1
|
Ding Z, Hou Z, Zhang T, Wang P, Pan X, Li X, Zhao S. FKBP Prolyl Isomerase 11: A Novel Oncogene Interacting With SRSF1 in Esophageal Squamous Cell Carcinoma. Mol Carcinog 2025; 64:638-651. [PMID: 39775874 DOI: 10.1002/mc.23877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the main subtypes of esophageal carcinoma with high morbidity. This study aimed to explore the role of FKBP prolyl isomerase 11 (FKBP11) in ESCC and investigate the underlying mechanism. FKBP11 levels in ESCC tumor tissues and cell lines were measured. Cell function assays were conducted to evaluate the role of FKBP11 in ESCC cells. The xenograft mouse model was established to validate the effect of FKBP11 on ESCC tumorigenesis in vivo. The co-immunoprecipitation assay was performed to determine the FKBP11-interacting proteins. Obvious upregulations in FKBP11 expression were found in ESCC tumor tissues and cell lines. In vitro, FKBP11 knockdown weakened cell proliferation, migration, and invasion capacities and reinforced cell apoptosis in ESCC cells. In vivo, FKBP11 knockdown slowed ESCC tumorigenesis. The following mechanism investigation determined serine and arginine-rich splicing factor 1 (SRSF1) as the FKBP11-interacting protein in ESCC cells. FKBP11 directly bound to SRSF1 and FKBP11 knockdown decreased SRSF1 mRNA level. SRSF1 overexpression abrogated the inhibitory effect of FKBP11 knockdown on the proliferation and migration of ESCC cells. KBP11 functions as an oncogene in ESCC by targeting SRSF1.
Collapse
Affiliation(s)
- Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Zhichao Hou
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Tangjuan Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Peng Wang
- School of Nursing and Health, Zhengzhou University, ZhengZhou, China
| | - Xue Pan
- School of Nursing and Health, Zhengzhou University, ZhengZhou, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| |
Collapse
|
2
|
Kurakula K, Hagdorn QAJ, van der Feen DE, Vonk Noordegraaf A, Ten Dijke P, de Boer RA, Bogaard HJ, Goumans MJ, Berger RMF. Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis 2021; 25:99-112. [PMID: 34379232 PMCID: PMC8813847 DOI: 10.1007/s10456-021-09812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodelling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-β/BMP signalling, endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone significantly decreased TGF-β signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-β signalling in monocrotaline + shunt-PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-β/BMP signalling pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Quint A J Hagdorn
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diederik E van der Feen
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Rolf M F Berger
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Miller MC, Zheng Y, Yan J, Zhou Y, Tai G, Mayo KH. Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology 2018; 27:1038-1051. [PMID: 28973299 DOI: 10.1093/glycob/cwx071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Interactions between galectins and polysaccharides are crucial to many biological processes, and yet these are some of the least understood, usually being limited to studies with small saccharides and short oligosaccharides. The present study is focused on human galectin-3 (Gal-3) interactions with a 60 kDa rhamnogalacturonan RG-I-4 that we use as a model to garner information as to how galectins interact with large polysaccharides, as well as to develop this agent as a therapeutic against human disease. Gal-3 is unique among galectins, because as the only chimera-type, it has a long N-terminal tail (NT) that has long puzzled investigators due to its dynamic, disordered nature and presence of numerous prolines. Here, we use 15N-1H heteronuclear single quantum coherence NMR spectroscopy to demonstrate that multiple sites on RG-I-4 provide epitopes for binding to three sites on 15N-labeled Gal-3, two within its carbohydrate recognition domain (CRD) and one at a novel site within the NT encompassing the first 40 residues that are highly conserved among all species of Gal-3. Moreover, strong binding of RG-I-4 to the Gal-3 NT occurs on a very slow time scale, suggesting that it may be mediated by cis-trans proline isomerization, a well-recognized modulator of many biological activities. The NT binding epitope within RG-I-4 appears to reside primarily in the side chains of the polysaccharide, some of which are galactans. Our results provide new insight into the role of the NT in Gal-3 function.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Y Zheng
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Jingmin Yan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Jiang Q, Li XR, Wang CK, Cheng J, Tan C, Cui TT, Lu NN, James TD, Han F, Li X. A fluorescent peptidyl substrate for visualizing peptidyl-prolyl cis/trans isomerase activity in live cells. Chem Commun (Camb) 2018; 54:1857-1860. [PMID: 29387835 DOI: 10.1039/c7cc09135d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This communication reports on a fluorescent probe (PPI-P) for imaging active peptidyl-prolyl cis/trans isomerases in live cells. PPI-P is capable of responding to both recombinant and cellular PPIases fluorogenically, and has been shown to specifically image active PPIases in live cells.
Collapse
Affiliation(s)
- Quan Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ettelaie C, Collier MEW, Featherby S, Greenman J, Maraveyas A. Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:12-24. [PMID: 28962834 DOI: 10.1016/j.bbamcr.2017.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/07/2017] [Accepted: 09/24/2017] [Indexed: 01/23/2023]
Abstract
The exposure and release of TF is regulated by post-translational modifications of its cytoplasmic domain. Here, the potential of Pin1 to interact with the cytoplasmic domain of TF, and the outcome on TF function was examined. MDA-MB-231 and transfected-primary endothelial cells were incubated with either Pin1 deactivator Juglone, or its control Plumbagin, as well as transfected with Pin1-specific or control siRNA. TF release into microvesicles following activation, and also phosphorylation and ubiquitination states of cellular-TF were then assessed. Furthermore, the ability of Pin1 to bind wild-type and mutant forms of overexpressed TF-tGFP was investigated by co-immunoprecipitation. Additionally, the ability of recombinant or cellular Pin1 to bind to peptides of the C-terminus of TF, synthesised in different phosphorylation states was examined by binding assays and spectroscopically. Finally, the influence of recombinant Pin1 on the ubiquitination and dephosphorylation of the TF-peptides was examined. Pre-incubation of Pin1 with Juglone but not Plumbagin, reduced TF release as microvesicles and was also achievable following transfection with Pin1-siRNA. This was concurrent with early ubiquitination and dephosphorylation of cellular TF at Ser253. Pin1 co-immunoprecipitated with overexpressed wild-type TF-tGFP but not Ser258→Ala or Pro259→Ala substituted mutants. Pin1 did interact with Ser258-phosphorylated and double-phosphorylated TF-peptides, with the former having higher affinity. Finally, recombinant Pin1 was capable of interfering with the ubiquitination and dephosphorylation of TF-derived peptides. In conclusion, Pin1 is a fast-acting enzyme which may be utilised by cells to protect the phosphorylation state of TF in activated cells prolonging TF activity and release, and therefore ensuring adequate haemostasis.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK.
