1
|
Soleimani M, Baharnoori SM, Massoumi H, Cheraqpour K, Asadigandomani H, Mirzaei A, Ashraf MJ, Koganti R, Chaudhuri M, Ghassemi M, Jalilian E, Djalilian AR. A deep dive into radiation keratopathy; Going beyond the current frontierss. Exp Eye Res 2025; 251:110234. [PMID: 39778671 PMCID: PMC11910834 DOI: 10.1016/j.exer.2025.110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Radiotherapy is one of the conventional treatments for head and neck malignancies. Despite the implementation of protective measures to minimize the detrimental impact on healthy tissues surrounding the radiation site, radiation keratopathy remains a prevalent complication. We aimed to establish a mouse model of radiation keratopathy to characterize the pathophysiology of the disease and enable future identification of potential treatments. Thirty-six mice were divided equally into six groups. One eye of each mouse was irradiated with 5, 10, 15, 20, 25, and 30 Gy and the other eye used as a control. The mice were clinically monitored for one year, at which time eyes were tested using anterior segment optical coherence tomography, then the mice were euthanized, and the corneas dissected. Corneal sections were stained with hematoxylin and eosin, β-galactosidase, and CK12. The results indicated that animals experiencing increased doses of radiation had increased corneal vascularization, fibrosis, and opacity and conjuctivalization and a higher number of positive results of beta-galactosidase staining, which indicates an increase in the tendency of senescence. The results of β-III tubulin staining indicated that the density of corneal stromal nerves and the subepithelial nerve plexus decreases as the dose increases. Also, as the irradiation dose increases, the central corneal thickness decreases as well.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Asadigandomani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Mirzaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024; 25:7543-7562. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Ortiz-Melo MT, Campos JE, Sánchez-Guzmán E, Herrera-Aguirre ME, Castro-Muñozledo F. Regulation of corneal epithelial differentiation: miR-141-3p promotes the arrest of cell proliferation and enhances the expression of terminal phenotype. PLoS One 2024; 19:e0315296. [PMID: 39642122 PMCID: PMC11623785 DOI: 10.1371/journal.pone.0315296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Jorge E. Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
4
|
Kamachi Kobashigawa K, Franchi de Barros Sobrinho AA, Espírito Santo Silva P, Siqueira Vasconcelos CR, Cardoso Cristovam P, Pereira Gomes JÁ, Laus JL, Aldrovani Rodrigues M. Enhancing Ex Vivo Limbal Epithelial Cell Expansion on Amniotic Membrane: A Comparative Study of Monolayer (2D) Versus Sandwich (3D) Culture Configurations. Cornea 2024; 44:750-761. [PMID: 39509280 DOI: 10.1097/ico.0000000000003753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE This study compared 2-dimensional (monolayer) and 3-dimensional (sandwich) systems for expanding ex vivo limbal epithelial cells on amniotic membrane and evaluated the outcomes after transplantation into rabbits with experimentally induced limbal stem cell deficiency. METHODS Evaluations included markers for progenitor cells, proliferation, apoptosis, and clinical monitoring for up to 63 days. In the monolayer culture, epithelial cells derived from limbal explants were expanded on amniotic membrane as the substrate. In the sandwich culture, the cells were cultured between 2 layers of amniotic membrane. Evaluations included markers for progenitor cells, proliferation, and apoptosis, along with clinical monitoring for up to 63 days. RESULTS Sandwich cultures demonstrated increased cellular proliferation and fewer progenitor cells compared with monolayer cultures. In treating limbal stem cell deficiency, the group receiving transplantation from sandwich cultures exhibited reduced neovascularization and decreased corneal ulceration compared with those treated with monolayer cultures, with similar clinical outcomes in corneal opacity. The configuration of the culture system did not affect the presence of apoptotic cells. Corneas treated with sandwich cultures showed a higher presence of progenitor cells compared with the monolayer group, suggesting a potential long-term viability advantage for these transplants. CONCLUSIONS In conclusion, although the sandwich culture system enhanced cellular proliferation, it also resulted in a decrease in progenitor cells within the cultures. Nevertheless, both systems demonstrated comparable therapeutic efficacy in treating limbal stem cell deficiency, with the sandwich approach potentially offering long-term benefits because of the increased presence of progenitor cells in the transplanted cornea.
Collapse
Affiliation(s)
- Karina Kamachi Kobashigawa
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | | | | | | - Priscila Cardoso Cristovam
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - José Álvaro Pereira Gomes
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - José Luiz Laus
- Department of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | | |
Collapse
|
5
|
Rahmani A, Jafari R, Nadri S. Molecular dynamics simulation in tissue engineering. BIOIMPACTS : BI 2024; 15:30160. [PMID: 40161944 PMCID: PMC11954742 DOI: 10.34172/bi.30160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2025]
Abstract
Introduction In tissue engineering, the interaction among three primary elements, namely cells, material scaffolds, and stimuli, plays a pivotal role in determining the fate of cells and the formation of new tissue. Understanding the characteristics of these components and their interplay through various methodologies can significantly enhance the efficiency of the designed tissue engineering system. In silico methods, such as molecular dynamics (MD) simulation, use mathematical calculations to investigate molecular properties and can overcome the limitations of laboratory methods in delivering adequate molecular-level information. Methods The studies that used molecular dynamics simulation, either alone or in combination with other techniques, have been reviewed in this paper. Results The review explores the use of molecular dynamics simulations in studying substrate formation mechanism and its optimization. It highlights MD simulations' role in predicting biomolecule binding strength, understanding substrate properties' impact on biological activity, and factors influencing cell attachment and proliferation. Despite limited studies, MD simulations are considered a reliable tool for identifying ideal substrates for cell proliferation. The review also touches on MD simulations' contribution to cell differentiation studies, emphasizing their role in designing engineered extracellular matrix for desired cell fates. Conclusion Molecular dynamics simulation as a non-laboratory tool has many capabilities in providing basic and practical information about the behavior of the molecular components of the cell as well as the interaction of the cell and its components with the surrounding environment. Using this information along with other information obtained from laboratory tools can ultimately lead to the advancement of tissue engineering through the development of more appropriate and efficient methods.
Collapse
Affiliation(s)
- Ali Rahmani
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Stachon T, Fecher-Trost C, Latta L, Yapar D, Fries FN, Meyer MR, Käsmann-Kellner B, Seitz B, Szentmáry N. Protein profiling of conjunctival impression cytology samples of aniridia subjects. Acta Ophthalmol 2024; 102:e635-e645. [PMID: 38130099 DOI: 10.1111/aos.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Congenital aniridia is a rare disease, which is in most cases related to PAX6 haploinsufficiency. Aniridia associated keratopathy (AAK) also belongs to ocular signs of congenital aniridia. In AAK, there is corneal epithelial thinning, corneal inflammation, vascularization and scarring. In advanced stage AAK, typically, conjunctival epithelial cells slowly replace the corneal epithelium. Based on previous results we hypothesize that alterations of the conjunctival cells in congenital aniridia may also support the corneal conjunctivalization process. The aim of this study was to identify deregulated proteins in conjunctival impression cytology samples of congenital aniridia subjects. METHODS Conjunctival impression cytology samples of eight patients with congenital aniridia [age 34.5 ± 9.9 (17-51) years, 50% female] and eight healthy subjects [age 34.1 ± 11.9 (15-54) years, 50% female] were collected and analysed using mass spectrometry. Proteomic profiles were analysed in terms of molecular functions, biological processes, cellular components and pathway enrichment using the protein annotation of the evolutionary relationship (PANTHER) classification system. RESULTS In total, 3323 proteins could be verified and there were 127 deregulated proteins (p < 0.01) in congenital aniridia. From the 127 deregulated proteins (DEPs), 82 altered biological processes, 63 deregulated cellular components, 27 significantly altered molecular functions and 31 enriched signalling pathways were identified. Pathological alteration of the biological processes and molecular functions of retinol binding and retinoic acid biosynthesis, as well as lipid metabolism and apoptosis related pathways could be demonstrated. CONCLUSIONS Protein profile of conjunctival impression cytology samples of aniridia subjects identifies alterations of retinol binding, retinoic acid biosynthesis, lipid metabolism and apoptosis related pathways. Whether these changes are directly related to PAX6 haploinsufficiency, must be investigated in further studies. These new findings offer the possibility to identify potential new drug targets.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Dalya Yapar
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Fabian N Fries
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| |
Collapse
|
7
|
Guo W, Wang Y, Qi G, Wang J, Ren J, Jin Y, Wang E. Dual-signal readout sensing of ATP content in single dental pulp stem cells during differentiation via functionalized glass nanopipettes. Anal Chim Acta 2024; 1293:342200. [PMID: 38331549 DOI: 10.1016/j.aca.2024.342200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024]
Abstract
Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.
Collapse
Affiliation(s)
- Wenting Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiafeng Wang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Altshuler A, Amitai-Lange A, Nasser W, Dimri S, Bhattacharya S, Tiosano B, Barbara R, Aberdam D, Shimmura S, Shalom-Feuerstein R. Eyes open on stem cells. Stem Cell Reports 2023; 18:2313-2327. [PMID: 38039972 PMCID: PMC10724227 DOI: 10.1016/j.stemcr.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023] Open
Abstract
Recently, the murine cornea has reemerged as a robust stem cell (SC) model, allowing individual SC tracing in living animals. The cornea has pioneered seminal discoveries in SC biology and regenerative medicine, from the first corneal transplantation in 1905 to the identification of limbal SCs and their transplantation to successfully restore vision in the early 1990s. Recent experiments have exposed unexpected properties attributed to SCs and progenitors and revealed flexibility in the differentiation program and a key role for the SC niche. Here, we discuss the limbal SC model and its broader relevance to other tissues, disease, and therapy.
