across species. They could decrease or increase, suggesting different constraints acting at the GC contents of different codon sites in different species. This study reveals that the overall GC contents at the translation start are consequences of complex interactions among several major biological processes that shape the nucleotide sequences, especially efficient energy usage.
Collapse
Affiliation(s)
- Na L Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Institute for Computer Science and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Duesseldorf 40225, Germany
| | - Zilong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Qianhui Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Puzi Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
48
|
Castillo AI, Almeida RPP. Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3-GENES GENOMES GENETICS 2021; 11:6170658. [PMID: 33715000 PMCID: PMC8495750 DOI: 10.1093/g3journal/jkab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022]
Abstract
Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, Core vs. Accessory, and Recombinant vs. Non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs. natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.
Collapse
Affiliation(s)
- Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Majda S, Beisser D, Boenigk J. Nutrient-driven genome evolution revealed by comparative genomics of chrysomonad flagellates. Commun Biol 2021; 4:328. [PMID: 33712682 PMCID: PMC7954800 DOI: 10.1038/s42003-021-01781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
Phototrophic eukaryotes have evolved mainly by the primary or secondary uptake of photosynthetic organisms. A return to heterotrophy occurred multiple times in various protistan groups such as Chrysophyceae, despite the expected advantage of autotrophy. It is assumed that the evolutionary shift to mixotrophy and further to heterotrophy is triggered by a differential importance of nutrient and carbon limitation. We sequenced the genomes of 16 chrysophyte strains and compared them in terms of size, function, and sequence characteristics in relation to photo-, mixo- and heterotrophic nutrition. All strains were sequenced with Illumina and partly with PacBio. Heterotrophic taxa have reduced genomes and a higher GC content of up to 59% as compared to phototrophic taxa. Heterotrophs have a large pan genome, but a small core genome, indicating a differential specialization of the distinct lineages. The pan genome of mixotrophs and heterotrophs taken together but not the pan genome of the mixotrophs alone covers the complete functionality of the phototrophic strains indicating a random reduction of genes. The observed ploidy ranges from di- to tetraploidy and was found to be independent of taxonomy or trophic mode. Our results substantiate an evolution driven by nutrient and carbon limitation.
Collapse
Affiliation(s)
- Stephan Majda
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany.
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
50
|
Yu Y, Li HT, Wu YH, Li DZ. Correlation Analysis Reveals an Important Role of GC Content in Accumulation of Deletion Mutations in the Coding Region of Angiosperm Plastomes. J Mol Evol 2021; 89:73-80. [PMID: 33433638 DOI: 10.1007/s00239-020-09987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Variation in GC content is assumed to correlate with various processes, including mutation biases, recombination, and environmental parameters. To date, most genomic studies exploring the evolution of GC content have focused on nuclear genomes, but relatively few have concentrated on organelle genomes. We explored the mechanisms maintaining the GC content in angiosperm plastomes, with a particular focus on the hypothesis of phylogenetic dependence and the correlation with deletion mutations. We measured three genetic traits, namely, GC content, A/T tracts, and G/C tracts, in the coding region of plastid genomes for 1382 angiosperm species representing 350 families and 64 orders, and tested the phylogenetic signal. Then, we performed correlation analyses and revealed the variation in evolutionary rate of selected traits using RRphylo. The plastid GC content in the coding region varied from 28.10% to 43.20% across angiosperms, with a few non-photosynthetic species showing highly reduced values, highlighting the significance of functional constraints. We found strong phylogenetic signal in A/T tracts, but weak ones in GC content and G/C tracts, indicating adaptive potential. GC content was positively and negatively correlated with G/C and A/T tracts, respectively, suggesting a trade-off between these two deletion events. GC content evolved at various rates across the phylogeny, with significant increases in monocots and Lamiids, and a decrease in Fabids, implying the effects of some other factors. We hypothesize that variation in plastid GC content might be a mixed strategy of species to optimize fitness in fluctuating climates, partly through influencing the trade-off between AT → GC and GC → AT mutations.
Collapse
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu-Huan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|