| | - Mary E W Collier
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester LE3 9QP, UK
| | - Sophie Featherby
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John Greenman
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Anthony Maraveyas
- Division of Cancer, Hull York Medical School University of Hull, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
7
|
Rogals MJ, Greenwood AI, Kwon J, Lu KP, Nicholson LK. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding. FEBS J 2016; 283:4528-4548. [PMID: 27790836 DOI: 10.1111/febs.13943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
The peptidyl prolyl isomerase Pin1 has two domains that are considered to be its binding (WW) and catalytic (PPIase) domains, both of which interact with phosphorylated Ser/Thr-Pro motifs. This shared specificity might influence substrate selection, as many known Pin1 substrates have multiple sequentially close phosphoSer/Thr-Pro motifs, including the protein interleukin-1 receptor-associated kinase-1 (IRAK1). The IRAK1 undefined domain (UD) contains two sets of such neighboring motifs (Ser131/Ser144 and Ser163/Ser173), suggesting possible bivalent interactions with Pin1. Using a series of NMR titrations with 15N-labeled full-length Pin1 (Pin1-FL), PPIase, or WW domain and phosphopeptides representing the Ser131/Ser144 and Ser163/Ser173 regions of IRAK1-UD, bivalent interactions were investigated. Binding studies using singly phosphorylated peptides showed that individual motifs displayed weak affinities (> 100 μm) for Pin1-FL and each isolated domain. Analysis of dually phosphorylated peptides binding to Pin1-FL showed that inclusion of bivalent states was necessary to fit the data. The resulting complex model and fitted parameters were applied to predict the impact of bivalent states at low micromolar concentrations, demonstrating significant affinity enhancement for both dually phosphorylated peptides (3.5 and 24 μm for peptides based on the Ser131/Ser144 and Ser163/Ser173 regions, respectively). The complementary technique biolayer interferometry confirmed the predicted affinity enhancement for a representative set of singly and dually phosphorylated Ser131/Ser144 peptides at low micromolar concentrations, validating model predictions. These studies provide novel insights regarding the complexity of interactions between Pin1 and activated IRAK1, and more broadly suggest that phosphorylation of neighboring Ser/Thr-Pro motifs in proteins might provide competitive advantage at cellular concentrations for engaging with Pin1.
Collapse
Affiliation(s)
- Monique J Rogals
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Alexander I Greenwood
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, IL, USA
| | - Jeahoo Kwon
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linda K Nicholson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Yau WL, Lambertz U, Colineau L, Pescher P, MacDonald A, Zander D, Retzlaff S, Eick J, Reiner NE, Clos J, Späth GF. Phenotypic Characterization of a Leishmania donovani Cyclophilin 40 Null Mutant. J Eukaryot Microbiol 2016; 63:823-833. [PMID: 27216143 DOI: 10.1111/jeu.12329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/03/2023]
Abstract
Protozoan parasites of the genus Leishmania adapt to their arthropod and vertebrate hosts through the development of defined life cycle stages. Stage differentiation is triggered by environmental stress factors and has been linked to parasite chaperone activities. Using a null mutant approach we previously revealed important, nonredundant functions of the cochaperone cyclophilin 40 in L. donovani-infected macrophages. Here, we characterized in more detail the virulence defect of cyp40-/- null mutants. In vitro viability assays, infection tests using macrophages, and mixed infection experiments ruled out a defect of cyp40-/- parasites in resistance to oxidative and hydrolytic stresses encountered inside the host cell phagolysosome. Investigation of the CyP40-dependent proteome by quantitative 2D-DiGE analysis revealed up regulation of various stress proteins in the null mutant, presumably a response to compensate for the lack of CyP40. Applying transmission electron microscopy we showed accumulation of vesicular structures in the flagellar pocket of cyp40-/- parasites that we related to a significant increase in exosome production, a phenomenon previously linked to the parasite stress response. Together these data suggest that cyp40-/- parasites experience important intrinsic homeostatic stress that likely abrogates parasite viability during intracellular infection.
Collapse
Affiliation(s)
- Wai-Lok Yau
- Unité de Parasitologie Moléculaire et Signalisation, Institut Pasteur and Institut National de la Santé et de la Recherche Médicale INSERM U1201, 25 rue du Dr Roux, F-75015, Paris, France
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Ulrike Lambertz
- Division of Infectious Diseases, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Lucie Colineau
- Division of Infectious Diseases, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Pascale Pescher
- Unité de Parasitologie Moléculaire et Signalisation, Institut Pasteur and Institut National de la Santé et de la Recherche Médicale INSERM U1201, 25 rue du Dr Roux, F-75015, Paris, France
| | - Andrea MacDonald
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Dorothea Zander
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Silke Retzlaff
- Electron Microscopy Service, Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Julia Eick
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Neil E Reiner
- Division of Infectious Diseases, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Joachim Clos
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Gerald F Späth
- Unité de Parasitologie Moléculaire et Signalisation, Institut Pasteur and Institut National de la Santé et de la Recherche Médicale INSERM U1201, 25 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
9
|
Ueberham U, Rohn S, Ueberham E, Wodischeck S, Hilbrich I, Holzer M, Brückner MK, Gruschka H, Arendt T. Pin1 promotes degradation of Smad proteins and their interaction with phosphorylated tau in Alzheimer's disease. Neuropathol Appl Neurobiol 2015; 40:815-32. [PMID: 24964035 DOI: 10.1111/nan.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Abstract
AIMS Neurodegeneration in Alzheimer's disease (AD) is characterized by pathological protein aggregates and inadequate activation of cell cycle regulating proteins. Recently, Smad proteins were identified to control the expression of AD relevant proteins such as APP, CDK4 and CDK inhibitors, both critical regulators of cell cycle activation. This might indicate a central role for Smads in AD pathology where they show a substantial deficiency and disturbed subcellular distribution in neurones. Still, the mechanisms driving relocation and decrease of neuronal Smad in AD are not well understood. However, Pin1, a peptidyl-prolyl-cis/trans-isomerase, which allows isomerization of tau protein, was recently identified also controlling the fate of Smads. Here we analyse a possible role of Pin1 for Smad disturbances in AD. METHODS Multiple immunofluorescence labelling and confocal laser-scanning microscopy were performed to examine the localization of Smad and Pin1 in human control and AD hippocampi. Ectopic Pin1 expression in neuronal cell cultures combined with Western blot analysis and immunoprecipitation allowed studying Smad level and subcellular distribution. Luciferase reporter assays, electromobility shift, RNAi-technique and qRT-PCR revealed a potential transcriptional impact of Smad on Pin1 promoter. RESULTS We report on a colocalization of phosphorylated Smad in AD with Pin1. Pin1 does not only affect Smad phosphorylation and stability but also regulates subcellular localization of Smad2 and supports its binding to phosphorylated tau protein. Smads, in turn, exert a negative feed-back regulation on Pin1. CONCLUSION Our data suggest both Smad proteins and Pin1 to be elements of a vicious circle with potential pathogenetic significance in AD.