Collapse
Affiliation(s)
- Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ramez Barbara
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Daniel Aberdam
- Université Paris-Cité, INSERM U1138, Centre des Cordeliers, 75270 Paris, France
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
9
|
Tian Y, Han W, Yeung KL. Magnetic Microsphere Scaffold-Based Soft Microbots for Targeted Mesenchymal Stem Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300430. [PMID: 37058085 DOI: 10.1002/smll.202300430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
A soft microbot assembled from individual magnetic microsphere scaffold (MMS) beads carrying mesenchymal stem cells (MSC) is navigated under magnetic actuation, where an oscillating field induces mechanical flexion to propel the microbot toward the target site. A seven-bead microbot attained a top translational speed of 205.6 µm s-1 (0.068 body length s-1 ) under 10 mT and 2 Hz field oscillation. The shallow flexion angle (10-24.5°) allows precision movements required to navigate narrow spaces. Upon arrival at the target site, the MMS beads unload their MSC cargo following exposure to a phosphate-buffered saline (PBS) solution, mimicking the extracellular fluid's sodium concentration. The released stem cells have excellent viability and vitality, promoting rapid healing (i.e., 83.2% vs 49%) in a scratch-wound assay. When paired with minimally invasive surgical methods, such as laparoscopy and endoscopic surgery, the microbot can provide precise stem cell delivery to hard-to-reach injury sites in the body to promote healing. Moreover, the microbot is designed to be highly versatile, with individual MMS beads customizable for cargoes of live cells, biomolecules, bionanomaterials, and pharmaceutical compounds for various therapeutic requirements.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong, 518040, China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong, 518040, China
| |
Collapse
|
10
|
Bisevac J, Katta K, Petrovski G, Moe MC, Noer A. Wnt/β-Catenin Signaling Activation Induces Differentiation in Human Limbal Epithelial Stem Cells Cultured Ex Vivo. Biomedicines 2023; 11:1829. [PMID: 37509479 PMCID: PMC10377110 DOI: 10.3390/biomedicines11071829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Human limbal epithelial stem cells (hLESCs) continuously replenish lost or damaged human corneal epithelial cells. The percentage of stem/progenitor cells in autologous ex vivo expanded tissue is essential for the long-term success of transplantation in patients with limbal epithelial stem cell deficiency. However, the molecular processes governing the stemness and differentiation state of hLESCs remain uncertain. Therefore, we sought to explore the impact of canonical Wnt/β-catenin signaling activation on hLESCs by treating ex vivo expanded hLESC cultures with GSK-3 inhibitor LY2090314. Real-time qRT-PCR and microarray data reveal the downregulation of stemness (TP63), progenitor (SOX9), quiescence (CEBPD), and proliferation (MKI67, PCNA) genes and the upregulation of genes for differentiation (CX43, KRT3) in treated- compared to non-treated samples. The pathway activation was shown by AXIN2 upregulation and enhanced levels of accumulated β-catenin. Immunocytochemistry and Western blot confirmed the findings for most of the above-mentioned markers. The Wnt/β-catenin signaling profile demonstrated an upregulation of WNT1, WNT3, WNT5A, WNT6, and WNT11 gene expression and a downregulation for WNT7A and DKK1 in the treated samples. No significant differences were found for WNT2, WNT16B, WIF1, and DKK2 gene expression. Overall, our results demonstrate that activation of Wnt/β-catenin signaling in ex vivo expanded hLESCs governs the cells towards differentiation and reduces proliferation and stem cell maintenance capability.
Collapse
Affiliation(s)
- Jovana Bisevac
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Kirankumar Katta
- Department of Immunology, Oslo University Hospital, Hf Rikshospitalet, 0424 Oslo, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Morten Carstens Moe
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Agate Noer
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
11
|
Ra’oh NA, Man RC, Fauzi MB, Ghafar NA, Buyong MR, Hwei NM, Halim WHWA. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers (Basel) 2023; 15:polym15071766. [PMID: 37050380 PMCID: PMC10097332 DOI: 10.3390/polym15071766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last several decades, numerous modifications and advancements have been made to design the optimal corneal biomatrix for corneal epithelial cell (CECs) or limbal epithelial stem cell (LESC) carriers. However, researchers have yet to discover the ideal optimization strategies for corneal biomatrix design and its effects on cultured CECs or LESCs. This review discusses and summarizes recent optimization strategies for developing an ideal collagen biomatrix and its interactions with CECs and LESCs. Using PRISMA guidelines, articles published from June 2012 to June 2022 were systematically searched using Web of Science (WoS), Scopus, PubMed, Wiley, and EBSCOhost databases. The literature search identified 444 potential relevant published articles, with 29 relevant articles selected based on inclusion and exclusion criteria following screening and appraising processes. Physicochemical and biocompatibility (in vitro and in vivo) characterization methods are highlighted, which are inconsistent throughout various studies. Despite the variability in the methodology approach, it is postulated that the modification of the collagen biomatrix improves its mechanical and biocompatibility properties toward CECs and LESCs. All findings are discussed in this review, which provides a general view of recent trends in this field.
Collapse
Affiliation(s)
- Nur Amalia Ra’oh
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rohaina Che Man
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Wan Haslina Wan Abdul Halim
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
A Novel Technique of Amniotic Membrane Preparation Mimicking Limbal Epithelial Crypts Enhances the Number of Progenitor Cells upon Expansion. Cells 2023; 12:cells12050738. [PMID: 36899873 PMCID: PMC10001367 DOI: 10.3390/cells12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat HAM surface, or (2) loosely, achieving the radial folding to mimic crypts in the limbus. Immunohistochemistry was used to demonstrate a higher number of cells positive for progenitor markers p63α (37.56 ± 3.34% vs. 62.53 ± 3.32%, p = 0.01) and SOX9 (35.53 ± 0.96% vs. 43.23 ± 2.32%, p = 0.04), proliferation marker Ki-67 (8.43 ± 0.38 % vs. 22.38 ± 1.95 %, p = 0.002) in the crypt-like HAMs vs. flat HAMs, while no difference was found for the quiescence marker CEBPD (22.99 ± 2.96% vs. 30.49 ± 3.33 %, p = 0.17). Most of the cells stained negative for the corneal epithelial differentiation marker KRT3/12, and some were positive for N-cadherin in the crypt-like structures, but there was no difference in staining for E-cadherin and CX43 in crypt-like HAMs vs. flat HAMs. This novel HAM preparation method enhanced the number of progenitor cells expanded in the crypt-like HAM compared to cultures on the conventional flat HAM.
Collapse
|
13
|
Mahdavi-Jouibari F, Parseh B, Kazeminejad E, Khosravi A. Hopes and opportunities of stem cells from human exfoliated deciduous teeth (SHED) in cartilage tissue regeneration. Front Bioeng Biotechnol 2023; 11:1021024. [PMID: 36860887 PMCID: PMC9968979 DOI: 10.3389/fbioe.2023.1021024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Cartilage lesions are common conditions, affecting elderly and non-athletic populations. Despite recent advances, cartilage regeneration remains a major challenge today. The absence of an inflammatory response following damage and the inability of stem cells to penetrate into the healing site due to the absence of blood and lymph vessels are assumed to hinder joint repair. Stem cell-based regeneration and tissue engineering have opened new horizons for treatment. With advances in biological sciences, especially stem cell research, the function of various growth factors in the regulation of cell proliferation and differentiation has been established. Mesenchymal stem cells (MSCs) isolated from different tissues have been shown to increase into therapeutically relevant cell numbers and differentiate into mature chondrocytes. As MSCs can differentiate and become engrafted inside the host, they are considered suitable candidates for cartilage regeneration. Stem cells from human exfoliated deciduous teeth (SHED) provide a novel and non-invasive source of MSCs. Due to their simple isolation, chondrogenic differentiation potential, and minimal immunogenicity, they can be an interesting option for cartilage regeneration. Recent studies have reported that SHED-derived secretome contains biomolecules and compounds that efficiently promote regeneration in damaged tissues, including cartilage. Overall, this review highlighted the advances and challenges of cartilage regeneration using stem cell-based therapies by focusing on SHED.
