1
|
Li L, Zeng Y, Cheng G, Yang H. Acetylation and deacetylation dynamics in stress response to cancer and infections. Semin Immunol 2025; 78:101957. [PMID: 40288003 DOI: 10.1016/j.smim.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In response to stress stimuli, cells have evolved various mechanisms to integrate internal and external signals to achieve dynamic homeostasis. Lysine acetyltransferase (KATs) and deacetyltransferase (KDACs) are the key modulators of epigenetic modifications, enabling cells to modulate cellular responses through the acetylation and deacetylation of both histone and nonhistone proteins. Understanding the signaling pathways involved in cellular stress response, along with the roles of KATs and KDACs may pave the way for the development of novel therapeutic strategies. This review discusses the molecular mechanisms of acetylation and deacetylation in stress responses related to tumorigenesis, viral and bacterial infections. In tumorigenesis section, we focused on the tumor cells' intrinsic and external molecules and signaling pathways regulated by acetylation and deacetylation modification. In viral and bacterial infections, we summarized the update research on acetylation and deacetylation modification in viral and bacterial infections, which systematical introduction on this topic is not too much. Additionally, we provide an overview of current therapeutic interventions and clinical trials involving KAT and KDAC inhibitors in the treatment of cancer, as well as viral and bacterial infection-related diseases.
Collapse
Affiliation(s)
- Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yanqiong Zeng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Genhong Cheng
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Lin Z, Liang F, Hong G, Jiang X, Zhang Q, Wang M. TACC3 enhances glycolysis in bladder cancer cells through inducing acetylation of c-Myc. Cell Death Dis 2025; 16:311. [PMID: 40246827 PMCID: PMC12006502 DOI: 10.1038/s41419-025-07645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The proliferation of bladder cancer (BC) cells is driven by metabolic reprogramming, marked by a glycolytic dependency to sustain uncontrolled growth. While Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) is known to promote BC progression and correlate with poor prognosis, the mechanisms underlying its upregulation and role in aerobic glycolysis remain unclear. Here, we identify E2F3 as a direct transcriptional activator of TACC3, with its amplification in BC driving elevated TACC3 expression. TACC3 overexpression enhances glycolysis, increasing glucose consumption, lactate production, and expression of glycolytic enzymes (e.g., GLUT1, HK2, PFKFB3), while its knockdown suppresses these effects. Pharmacological inhibition of glycolysis abrogates TACC3-driven tumor growth in vitro and in vivo. Mechanistically, TACC3 interacts with c-Myc, promoting its acetylation at lysine 323 (K323) by recruiting the acetyltransferase PCAF and antagonizing the deacetylase SIRT1. This acetylation stabilizes c-Myc, amplifying its transcriptional activation of glycolytic targets. Our findings establish TACC3 as a critical regulator of c-Myc-driven metabolic reprogramming in BC, highlighting its potential as a therapeutic target to disrupt glycolysis and oncogenic c-Myc signaling.
Collapse
Affiliation(s)
- Zhirui Lin
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Falian Liang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Gengde Hong
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Xizhen Jiang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Mengyao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China.
| |
Collapse
|
3
|
Chen J, Zhang S, Huang X, Wang Q, Xu W, Huang J, Su Y, Sun Q, Du X, Xing B, Qiu X. Sialylated IgG-activated integrin β4-Src-Erk axis stabilizes c-Myc in a p300 lysine acetyltransferase-dependent manner to promote colorectal cancer liver metastasis. Neoplasia 2025; 61:101140. [PMID: 40010102 PMCID: PMC11908626 DOI: 10.1016/j.neo.2025.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Liver metastasis is a leading cause of colorectal cancer mortality. Therefore, the underlying mechanism and potential therapeutic target of colorectal cancer liver metastasis urge to be found. Mounting evidence indicates that cancer-derived sialylated IgG promotes tumor formation and progression. However, the role of sialylated IgG in colorectal cancer liver metastasis remains undefined. MATERIALS AND METHODS Analysis of sialylated IgG in paired tumor tissues and adjacent normal tissues from 65 colorectal cancer patients was performed using immunohistochemical staining. Functional assays of sialylated IgG were explored in vitro and in vivo. The downstream target of sialylated IgG was investigated by performing gene-set enrichment analysis, ubiquitination assay, cycloheximide chase assay, acetylation assay and co-immunoprecipitation. RESULTS Here, our investigation reveals that sialylated IgG is significantly upregulated in colorectal cancer and that the increase of IgG is positively associated with liver metastasis and poor overall survival in colorectal cancer patients. Sialylated IgG promotes colorectal cancer cell migration, invasion and liver metastasis. Notably, anti-sialylated IgG antibody effectively blocks colorectal cancer liver metastasis in mouse models. Mechanistically, sialylated IgG upregulates c-Myc protein level by decreasing c-Myc ubiquitination. Moreover, we find that p300/CBP can stabilize c-Myc by reducing c-Myc ubiquitination. Overexpression of p300/CBP protects c-Myc protein level from sialylated IgG-knockdown in a lysine acetyltransferase activity-dependent manner. Furthermore, sialylated IgG upregulates p300 protein level through integrin β4-FAK-Src-Erk signaling. CONCLUSION Collectively, these results indicate that a novel sialylated IgG-integrin β4-FAK-Src-Erk-p300-c-Myc signaling pathway promotes colorectal cancer liver metastasis, thus providing potential therapeutic targets for colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Yuming Su
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qinkun Sun
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Edaibis R, Akel R, Shin JA. Beyond small molecules: advancing MYC-targeted cancer therapies through protein engineering. Transcription 2025; 16:67-85. [PMID: 39878458 PMCID: PMC11970745 DOI: 10.1080/21541264.2025.2453315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance. Recent advances in protein engineering offer promising alternatives by creating protein-based drugs that directly disrupt the MYC/MAX dimerization interface and/or MYC/MAX's binding to specific DNA targets. Designed DNA binding proteins like Omomyc, DuoMyc, ME47, MEF, and Mad inhibit MYC activity through specific dimerization, sequestration, and DNA-binding mechanisms. Compared to small molecules, these engineered proteins can offer superior specificity and efficacy and provide a potential pathway for overcoming the limitations of traditional cancer therapies. The success of these protein therapeutics highlights the importance of protein engineering in developing cancer treatments.