Collapse
Affiliation(s)
- Uwe Ueberham
- Department for Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, Paul Flechsig Institute of Brain Research, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
11
|
Lin YC, Lu LT, Chen HY, Duan X, Lin X, Feng XH, Tang MJ, Chen RH. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res 2014; 74:6935-46. [PMID: 25293974 DOI: 10.1158/0008-5472.can-14-1330] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor-suppressor protein promyelocytic leukemia (PML) is aberrantly degraded in multiple types of human cancers through mechanisms that are incompletely understood. Here, we show that the phosphatase SCP1 and its isoforms SCP2/3 dephosphorylate PML at S518, thereby blocking PML ubiquitination and degradation mediated by the prolyl isomerase Pin1 and the ubiquitin ligase KLHL20. Clinically, SCP1 and SCP3 are downregulated in clear cell renal cell carcinoma (ccRCC) and these events correlated with PMLS518 phosphorylation, PML turnover, and high-grade tumors. Restoring SCP1-mediated PML stabilization not only inhibited malignant features of ccRCC, including proliferation, migration, invasion, tumor growth, and tumor angiogenesis, but also suppressed the mTOR-HIF pathway. Furthermore, blocking PML degradation in ccRCC by SCP1 overexpression or Pin1 inhibition enhanced the tumor-suppressive effects of the mTOR inhibitor temsirolimus. Taken together, our results define a novel pathway of PML degradation in ccRCC that involves SCP downregulation, revealing contributions of this pathway to ccRCC progression and offering a mechanistic rationale for combination therapies that jointly target PML degradation and mTOR inhibition for ccRCC treatment.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Xueyan Duan
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xia Lin
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Xin-Hua Feng
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Abstract
![]()
The Crk adaptor proteins play a central
role as a molecular timer
for the formation of protein complexes including various growth and
differentiation factors. The loss of regulation of Crk results in
many kinds of cancers. A self-regulatory mechanism for Crk was recently
proposed, which involves domain–domain rearrangement. It is
initiated by a cis–trans isomerization of a specific proline
residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin
A. To understand how the proline switch controls the autoinhibition
at the molecular level, we performed large-scale molecular dynamics
and metadynamics simulations in the context of short peptides and
multidomain constructs of chicken Crk II. We found that the equilibrium
and kinetic properties of the macrostates are regulated not only by
the local environments of specified prolines but also by the global
organization of multiple domains. We observe the two macrostates (cis
closed/autoinhibited and trans open/uninhibited) consistent with NMR
experiments and predict barriers. We also propose an intermediate
state, the trans closed state, which interestingly was reported to
be a prevalent state in human Crk II. The existence of this macrostate
suggests that the rate of switching off the autoinhibition by Cyp
A may be limited by the relaxation rate of this intermediate state.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
13
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
14
|
Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Molecules 2014; 19:1481-511. [PMID: 24473209 PMCID: PMC4350670 DOI: 10.3390/molecules19021481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.
Collapse
|
15
|
The cellular peptidyl-prolyl cis/trans isomerase Pin1 regulates reactivation of Kaposi's sarcoma-associated herpesvirus from latency. J Virol 2013; 88:547-58. [PMID: 24173213 DOI: 10.1128/jvi.02877-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma and primary effusion lymphoma. KSHV-infected cells are predominantly latent, with a subset undergoing lytic reactivation. Rta is the essential lytic switch protein that reactivates virus by forming transactivation-competent complexes with the Notch effector protein RBP-Jk and promoter DNA. Strikingly, Rta homolog analysis reveals that prolines constitute 17% of conserved residues. Rta is also highly phosphorylated in vivo. We previously demonstrated that proline content determines Rta homotetramerization and function. We hypothesize that proline-directed modifications regulate Rta function by controlling binding to peptidyl-prolyl cis/trans isomerases (PPIases). Cellular PPIase Pin1 binds specifically to phosphoserine- or phosphothreonine-proline (pS/T-P) motifs in target proteins. Pin1 dysregulation is implicated in myriad human cancers and can be subverted by viruses. Our data show that KSHV Rta protein contains potential pS/T-P motifs and binds directly to Pin1. Rta transactivation is enhanced by Pin1 at two delayed early viral promoters in uninfected cells. Pin1's effect, however, suggests a rheostat-like influence on Rta function. We show that in infected cells, endogenous Pin1 is active during reactivation and enhances Rta-dependent early protein expression induced by multiple signals, as well as DNA replication. Surprisingly, ablation of Pin1 activity by the chemical juglone or dominant-negative Pin1 enhanced late gene expression and production of infectious virus, while ectopic Pin1 showed inhibitory effects. Our data thus suggest that Pin1 is a unique, dose-dependent molecular timer that enhances Rta protein function, but inhibits late gene synthesis and virion production, during KSHV lytic reactivation.
Collapse
|
16
|
Galbraith MD, Saxton J, Li L, Shelton SJ, Zhang H, Espinosa JM, Shaw PE. ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1. Nucleic Acids Res 2013; 41:10241-53. [PMID: 24049075 PMCID: PMC3905876 DOI: 10.1093/nar/gkt837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ETS domain transcription factor Elk-1 stimulates expression of immediate early genes (IEGs) in response to mitogens. These events require phosphorylation of Elk-1 by extracellular signal-regulated kinase (ERK) and phosphorylation-dependent interaction of Elk-1 with co-activators, including histone acetyltransferases and the Mediator complex. Elk-1 also recruits ERK to the promoters of its target genes, suggesting that ERK phosphorylates additional substrates in transcription complexes at mitogen-responsive promoters. Here we report that MED14, a core subunit of the Mediator, is a bona fide ERK substrate and identify serine 986 (S986) within a serine-proline rich region of MED14 as the major ERK phosphorylation site. Mitogens induced phosphorylation of MED14 on S986 at IEG promoters; RNAi knockdown of MED14 reduced CDK8 and RNA polymerase II (RNAPII) recruitment, RNAPII C-terminal domain phosphorylation and impaired activation of IEG transcription. A single alanine substitution at S986 reduced activation of an E26 (ETS)-responsive reporter by oncogenic Ras and mitogen-induced, Elk-1-dependent transcription, whereas activities of other transcriptional activators were unaffected. We also demonstrate that Elk-1 can associate with MED14 independently of MED23, which may facilitate phosphorylation of MED14 by ERK to impart a positive and selective impact on mitogen-responsive gene expression.
Collapse
Affiliation(s)
- Matthew D Galbraith
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK, Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA, Department of Neurology, Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 90089, USA and Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Ghosh A, Saminathan H, Kanthasamy A, Anantharam V, Jin H, Sondarva G, Harischandra DS, Qian Z, Rana A, Kanthasamy AG. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease. J Biol Chem 2013; 288:21955-71. [PMID: 23754278 DOI: 10.1074/jbc.m112.444224] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Liu J, Fan S, Lee CJ, Greenleaf AL, Zhou P. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat. J Biol Chem 2013; 288:10890-901. [PMID: 23436654 DOI: 10.1074/jbc.m113.460238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transcription elongation regulator TCERG1 physically couples transcription elongation and splicing events by interacting with splicing factors through its N-terminal WW domains and the hyperphosphorylated C-terminal domain (CTD) of RNA polymerase II through its C-terminal FF domains. Here, we report biochemical and structural characterization of the C-terminal three FF domains (FF4-6) of TCERG1, revealing a rigid integral domain structure of the tandem FF repeat that interacts with the hyperphosphorylated CTD (PCTD). Although FF4 and FF5 adopt a classical FF domain fold containing three orthogonally packed α helices and a 310 helix, FF6 contains an additional insertion helix between α1 and α2. The formation of the integral tandem FF4-6 repeat is achieved by merging the last helix of the preceding FF domain and the first helix of the following FF domain and by direct interactions between neighboring FF domains. Using peptide column binding assays and NMR titrations, we show that binding of the FF4-6 tandem repeat to the PCTD requires simultaneous phosphorylation at Ser(2), Ser(5), and Ser(7) positions within two consecutive Y(1)S(2)P(3)T(4)S(5)P(6)S(7) heptad repeats. Such a sequence-specific PCTD recognition is achieved through CTD-docking sites on FF4 and FF5 of TCERG1 but not FF6. Our study presents the first example of a nuclear factor requiring all three phospho-Ser marks within the heptad repeat of the CTD for high affinity binding and provides a molecular interpretation for the biochemical connection between the Ser(7) phosphorylation enrichment in the CTD of the transcribing RNA polymerase II over introns and co-transcriptional splicing events.