Collapse
Affiliation(s)
- Forough Mahdavi-Jouibari
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezatolah Kazeminejad
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran,*Correspondence: Ezatolah Kazeminejad, Dr. ; Ayyoob Khosravi,
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran,*Correspondence: Ezatolah Kazeminejad, Dr. ; Ayyoob Khosravi,
| |
Collapse
|
14
|
Bedos L, Wickham H, Gabriel V, Zdyrski C, Allbaugh RA, Sahoo DK, Sebbag L, Mochel JP, Allenspach K. Culture and characterization of canine and feline corneal epithelial organoids: A new tool for the study and treatment of corneal diseases. Front Vet Sci 2022; 9:1050467. [PMID: 36406087 PMCID: PMC9672346 DOI: 10.3389/fvets.2022.1050467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, we isolated and cultured canine and feline 3D corneal organoids. Samples derived from corneal limbal epithelium from one canine and one feline patient were obtained by enucleation after euthanasia. Stem cell isolation and organoid culture were performed by culturing organoids in Matrigel. Organoids were subsequently embedded in paraffin for further characterization. The expression of key corneal epithelial and stromal cell markers in canine and feline organoids was evaluated at the mRNA level by RNA-ISH and at the protein level by immunofluorescence (IF) and immunohistochemistry (IHC), while histochemical analysis was performed on both tissues and organoids using periodic-acid Schiff (PAS), Sirius Red, Gomori's Trichrome, and Colloidal Iron stains. IF showed consistent expression of AQP1 within canine and feline organoids and tissues. P63 was present in canine tissues, canine organoids, and feline tissues, but not in feline organoids. Results from IHC staining further confirmed the primarily epithelial origin of the organoids. Canine and feline 3D corneal organoids can successfully be cultured and maintained and express epithelial and stem cell progenitor markers typical of the cornea. This novel in vitro model can be used in veterinary ophthalmology disease modeling, corneal drug testing, and regenerative medicine.
Collapse
Affiliation(s)
- Leila Bedos
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Hannah Wickham
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Vojtech Gabriel
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Christopher Zdyrski
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Rachel A. Allbaugh
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Lionel Sebbag
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan P. Mochel
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- 3D Health Solutions Inc., Ames, IA, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- 3D Health Solutions Inc., Ames, IA, United States
- *Correspondence: Karin Allenspach
| |
Collapse
|
15
|
Menzel-Severing J, Spaniol K, Groeber-Becker F, Geerling G. [Regenerative medicine for the corneal epithelium : Cell therapy from bench to bedside]. DIE OPHTHALMOLOGIE 2022; 119:891-901. [PMID: 35925345 DOI: 10.1007/s00347-022-01674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the case of thermal or caustic burns of the ocular surface, loss of limbal epithelial stem cells leads to compromised self-renewal of the corneal epithelium. This results in permanent loss of vision. In these situations, transplantation of cultured limbal epithelial cells on an amniotic membrane or fibrin gel as substrate (Holoclar®) can help to regenerate the corneal surface. The required cells are obtained from the healthy partner eye, if available. Adult stem cells from other parts of the body potentially serve as alternative cell sources: hair follicles, oral mucosa, mesenchymal stromal cells, or induced pluripotent stem cells (originally, e.g., skin fibroblasts). The reprogramming of such cells can be achieved with the help of transcription factors. In addition, work is being done on biosynthetic or synthetic matrices, which not only serve as substrate material for the transplantation but also support the functional properties of these cells (self-renewal, corneal epithelial-typical phenotype).
Collapse
Affiliation(s)
- Johannes Menzel-Severing
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Kristina Spaniol
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Florian Groeber-Becker
- Translationszentrum Regenerative Therapien | TLZ-RT, Leitung In-vitro-Testsysteme, Fraunhofer-Institut für Silicatforschung ISC, Würzburg, Deutschland
| | - Gerd Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
16
|
Kate A, Basu S. A Review of the Diagnosis and Treatment of Limbal Stem Cell Deficiency. Front Med (Lausanne) 2022; 9:836009. [PMID: 35692544 PMCID: PMC9175008 DOI: 10.3389/fmed.2022.836009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) can cause significant corneal vascularization and scarring and often results in serious visual morbidity. An early and accurate diagnosis can help prevent the same with a timely and appropriate intervention. This review aims to provide an understanding of the different diagnostic tools and presents an algorithmic approach to the management based on a comprehensive clinical examination. Although the diagnosis of LSCD usually relies on the clinical findings, they can be subjective and non-specific. In such cases, using an investigative modality offers an objective method of confirming the diagnosis. Several diagnostic tools have been described in literature, each having its own advantages and limitations. Impression cytology and in vivo confocal microscopy (IVCM) aid in the diagnosis of LSCD by detecting the presence of goblet cells. With immunohistochemistry, impression cytology can help in confirming the corneal or conjunctival source of epithelium. Both IVCM and anterior segment optical coherence tomography can help supplement the diagnosis of LSCD by characterizing the corneal and limbal epithelial changes. Once the diagnosis is established, one of various surgical techniques can be adopted for the treatment of LSCD. These surgeries aim to provide a new source of corneal epithelial stem cells and help in restoring the stability of the ocular surface. The choice of procedure depends on several factors including the involvement of the ocular adnexa, presence of systemic co-morbidities, status of the fellow eye and the comfort level of the surgeon. In LSCD with wet ocular surfaces, autologous and allogeneic limbal stem cell transplantation is preferred in unilateral and bilateral cases, respectively. Another approach in bilateral LSCD with wet ocular surfaces is the use of an autologous stem cell source of a different epithelial lineage, like oral or nasal mucosa. In eyes with bilateral LSCD with significant adnexal issues, a keratoprosthesis is the only viable option. This review provides an overview on the diagnosis and treatment of LSCD, which will help the clinician choose the best option amongst all the therapeutic modalities currently available and gives a clinical perspective on customizing the treatment for each individual case.
Collapse
Affiliation(s)
- Anahita Kate
- The Cornea Institute, KVC Campus, LV Prasad Eye Institute, Vijayawada, India
| | - Sayan Basu
- The Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre (BHERC), LV Prasad Eye Institute, Hyderabad, Telangana, India
- *Correspondence: Sayan Basu
| |
Collapse
|
17
|
Trinh T, Mimouni M, Mednick Z, Einan-Lifshitz A, Cohen E, Santaella G, Sorkin N, Slomovic A. Outcomes of Ipsilateral Simple Limbal Epithelial Transplantation, Tenonectomy, Mitomycin and Amniotic Membrane Transplantation for Treatment of Recurrent Pterygium. Cornea 2021; 40:43-47. [PMID: 32304432 DOI: 10.1097/ico.0000000000002336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To report on the outcomes of recurrent pterygium treated by ipsilateral simple limbal epithelial transplantation (SLET), mitomycin, tenonectomy, and amniotic membrane transplantation. METHODS A retrospective, interventional study was conducted including all patients with recurrent pterygium who underwent SLET surgery under a single surgeon using ipsilateral donor tissue with a minimum 6-month follow-up at Toronto Western Hospital, Canada. Outcome measures included the following: recurrence rates, best spectacle-corrected visual acuity, and postoperative complications. RESULTS Ten eyes of 10 patients, aged 60.7 ± 18.5 years (range 23-79) with a mean follow-up time of 15.2 ± 10.0 months of which 50% (n = 5) were men, were included. Eight eyes (80%) had a history of 2 or less pterygium operations. Two patients had 3 and 5 previous pterygium operations, respectively. Concurrent limbal stem cell disease was noted in 6 eyes (60%). Average number of pterygium recurrences per eye was 1.9 ± 1.3 (range 1-5). Mean pre-op best-corrected visual acuity was 0.5 LogMAR (Snellen equivalent 20/60, range 20/20 to counting fingers). Best-corrected visual acuity remained the same or improved in 6 eyes (60%). Recurrence was noted in 1 eye (10%) with a history of 5 previous pterygium excisions and remained stable at the last follow-up. No patients required a second operation. CONCLUSIONS Ipsilateral SLET with mitomycin, tenonectomy, and amniotic membrane transplantation is a novel technique to address recurrent pterygium. Concurrent limbal stem cell diseases are often present. Initial results demonstrate low recurrence. Visual improvement is modest. Stabilization of the ocular surface to improve vision is possible.
Collapse
Affiliation(s)
- Tanya Trinh
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Michael Mimouni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Zale Mednick
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Adi Einan-Lifshitz
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Eyal Cohen
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Gisella Santaella
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Nir Sorkin
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Ophthalmology Department, Assaf Harofeh Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Allan Slomovic
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Akagunduz OO, Yilmaz SG, Tavlayan E, Baris ME, Afrashi F, Esassolak M. Radiation-Induced Ocular Surface Disorders and Retinopathy: Ocular Structures and Radiation Dose-Volume Effect. Cancer Res Treat 2021; 54:417-423. [PMID: 34176248 PMCID: PMC9016314 DOI: 10.4143/crt.2021.575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This study aimed to evaluate the radiation-induced adverse effects on ocular structures in head and neck cancer patients and investigate the radiation dose-volume effects on the cornea, lacrimal gland, retina, optic nerve and chiasm. Materials and Methods A total of 38 eyes of 19 patients were included in this prospective, cohort study. All patients underwent complete ophthalmological examination in addition to contrast sensitivity, visual field and visual evoked potentials (VEP) tests. Ophthalmological examinations and psychophysical tests were performed in 6th, 12th, 18th, 24th months and in the last visit. The relationship between the ophthalmologic findings, and the radiation doses below and above the cut-off values was evaluated. Results Contrast sensitivity decrease and visual field deterioration were observed in 42% of the patients in the last visit (median 26 months) whereas a prolonged latency and decreased amplitude of P100 wave in VEP was observed in 58% and 33% of the eyes, respectively at 24th month. Totally 16 patients (84.2%) developed dry eye disease and eight of them received radiotherapy below tolerance doses and had mild to moderate dry eye findings. Radiation-induced retinopathy was observed in three of the eyes in eight patients who received radiation above tolerance dose. Conclusion Head and neck cancers treated with radiotherapy, resulted in various ophthalmic complications. All patients who are treating with radiotherapy should be evaluated by an ophthalmologist in terms of anterior and posterior segment damage, even if the radiation dose is below the tolerance limit.