Collapse
Affiliation(s)
- Rama Edaibis
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Raneem Akel
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
5
|
Wu X, Zhang X, Tang S, Wang Y. The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors. Cell Biol Toxicol 2025; 41:32. [PMID: 39825161 PMCID: PMC11742294 DOI: 10.1007/s10565-024-09984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics. These inhibitors and degraders induce histone H3K27 deacetylation, reduce oncogene expression and cancer cell proliferation, promote cancer cell death, and decrease tumor progression in mice. Furthermore, p300/CBP inhibitors and protein degraders have been demonstrated to exert synergy when in combination with conventional radiotherapy, chemotherapy and BRD4 inhibitors in vitro as well as in mice. Importantly, two p300/CBP bromodomain inhibitors, CCS1477 and FT-7051, as well as the dual p300/CBP and BRD4 bromodomain inhibitor NEO2734 have entered Phase I and IIa clinical trials in patients with advanced and refractory hematological malignancies or solid tumors. Taken together, the identification of p300/CBP as critical drivers of tumorigenesis and the development of p300/CBP inhibitors and proteolysis-targeted-chimaera protein degraders represent promising avenues for clinical translation of novel cancer therapeutics.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China
| | - Xin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China
| | - Shaoshan Tang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
| | - Yao Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Wendegatz EC, Lettow J, Wierzbicka W, Schüller HJ. Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc. Curr Genet 2025; 71:2. [PMID: 39820713 PMCID: PMC11739200 DOI: 10.1007/s00294-025-01309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast. We demonstrate that Myc and Max could be stably synthesized in S. cerevisiae and together significantly activated a target gene of Ino2/Ino4 but nevertheless were unable to functionally complement an ino2 ino4 double mutant. We also map two efficient transcriptional activation domains in the N-terminus of Myc (TAD1: aa 1-41 and TAD2: aa 91-140), corresponding to TAD positions in Ino2. We finally show that coactivators such as TFIID subunits Taf1, Taf4, Taf6, Taf10 and Taf12 as well as ATPase subunits of chromatin remodelling complexes Swi2, Sth1 and Ino80 previously shown to interact with TADs of Ino2 were also able to bind TADs of Myc, supporting the view that heterodimers Ino2/Ino4 and Myc/Max are evolutionary related but have undergone transcriptional rewiring of target genes.
Collapse
Affiliation(s)
- Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Wiktoria Wierzbicka
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
7
|
Tandon S, Sarkar S. Myc functions downstream of InR and their concurrent upregulation additively restricts pathogenesis of human poly(Q) disorders in Drosophila disease models. Int J Biochem Cell Biol 2024; 177:106690. [PMID: 39521038 DOI: 10.1016/j.biocel.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Human polyglutamine [poly(Q)] disorders are caused by abnormal expansion of CAG repeats in one gene (disease specific), yet a plethora of cellular pathways are found to be involved in their pathogenesis and progression. Despite the tremendous effort, all pursuits for the development of intervention therapy against these disorders seem futile. Recent reports suggest combination therapy as a potential strategy to combat the complex pathogenesis of such neurodegenerative disorders. The present study attempted to identify a combinatorial intervention strategy against human poly(Q) disorders in Drosophila disease models. Due to its immense potential to be stimulated by drugs, the evolutionarily conserved insulin signalling cascade which is well-established modifier of human poly(Q) pathogenesis was selected for the study. Genetic screening studies identified Drosophila Myc as a potential partner of insulin receptor (InR) that conferred additive rescue against poly(Q) induced neurodegeneration. Comprehensive analyses demonstrated InR and Myc to confer additive rescue against several events of pathogenesis, including aggregation of expanded poly(Q) containing proteins, transcriptional dysregulation, upsurge of cell death cascades, etc. Also, the synergistic rescue efficiency of InR and Myc was equally efficient in mitigating poly(Q) induced structural and functional deficits. The study also demonstrates that Myc functions downstream of InR signalling cascade to deliver rescue against human poly(Q) mediated toxicity in Drosophila disease models. In conclusion, the present study suggests that InR and Myc have the potential to be developed as a combinatorial therapeutic approach against human poly(Q) diseases.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
8
|
Chung DJ, Wang CH, Liu PJ, Ng SK, Luo CK, Jwo SH, Li CT, Hsu DY, Fan CC, Wei TT. Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC. Cancer Gene Ther 2024; 31:1734-1748. [PMID: 39358564 DOI: 10.1038/s41417-024-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with an increasing annual incidence. Cancer stem cells (CSCs) play important roles in the occurrence, development, recurrence, and metastasis of CRC. The molecular mechanism regulating the development of colorectal CSCs remains unclear. The discovery of human induced pluripotent stem cells (hiPSCs) through somatic cell reprogramming has revolutionized the fields of stem cell biology and translational medicine. In the present study, we converted hiPSCs into cancer stem-like cells by culture with conditioned medium (CM) from CRC cells. These transformed cells, termed hiPSC-CSCs, displayed cancer stem-like properties, including a spheroid morphology and the expression of both pluripotency and CSC markers. HiPSC-CSCs showed tumorigenic and metastatic abilities in mouse models. The epithelial-mesenchymal transition phenotype was observed in hiPSC-CSCs, which promoted their migration and angiogenesis. Interestingly, upregulation of C-MYC was observed during the differentiation of hiPSC-CSCs. Mechanistically, CREB binding protein (CBP) bound to the C-MYC promoter, while histone deacetylase 1 and 3 (HDAC1/3) dissociated from the promoter, ultimately leading to an increase in histone acetylation and C-MYC transcriptional activation during the differentiation of hiPSC-CSCs. Pharmacological treatment with a CBP inhibitor or abrogation of CBP expression with a CRISPR/Cas9-based strategy reduced the stemness of hiPSC-CSCs. This study demonstrates for the first time that colorectal CSCs can be generated from hiPSCs. The upregulation of C-MYC via histone acetylation plays a crucial role during the conversion process. Inhibition of CBP is a potential strategy for attenuating the stemness of colorectal CSCs.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Pin-Jung Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Si-Han Jwo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chin-Tzu Li
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Dai-Yi Hsu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Chu Fan
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
9
|
Chen Z, Yang H, Zhang Y, Lyu X, Shi Q, Zhang C, Wang X, Wang Z, Zhang Y, Deng Y, Wang Y, Huang Y, Xu Y, Huang X, Li Y. Discovery of CZL-046 with an ( S)-3-Fluoropyrrolidin-2-one Scaffold as a p300 Bromodomain Inhibitor for the Treatment of Multiple Myeloma. J Med Chem 2024; 67:18606-18628. [PMID: 39356741 DOI: 10.1021/acs.jmedchem.4c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
E1A binding protein (p300) is a promising therapeutic target for the treatment of cancer. Herein, we report the discovery of a series of novel inhibitors with an (S)-3-fluoropyrrolidin-2-one scaffold targeting p300 bromodomain. The best compound 29 (CZL-046) shows potent inhibitory activity of p300 bromodomain (IC50 = 3.3 nM) and antiproliferative activity in the multiple myeloma (MM) cell line (OPM-2 IC50 = 51.5 nM). 29 suppressed the mRNA levels of c-Myc and IRF4 and downregulated the expression of c-Myc and H3K27Ac. Compared to the lead compound 5, 29 exhibits significantly improved in vitro and in vivo metabolic properties. Oral administration of 29 with 30 mg/kg achieved a TGI value of 44% in the OPM-2 xenograft model, accompanied by good tolerability. The cocrystal structure of CREB binding protein bromodomain with 29 provides an insight into the precise binding mode. The results demonstrate that 29 is a promising p300 bromodomain inhibitor for the treatment of MM.