Collapse
Affiliation(s)
- Jiangxin Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Podio M, Rodríguez MP, Felitti S, Stein J, Martínez EJ, Siena LA, Quarin CL, Pessino SC, Ortiz JPA. Sequence characterization, in silico mapping and cytosine methylation analysis of markers linked to apospory in Paspalum notatum. Genet Mol Biol 2012; 35:827-37. [PMID: 23271945 PMCID: PMC3526092 DOI: 10.1590/s1415-47572012005000070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/01/2012] [Indexed: 12/20/2022] Open
Abstract
In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2–4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Santa Fe, Argentina. ; Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Krishnan N, Lam TT, Fritz A, Rempinski D, O'Loughlin K, Minderman H, Berezney R, Marzluff WF, Thapar R. The prolyl isomerase Pin1 targets stem-loop binding protein (SLBP) to dissociate the SLBP-histone mRNA complex linking histone mRNA decay with SLBP ubiquitination. Mol Cell Biol 2012; 32:4306-22. [PMID: 22907757 PMCID: PMC3486140 DOI: 10.1128/mcb.00382-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/13/2012] [Indexed: 01/04/2023] Open
Abstract
Histone mRNAs are rapidly degraded at the end of S phase, and a 26-nucleotide stem-loop in the 3' untranslated region is a key determinant of histone mRNA stability. This sequence is the binding site for stem-loop binding protein (SLBP), which helps to recruit components of the RNA degradation machinery to the histone mRNA 3' end. SLBP is the only protein whose expression is cell cycle regulated during S phase and whose degradation is temporally correlated with histone mRNA degradation. Here we report that chemical inhibition of the prolyl isomerase Pin1 or downregulation of Pin1 by small interfering RNA (siRNA) increases the mRNA stability of all five core histone mRNAs and the stability of SLBP. Pin1 regulates SLBP polyubiquitination via the Ser20/Ser23 phosphodegron in the N terminus. siRNA knockdown of Pin1 results in accumulation of SLBP in the nucleus. We show that Pin1 can act along with protein phosphatase 2A (PP2A) in vitro to dephosphorylate a phosphothreonine in a conserved TPNK sequence in the SLBP RNA binding domain, thereby dissociating SLBP from the histone mRNA hairpin. Our data suggest that Pin1 and PP2A act to coordinate the degradation of SLBP by the ubiquitin proteasome system and the exosome-mediated degradation of the histone mRNA by regulating complex dissociation.
Collapse
Affiliation(s)
| | - TuKiet T. Lam
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut, USA
| | - Andrew Fritz
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York, USA
| | | | - Kieran O'Loughlin
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Hans Minderman
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ronald Berezney
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York, USA
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roopa Thapar
- Hauptman Woodward Medical Research Institute
- Department of Structural Biology, SUNY at Buffalo, Buffalo, New York, USA
| |
Collapse
|
22
|
Jasnovidova O, Stefl R. The CTD code of RNA polymerase II: a structural view. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:1-16. [DOI: 10.1002/wrna.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Dual function of Pin1 in NR4A nuclear receptor activation: enhanced activity of NR4As and increased Nur77 protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1894-904. [PMID: 22789442 DOI: 10.1016/j.bbamcr.2012.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 02/03/2023]
Abstract
Nur77, Nurr1 and NOR-1 form the NR4A subfamily of the nuclear receptor superfamily and have been shown to regulate various biological processes among which are cell survival and differentiation, apoptosis, inflammation and metabolism. These nuclear receptors have been proposed to act in a ligand-independent manner and we aim to gain insight in the regulation of NR4A activity. A yeast two-hybrid screen identified the peptidyl-prolyl isomerase Pin1 as a novel binding partner of NR4As, which was confirmed by co-immunoprecipitation. Pin1 enhances the transcriptional activity of all three NR4A nuclear receptors and increases protein stability of Nur77 through inhibition of its ubiquitination. Enhanced transcriptional activity of NR4As requires the WW-domain of Pin1 that interacts with the N-terminal transactivation domain and the DNA-binding domain of Nur77. Most remarkably, this enhanced activity is independent of Pin1 isomerase activity. A systematic mutation analysis of all 17 Ser/Thr-Pro-motifs in Nur77 revealed that Pin1 enhances protein stability of Nur77 in an isomerase-dependent manner by acting on phosphorylated Nur77 involving protein kinase CK2-mediated phosphorylation of the Ser(152)-Pro(153) motif in Nur77. Given the role of Nur77 in vascular disease and metabolism, this novel regulation mechanism provides perspectives to manipulate Nur77 activity to attenuate these processes.
Collapse
|
24
|
Abstract
The Wnt/β-catenin pathway promotes proliferation of neural progenitor cells (NPCs) at early stages and induces neuronal differentiation from NPCs at late stages, but the molecular mechanisms that control this stage-specific response are unclear. Pin1 is a prolyl isomerase that regulates cell signaling uniquely by controlling protein conformation after phosphorylation, but its role in neuronal differentiation is not known. Here we found that whereas Pin1 depletion suppresses neuronal differentiation, Pin1 overexpression enhances it, without any effects on gliogenesis from NPCs in vitro. Consequently, Pin1-null mice have significantly fewer upper layer neurons in the motor cortex and severely impaired motor activity during the neonatal stage. A proteomic approach identified β-catenin as a major substrate for Pin1 in NPCs, in which Pin1 stabilizes β-catenin. As a result, Pin1 knockout leads to reduced β-catenin during differentiation but not proliferation of NPCs in developing brains. Importantly, defective neuronal differentiation in Pin1 knockout NPCs is fully rescued in vitro by overexpression of β-catenin but not a β-catenin mutant that fails to act as a Pin1 substrate. These results show that Pin1 is a novel regulator of NPC differentiation by acting on β-catenin and provides a new postphosphorylation signaling mechanism to regulate developmental stage-specific functioning of β-catenin signaling in neuronal differentiation.