Collapse
Affiliation(s)
| | - Suzan Guven Yilmaz
- Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Emin Tavlayan
- Department of Radiation Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Mine Esen Baris
- Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Filiz Afrashi
- Department of Ophthalmology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Mustafa Esassolak
- Department of Radiation Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
19
|
Tong CM, He B, Iovieno A, Yeung SN. Diagnosis and management of limbal stem cell deficiency, challenges, and future prospects. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1933441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. Maya Tong
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Bonnie He
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Alfonso Iovieno
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Cikmazkara I, Selver OB, Palamar M, Egrilmez S, Yagci A. Tectonic Keratoplasty in Patients with Non-traumatic, Non-infectious Corneal Perforations. Open Ophthalmol J 2020. [DOI: 10.2174/1874364102014010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
The study aims to report clinical results of tectonic keratoplasty for non-traumatic, non-infectious corneal perforations.
Materials and Methods:
The medical records of 12 patients who underwent tectonic penetrating keratoplasty between October 2014 and August 2018 at Ege University Ophthalmology Department were retrospectively reviewed.
Results:
The mean age of the patients was 52.92±30.34 (range, 2-82) years. The causes of corneal perforation were dry eye (neurotrophic keratopathy (n=4), limbal stem cell deficiency (n=2), exposure keratopathy (n=2) and graft versus host disease (n=1)) in 9 patients. In the remaining 3 patients, the etiology of perforation was not determined. The mean Visual Acuity (VA) was 2.98±0.39 (range, 1.8-3.1) LogMAR before the surgery. Despite conservative treatment, tectonic penetrating keratoplasty had to be performed in all patients in order to manage the perforation. Mean time in between initial examination and surgery was 10.75±12.04 (1-41) days. In 2 patients, allogenic limbal stem cell transplantation; in one patient, lateral tarsorrhaphy and in one patient symblepharon release with amniotic membrane transplantation were performed additional to tectonic keratoplasty. Mean follow-up time was 57.88±55.47 (4-141) weeks. Grafts were clear in 6 eyes and opaque in 5 eyes. The main causes of graft failure among opaque grafts were ocular surface disease (3), allograft rejection (1) and glaucoma-related endothelial failure (1). Phthisis bulbi was detected in one patient with congenital glaucoma due to vitreous loss at the time of perforation. The mean final VA in patients who had clear grafts was 1.83±1.03 (range, 0.8-3.1) LogMAR.
Conclusion:
To prevent serious complications in non-traumatic, non-infectious corneal perforations, providing anatomic integrity immediately is a must. If conservative treatment is inadequate or the perforation area is extensive, tectonic penetrating keratoplasty is indicated. Besides, it is important to manage the etiological risk factors in order to obtain successful clinical follow up.
Collapse
|
21
|
Lee H, Lee JH, Hong S, Sunwoo JH, Kim HT, Kim ES, Kim JY, Hwang C, Tchah H. Transplantation of human corneal limbal epithelial cell sheet harvested on synthesized carboxymethyl cellulose and dopamine in a limbal stem cell deficiency. J Tissue Eng Regen Med 2020; 15:139-149. [PMID: 33210832 DOI: 10.1002/term.3159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the efficacy and safety of transplantation with human corneal limbal epithelial (HCLE) cell sheets cultured on carboxymethyl cellulose (CMC)-dopamine (DA)-coated substrates and harvested via enzymatic digestion of CMC with cellulase in a rabbit animal model of limbal stem cell deficiency (LSCD). Synthesized CMC-DA was pretreated onto the surface of culture plates. Then, HCLE cells were cultured on precoated CMC-DA and HCLE cell sheets were harvested using cellulase-containing cell culture medium. HCLE cell sheets were evaluated using a live/dead assay, histological examination, and immunofluorescence staining. For in vivo assessment, HCLE cell sheets were transplanted in a rabbit model of LSCD for 2 weeks to determine the effectiveness of the repair. Primary culture of HCLE cells stained positively for p63, cytokeratin (CK)15, and CK12. HCLE cell sheets were generated with a well-preserved morphology and transparency ranging in size from 15 to 19 mm after cellulase-assisted cell sheet generation. HCLE cell sheets uniformly stained positively for human mitochondria, p63, CK15, CK12, CK3/2p, and zonula occludens (ZO)-1. HCLE cell sheet transplantation in a rabbit model of LSCD improved the corneal opacity and neovascularization scores. Transplanted HCLE cell sheets stained positively for p63 and CK12. Transplantation of HCLE cell sheets harvested on CMC-DA coating combined with cellulase is a safe and efficient procedure for corneal epithelial regeneration in a rabbit model of LSCD. This system could enable a promising strategy to regenerate corneal epithelium by transplantation in ocular surface disorders.
Collapse
Affiliation(s)
- Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Hyuck Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Tae Kim
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Eun-Soon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Hall MN, Moshirfar M, Amin-Javaheri A, Ouano DP, Ronquillo Y, Hoopes PC. Lipid Keratopathy: A Review of Pathophysiology, Differential Diagnosis, and Management. Ophthalmol Ther 2020; 9:833-852. [PMID: 33058067 PMCID: PMC7708541 DOI: 10.1007/s40123-020-00309-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipid keratopathy is a disease in which fat deposits accumulate in the cornea, leading to opacification and decrease of visual acuity. This condition can be idiopathic without signs of previous corneal disease or secondary to ocular or systemic diseases. Lipid keratopathy is usually associated with abnormal vascularization of the cornea, and the lipid classically deposits adjacent to these vessels. Treatment of this condition usually aims to eliminate or prevent abnormal vessel formation, and several modalities have been described. In this review we summarize the etiology, pathophysiology, and clinical presentation of lipid keratopathy and describe current and emerging treatment regimens.
Collapse
Affiliation(s)
- MacGregor N Hall
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT, USA.
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Utah Lions Eye Bank, Murray, UT, USA.
| | | | | | | | | |
Collapse
|
23
|
Gouveia RM, Connon CJ. Biomechanical Modulation Therapy-A Stem Cell Therapy Without Stem Cells for the Treatment of Severe Ocular Burns. Transl Vis Sci Technol 2020; 9:5. [PMID: 33240564 PMCID: PMC7671857 DOI: 10.1167/tvst.9.12.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ocular injuries caused by chemical and thermal burns are often unmanageable and frequently result in disfigurement, corneal haze/opacification, and vision loss. Currently, a considerable number of surgical and pharmacological approaches are available to treat such injuries at either an acute or a chronic stage. However, these existing interventions are mainly directed at (and limited to) suppressing corneal inflammation and neovascularization while promoting re-epithelialization. Reconstruction of the ocular surface represents a suitable but last-option recourse in cases where epithelial healing is severely impaired, such as due to limbal stem cell deficiency. In this concise review, we discuss how biomechanical modulation therapy (BMT) may represent a more effective approach to promoting the regeneration of ocular tissues affected by burn injuries via restoration of the limbal stem cell niche. Specifically, the scientific basis supporting this new therapeutic modality is described, along with our growing understanding of the role that tissue biomechanics plays in stem cell fate and function. The potential impact of BMT as a future treatment option for the management of injuries affecting tissue compliance is also further discussed.
Collapse
Affiliation(s)
- Ricardo M Gouveia
- Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Cabral JV, Jackson CJ, Utheim TP, Jirsova K. Ex vivo cultivated oral mucosal epithelial cell transplantation for limbal stem cell deficiency: a review. Stem Cell Res Ther 2020; 11:301. [PMID: 32693830 PMCID: PMC7374839 DOI: 10.1186/s13287-020-01783-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 06/18/2020] [Indexed: 01/19/2023] Open
Abstract
Destruction or dysfunction of limbal epithelial stem cells (LESCs) leads to unilateral or bilateral limbal stem cell deficiency (LSCD). Fifteen years have passed since the first transplantation of ex vivo cultivated oral mucosal epithelial cells (COMET) in humans in 2004, which represents the first use of a cultured non-limbal autologous cell type to treat bilateral LSCD. This review summarizes clinical outcomes from COMET studies published from 2004 to 2019 and reviews results with emphasis on the culture methods by which grafted cell sheets were prepared.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital Trust Arendal, Arendal, Norway
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
25
|
Micera A, Jirsova K, Esposito G, Balzamino BO, Di Zazzo A, Bonini S. Mast Cells Populate the Corneoscleral Limbus: New Insights for Our Understanding of Limbal Microenvironment. Invest Ophthalmol Vis Sci 2020; 61:43. [PMID: 32207813 PMCID: PMC7401584 DOI: 10.1167/iovs.61.3.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Although stem cell activity represents a crucial feature in corneal and ocular surface homeostasis, other cells populating this region and the neighboring zones might participate and influence local microenvironment. Mast cells, the long-lived and tissue-sited immune cells, have been previously reported in corneoscleral specimens. Herein, mast cells were investigated in corneoscleral tissues and related to microenvironment protein expression. Methods Twenty-six (14 male/12 female; older than 60 years) human corneoscleral specimens were sectioned for light and fluorescent immunostaining (CD45, p63, Ck-3/7/12/19, tryptase/AA1, and chymase/CC1). Corneal, limbal, and conjunctival squares were produced for molecular and biochemical analysis. Statistical comparisons were carried out by ANOVA. Results Toluidine blue staining identified metachromatic intact or degranulated mast cells in the area below the palisades' Vogt (Ck-3/12-positive epithelium and underneath p63 immunoreactivity). Tryptase immunoreactivity was observed close to palisades' Vogt, whereas no specific signal was detected for chymase. Tryptase/AA1 transcripts were quantified in limbal and conjunctival RNA extracts, whereas no specific amplification was detected in corneal ones. Few mediators were overexpressed in limbal extracts with respect to corneal (Neural cell adhesion molecule (NCAM), Intercellular adhesion molecule 3 (ICAM3), Brain-derived Neurotrophic factor (BDNF), and neurotrophin 3 (NT3); P < 0.00083) and conjunctival (NCAM, ICAM3, and NT3; P < 0.05) protein extracts. A trend to an increase was observed for Nerve Growth Factor (NGF) in limbal extracts (P > 0.05). Conclusions The specific observation of tryptase phenotype and the interesting protein signature of microenvironment (adhesion molecules, growth factors, and neurotrophins), known to partake mast cell behavior, at least in other areas, would provide additional information to better understand this crucial zone in the framework of ocular surface healthiness.