Collapse
Affiliation(s)
- Zonglong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Lyu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiongyu Shi
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingcan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zekun Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ying Zhang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Deng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yuting Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
10
|
Zhang RK, Li Y, Sun FL, Zhou ZH, Xie YX, Liu WJ, Wang W, Qiu JG, Jiang BH, Wang L. RNA methyltransferase NSUN2-mediated m5C methylation promotes Cr(VI)-induced malignant transformation and lung cancer by accelerating metabolism reprogramming. ENVIRONMENT INTERNATIONAL 2024; 192:109055. [PMID: 39395236 DOI: 10.1016/j.envint.2024.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with lung cancer, but roles and mechanisms of Cr(VI)-induced epigenetic dysregulations in carcinogenesis remain to be investigated. In this study, we identified that RNA m5C methyltransferase NSUN2 was significantly upregulated in Cr(VI)-transformed cells and lung tissues of Cr(VI)-exposed mice. Inhibition of NSUN2 reduced cell proliferation, migration, colony formation and tube formation abilities. We found NSUN2-mediated m5C modification induced metabolic reprogramming and cell cycle by promoting the mRNA stabilities of ME1, GLUT3 and CDK2. In addition, knockdown of NSUN2 attenuated tumorigenesis and angiogenesis in vivo. RNA m5C reader ALYREF was identified to be involved in NSUN2-mediated m5C modification in Cr (VI)-induced carcinogenesis. Further study showed that EP300 induced NSUN2 upregulation through transcriptional activation by inducing histone modification at H3K27ac site for regulating Cr(VI) carcinogenesis. Our findings demonstrated novel role and mechanism of NSUN2 and epigenetic changes by increasing the RNA m5C modification that are important for Cr (VI)-induced carcinogenesis through NSUN2/ALYREF pathway. NSUN2, ALYREF, ME1, GLUT3 or/and CDK2 may be used as potential new biomarkers or/and therapeutic target(s) in the future.
Collapse
Affiliation(s)
- Rui-Ke Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yan Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Fan-Li Sun
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Zhi-Hao Zhou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yun-Xia Xie
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wei Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Bing-Hua Jiang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China.
| | - Lin Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
11
|
Benedetti R, Di Crosta M, D’Orazi G, Cirone M. Post-Translational Modifications (PTMs) of mutp53 and Epigenetic Changes Induced by mutp53. BIOLOGY 2024; 13:508. [PMID: 39056701 PMCID: PMC11273943 DOI: 10.3390/biology13070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Michele Di Crosta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| |
Collapse
|
12
|
Wang J, Yang Y, Shao F, Meng Y, Guo D, He J, Lu Z. Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat Metab 2024; 6:914-932. [PMID: 38702440 DOI: 10.1038/s42255-024-01037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/21/2024] [Indexed: 05/06/2024]
Abstract
Acetate, a precursor of acetyl-CoA, is instrumental in energy production, lipid synthesis and protein acetylation. However, whether acetate reprogrammes tumour metabolism and plays a role in tumour immune evasion remains unclear. Here, we show that acetate is the most abundant short-chain fatty acid in human non-small cell lung cancer tissues, with increased tumour-enriched acetate uptake. Acetate-derived acetyl-CoA induces c-Myc acetylation, which is mediated by the moonlighting function of the metabolic enzyme dihydrolipoamide S-acetyltransferase. Acetylated c-Myc increases its stability and subsequent transcription of the genes encoding programmed death-ligand 1, glycolytic enzymes, monocarboxylate transporter 1 and cell cycle accelerators. Dietary acetate supplementation promotes tumour growth and inhibits CD8+ T cell infiltration, whereas disruption of acetate uptake inhibits immune evasion, which increases the efficacy of anti-PD-1-based therapy. These findings highlight a critical role of acetate promoting tumour growth beyond its metabolic role as a carbon source by reprogramming tumour metabolism and immune evasion, and underscore the potential of controlling acetate metabolism to curb tumour growth and improve the response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Juhong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
Lai R, Lin Z, Yang C, Hai L, Yang Z, Guo L, Nie R, Wu Y. Novel berberine derivatives as p300 histone acetyltransferase inhibitors in combination treatment for breast cancer. Eur J Med Chem 2024; 266:116116. [PMID: 38215590 DOI: 10.1016/j.ejmech.2023.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Adenoviral E1A binding protein p300 (EP300 or p300) and its similar paralog, cyclic-AMP response element binding protein (CBP), are important histone acetyltransferases (HAT) and transcriptional co-activators in epigenetics, participating in numerous cellular pathways including proliferation, differentiation and apoptosis. The overexpression or dysregulation of p300/CBP is closely related to oncology-relevant disease. The inhibition of p300 HAT has been found to be a potential drug target. Berberine has been reported to show anticancer activity and synergistic effect in combination with some of the clinical anticancer drugs via modulation of various pathways. Here, the present study sought to discover more chemotypes of berberine derivatives as p300 HAT inhibitors and to examine the combination of these novel analogues with doxorubicin for the treatment of breast cancer. A series of novel berberine derivatives with modifications of A/B/D rings of berberine have been designed, synthesized and screened. Compound 7b was found to exhibit inhibitory potency against p300 HAT with IC50 values of 1.51 μM. Western blotting proved that 7b decreased H3K27Ac and interfered with the expression of oncology-relevant protein in MCF-7 cells. Further bioactive evaluation showed that combination of compound 7b with doxorubicin could significantly inhibit tumor growth and invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646100, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruifang Nie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
16
|
Hurd M, Pino J, Jang K, Allevato MM, Vorontchikhina M, Ichikawa W, Zhao Y, Gates R, Villalpando E, Hamilton MJ, Faiola F, Pan S, Qi Y, Hung YW, Girke T, Ann D, Seewaldt V, Martinez E. MYC acetylated lysine residues drive oncogenic cell transformation and regulate select genetic programs for cell adhesion-independent growth and survival. Genes Dev 2023; 37:865-882. [PMID: 37852796 PMCID: PMC10691474 DOI: 10.1101/gad.350736.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.