Collapse
|
25
|
Takai T. TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int 2012; 61:3-17. [PMID: 22270071 DOI: 10.2332/allergolint.11-rai-0395] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine initially identified in the culture supernatant of a thymic stromal cell line. Highly expressed in the epidermis in skin lesions of atopic dermatitis patients, TSLP was subsequently found to be a critical factor linking responses at interfaces between the body and environment (skin, airway, gut, ocular tissues, and so on) to Th2 responses. Recent studies have revealed that various cell types other than epithelial cells and epidermal keratinocytes (such as mast cells, airway smooth muscle cells, fibroblasts, dendritic cells, trophoblasts, and cancer or cancer-associated cells) also express TSLP. Environmental factors such as Toll-like receptor ligands, a Nod2 ligand, viruses, microbes, allergen sources, helminths, diesel exhaust, cigarette smoke, and chemicals trigger TSLP production. Proinflammatory cytokines, Th2-related cytokines, and IgE also induce or enhance TSLP production, indicating cycles of amplification. Skin barrier injury, increased epidermal endogenous protease activity, and less epidermal Notch signaling, all of which have been reported in atopic dermatitis, and keratinocyte-specific loss of retinoid X receptors and treatment of skin with agonists for vitamin D receptor in mice induce TSLP production, Th2 response, or atopic dermatitis-like inflammation. The transcription factors NF-κB and AP-1, nuclear receptors, single nucleotide polymorphisms, microRNAs, and the peptidyl-proryl isomerase Pin1 regulate TSLP mRNA expression transcriptionally or posttranscriptionally. This review focuses on events upstream of TSLP production, which is critical in allergic diseases and important in other TSLP-related disorders i.e. production sites, cellular sources, environmental and endogenous triggers and regulatory factors, and regulatory mechanisms of gene expression.
Collapse
Affiliation(s)
- Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan. t−
| |
Collapse
|
26
|
Tsai WH, Wang PW, Lin SY, Wu IL, Ko YC, Chen YL, Li M, Lin SF. Ser-634 and Ser-636 of Kaposi's Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites. Front Microbiol 2012; 3:60. [PMID: 22371709 PMCID: PMC3283893 DOI: 10.3389/fmicb.2012.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/05/2012] [Indexed: 11/13/2022] Open
Abstract
The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes Zhunan Town, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Foulger LE, Sin CGT, Zhuang QQ, Smallman H, Nicholson JM, Lambert SJ, Reynolds CD, Dickman MJ, Wood CM, Baldwin JP, Evans K. Efficient purification of chromatin architectural proteins: histones, HMGB proteins and FKBP3 (FKBP25) immunophilin. RSC Adv 2012. [DOI: 10.1039/c2ra21758a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Dilworth D, Gudavicius G, Leung A, Nelson CJ. The roles of peptidyl-proline isomerases in gene regulation. Biochem Cell Biol 2011; 90:55-69. [PMID: 21999350 DOI: 10.1139/o11-045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of proteins and enzymes provides a dynamic and reversible means to control protein function and transmit biological signals. While covalent modifications such as phosphorylation and acetylation have drawn much attention, in the past decade the involvement of peptidyl-proline isomerases (PPIs) in signaling and post-translational modification of protein function has become increasingly apparent. Three distinct families of PPI enzymes (parvulins, cyclophilins, and FK506-binding proteins (FKBPs)) each have the capacity to catalyze cis-trans proline isomerization in substrate proteins, and this modification can regulate both structure and function. In eukaryotic cells, a subset of these enzymes is localized to the nucleus, where they regulate gene expression at multiple control points. Here we summarize this body of work that together establishes a clear role of these enzymes as evolutionarily conserved players in the control of both transcription of mRNAs and the assembly of chromatin.
Collapse
Affiliation(s)
- David Dilworth
- The Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | | | | | | |
Collapse
|
29
|
Velazquez HA, Hamelberg D. Conformational Selection in the Recognition of Phosphorylated Substrates by the Catalytic Domain of Human Pin1. Biochemistry 2011; 50:9605-15. [DOI: 10.1021/bi2009954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hector A. Velazquez
- Department of Chemistry and Center
for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Donald Hamelberg
- Department of Chemistry and Center
for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
30
|
Gancarz BL, Hao L, He Q, Newton MA, Ahlquist P. Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One 2011; 6:e23988. [PMID: 21915247 PMCID: PMC3161824 DOI: 10.1371/journal.pone.0023988] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2aPol levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2aPol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.
Collapse
Affiliation(s)
- Brandi L. Gancarz
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Linhui Hao
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Qiuling He
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
31
|
Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P. cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 2010; 286:5717-26. [PMID: 21159777 DOI: 10.1074/jbc.m110.197129] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase II coordinates co-transcriptional events by recruiting distinct sets of nuclear factors to specific stages of transcription via changes of phosphorylation patterns along its C-terminal domain (CTD). Although it has become increasingly clear that proline isomerization also helps regulate CTD-associated processes, the molecular basis of its role is unknown. Here, we report the structure of the Ser(P)(5) CTD phosphatase Ssu72 in complex with substrate, revealing a remarkable CTD conformation with the Ser(P)(5)-Pro(6) motif in the cis configuration. We show that the cis-Ser(P)(5)-Pro(6) isomer is the minor population in solution and that Ess1-catalyzed cis-trans-proline isomerization facilitates rapid dephosphorylation by Ssu72, providing an explanation for recently discovered in vivo connections between these enzymes and a revised model for CTD-mediated small nuclear RNA termination. This work presents the first structural evidence of a cis-proline-specific enzyme and an unexpected mechanism of isomer-based regulation of phosphorylation, with broad implications for CTD biology.
Collapse
Affiliation(s)
- Jon W Werner-Allen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Saegusa M, Hashimura M, Kuwata T. Pin1 acts as a modulator of cell proliferation through alteration in NF-κB but not β-catenin/TCF4 signalling in a subset of endometrial carcinoma cells. J Pathol 2010; 222:410-20. [PMID: 20922712 DOI: 10.1002/path.2773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prolyl isomerase Pin1 is frequently up-regulated in a variety of human malignancies, modulating signalling in several oncogenic pathways, including those involving NF-κB and β-catenin. Our previous study provided evidence that alterations in these signal pathways are essential events during trans-differentiation of endometrial carcinoma (Em Ca) cells. Here we focused on the functional roles of Pin1. In normal endometrium, Pin1 expression showed a stepwise decrease from proliferative to secretory phases during the menstrual cycle, correlating positively with cell proliferation and expression of several cell cycle-related molecules including E2F1 and pRb. Transfection of E2F1 caused transactivation of Pin1, indicating control by E2F1/Rb pathways. In Em Cas with morules, Pin1 expression was found to be significantly increased in glandular but not in morular components, correlating inversely with nuclear accumulation of β-catenin. Overexpression also caused an increase in the stability of nuclear p65, leading to enhancement of NF-κB-mediated transactivation of the cyclin D1 gene, in contrast to minimal inhibition of β-catenin/TCF4 transcription activity. These findings indicate that Pin1 may play an important role in preserving cell proliferative activity in glandular carcinoma components through enhancement of NF-κB signalling, but its down-regulation may be a key signal for induction of trans-differentiation of Em Ca cells, contributing to a shift from NF-κB to β-catenin/TCF signalling pathways.