Collapse
|
26
|
Binotti WW, Nosé RM, Koseoglu ND, Dieckmann GM, Kenyon K, Hamrah P. The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency. Ocul Surf 2020; 19:94-103. [PMID: 32335247 DOI: 10.1016/j.jtos.2020.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 04/16/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE To determine the utility of anterior segment optical coherence tomography angiography (AS-OCTA) in assessing limbal stem cell deficiency (LSCD). METHODS Twenty-six eyes of 24 LSCD patients, classified clinically into stage I, II and III, and 12 eyes of 12 healthy subjects were included. AS-OCTA images were analyzed by two masked observers, measuring the maximum corneal vascular extension (CoVE) from the limbus to the furthest vessel over the cornea, and corneal vascular thickness (CoVT) from the most superficial to the deepest corneal vessel. RESULTS CoVE was 0.27 ± 0.10, 0.79 ± 0.21, 1.68 ± 0.89 and 2.53 ± 0.82 mm in controls, stage I, II and III LSCD, respectively (p < 0.001). The CoVT was 51.0 ± 19.4, 113.7 ± 36.6, 129.7 ± 39.3 and 336.0 ± 85.0 μm, respectively (p < 0.001). There was a significant difference in CoVE and CoVT between all stages compared to controls, and between stage I and III LSCD (p < 0.001). Further, CoVE showed a significant difference between stage I and II, whereas CoVT showed a significant difference between stage II and III LSCD (p < 0.001). BCVA showed strong correlation with CoVT (r = 0.765, p < 0.001) and moderate correlation with CoVE (r = 0.547, p = 0.001). AS-OCTA parameters showed excellent intra- and inter-class correlation coefficients (>0.900). CONCLUSION LSCD demonstrates significant changes in CoVE and CoVT as early as stage I LSCD in comparison to controls. CoVE and CoVT strongly correlate to both disease severity and BCVA. AS-OCTA may provide novel quantitative and non-invasive parameters to assess LSCD.
Collapse
Affiliation(s)
- William W Binotti
- Center for Translational Ocular Immunology, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Ricardo M Nosé
- Center for Translational Ocular Immunology, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - N Dilruba Koseoglu
- Center for Translational Ocular Immunology, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Gabriela M Dieckmann
- Center for Translational Ocular Immunology, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Kenneth Kenyon
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA; Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
27
|
Short- and Long-Term Results of Xenogeneic-Free Cultivated Autologous and Allogeneic Limbal Epithelial Stem Cell Transplantations. Cornea 2020; 38:1543-1549. [PMID: 31569145 PMCID: PMC6830964 DOI: 10.1097/ico.0000000000002153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To evaluate the short- and long-term success rates of xenogeneic-free cultivated limbal epithelial stem cell transplantation (CLET) for the treatment of limbal stem cell deficiency (LSCD).
Collapse
|
28
|
Bevacizumab Induces Upregulation of Keratin 3 and VEGFA in Human Limbal Epithelial Cells in Vitro. J Clin Med 2019; 8:jcm8111925. [PMID: 31717500 PMCID: PMC6912829 DOI: 10.3390/jcm8111925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Topical application of vascular endothelial growth factor A (VEGFA) inhibitors including Bevacizumab is used for antiangiogenic therapy at the ocular surface. While clinical studies have suggested that this approach is well-tolerated, the effect of the drug on limbal epithelial stem cells has not been studied. In this study, the effect of Bevacizumab on phenotype and functionality of putative limbal epithelial stem cells (SC) was investigated. The effect of Bevacizumab on human limbal epithelial cells was assessed in terms of metabolic activity and scratch wound closure. The different treatment groups featured no difference in proliferation and colony forming efficiency (CFE) of limbal epithelial cells or their putative SC marker expression. A significant delay in scratch closure of all the Bevacizumab-treated groups was detected at 4 h. RNA and protein quantification indicated a dose-responsive increase of keratin 3. VEGFA RNA expression also increased while VEGFC and D as well as VEGFR1, 2 and 3 were unchanged. This study highlights previously unknown effects of Bevacizumab on cultured putative limbal epithelial SC: a dose-related increase of keratin 3, an increase in VEGFA as well as a delay in scratch wound closure. These in vitro data should be considered when using Bevacizumab in the context of limbal epithelial SC transplantation.
Collapse
|
29
|
Mas Tur V, AlMaazmi A, AlSaadi A, Nubile M, Said DG, Mastropasqua L, Dua HS. Columnar keratopathy: An early manifestation of limbal stem cell deficiency. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.xjec.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Adil MT, Simons CM, Sonam S, Henry JJ. Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus. Exp Eye Res 2019; 187:107767. [PMID: 31437439 DOI: 10.1016/j.exer.2019.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Limbal Stem Cell Deficiency (LSCD) is a painful and debilitating disease that results from damage or loss of the Corneal Epithelial Stem Cells (CESCs). Therapies have been developed to treat LSCD by utilizing epithelial stem cell transplants. However, effective repair and recovery depends on many factors, such as the source and concentration of donor stem cells, and the proper conditions to support these transplanted cells. We do not yet fully understand how CESCs heal wounds or how transplanted CESCs are able to restore transparency in LSCD patients. A major hurdle has been the lack of vertebrate models to study CESCs. Here we utilized a short treatment with Psoralen AMT (a DNA cross-linker), immediately followed by UV treatment (PUV treatment), to establish a novel frog model that recapitulates the characteristics of cornea stem cell deficiency, such as pigment cell invasion from the periphery, corneal opacity, and neovascularization. These PUV treated whole corneas do not regain transparency. Moreover, PUV treatment leads to appearance of the Tcf7l2 labeled subset of apical skin cells in the cornea region. PUV treatment also results in increased cell death, immediately following treatment, with pyknosis as a primary mechanism. Furthermore, we show that PUV treatment causes depletion of p63 expressing basal epithelial cells, and can stimulate mitosis in the remaining cells in the cornea region. To study the response of CESCs, we created localized PUV damage by focusing the UV radiation on one half of the cornea. These cases initially develop localized stem cell deficiency characteristics on the treated side. The localized PUV treatment is also capable of stimulating some mitosis in the untreated (control) half of those corneas. Unlike the whole treated corneas, the treated half is ultimately able to recover and corneal transparency is restored. Our study provides insight into the response of cornea cells following stem cell depletion, and establishes Xenopus as a suitable model for studying CESCs, stem cell deficiency, and other cornea diseases. This model will also be valuable for understanding the nature of transplanted CESCs, which will lead to progress in the development of therapeutics for LSCD.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Claire M Simons
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Surabhi Sonam
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| |
Collapse
|
31
|
Femtosecond Laser-Assisted Keratolimbal Allograft Transplantation for the Treatment of Total Limbal Stem Cell Deficiency. Cornea 2019; 38:1280-1285. [PMID: 31259860 DOI: 10.1097/ico.0000000000002041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To investigate the surgical procedure and therapeutic efficacy of femtosecond (FS) laser-assisted keratolimbal allograft (KLAL) transplantation in the treatment of eyes with total limbal stem cell deficiency. METHODS Ten eyes from 10 patients who underwent FS laser-assisted KLAL transplantation were enrolled. The best-corrected visual acuity (BCVA), ocular surface stability, corneal transparency, and postoperative complications were recorded. RESULTS The keratolimbal grafts prepared using the FS laser were even in thickness and width. After the surgery, glucocorticoid and tacrolimus eye drops were administered locally to the eyes with concentration gradients, and a medium dose was prescribed for maintenance. Within the mean follow-up period of 16.8 ± 7.3 months, 9 of 10 eyes (90.0%) maintained a stable ocular surface and showed significant improvements in corneal transparency and BCVA. Persistent corneal edema only occurred in one eye because of repeated epithelial defects, and the BCVA of this eye did not improve. Confocal microscopy revealed activated dendritic cells in the Bowman membrane at the limbus, but they were always low in density with small dendritic processes. No acute immune rejection, cataracts, or elevation of intraocular pressure were detected. CONCLUSIONS The FS laser-assisted KLAL technique can produce ring-shaped grafts with an even depth and width, resulting in a stable ocular surface and good visual prognosis. After surgery, glucocorticoids and potent immunosuppressive eye drops were administered locally with concentration gradients and effectively inhibited acute immune rejection.