Collapse
Affiliation(s)
- Matthew Hurd
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Jeffrey Pino
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Kay Jang
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Michael M Allevato
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Marina Vorontchikhina
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Wataru Ichikawa
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Yifan Zhao
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Ryan Gates
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Emily Villalpando
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Michael J Hamilton
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Francesco Faiola
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Songqin Pan
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California 92521, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California 92521, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Victoria Seewaldt
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA;
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
| |
Collapse
|
17
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Guan Q, Chen Z, Yu F, Liu L, Huang Y, Wei G, Chiang CM, Wong J, Li J. MYC promotes global transcription in part by controlling P-TEFb complex formation via DNA-binding independent inhibition of CDK9 SUMOylation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2167-2184. [PMID: 37115490 PMCID: PMC10524883 DOI: 10.1007/s11427-022-2281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 04/29/2023]
Abstract
MYC is an oncogenic transcription factor with a novel role in enhancing global transcription when overexpressed. However, how MYC promotes global transcription remains controversial. Here, we used a series of MYC mutants to dissect the molecular basis for MYC-driven global transcription. We found that MYC mutants deficient in DNA binding or known transcriptional activation activities can still promote global transcription and enhance serine 2 phosphorylation (Ser2P) of the RNA polymerase (Pol) II C-terminal domain (CTD), a hallmark of active elongating RNA Pol II. Two distinct regions within MYC can promote global transcription and Ser2P of Pol II CTD. The ability of various MYC mutants to promote global transcription and Ser2P correlates with their ability to suppress CDK9 SUMOylation and enhance positive transcription elongation factor b (P-TEFb) complex formation. We showed that MYC suppresses CDK9 SUMOylation by inhibiting the interaction between CDK9 and SUMO enzymes including UBC9 and PIAS1. Furthermore, MYC's activity in enhancing global transcription positively contributes to its activity in promoting cell proliferation and transformation. Together, our study demonstrates that MYC promotes global transcription, at least in part, by promoting the formation of the active P-TEFb complex via a sequence-specific DNA-binding activity-independent manner.
Collapse
Affiliation(s)
- Qingqing Guan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Lingling Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
19
|
Fan W, Li X. The SIRT1-c-Myc axis in regulation of stem cells. Front Cell Dev Biol 2023; 11:1236968. [PMID: 37554307 PMCID: PMC10405831 DOI: 10.3389/fcell.2023.1236968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
SIRT1 is the most conserved mammalian NAD+-dependent protein deacetylase. Through deacetylation of transcriptional factors and co-factors, this protein modification enzyme is critically involved in metabolic and epigenetic regulation of stem cells, which is functionally important in maintaining their pluripotency and regulating their differentiation. C-Myc, a key member of Myc proton-oncogene family, is a pivotal factor for transcriptional regulation of genes that control acquisition and maintenance of stemness. Previous cancer research has revealed an intriguing positive feedback loop between SIRT1 and c-Myc that is crucial in tumorigenesis. Recent literature has uncovered important functions of this axis in regulation of maintenance and differentiation of stem cells, including pluripotent stem cells and cancer stem cells. This review highlights recent advances of the SIRT1-c-Myc axis in stem cells.
Collapse
Affiliation(s)
- Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
20
|
Butterfield SP, Sizer RE, Rand E, White RJ. Selection of tRNA Genes in Human Breast Tumours Varies Substantially between Individuals. Cancers (Basel) 2023; 15:3576. [PMID: 37509247 PMCID: PMC10377016 DOI: 10.3390/cancers15143576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Abnormally elevated expression of tRNA is a common feature of breast tumours. Rather than a uniform increase in all tRNAs, some are deregulated more strongly than others. Elevation of particular tRNAs has been associated with poor prognosis for patients, and experimental models have demonstrated the ability of some tRNAs to promote proliferation or metastasis. Each tRNA isoacceptor is encoded redundantly by multiple genes, which are commonly dispersed across several chromosomes. An unanswered question is whether the consistently high expression of a tRNA in a cancer type reflects the consistent activation of the same members of a gene family, or whether different family members are activated from one patient to the next. To address this question, we interrogated ChIP-seq data to determine which tRNA genes were active in individual breast tumours. This revealed that distinct sets of tRNA genes become activated in individual cancers, whereas there is much less variation in the expression patterns of families. Several pathways have been described that are likely to contribute to increases in tRNA gene transcription in breast tumours, but none of these can adequately explain the observed variation in the choice of genes between tumours. Current models may therefore lack at least one level of regulation.
Collapse
Affiliation(s)
| | - Rebecca E Sizer
- Department of Biology, University of York, York YO10 5DD, UK
| | - Emma Rand
- Department of Biology, University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
21
|
Gioukaki C, Georgiou A, Gkaralea LE, Kroupis C, Lazaris AC, Alamanis C, Thomopoulou GE. Unravelling the Role of P300 and TMPRSS2 in Prostate Cancer: A Literature Review. Int J Mol Sci 2023; 24:11299. [PMID: 37511059 PMCID: PMC10379122 DOI: 10.3390/ijms241411299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.
Collapse
Affiliation(s)
- Charitomeni Gioukaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros Georgiou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Alamanis
- 1st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
22
|
Cheng C, He T, Chen K, Cai Y, Gu Y, Pan L, Duan P, Wu Y, Wu Z. P300 Interacted With N-Myc and Regulated Its Protein Stability via Altering Its Post-Translational Modifications in Neuroblastoma. Mol Cell Proteomics 2023; 22:100504. [PMID: 36708875 PMCID: PMC9984901 DOI: 10.1016/j.mcpro.2023.100504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC-MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Tian He
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yaoyao Gu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Lijia Pan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Peiwen Duan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
24
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
25
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
26
|
Liu Y, Vandekeere A, Xu M, Fendt SM, Altea-Manzano P. Metabolite-derived protein modifications modulating oncogenic signaling. Front Oncol 2022; 12:988626. [PMID: 36226054 PMCID: PMC9549695 DOI: 10.3389/fonc.2022.988626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant growth is defined by multiple aberrant cellular features, including metabolic rewiring, inactivation of tumor suppressors and the activation of oncogenes. Even though these features have been described as separate hallmarks, many studies have shown an extensive mutual regulatory relationship amongst them. On one hand, the change in expression or activity of tumor suppressors and oncogenes has extensive direct and indirect effects on cellular metabolism, activating metabolic pathways required for malignant growth. On the other hand, the tumor microenvironment and tumor intrinsic metabolic alterations result in changes in intracellular metabolite levels, which directly modulate the protein modification of oncogenes and tumor suppressors at both epigenetic and post-translational levels. In this mini-review, we summarize the crosstalk between tumor suppressors/oncogenes and metabolism-induced protein modifications at both levels and explore the impact of metabolic (micro)environments in shaping these.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| |
Collapse
|
27
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
28
|
Ge X, He J, Wang L, Zhao L, Wang Y, Wu G, Liu W, Shu Y, Gong W, Ma XL, Wang Y, Jiang BH, Liu LZ. Epigenetic alterations of CXCL5 in Cr(VI)-induced carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155713. [PMID: 35660107 PMCID: PMC9290188 DOI: 10.1016/j.scitotenv.2022.155713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 05/14/2023]
Abstract
Chronic exposure to hexavalent chromium compounds [Cr(VI)] is associated with an increased risk of cancers, but the molecular mechanisms remain to be elucidated. In this study, we found that CXCL5 levels in peripheral blood monocytes (PBMCs) and plasma from workers with occupational exposure to Cr(VI) were dramatically upregulated compared to non-exposure healthy subjects, and plasma C-X-C Motif Chemokine Ligand 5 (CXCL5) CXCL5 levels were positively correlated with Cr concentrations in subjects' toenails. Zinc chromate exposed mice showed higher levels of CXCL5 and its receptor CXCR2 in lung tissues, and in PBMCs. Similar CXCL5 upregulation was evident in Cr(VI)-induced transformed (Cr-T) cells with long-term Cr(VI) treatment. Mechanistic studies showed that elevated CXCL5 expression levels were regulated by Cr(VI)-induced histone modifications and DNA hypomethylation, and that the c-Myc/p300 complex was a key upstream regulator of histone H3 acetylation. CXCL5 overexpression promoted Cr(VI)-induced the epithelial to mesenchyme transition (EMT) by upregulating zinc finger E-box binding homeobox 1 (ZEB1) to promote tumor development. Our findings identify a novel mechanism by which CXCL5 is upregulated and promotes EMT and carcinogenesis upon chronic Cr(VI) exposure. Our work also implies that CXCL5 mRNA and protein levels will elevate in PBMCs and serum after occupational Cr(VI) exposure, which may be a potential target and biomarker for cancer prevention and health surveillance among populations exposed to Cr(VI).