Collapse
Affiliation(s)
- Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
33
|
Pallet N, Legendre C. Deciphering calcineurin inhibitor nephrotoxicity: a pharmacological approach. Pharmacogenomics 2010; 11:1491-501. [DOI: 10.2217/pgs.10.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The calcineurin inhibitors ciclosporin and tacrolimus are used to prevent acute rejection of solid organs after transplantation. Their use can lead to chronic renal damage characterized by progressive and irreversible deterioration of renal function associated with interstitial fibrosis, tubular atrophy, arteriolar hyalinosis and glomerulosclerosis. Many approaches to better understand the mechanisms of this toxicity are in use. The aim of these approaches is to find biomarkers of early kidney injury and potential therapeutic targets. Despite these efforts, the biological processes leading to calcineurin inhibitor nephrotoxicity remain poorly understood. Furthermore, the diagnosis of chronic renal damage remains inaccurate without definitive diagnostic tools, no effective prevention exists and a therapy to treat the damage has yet to be developed. In this article, theories of pharmacodynamics, pharmacokinetics, therapeutic drug monitoring and pharmacogenetics are synthesized in ways that may improve the understanding of mechanisms leading to calcineurin inhibitor toxicity. The importance of global approaches such as toxicogenomics is emphasized to characterize early cellular responses implicated in calcineurin inhibitor nephrotoxicity.
Collapse
Affiliation(s)
| | - Christophe Legendre
- Necker Hospital & Paris Descartes University, 149, rue de Sèvres, 75015, Paris, France
| |
Collapse
|
34
|
Sekhar K, Priyanka B, Reddy VD, Rao KV. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. PLANT, CELL & ENVIRONMENT 2010; 33:1324-38. [PMID: 20374537 DOI: 10.1111/j.1365-3040.2010.02151.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A full-length cDNA clone of pigeonpea (Cajanus cajan L.) encoding cyclophilin (CcCYP) has been isolated from the cDNA library of plants subjected to drought stress. Amino acid sequence of CcCYP disclosed similarity with that of single-domain cytosolic cyclophilins of various organisms. Expression profile of CcCYP in pigeonpea plants is strongly induced by different abiotic stresses, indicating its stress-responsive nature. Compared to the control plants, the transgenic Arabidopsis lines expressing CcCYP exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity and extreme temperatures as evidenced by increased plant survival, biomass, chlorophyll content and profuse root growth. The CcCYP transgenics, compared to the controls, revealed enhanced peptidyl-propyl cis-trans isomerase (PPIase) activity under stressed conditions, owing to transcriptional activation of stress-related genes besides intrinsic chaperonic activity of the cyclophilin. The transgenic plants subjected to salt stress exhibited higher Na(+) ion accumulation in roots as compared to shoots, while a reverse trend was observed in the salt-stressed control plants, implicating the involvement of CcCYP in the maintenance of ion homeostasis. Expression pattern of CcCYP:GFP fusion protein confirmed the localization of CcCYP predominantly in the nucleus as revealed by intense green fluorescence. The overall results amply demonstrate the implicit role of CcCYP in conferring multiple abiotic stress tolerance at whole-plant level.
Collapse
Affiliation(s)
- Kambakam Sekhar
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, AP, India
| | | | | | | |
Collapse
|
35
|
Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci U S A 2010; 107:13312-7. [PMID: 20622153 DOI: 10.1073/pnas.1005847107] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body, thus holding great promise as a renewable source of cells for human therapy. The mechanisms that maintain self-renewal of ESCs remain unclear. Here we show that Nanog, a transcription factor crucial for the self-renewal of ESCs, is phosphorylated at multiple Ser/Thr-Pro motifs. This phosphorylation promotes the interaction between Nanog and the prolyl isomerase Pin1, leading to Nanog stabilization by suppressing its ubiquitination. Inhibition of Pin1 activity or disruption of Pin1-Nanog interaction in ESCs suppresses their capability to self-renew and to form teratomas in immunodeficient mice. Therefore, in addition to the stringent transcriptional regulation of Nanog, the expression level of Nanog is also modulated by posttranslational mechanisms.
Collapse
|
36
|
Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability. PLoS Negl Trop Dis 2010; 4:e729. [PMID: 20614016 PMCID: PMC2894131 DOI: 10.1371/journal.pntd.0000729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/10/2010] [Indexed: 11/19/2022] Open
Abstract
Background Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development. Methodology/Principal Findings Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function. Conclusions/Significance The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets. Visceral leishmanisasis, also known as Kala Azar, is caused by the protozoan parasite Leishmania donovani. The L. donovani infectious cycle comprises two developmental stages, a motile promastigote stage that proliferates inside the digestive tract of the phlebotomine insect host, and a non-motile amastigote stage that differentiates inside the macrophages of mammalian hosts. Intracellular parasite survival in mouse and macrophage infection assays has been shown to be strongly compromised in the presence of the inhibitor cyclosporin A (CsA), which binds to members of the cyclophilin (CyP) protein family. It has been suggested that the toxic effects of CsA on amastigotes occurs indirectly via host cyclophilins, which may be required for intracellular parasite development and growth. Using a host-free L. donovani culture system we revealed for the first time a direct and stage-specific effect of CsA on promastigote growth and amastigote viability. We provided evidence that parasite killing occurs through a heat sensitivity mechanism likely due to direct inhibition of the co-chaperone cyclophilin 40. Our data allow important new insights into the function of the Leishmania CyP protein family in differentiation, growth, and intracellular survival, and define this class of molecules as important drug targets.
Collapse
|
37
|
Luo Z, Wijeweera A, Oh Y, Liou YC, Melamed P. Pin1 facilitates the phosphorylation-dependent ubiquitination of SF-1 to regulate gonadotropin beta-subunit gene transcription. Mol Cell Biol 2010; 30:745-63. [PMID: 19995909 PMCID: PMC2812243 DOI: 10.1128/mcb.00807-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/10/2009] [Accepted: 11/23/2009] [Indexed: 11/20/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 knockout mice have marked abnormalities in their reproductive development and function. However, the molecular mechanisms underlying their reproductive defects are poorly understood. Herein, we demonstrate that Pin1 is required for both basal and GnRH-induced gonadotropin beta-subunit gene transcription, through interactions with the transcription factors SF-1, Pitx1, and Egr-1. Pin1 activates transcription of the gonadotropin beta-subunit genes synergistically with these transcription factors, either by modulating their stability or by increasing their protein-protein interactions. Notably, we provide evidence that Pin1 is required for the Ser203 phosphorylation-dependent ubiquitination of SF-1, which facilitates SF-1-Pitx1 interactions and therefore results in an enhancement of SF-1 transcriptional activity. Furthermore, we demonstrate that in gonadotrope cells, sufficient levels of activated Pin1 are maintained through transcriptional and posttranslational regulation by GnRH-induced signaling cascades. Our results suggest that Pin1 functions as a novel player in GnRH-induced signal pathways and is involved in gonadotropin beta-subunit gene transcription by modulating the activity of various specific transcription factors.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrea Wijeweera
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yingzi Oh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yih-Cherng Liou
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
38
|
Abstract
Most transcription factors including nuclear receptors (NRs) act as sensors of the extracellular and intracellular compartments. As such, NRs serve as integrating platforms for a variety of stimuli and are targets for Post-translational modifications such as phosphorylations. During the last decade, knowledge of NRs phosphorylation advanced considerably because of the emergence of new technologies. Indeed, the development of a wide range of phosphorylation site databases, high accuracy mass spectrometry, and phospho-specific antibodies allowed the identification of multiple novel phosphorylation sites in NRs. New and improved methods also emerge to connect these data with the downstream consequences of phosphorylation on NRs structure (computational prediction, NMR), intracellular localization (FRAP), interaction with coregulators (proteomics, FRET, FLIM), and affinity for DNA (ChIP, ChIP-seq, FRAP). In the future, such integrated strategies should provide data with a treasure-trove of information about the integration of numerous signaling events by NRs.