Collapse
|
32
|
Park M, Mazalo J, Di Girolamo N. Insulin-like growth factor binding protein-7: A marker of conjunctivalization in an animal model of limbal stem cell deficiency. Ocul Surf 2019; 17:447-457. [PMID: 31125784 DOI: 10.1016/j.jtos.2019.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Limbal stem cell deficiency (LSCD) is characterized by the loss of limbal epithelial stem cells, resulting in a pathological process termed 'conjunctivalization' which compromises corneal transparency, leading to blindness. Current diagnosis for LSCD is limited because reliable conjunctiva-specific biomarkers are lacking. This study sought to address this shortcoming through the serendipitous discovery of insulin-like growth factor binding protein (IGFBP)-7. METHODS IGFBP-7 expression was determined in normal (n=83) and conjunctivalized (n=52) mouse corneas with experimentally-induced LSCD, and in cadaveric normal human corneas (n=7) and human pterygia (n=15); a disease characterized by the invasion of a conjunctivalized, fibrovascular pannus. Clinical assessments including slit-lamp microscopy, fluorescein staining and impression cytology, and biochemical, molecular and immunological assays were also conducted. RESULTS Mass spectrometry of conditioned media from mouse limbal explant-derived cells revealed the presence of IGFBP-7. This factor was expressed in normal limbal and conjunctival epithelium and conjunctivalized corneas from mice with LSCD, and in human pterygium epithelium but not in normal mouse or human corneal epithelium. Four weeks after inducing LSCD, IGFBP-7 staining was increased by 2.9-fold in mouse corneas compared to steady-state, and by 1.6-fold in impression cytology specimens derived from the same mice. Notably, IGFBP-7 was detected approximately 2-weeks earlier than Muc5AC. CONCLUSIONS This study provides novel insights into the specificity of IGFBP-7 for the mammalian conjunctival epithelium in health and disease. A point-of-care test for IGFBP-7 could be developed to assist clinicians in early diagnosis, and in monitoring disease progression, severity and therapeutic outcomes in patients with LSCD.
Collapse
Affiliation(s)
- Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Jessica Mazalo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
33
|
Kethiri AR, Raju E, Bokara KK, Mishra DK, Basu S, Rao CM, Sangwan VS, Singh V. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns. Exp Eye Res 2019; 185:107665. [PMID: 31095932 DOI: 10.1016/j.exer.2019.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Limbal stem cell deficiency (LSCD) is one of the serious cause of visual impairment and blindness with loss of corneal clarity and vascularization. Factors such as ocular burns (acids, lime, thermal), genetic disorders or infections results in the loss of limbal stem cells leading to LSCD. Reliable animal models of LSCD are useful for understanding the pathophysiology and developing novel therapeutic approaches. The purpose of the present study was to validate small and large animal models of LSCD by immunohistochemcal, clinical and histopathological comparison with human. The animal models of LSCD were created by topical administration of sodium hydroxide on the ocular surface of C57BL/6 mice (m, n = 12) and New Zealand white rabbits (r, n = 12) as per the standard existing protocol. Human corneal specimens (h, n = 12) were obtained from tissue bank who had chemical burn-induced LSCD. All samples were either paraffin embedded or frozen in cryogenic medium and the sections were processed for Hematoxylin-Eosin and Periodic Acid-Schiff staining to analyse the morphology and histopathological features of the corneal surface such as vascularization, inflammation, presence of goblet cells, epithelial hyperplasia and keratinization. Immunofluorescence was performed to distinguish between corneal (CK3+), conjunctival (CK19+) and epidermal (CK10+) epithelial phenotype. Histological analysis of corneal specimens from the three groups showed the presence of goblet cells (h:83%, m:50%, r:50%, p = 0.014), epithelial hypertrophy (h:92%, m:50%, r:66.6%, p = 0.04), epithelial hyperplasia (h:50%, m:17%, r:17%, p = 0.18), intra epithelial edema (h:42%, m:33%, r:100%, p = 0.02), stromal inflammation (h:100%, m:67%, r:67%, p = 0.01) and stromal vascularization (h:100%, m:50%, r:67%), in varying proportions. Immunostaining showed presence of total LSCD (CK19 + and/or CK10+, CK3-) in 92% of human and 50% of animal specimens. While partial LSCD (CK19 + and/or CK10+, CK3+) was seen in 8% of human and 50% of animal specimens. Our study shows the significant differences in the extent of vascularization, inflammation, epithelial thickness and goblet cell formation in mice and rabbit models of LSCD when compared to post-chemical burn LSCD in human corneas. In both mice and rabbit models complete LSCD developed in only 50% of cases and this important fact needs to be considered when working with animal models of LSCD.
Collapse
Affiliation(s)
- Abhinav Reddy Kethiri
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; (b).Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Enoch Raju
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, Medical Biotechnology Complex, Uppal Road, Hyderabad, India
| | - Dilip Kumar Mishra
- Ophthalmic Pathology Laboratory, L.V. Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
| | - Ch Mohan Rao
- CSIR-Center for Cellular and Molecular Biology, Medical Biotechnology Complex, Uppal Road, Hyderabad, India
| | - Virender Singh Sangwan
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
| | - Vivek Singh
- SSR-Stem Cell Biology Laboratory, Center for Regenerative Ophthalmology, L V Prasad Eye Institute, Hyderabad, India; Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
34
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
35
|
Gouveia RM, Lepert G, Gupta S, Mohan RR, Paterson C, Connon CJ. Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nat Commun 2019; 10:1496. [PMID: 30944320 PMCID: PMC6447573 DOI: 10.1038/s41467-019-09331-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Whilst demonstrated extensively in vitro, the control of cell behaviour via modulation of substrate compliance in live tissues has not been accomplished to date. Here we propose that stem cells can be regulated solely through in situ modulation of tissue biomechanics. By first establishing, via high-resolution Brillouin spectro-microscopy, that the outer edge (limbus) of live human corneas has a substantially lower bulk modulus compared to their centre, we then demonstrate that this difference is associated with limbal epithelial stem cell (LESC) residence and YAP-dependent mechanotransduction. This phenotype-through-biomechanics correlation is further explored in vivo using a rabbit alkali burn model. Specifically, we show that treating the burnt surface of the cornea with collagenase effectively restores the tissue's mechanical properties and its capacity to support LESCs through mechanisms involving YAP suppression. Overall, these findings have extended implications for understanding stem cell niche biomechanics and its impact on tissue regeneration.
Collapse
Affiliation(s)
- Ricardo M Gouveia
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Guillaume Lepert
- The Blackett Laboratory, Imperial College London, London, SW7 2BW, UK
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, MO, USA
- College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, MO, USA
- College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, MO, USA
| | - Carl Paterson
- The Blackett Laboratory, Imperial College London, London, SW7 2BW, UK
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, NE1 3BZ, UK.
| |
Collapse
|
36
|
Deng SX, Borderie V, Chan CC, Dana R, Figueiredo FC, Gomes JAP, Pellegrini G, Shimmura S, Kruse FE. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea 2019; 38:364-375. [PMID: 30614902 PMCID: PMC6363877 DOI: 10.1097/ico.0000000000001820] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Despite extensive knowledge gained over the last 3 decades regarding limbal stem cell deficiency (LSCD), the disease is not clearly defined, and there is lack of agreement on the diagnostic criteria, staging, and classification system among treating physicians and research scientists working on this field. There is therefore an unmet need to obtain global consensus on the definition, classification, diagnosis, and staging of LSCD. METHODS A Limbal Stem Cell Working Group was first established by The Cornea Society in 2012. The Working Group was divided into subcommittees. Four face-to-face meetings, frequent email discussions, and teleconferences were conducted since then to obtain agreement on a strategic plan and methodology from all participants after a comprehensive literature search, and final agreement was reached on the definition, classification, diagnosis, and staging of LSCD. A writing group was formed to draft the current manuscript, which has been extensively revised to reflect the consensus of the Working Group. RESULTS A consensus was reached on the definition, classification, diagnosis, and staging of LSCD. The clinical presentation and diagnostic criteria of LSCD were clarified, and a staging system of LSCD based on clinical presentation was established. CONCLUSIONS This global consensus provides a comprehensive framework for the definition, classification, diagnosis, and staging of LSCD. The newly established criteria will aid in the correct diagnosis and formulation of an appropriate treatment for different stages of LSCD, which will facilitate a better understanding of the condition and help with clinical management, research, and clinical trials in this area.