Collapse
Affiliation(s)
- Xin Ge
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun He
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lin Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhao
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifang Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gang Wu
- Department of Occupational Health, Changzhou Center of Disease Control, Changzhou, Jiangsu, China
| | - Wenjing Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Occupational Health, Jiangsu Center of Disease Control, Nanjing, Jiangsu, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Hu X, Liu R, Hou J, Peng W, Wan S, Xu M, Li Y, Zhang G, Zhai X, Liang P, Cui H. SMARCE1 promotes neuroblastoma tumorigenesis through assisting MYCN-mediated transcriptional activation. Oncogene 2022; 41:4295-4306. [PMID: 35978151 DOI: 10.1038/s41388-022-02428-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
SMARCE1 gene, encoding a core subunit of SWI/SNF chromatin remodeling complex, is situated on chromosome 17q21-ter region that is frequently gained in neuroblastoma. However, its role in the tumorigenesis remains unknown. Here, we showed that high expression of SMARCE1 was associated with poor prognosis of patients with neuroblastoma, especially those with MYCN amplification. Knockdown of SMARCE1 reduced proliferation, colony formation, and tumorigenicity of neuroblastoma cells. Mechanistically, SMARCE1 directly interacted with MYCN, which was necessary for MYCN-mediated transcriptional activation of downstream target genes including PLK1, ODC1, and E2F2. Overexpression of PLK1, ODC1 or E2F2 significantly reversed the inhibiting effect of SMARCE1 knockdown on the proliferation, colony formation, and tumorigenicity of MYCN-amplified neuroblastoma cells. Moreover, we revealed that MYCN directly regulated SMARCE1 transcription through binding to a non-canonical E-box of SMARCE1 promoter, thus enhancing SMARCE1-MYCN cooperativity. These findings establish SMARCE1 is a critical oncogenic factor in neuroblastoma and provide a new potential target for treatment of neuroblastoma with 17q21-ter gain and MYCN amplification.
Collapse
Affiliation(s)
- Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Sicheng Wan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Minghao Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
30
|
Chen Z, Li J, Yang H, He Y, Shi Q, Chang Q, Liu R, Huang X, Li Y. Discovery of novel benzimidazole derivatives as potent p300 bromodomain inhibitors with anti-proliferative activity in multiple cancer cells. Bioorg Med Chem 2022; 66:116784. [PMID: 35569250 DOI: 10.1016/j.bmc.2022.116784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Adenovirus E1A-associated 300-kD protein (p300) bromodomain, which regulates gene expression by recognizing acetylated lysine (KAc) of histone, is a promising target for the treatment of cancer. Herein, a series of potent p300 bromodomain inhibitors with novel CBP30-based scaffolds was discovered through bioisosterism and conformational restriction strategies. The most promising compound 1u showed more potent inhibitory activity (IC50 = 49 nM) against p300 bromodomain and anti-proliferative activity in various cancer cell lines compared to CBP30. Moreover, 1u suppressed the expression of c-Myc and induced G1/G0 phase arrest and apoptosis in OPM-2 cells more potently than CBP30. This study provides new lead compounds for further research on the biological functions of p300.
Collapse
Affiliation(s)
- Zonglong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jiayi Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yulong He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qi Chang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ruiqi Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
31
|
Nie S, Wu F, Wu J, Li X, Zhou C, Yao Y, Song Y. Structure-activity relationship and antitumor activity of 1,4-pyrazine-containing inhibitors of histone acetyltransferases P300/CBP. Eur J Med Chem 2022; 237:114407. [PMID: 35512565 PMCID: PMC9165588 DOI: 10.1016/j.ejmech.2022.114407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023]
Abstract
Acetylation of histone lysine residues by histone acetyltransferase (HAT) p300 and its paralog CBP play important roles in gene regulation in health and diseases. The HAT domain of p300/CBP has been found to be a potential drug target for cancer. Compound screening followed by structure-activity relationship studies yielded a novel series of 1,4-pyrazine-containing inhibitors of p300/CBP HAT with their IC50s as low as 1.4 μM. Enzyme kinetics and other studies support the most potent compound 29 is a competitive inhibitor of p300 HAT against the substrate histone. It exhibited a high selectivity for p300 and CBP, with negligible activity on other classes of HATs in human. Compound 29 inhibited cellular acetylation of several histone lysine residues and showed strong activity against proliferation of a panel of solid and blood cancer cells. These results indicate it is a novel pharmacological lead for drug development targeting these cancers as well as a useful chemical probe for biological studies of p300/CBP.