Collapse
|
39
|
Gell DA, Feng L, Zhou S, Jeffrey PD, Bendak K, Gow A, Weiss MJ, Shi Y, Mackay JP. A cis-proline in alpha-hemoglobin stabilizing protein directs the structural reorganization of alpha-hemoglobin. J Biol Chem 2009; 284:29462-9. [PMID: 19706593 PMCID: PMC2785579 DOI: 10.1074/jbc.m109.027045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/16/2009] [Indexed: 11/06/2022] Open
Abstract
alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.
Collapse
Affiliation(s)
- David A Gell
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou W, Yang Q, Low CB, Karthik BC, Wang Y, Ryo A, Yao SQ, Yang D, Liou YC. Pin1 catalyzes conformational changes of Thr-187 in p27Kip1 and mediates its stability through a polyubiquitination process. J Biol Chem 2009; 284:23980-8. [PMID: 19584057 DOI: 10.1074/jbc.m109.022814] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cis-trans peptidylprolyl isomerase Pin1 plays a critical role in regulating a subset of phosphoproteins by catalyzing conformational changes on the phosphorylated Ser/Thr-Pro motifs. The phosphorylation-directed ubiquitination is one of the major mechanisms to regulate the abundance of p27(Kip1). In this study, we demonstrate that Pin1 catalyzes the cis-trans conformational changes of p27(Kip1) and further mediates its stability through the polyubiquitination mechanism. Our results show that the phosphorylated Thr-187-Pro motif in p27(Kip1) is a key Pin1-binding site. In addition, NMR analyses show that this phosphorylated Thr-187-Pro site undergoes conformational change catalyzed by Pin1. Moreover, in Pin1 knock-out mouse embryonic fibroblasts, p27(Kip1) has a shorter lifetime and displays a higher degree of polyubiquitination than in Pin1 wild-type mouse embryonic fibroblasts, suggesting that Pin1 plays a critical role in regulating p27(Kip1) degradation. Additionally, Pin1 dramatically reduces the interaction between p27(Kip1) and Cks1, possibly via isomerizing the cis-trans conformation of p27(Kip1). Our study thus reveals a novel regulatory mechanism for p27(Kip1) stability and sheds new light on the biological function of Pin1 as a general regulator of protein stability.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu J, Khor KA, Sui J, Zhang J, Tan TL, Chen WN. Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: an iTRAQ-coupled 2-D LC-MS/MS analysis. Proteomics 2009; 8:4249-58. [PMID: 18924181 DOI: 10.1002/pmic.200800103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydroxyapatite (HA) and its derived bioceramic materials have been widely used for skeletal implants and/or bone repair scaffolds. It has been reported that carbon nanotube (CNT) is able to enhance the brittle ceramic matrix without detrimental to the bioactivity. However, interaction between osteoblasts and these bioceramics, as well as the underlying mechanism of osteoblast proliferation on these bioceramic surfaces remain to be determined. Using iTRAQ-coupled 2-D LC-MS/MS analysis, we report the first comparative proteomics profiling of human osteoblast cells cultured on plane HA and CNT reinforced HA, respectively. Cytoskeletal proteins, metabolic enzymes, signaling, and cell growth proteins previous associated with cell adhesion and proliferation were found to be differentially expressed on these two surfaces. The level of these proteins was generally higher in cells adhered to HA surface, indicating a higher level of cellular proliferation in these cells. The significance of these findings was further assessed by Western blot analysis. The differential protein profile in HA and CNT strengthened HA established in our study should be valuable for future design of biocompatible ceramics.
Collapse
Affiliation(s)
- Jinling Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
42
|
Gianni' M, Boldetti A, Guarnaccia V, Rambaldi A, Parrella E, Raska I, Rochette-Egly C, Del Sal G, Rustighi A, Terao M, Garattini E. Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα. Cancer Res 2009; 69:1016-26. [DOI: 10.1158/0008-5472.can-08-2603] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Abstract
The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade, we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologs, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, whereas in this review, we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision.
Collapse
Affiliation(s)
- E. Christine Pietsch
- Division of Medical Sciences, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA, 19111
| | - Stephen M. Sykes
- Brigham and Women's Hospital, 1 Blackfan Circle, Boston, MA 02115
| | - Steven B. McMahon
- Kimmel Cancer Center, Thomas Jefferson Medical College, 233 S. 10th St. Philadelphia, Pennsylvania 19107
| | - Maureen E. Murphy
- Division of Medical Sciences, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA, 19111
| |
Collapse
|
44
|
Fila C, Metz C, van der Sluijs P. Juglone inactivates cysteine-rich proteins required for progression through mitosis. J Biol Chem 2008; 283:21714-24. [PMID: 18539601 DOI: 10.1074/jbc.m710264200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The parvulin peptidyl-prolyl isomerase Pin1 catalyzes cis-trans isomerization of p(S/T)-P bonds and might alter conformation and function of client proteins. Since the trans conformation of p(S/T)-P bonds is preferred by protein phosphatase 2A (PP2A), Pin1 may facilitate PP2A-mediated dephosphorylation. Juglone irreversibly inhibits parvulins and is often used to study the function of Pin1 in vivo. The drug prevents dephosphorylation of mitotic phosphoproteins, perhaps because they bind Pin1 and are dephosphorylated by PP2A. We show here however that juglone inhibited post-mitotic dephosphorylation and the exit of mitosis, independent of Pin1. This effect involved covalent modification of sulfhydryl groups in proteins essential for metaphase/anaphase transition. Particularly cytoplasmic proteins with a high cysteine content were vulnerable to the drug. Alkylation of sulfhydryl groups altered the conformation of such proteins, as evidenced by the disappearance of antibody epitopes on tubulin and the mitotic checkpoint component BubR1. The latter activates the anaphase-promoting complex/cyclosome, which degrades regulatory proteins, such as cyclin B1 and securins, and is required for mitotic exit. Indeed, juglone-treated cells failed to assemble a mitotic spindle, which correlated with perturbed microtubule dynamics, loss of immunodetectable tubulin, and formation of tubulin aggregates. Juglone also prevented degradation of cyclin B1, independently of the Mps1-controlled mitotic spindle checkpoint. Since juglone affected cell cycle progression at several levels, more specific drugs need to be developed for studies of Pin1 function in vivo.