Collapse
Affiliation(s)
- Sophie X. Deng
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles
| | - Vincent Borderie
- Quinze-Vingts National Eye Hospital, Faculté de Médecine Sorbonne Université, Paris, France
| | - Clara C. Chan
- University of Toronto Department of Ophthalmology & Vision Sciences Toronto, Ontario
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | - Francisco C. Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary and Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - José A. P. Gomes
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), Brazil
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia; Holostem Terapie Avanzate, Modena, Italy
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Friedrich E. Kruse
- Department of Ophthalmology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
37
|
Jin C, Ou Q, Li Z, Wang J, Zhang J, Tian H, Xu JY, Gao F, Lu L, Xu GT. The combination of bFGF and CHIR99021 maintains stable self-renewal of mouse adult retinal progenitor cells. Stem Cell Res Ther 2018; 9:346. [PMID: 30545413 PMCID: PMC6292077 DOI: 10.1186/s13287-018-1091-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Millions of people are affected with retinal diseases that eventually cause blindness, and retinal progenitor cell (RPC) transplantation is a promising therapeutic avenue. However, RPC expansion and the underlying regulation mechanisms remain elusive. METHODS Adult mouse neural RPCs (mNRPCs) were isolated and amplified with the combination of basic fibroblast growth factor (bFGF) and glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021. The progenitor characteristics were evaluated with RT-PCR, immunocytochemistry (ICC), western blot, flow cytometry, and transcriptome analysis prior to transplantation. By treating cells with or without bFGF and CHIR99021 at different time points, the mechanism for mNRPCs' self-renewal was investigated by transcriptome analysis and western blot assay. RESULTS mNRPCs were self-renewing in the presence of bFGF and CHIR99021 and showed prominent RPC characteristics. bFGF was essential in promoting cell cycle by facilitating G1/S and G2/M transitions. bFGF combined with CHIR99021 activated the non-canonical Wnt5A/Ca2+ pathway and form a calcium homeostasis. In addition, the self-renewing mNRPCs could differentiate into rod photoreceptor-like cells and retinal pigment epithelium (RPE)-like cells by in vitro induction. When green fluorescent protein (GFP)-labeled cells were transplanted into the subretinal space (SRS) of Pde6b (rd1) mice (also known as RD1 mice, or rodless mice), the cells survived for more than 12 weeks and migrated into the retina. Parts of the recipient retina showed positive expression of photoreceptor marker rhodopsin. Transplanted cells can migrate into the retina, mainly into the inner cell layer (INL) and ganglion cell layer (GCL). Some cells can differentiate into astrocytes and amacrine cells. Cultured mNRPCs did not form tumors after transplanted into NOD/SCID mice for 6 months. CONCLUSIONS Present study developed an approach to maintain long-term self-renewal of RPCs from adult retinal tissues and revealed that activation of the non-canonical Wnt5A/Ca2+ pathway may participate in regulating RPC self-renewal in vitro. This study presents a very promising platform to expand RPCs for future therapeutic application.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Zongyi Li
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, 266071 China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People’s Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072 China
- Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092 China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092 China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092 China
| |
Collapse
|
38
|
Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int 2018; 2018:8086269. [PMID: 30405723 PMCID: PMC6201383 DOI: 10.1155/2018/8086269] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) is a clinical condition characterized by damage of cornea limbal stem cells, which results in an impairment of corneal epithelium turnover and in an invasion of the cornea by the conjunctival epithelium. In these patients, the conjunctivalization of the cornea is associated with visual impairment and cornea transplantation has poor prognosis for recurrence of the conjunctivalization. Current treatments of LSCD are aimed at replacing the damaged corneal stem cells in order to restore a healthy corneal epithelium. The autotransplantation of limbal tissue from the healthy, fellow eye is effective in unilateral LSCD but leads to depauperation of the stem cell reservoir. In the last decades, novel techniques such as cultivated limbal epithelial transplantation (CLET) have been proposed in order to reduce the damage of the healthy fellow eye. Clinical and experimental evidence showed that CLET is effective in inducing long-term regeneration of a healthy corneal epithelium in patients with LSCD with a success rate of 70%–80%. Current limitations for the treatment of LSCD are represented by the lack of a marker able to unequivocally identify limbal stem cells and the treatment of total, bilateral LSCD which requires other sources of stem cells for ocular surface reconstruction.
Collapse
|
39
|
Lee HJ, Nam SM, Choi SK, Seo KY, Kim HO, Chung SH. Comparative study of substrate free and amniotic membrane scaffolds for cultivation of limbal epithelial sheet. Sci Rep 2018; 8:14628. [PMID: 30279555 PMCID: PMC6168574 DOI: 10.1038/s41598-018-32914-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Abstract
Transplantation of cultivated limbal epithelial transplantation has been proven to restore the corneal surface in limbal stem cell deficiency (LSCD). Here we comparatively investigated the optimized conditions and the efficiency of limbal epithelial sheet growth in three media conditions as well as with substrate free (transwell), human amniotic membrane (HAM) sutured onto transwell inserts (HAMTW), and HAM slide scaffold (HAMS). Outcomes evaluated were outgrowth sheet size from limbal explants, expression of stem/progenitor cell markers p63α, ABCG2 and CK15, and colony formation efficiency (CFE). Additionally, limbal epithelial sheets on HAMS were transplanted into corneas of LSCD rabbit models. Limbal epithelial sheets with 5% human AB serum showed the greatest increase in ABCG2 efflux activity (JC1low), p63α expression, and CFE compared in both conditions without HAM and with HAM, respectively. The outgrowth sheet size, cell yield, and Ki67 expression were increased in limbal epithelial sheets on HAMS compared to transwell and HAMTW. ABCG2 efflux activity, p63α and CK15 expressions, and CFE were also increased in limbal epithelial sheets on HAMS as well. In corneas of transplanted rabbit LSCD models, p63α expressions were noted in the basal layers and CK12 expressions were observed in superficial layers. Cultivation of limbal epithelial sheet on HAMS with xeno-free medium enhances the growth and stemness of limbal epithelial sheets.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Biochemical Engineering, Seoil University, Seoul, Korea
| | - Sang Min Nam
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary's Hospital, Incheon, Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
40
|
Nie C, Zhang XC, Xu SY, Quan YD, Tang ZX, Lu R. Pterygial body epithelium domination of pterygial proliferation with TCF4 as a potential key factor. Int J Ophthalmol 2018; 11:1467-1474. [PMID: 30225220 DOI: 10.18240/ijo.2018.09.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/08/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To characterize the proliferative capacity of pterygial epithelium in different regions (head, neck and body) of pterygium and explore the function of transcription factor 4 (TCF4) in pterygium proliferation. METHODS Thirty pterygium tissues and 10 normal conjunctival tissues were obtained from Zhongshan Ophthalmic Center (ZOC) and Guangdong Eye Bank, respectively. Proliferative capacity of head, neck and body in pterygial epithelium was measured using clonal analysis, fold growth analysis and expression profile of proliferative markers revealed by immunofluorescent staining and real-time PCR. The expression of TCF4 was highlighted by double immunofluorescent staining with other proliferation related markers such as proliferating cell nuclear antigen (PCNA) and ATP-binding cassette sub-family G member 2 (ABCG2). RESULTS The proliferative potential of pterygial epithelium was higher than that of normal conjunctival epithelium. High expression levels of proliferative markers (P63α, PCNA and ABCG2) in pterygial body epithelium were observed in immunofluorescent staining and real-time PCR (P<0.05). Also, epithelial cells isolated from pterygial body demonstrated higher proliferative capacity in clonal analysis and fold growth analysis, than those isolated from the head and neck regions. The TCF4 expression in pterygial epithelium was similar to other proliferative markers (P63α, PCNA and ABCG2), as higher in pterygial body than head and neck. Moreover, TCF4 showed coexpression with other proliferation-related markers (PCNA and ABCG2) in the double immunofluorescent staining experiment. CONCLUSION The proliferative capacity in pterygial body epithelium is prominent than the head and neck regions, and upregulated TCF4 may be associated with enhanced proliferation in the pterygium.
Collapse
Affiliation(s)
- Cong Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xin-Chun Zhang
- Department of Prosthodontics, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Si-Ying Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Ya-Dan Quan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Zhi-Xin Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
41
|
Ghaemi SR, Delalat B, Harding FJ, Irani YD, Williams KA, Voelcker NH. Identification and In Vitro Expansion of Buccal Epithelial Cells. Cell Transplant 2018; 27:957-966. [PMID: 29860901 PMCID: PMC6050911 DOI: 10.1177/0963689718773330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ex vivo-expanded buccal mucosal epithelial (BME) cell transplantation has
been used to reconstruct the ocular surface. Methods for enrichment and maintenance of BME
progenitor cells in ex vivo cultures may improve the outcome of BME cell
transplantation. However, the parameter of cell seeding density in this context has
largely been neglected. This study investigates how varying cell seeding density
influences BME cell proliferation and differentiation on tissue culture polystyrene
(TCPS). The highest cell proliferation activity was seen when cells were seeded at
5×104 cells/cm2. Both below and above this density, the cell
proliferation rate decreased sharply. Differential immunofluorescence analysis of surface
markers associated with the BME progenitor cell population (p63, CK19, and ABCG2), the
differentiated cell marker CK10 and connexin 50 (Cx50) revealed that the initial cell
seeding density also significantly affected the progenitor cell marker expression profile.
Hence, this study demonstrates that seeding density has a profound effect on the
proliferation and differentiation of BME stem cells in vitro, and this is
relevant to downstream cell therapy applications.