Collapse
Affiliation(s)
- Shenyou Nie
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fangrui Wu
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xin Li
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chao Zhou
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yuan Yao
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Am J Cancer Res 2022; 12:4935-4948. [PMID: 35836809 PMCID: PMC9274749 DOI: 10.7150/thno.73223] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
The histone acetyltransferases CBP and p300, often referred to as CBP/p300 due to their sequence homology and functional overlap and co-operation, are emerging as critical drivers of oncogenesis in the past several years. CBP/p300 induces histone H3 lysine 27 acetylation (H3K27ac) at target gene promoters, enhancers and super-enhancers, thereby activating gene transcription. While earlier studies indicate that CBP/p300 deletion/loss can promote tumorigenesis, CBP/p300 have more recently been shown to be over-expressed in cancer cells and drug-resistant cancer cells, activate oncogene transcription and induce cancer cell proliferation, survival, tumorigenesis, metastasis, immune evasion and drug-resistance. Small molecule CBP/p300 histone acetyltransferase inhibitors, bromodomain inhibitors, CBP/p300 and BET bromodomain dual inhibitors and p300 protein degraders have recently been discovered. The CBP/p300 inhibitors and degraders reduce H3K27ac, down-regulate oncogene transcription, induce cancer cell growth inhibition and cell death, activate immune response, overcome drug resistance and suppress tumor progression in vivo. In addition, CBP/p300 inhibitors enhance the anticancer efficacy of chemotherapy, radiotherapy and epigenetic anticancer agents, including BET bromodomain inhibitors; and the combination therapies exert substantial anticancer effects in mouse models of human cancers including drug-resistant cancers. Currently, two CBP/p300 inhibitors are under clinical evaluation in patients with advanced and drug-resistant solid tumors or hematological malignancies. In summary, CBP/p300 have recently been identified as critical tumorigenic drivers, and CBP/p300 inhibitors and protein degraders are emerging as promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Qingjuan Chen
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Binhui Yang
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Xiaochen Liu
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Xu D. Zhang
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Children's Cancer Institute Australia, Randwick, Sydney, NSW 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| |
Collapse
|
33
|
Downregulation of glob1 mitigates human tau mediated neurotoxicity by restricting heterochromatin loss and elevating the autophagic response in drosophila. Mol Biol Rep 2022; 49:6581-6590. [PMID: 35633418 DOI: 10.1007/s11033-022-07498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human neuronal tauopathies are typically characterized by the accumulation of hyperphosphorylated tau in the forms of paired helical filaments and/or neurofibrillary tangles in the brain neurons. Tau-mediated heterochromatin loss and subsequent global transcriptional upsurge have been demonstrated as one of the key factors that promotes tau toxicity. We have reported earlier that expression of human tau-transgene in Drosophila induces the expression of glob1, and its restored level restricts tau etiology by regulating tau hyperphosphorylation and ROS generation via GSK-3β/p-Akt and Nrf2-keap1-ARE pathways, respectively. In view of this noted capability of glob1 in regulation of oxidative stress, and involvement of ROS in chromatin remodeling; we investigate if downregulation of glob1 restores tau-mediated heterochromatin loss in order to alleviate neurotoxicity. METHODS AND RESULTS The tauV337M transgene was expressed in Drosophila eye by utilizing GAL4/UAS system. Expression of glob1 was depleted in tauV337M expressing tissues by co-expressing an UAS-glob1RNAi transgene by GMR-Gal4 driver. Immunostaining and wstern blot analysis suggested that tissue-specific downregulation of glob1 restores the cellular level of CBP and minimizes tau-mediated heterochromatin loss. It also assists in mounting an improved protective autophagic response to alleviate the human tau-induced neurotoxicity in Drosophila tauopathy models. CONCLUSIONS Our study unfolds a novel aspect of the multitasking globin protein in restricting the pathogenesis of neuronal tauopathies. Interestingly, due to notable similarities between Drosophila glob1 and human globin gene(s), our findings may be helpful in developing novel therapeutic approaches against tauopathies.
Collapse
|
34
|
Holmes AG, Parker JB, Sagar V, Truica MI, Soni PN, Han H, Schiltz GE, Abdulkadir SA, Chakravarti D. A MYC inhibitor selectively alters the MYC and MAX cistromes and modulates the epigenomic landscape to regulate target gene expression. SCIENCE ADVANCES 2022; 8:eabh3635. [PMID: 35476451 PMCID: PMC9045724 DOI: 10.1126/sciadv.abh3635] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
MYC regulates multiple gene programs, raising questions about the potential selectivity and downstream transcriptional consequences of MYC inhibitors as cancer therapeutics. Here, we examined the effect of a small-molecule MYC inhibitor, MYCi975, on the MYC/MAX cistromes, epigenome, transcriptome, and tumorigenesis. Integrating these data revealed three major classes of MYCi975-modulated gene targets: type 1 (down-regulated), type 2 (up-regulated), and type 3 (unaltered). While cell cycle and signal transduction pathways were heavily targeted by MYCi, RNA biogenesis and core transcriptional pathway genes were spared. MYCi975 altered chromatin binding of MYC and the MYC network family proteins, and chromatin accessibility and H3K27 acetylation alterations revealed MYCi975 suppression of MYC-regulated lineage factors AR/ARv7, FOXA1, and FOXM1. Consequently, MYCi975 synergistically sensitized resistant prostate cancer cells to enzalutamide and estrogen receptor-positive breast cancer cells to 4-hydroxytamoxifen. Our results demonstrate that MYCi975 selectively inhibits MYC target gene expression and provide a mechanistic rationale for potential combination therapies.
Collapse
Affiliation(s)
- Austin G. Holmes
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - J. Brandon Parker
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinay Sagar
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mihai I. Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pritin N. Soni
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huiying Han
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Gary E. Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarki A. Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Yu B, Su J, Shi Q, Liu Q, Ma J, Ru G, Zhang L, Zhang J, Hu X, Tang J. KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling. Nat Commun 2022; 13:2192. [PMID: 35449131 PMCID: PMC9023492 DOI: 10.1038/s41467-022-29899-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Smad nuclear-interacting protein 1 (SNIP1) is a transcription repressor related to the TGF-β signaling pathway and associates with c-MYC, a key regulator of cell proliferation and tumor development. Currently, the mechanism by which SNIP1 regulates tumorigenesis and cancer metastasis is unknown. Here, we identify that SNIP1 is a non-histone substrate of lysine methyltransferase KMT5A, which undergoes KMT5A-mediated mono-methylation to promote breast cancer cell growth, invasion and lung metastasis. Mechanistically, we show KMT5A-mediated K301 methylation of SNIP1 represents a sensing signal to release histone acetyltransferase KAT2A and promotes the interaction of c-MYC and KAT2A, and the recruitment of c-MYC/KAT2A complex to promoter of c-MYC targets. This event ultimately inhibits the Hippo kinase cascade to enhance triple-negative breast cancer (TNBC) metastasis by transcriptionally activating MARK4. Co-inhibition of KMT5A catalytic activity and YAP in TNBC xenograft-bearing animals attenuates breast cancer metastasis and increases survival. Collectively, this study presents an KMT5A methylation-dependent regulatory mechanism governing oncogenic function of SNIP1. SNIP1 methylation initiates its oncogenic functions. Here, the authors show that SNIP1 is methylated by KMT5A and this leads to downstream signalling that activates the YAP pathway, resulting in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Su
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qiqi Shi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People' s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China. .,Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Jianming Tang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
36
|
Epigenetic Factors as Etiological Agents, Diagnostic Markers, and Therapeutic Targets for Luminal Breast Cancer. Biomedicines 2022; 10:biomedicines10040748. [PMID: 35453496 PMCID: PMC9031900 DOI: 10.3390/biomedicines10040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Luminal breast cancer, an etiologically heterogeneous disease, is characterized by high steroid hormone receptor activity and aberrant gene expression profiles. Endocrine therapy and chemotherapy are promising therapeutic approaches to mitigate breast cancer proliferation and recurrence. However, the treatment of therapy-resistant breast cancer is a major challenge. Recent studies on breast cancer etiology have revealed the critical roles of epigenetic factors in luminal breast cancer tumorigenesis and drug resistance. Tumorigenic epigenetic factor-induced aberrant chromatin dynamics dysregulate the onset of gene expression and consequently promote tumorigenesis and metastasis. Epigenetic dysregulation, a type of somatic mutation, is a high-risk factor for breast cancer progression and therapy resistance. Therefore, epigenetic modulators alone or in combination with other therapies are potential therapeutic agents for breast cancer. Several clinical trials have analyzed the therapeutic efficacy of potential epi-drugs for breast cancer and reported beneficial clinical outcomes, including inhibition of tumor cell adhesion and invasiveness and mitigation of endocrine therapy resistance. This review focuses on recent findings on the mechanisms of epigenetic factors in the progression of luminal breast cancer. Additionally, recent findings on the potential of epigenetic factors as diagnostic biomarkers and therapeutic targets for breast cancer are discussed.