Collapse
Affiliation(s)
- Claudia Fila
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | | | | |
Collapse
|
45
|
Isakov N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Trends Immunol 2008; 29:388-96. [PMID: 18599349 DOI: 10.1016/j.it.2008.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/10/2008] [Accepted: 04/23/2008] [Indexed: 01/23/2023]
Abstract
Cell growth and differentiation are highly controlled processes mediated by effector molecules, which are regulated by posttranslational chemical modifications. Adaptor molecules are critical players in these mechanisms because of their ability to simultaneously interact with multiple effector molecules and orchestrate the assembly of signaling complexes downstream of activated surface receptors. One family of adaptor molecules includes the CrkII/CrkL proteins that are also involved in the regulation of lymphocyte function. Although Crk proteins are amenable to regulation by protein tyrosine kinases, recent data suggest that peptidyl-prolyl cis-trans isomerases (PPIases) can alter their conformation and hence their ability to associate with binding partners. This emerging new function of PPIases is the subject of the current review.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
46
|
Cohen M, Wuillemin C, Bischof P. Trophoblastic p53 is stabilised by a cis–trans isomerisation necessary for the formation of high molecular weight complexes involving the N-terminus of p53. Biochimie 2008; 90:855-62. [DOI: 10.1016/j.biochi.2008.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
|
47
|
Mueller JW, Bayer P. Small family with key contacts: par14 and par17 parvulin proteins, relatives of pin1, now emerge in biomedical research. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008; 2:11-20. [PMID: 19787094 PMCID: PMC2746571 DOI: 10.4137/pmc.s496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The parvulin-type peptidyl-prolyl cis/trans isomerase Pin1 is subject of intense biochemical and clinical research as it seems to be involved in the pathogenesis of certain cancers and protein folding illnesses like Alzheimer's and Parkinson's disease. In addition to Pin1, the human genome only contains a single other parvulin locus encoding two protein species-Par14 and Par17. Much less is known about these enzymes although their sequences are highly conserved in all metazoans. Parvulin has been proposed to function as Pin1 complementing enzyme in cell cycle regulation and in chromatin remodelling. Pharmaceutical modulation of Par14 might therefore have benefits for certain types of cancer. Moreover, the Par17 protein that has been shown to be confined to anthropoid primate species only might provide a deeper understanding for human-specific brain development. This review aims at stimulating further research on Par14 and Par17 that are overlooked drug targets in the shadow of an overwhelming plethora of Pin1 literature by summarising all current knowledge on these parvulin proteins.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Institute for Structural and Medicinal Biochemistry, Centre for Medical Biotechnology—ZMB, University of Duisburg-Essen, 45117 Essen, Germany
- Molecular Structure, National Institute for Medical Research (MRC), The Ridgeway, NW7 1AA, London, U.K
| | - Peter Bayer
- Institute for Structural and Medicinal Biochemistry, Centre for Medical Biotechnology—ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
48
|
Pani E, Menigatti M, Schubert S, Hess D, Gerrits B, Klempnauer KH, Ferrari S. Pin1 interacts with c-Myb in a phosphorylation-dependent manner and regulates its transactivation activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1121-8. [PMID: 18359295 DOI: 10.1016/j.bbamcr.2008.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/04/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Activity and stability of the proto-oncogene c-Myb are regulated by post-translational modifications, though the molecular mechanisms underlying such control are only partially understood. Here we describe the functional interaction of c-Myb with Pin1, an isomerase that binds to phosphorylated Ser/Thr-Pro motifs. We found that co-expression of c-Myb and Pin1 led to a net increase of c-Myb transactivation activity, both on reporter constructs as well as on an endogenous target gene. DNA-binding studies revealed that Pin1 did not increase the association of c-Myb with its response element in DNA. The increase of c-Myb transactivation activity was strictly dependent on the presence of an active catalytic center in Pin1. We provide evidence that c-Myb and Pin1 physically interacted, both upon ectopic expression of the proteins in HEK-293 cells as well as in the more physiological setting of HL60 cells, where c-Myb and Pin1 are resident proteins. By point mutating each individual Ser/Thr-Pro motif in c-Myb as well as by using deletion mutants we show that S528 in the EVES-motif was the docking site for Pin1. Mass spectrometry confirmed that S528 is phosphorylated in vivo. Finally, functional studies showed that mutation of S528 to alanine almost abolished the increase of transactivation activity by Pin1. This study reveals a new paradigm by which phosphorylation controls c-Myb function.
Collapse
Affiliation(s)
- E Pani
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics 2008; 279:371-83. [PMID: 18219493 DOI: 10.1007/s00438-008-0318-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/31/2007] [Indexed: 11/26/2022]
Abstract
We report an in-depth characterization of two major stress proteins namely SUMO-conjugating enzyme (Sce) and peptidyl prolyl cis-trans isomerase (PPIase) in rice (Oryza sativa L.). Sce mediates addition of SUMO group to various cell proteins, through process referred to as SUMOylation. Rice nuclear genome has two putative genes encoding the Sce protein (OsSce1 and OsSce2). PCR-amplified full-length OsSce1 cDNA functionally complemented the growth defect in yeast cells lacking the equivalent Ubc9 protein (ScDeltaubc9). RT-PCR analysis showed that transcript levels of OsSce1 and OsSce2 in rice seedlings were regulated by temperature stress. OsSce1 protein was localized to the nucleus in onion epidermal cells as evidenced by the transient GFP expression analysis following micro-projectile gun-based shooting of an OsSce1-GFP fusion construct. PPIase proteins assist molecular chaperones in reactions associated with protein folding and protein transport across membrane. There are 23 putative genes encoding for FK506-binding proteins (FKBPs; specific class of PPIase) in rice genome. OsFKBP20 cDNA was isolated as a stress-inducible EST clone. Largest ORF of 561 bases in OsFKBP20 showed characteristic FK506-binding domain at N-terminus and a coiled-coil motif at C-terminus. RNA expression analysis indicated that OsFKBP20 transcript is heat-inducible. OsFKBP20 over-expression in yeast endowed capacity of high temperature tolerance to yeast cells. Yeast two-hybrid analysis showed that OsSce1 protein physically interacts with the OsFKBP20 protein. It is thus proposed that OsSce1 and OsFKBP20 proteins in concert mediate the stress response of rice plants.
Collapse
|
50
|
Ikura T, Ito N. Requirements for peptidyl-prolyl isomerization activity: a comprehensive mutational analysis of the substrate-binding cavity of FK506-binding protein 12. Protein Sci 2007; 16:2618-25. [PMID: 18029417 PMCID: PMC2222811 DOI: 10.1110/ps.073203707] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Peptidyl-prolyl isomerase (PPIase) activity is exhibited by many proteins belonging to the PPIase family. However, the catalytic mechanism of this activity remains to be completely elucidated. Here, we selected human FK506-binding protein 12 (FKBP12) as the model PPIase and investigated the nature of amino acid residues essential for the activity. The crystal structures of several complexes of PPIase with short peptides revealed that the residues Asp37, Arg42, Phe46, Val55, Trp59, and Tyr82 in the substrate-binding cavity of FKBP12 appear to play key roles in the PPIase activity. Each of these six residues was substituted by 20 common amino acid residues. The activity of each mutant protein was measured using a peptide analog by the chymotrypsin digestion assay and then compared with wild-type FKBP12. It was found that site-specific interactions by the side chains of amino acid residues constituting the substrate-binding cavity were not essential for the PPIase activity, although the 37th, 55th, and 82nd amino acid residues significantly contributed to the activity. This suggests that the PPIase activity requires only the hydrophobic cavity that captures the Pro-containing peptide.
Collapse
Affiliation(s)
- Teikichi Ikura
- Laboratory of Structural Biology, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | | |
Collapse
|