Collapse
|
37
|
Durbin AD, Wang T, Wimalasena VK, Zimmerman MW, Li D, Dharia NV, Mariani L, Shendy NA, Nance S, Patel AG, Shao Y, Mundada M, Maxham L, Park PM, Sigua LH, Morita K, Conway AS, Robichaud AL, Perez-Atayde AR, Bikowitz MJ, Quinn TR, Wiest O, Easton J, Schönbrunn E, Bulyk ML, Abraham BJ, Stegmaier K, Look AT, Qi J. EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma. Cancer Discov 2022; 12:730-751. [PMID: 34772733 PMCID: PMC8904277 DOI: 10.1158/2159-8290.cd-21-0385] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023]
Abstract
Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2β, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed "JQAD1" that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. SIGNIFICANCE EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2β. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Adam D. Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Noha A.M. Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Nance
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anand G. Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maya Mundada
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lily Maxham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul M.C. Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Logan H. Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ken Morita
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amanda L. Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Melissa J. Bikowitz
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Taylor R. Quinn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffit Cancer Center, Tampa, Florida
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Martha L. Bulyk
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Muto T, Guillamot M, Yeung J, Fang J, Bennett J, Nadorp B, Lasry A, Redondo LZ, Choi K, Gong Y, Walker CS, Hueneman K, Bolanos LC, Barreyro L, Lee LH, Greis KD, Vasyliev N, Khodadadi-Jamayran A, Nudler E, Lujambio A, Lowe SW, Aifantis I, Starczynowski DT. TRAF6 functions as a tumor suppressor in myeloid malignancies by directly targeting MYC oncogenic activity. Cell Stem Cell 2022; 29:298-314.e9. [PMID: 35045331 PMCID: PMC8822959 DOI: 10.1016/j.stem.2021.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023]
Abstract
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of pre-leukemic cells that acquire specific mutations. Although individuals with CH are healthy, they are at an increased risk of developing myeloid malignancies, suggesting that additional alterations are needed for the transition from a pre-leukemia stage to frank leukemia. To identify signaling states that cooperate with pre-leukemic cells, we used an in vivo RNAi screening approach. One of the most prominent genes identified was the ubiquitin ligase TRAF6. Loss of TRAF6 in pre-leukemic cells results in overt myeloid leukemia and is associated with MYC-dependent stem cell signatures. TRAF6 is repressed in a subset of patients with myeloid malignancies, suggesting that subversion of TRAF6 signaling can lead to acute leukemia. Mechanistically, TRAF6 ubiquitinates MYC, an event that does not affect its protein stability but rather represses its functional activity by antagonizing an acetylation modification.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria Guillamot
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer Yeung
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Joshua Bennett
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Bettina Nadorp
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Luna Zea Redondo
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yixiao Gong
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lynn H Lee
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Nikita Vasyliev
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 201815, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
40
|
Abstract
Lysine acetylation is the second most well-studied post-translational modification after phosphorylation. While phosphorylation regulates signaling cascades, one of the most significant roles of acetylation is regulation of chromatin structure. Acetyl-coenzyme A (acetyl-CoA) serves as the acetyl group donor for acetylation reactions mediated by lysine acetyltransferases (KATs). On the other hand, NAD+ serves as the cofactor for lysine deacetylases (KDACs). Both acetyl-CoA and NAD+ are metabolites integral to energy metabolism, and therefore, their metabolic flux can regulate the activity of KATs and KDACs impacting the epigenome. In this chapter, we review our current understanding of how metabolic pathways regulate lysine acetylation in normal and cancer cells.
Collapse
Affiliation(s)
- Siddharth Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Parijat Senapati
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
41
|
Karr JP, Ferrie JJ, Tjian R, Darzacq X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer-promoter communication. Genes Dev 2022; 36:7-16. [PMID: 34969825 PMCID: PMC8763055 DOI: 10.1101/gad.349160.121] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How distal cis-regulatory elements (e.g., enhancers) communicate with promoters remains an unresolved question of fundamental importance. Although transcription factors and cofactors are known to mediate this communication, the mechanism by which diffusible molecules relay regulatory information from one position to another along the chromosome is a biophysical puzzle-one that needs to be revisited in light of recent data that cannot easily fit into previous solutions. Here we propose a new model that diverges from the textbook enhancer-promoter looping paradigm and offer a synthesis of the literature to make a case for its plausibility, focusing on the coactivator p300.
Collapse
Affiliation(s)
- Jonathan P Karr
- University of California at Berkeley, Berkeley, California 94720, USA
| | - John J Ferrie
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Robert Tjian
- University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Xavier Darzacq
- University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
42
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Bosnakovski D, Ener ET, Cooper MS, Gearhart MD, Knights KA, Xu NC, Palumbo CA, Toso EA, Marsh GP, Maple HJ, Kyba M. Inactivation of the CIC-DUX4 oncogene through P300/CBP inhibition, a therapeutic approach for CIC-DUX4 sarcoma. Oncogenesis 2021; 10:68. [PMID: 34642317 PMCID: PMC8511258 DOI: 10.1038/s41389-021-00357-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
CIC-DUX4 sarcoma (CDS) is a highly aggressive and metastatic small round type of predominantly pediatric sarcoma driven by a fusion oncoprotein comprising the transcriptional repressor Capicua (CIC) fused to the C-terminal transcriptional activation domain of DUX4. CDS rapidly develops resistance to chemotherapy, thus novel specific therapies are greatly needed. We demonstrate that CIC-DUX4 requires P300/CBP to induce histone H3 acetylation, activate its targets, and drive oncogenesis. We describe the synthetic route to a selective and highly potent P300/CBP inhibitor named iP300w and related stereoisomers, and find that iP300w efficiently suppresses CIC-DUX4 transcriptional activity and reverses CIC-DUX4 induced acetylation. iP300w is active at 100-fold lower concentrations than related stereoisomers or A-485. At low doses, iP300w shows specificity to CDS cancer cell lines, rapidly inducing cell cycle arrest and preventing growth of established CDS xenograft tumors when delivered in vivo. The effectiveness of iP300w to inactivate CIC-DUX4 highlights a promising therapeutic opportunity for CDS.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute, Minneapolis, USA. .,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA. .,Faculty of Medical Sciences, University Goce Delchev - Shtip, Shtip, 2000, Republic of North Macedonia.
| | - Elizabeth T Ener
- Lillehei Heart Institute, Minneapolis, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark S Cooper
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kevin A Knights
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Natalie C Xu
- Lillehei Heart Institute, Minneapolis, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christian A Palumbo
- Lillehei Heart Institute, Minneapolis, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, Minneapolis, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Graham P Marsh
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol, UK
| | - Michael Kyba
- Lillehei Heart Institute, Minneapolis, USA. .,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
44
|
PTPN18 promotes colorectal cancer progression by regulating the c-MYC-CDK4 axis. Genes Dis 2021; 8:838-848. [PMID: 34522712 PMCID: PMC8427258 DOI: 10.1016/j.gendis.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine phosphatase non-receptor type 18 (PTPN18) is often highly expressed in colorectal cancer (CRC), but its role in this disease remains unclear. We demonstrated that PTPN18 overexpression promotes growth and tumorigenesis in CRC cells and that PTPN18 deficiency yields the opposite results in vitro. Moreover, a xenograft assay showed that PTPN18 deficiency significantly inhibited tumorigenesis in vivo. PTPN18 activated the MYC signaling pathway and enhanced CDK4 expression, which is tightly associated with the cell cycle and proliferation in cancer cells. Finally, we found that MYC interacted with PTPN18 and increased the protein level of MYC. In conclusion, our results suggest that PTPN18 promotes CRC development by stabilizing the MYC protein level, which in turn activates the MYC-CDK4 axis. Thus, PTPN18 could be a novel therapeutic target in the future.
Collapse
|
45
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
The Novel Oral BET-CBP/p300 Dual Inhibitor NEO2734 Is Highly Effective in Eradicating Acute Myeloid Leukemia Blasts and Stem/Progenitor Cells. Hemasphere 2021; 5:e610. [PMID: 34258514 PMCID: PMC8265862 DOI: 10.1097/hs9.0000000000000610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a disease characterized by transcriptional dysregulation that results in a block in differentiation and aberrant self-renewal. Inhibitors directed to epigenetic modifiers, aiming at transcriptional reprogramming of AML cells, are currently in clinical trials for AML patients. Several of these inhibitors target bromodomain and extraterminal domain (BET) proteins, cyclic AMP response binding protein-binding protein (CBP), and the E1A-interacting protein of 300 kDa (p300), affecting histone acetylation. Unfortunately, single epigenetic inhibitors showed limited efficacy due to appearance of resistance and lack of effective eradication of leukemic stem cells. Here, we describe the efficacy of 2 novel, orally available inhibitors targeting both the BET and CBP/p300 proteins, NEO1132 and NEO2734, in primary AML. NEO2734 and NEO1132 efficiently reduced the viability of AML cell lines and primary AML cells by inducing apoptosis. Importantly, both NEO drugs eliminated leukemic stem/progenitor cells from AML patient samples, and NEO2734 increased the effectiveness of combination chemotherapy treatment in an in vivo AML patient-derived mouse model. Thus, dual inhibition of BET and CBP/p300 using NEO2734 is a promising therapeutic strategy for AML patients, making it a focus for clinical translation.
Collapse
|
47
|
Furlan T, Kirchmair A, Sampson N, Puhr M, Gruber M, Trajanoski Z, Santer FR, Parson W, Handle F, Culig Z. MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1094-1107. [PMID: 33705753 DOI: 10.1016/j.ajpath.2021.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.
Collapse
Affiliation(s)
- Tobias Furlan
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
48
|
Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol Cell 2021; 81:1682-1697.e7. [PMID: 33651988 DOI: 10.1016/j.molcel.2021.01.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
The coactivator p300/CREB-binding protein (CBP) regulates genes by facilitating the assembly of transcriptional machinery and by acetylating histones and other factors. However, it remains mostly unclear how both functions of p300 are dynamically coordinated during gene control. Here, we showed that p300 can orchestrate two functions through the formation of dynamic clusters with certain transcription factors (TFs), which is mediated by the interactions between a TF's transactivation domain (TAD) and the intrinsically disordered regions of p300. Co-condensation can enable spatially defined, all-or-none activation of p300's catalytic activity, priming the recruitment of coactivators, including Brd4. We showed that co-condensation can modulate transcriptional initiation rate and burst duration of target genes, underlying nonlinear gene regulatory functions. Such modulation is consistent with how p300 might shape gene bursting kinetics globally. Altogether, these results suggest an intriguing gene regulation mechanism, in which TF and p300 co-condensation contributes to transcriptional bursting regulation and cooperative gene control.
Collapse
|
49
|
Liu Y, Zhu C, Tang L, Chen Q, Guan N, Xu K, Guan X. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci 2021; 17:178-187. [PMID: 33390842 PMCID: PMC7757029 DOI: 10.7150/ijbs.51458] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/12/2020] [Indexed: 12/28/2022] Open
Abstract
As a transcription factor and proto-oncogene, MYC is known to be deregulated in a variety of tumors, including breast cancer. However, no consistent conclusion on the role and mechanism of MYC deregulation during breast cancer carcinogenesis has been formed. Here, we used the UALCAN, bc-GenExMiner, TCGA, cBioportal, STRING and Kaplan-Meier Plotter databases to explore the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring and interaction with the cancer stem cells of MYC in breast cancer. We found that the expression of MYC varies in different subtypes of breast cancer, with relatively high frequency in TNBC. As a transcription factor, MYC not only participates in the rewiring of cancer signaling pathways, such as estrogen, WNT, NOTCH and other pathways, but also interacts with cancer stem cells. MYC is significantly positively correlated with breast cancer stem cell markers such as CD44, CD24, and ALDH1. Collectively, our results highlight that MYC plays an important regulatory role in the occurrence of breast cancer, and its amplification can be used as a predictor of diagnosis and prognosis. The interaction between MYC and cancer stem cells may play a crucial role in regulating the initiation and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yiqiu Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lin Tang
- Department of Medical Oncology, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qin Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Nan Guan
- College of Letters and Science, University of California, Los Angeles, 405 Hilgard Avenue, California, 90095, USA
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
50
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|