Collapse
Affiliation(s)
- Soraya Rasi Ghaemi
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Bahman Delalat
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Frances J Harding
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Yazad D Irani
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Keryn A Williams
- 4 Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Nicolas H Voelcker
- 1 Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.,2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia.,3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
42
|
Sun J, Liu WH, Deng FM, Luo YH, Wen K, Zhang H, Liu HR, Wu J, Su BY, Liu YL. Differentiation of rat adipose-derived mesenchymal stem cells into corneal-like epithelial cells driven by PAX6. Exp Ther Med 2018; 15:1424-1432. [PMID: 29434727 PMCID: PMC5774412 DOI: 10.3892/etm.2017.5576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Corneal integrity, transparency and vision acuity are maintained by corneal epithelial cells (CECs), which are continuously renewed by corneal limbal stem cells (LSCs). Deficiency of CECs and/or LSCs is associated with numerous ocular diseases. Paired box (PAX)6 is an eye development-associated transcription factor that is necessary for cell fate determination and differentiation of LSCs and CECs. In the present study, the PAX6 gene was introduced into adipose-derived rat mesenchymal stem cells (ADMSCs) to investigate whether PAX6-transfected cells were able to transdifferentiate into corneal-like epithelial cells and to further verify whether the cells were suitable as a cell source for corneal transplantation. The ADMSCs were isolated from the bilateral inguinal region of healthy Sprague Dawley rats. The characteristics of ADMSCs were identified using flow cytometric analysis. After subculture, ADMSCs underwent transfection with recombinant plasmid containing either PAX6-enhanced green fluorescent protein (EGFP) complementary (c)DNA or EGFP cDNA (blank plasmid group), followed by selection with G418 and determination of the transfection efficiency. Subsequently, the morphology of the ADMSCs and the expression profiles of corneal-specific markers CK3/12 and epithelial-specific adhesion protein were determined. E-cadherin was detected using immunofluorescence staining and western blot analysis at 21 days following transfection. An MTT cell proliferation and a colony formation assay were performed to assess the proliferative activity and clonogenicity of PAX6-transfected ADMSCs. Finally, the PAX6-expressing ADMSCs were transplanted onto the cornea of a rabbits with limbal stem cell deficiency (LSCD). At 21 days after transfection, the ADMSCs with PAX6 transfection exhibited a characteristic flagstone-like appearance with assembled corneal-like epithelial cells, and concomitant prominent expression of the corneal-specific markers cytokeratin 3/12 and E-cadherin. Furthermore, the proliferation and colony formation ability of PAX6-overexpressing ADMSCs was significantly retarded. The transplantation experiment indicated that PAX6-reprogramed ADMSCs attached to and replenished the damaged cornea via formation of stratified corneal epithelium. Taken together, these results suggested that conversion of ADMSCs into corneal-like epithelium may be driven by PAX6 transfection, which makes ADMSCs a promising cell candidate for the treatment of LSCD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei-Hua Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Feng-Mei Deng
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yong-Hui Luo
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ke Wen
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hong Zhang
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hai-Rong Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jiang Wu
- Department of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing-Yin Su
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yi-Lun Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
43
|
Nassiri Asl M, Aali E. Review on the mesenchymal stem cells and their potential application in regenerative medicine. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.21.6.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
44
|
Oztürk E, Ergün MA, Oztürk Z, Nurözler AB, Keçeci K, Ozdemir N, Denkbaş EB. Chitosan-Coated Alginate Membranes for Cultivation of Limbal Epithelial Cells to use in the Restoration of Damaged Corneal Surfaces. Int J Artif Organs 2018; 29:228-38. [PMID: 16552670 DOI: 10.1177/039139880602900209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some chemicals or thermal burns may result in abnormal reepithelialization by conjunctival epithelial cells and it causes different types of damage on the cornea surface. When reepithelialization does not occur, chronic inflammation and neovascularization develop, often leading to stroma scarring and/or ulceration. The aim of this study is to restore the human corneal surface with autologous corneal epithelial sheets generated by serial cultivation of the limbal epithelial cells over the different compositions of composite membranes. The composite membranes were prepared by coating the alginate membrane with chitosan. In this method, alginate membrane was prepared by precipitation of the sodium alginate solution in calcium chloride solution. Alginate membranes were washed, dried and immersed into the chitosan solutions to prepare composite membranes. The composite membranes were characterized based on their morphology, hydrophilicity, swellability, and chemical structure. In the last part of the study, composite membranes were used as base matrices for limbal epithelial cell cultivation. The cell cultivation on polymeric membranes was investigated as the in vitro studies. In these studies cell attachment, spreading and growth on polymeric membranes were evaluated.
Collapse
Affiliation(s)
- E Oztürk
- Hacettepe University, Chemistry Department, Biochemistry Division, Beytepe, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
45
|
Hu W, Zhang Y, Tighe S, Zhu YT, Li GG. A New Isolation Method of Human Lacrimal Canaliculus Epithelial Stem Cells by Maintaining Close Association with Their Niche Cells. Int J Med Sci 2018; 15:1260-1267. [PMID: 30275751 PMCID: PMC6158657 DOI: 10.7150/ijms.27705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose: To investigate whether lacrimal canaliculus epithelial stem cells (LCESC) could be isolated and expanded in vitro. Methods: The lacrimal canaliculus epithelium of 6 patients with limbal stem cell deficiency (LSCD) caused by alkali burn or Stevens Johnson Syndrome were examined by lacrimal endoscope. Cadaveric eyelids were fixed and prepared for cross section and stained with HE and antibodies against PCK, Vim, p63α, SCF and c-Kit. Canaliculus tissue was separated under an operating microscope using a lacrimal probe as an indicator and digested with collagenase A. The clusters of epithelial cells with closely associated stroma were further digested with Trypsin/EDTA to obtain single cells for culture on Matrigel-coated plastic plates in MESCM media. The expression of SCF, c-Kit and p63α was determined by immunostaining. The colony-forming efficiency on 3T3 feeder layers was also measured by calculating the percentage of the clone number divided by the total number cells seeded. Results: The epithelial layers of five out of six inferior lacrimal canaliculi and all the six superior lacrimal canaliculi were visually normal in appearance. Five to fifteen layers of the epithelium in the human lacrimal canaliculi were present with a small, tightly compacted basal layer of cells expressing PCK, p63α, SCF and c-Kit. LCESC were isolated by collagenase A and obtained clonal growth in MESCM. The colony-forming efficiency of LCESC holoclones on a 3T3 feeder layer was 3.2%, compared to 1.9% for those of limbal stem cells (LSC). Conclusions: Herein, we first report that LCESCs can be isolated and have stem cell characteristics, similar to those of LSCs. Such a discovery raises a promising substrate resource of stem cells for LSC reconstruction in LSCD patients.
Collapse
Affiliation(s)
- Weikun Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRC. 430030
| | - Yuan Zhang
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| | - Ying-Tieng Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| | - Gui-Gang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRC. 430030.,Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| |
Collapse
|
46
|
Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf 2018; 16:58-69. [PMID: 29113917 PMCID: PMC5844504 DOI: 10.1016/j.jtos.2017.11.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/24/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Limbal stem cells (LSCs) maintain the normal homeostasis and wound healing of corneal epithelium. Limbal stem cell deficiency (LSCD) is a pathologic condition that results from the dysfunction and/or an insufficient quantity of LSCs. The diagnosis of LSCD has been made mainly based on medical history and clinical signs, which often are not specific to LSCD. Methods to stage the severity of LSCD have been lacking. With the application of newly developed ocular imaging modalities and molecular methods as diagnostic tools, standardized quantitative criteria for the staging of LSCD can be established. Because of these recent advancements, effective patient-specific therapy for different stages of LSCD may be feasible.
Collapse
Affiliation(s)
- Qihua Le
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA; Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Sophie X Deng
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
47
|
Mehtani A, Agarwal MC, Sharma S, Chaudhary S. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography. Indian J Ophthalmol 2017; 65:1120-1126. [PMID: 29133636 PMCID: PMC5700578 DOI: 10.4103/ijo.ijo_218_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The purpose of this study is to investigate the epithelial thickness in the cornea and limbus in limbal stem cell deficiency (LSCD) using anterior segment optical coherence tomography (AS-OCT). METHODS This was a cross-sectional, comparative study. OCT images of 30 eyes of 19 patients with LSCD collected by AS-OCT were scanned. Corneal epithelial thickness was recorded at the central cornea and the superior, nasal, inferior, and temporal limbus. Measurment of the same region of 30 normal eyes served as control. Epithelial thickness in all locations was measured by 2 independent observers. RESULTS The mean epithelial layer thickness was 61.3 ± 2.9 μ in the central cornea and 62.7 ± 4.3 μ in the limbus in the control. The epithelial thickness in LSCD patients was found to be 41.33 ± 2.8 μ. An average reduction of 22.2% in the central cornea and 32.15% in the limbus was found in patients with LSCD (P < 0.05). Epithelial thinning correlated with the severity of LSCD in both cornea and limbus. In eyes with sectoral LSCD, a similar degree of epithelial thinning was also detected in the clinically unaffected limbal regions. CONCLUSION Both corneal and limbal epithelia become progressively thinner in LSCD. Epithelial thickness assessment using AS-OCT as a noninvasive tool could be used as a diagnostic measure of LSCD.
Collapse
Affiliation(s)
- Amit Mehtani
- Department of Ophthalmology, Deen Dayal Upadhyay, Hospital Hari Nagar, New Delhi, India
| | | | - Sushant Sharma
- Department of Ophthalmology, Deen Dayal Upadhyay, Hospital Hari Nagar, New Delhi, India
| | | |
Collapse
|
48
|
Yao JY, Chen JK. Over-expression of ΔNp63α facilitates rat corneal wound healing in vivo. Biosci Biotechnol Biochem 2017; 81:2279-2284. [PMID: 29090620 DOI: 10.1080/09168451.2017.1391684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023]
Abstract
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.
Collapse
Affiliation(s)
- Jeng-Yuan Yao
- a Center for Translational Medicine, Department of Basic Medical Science , Xiamen Medical College , Fujian , China
- b Department of Physiology, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Jan-Kan Chen
- b Department of Physiology, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
49
|
Lee HJ, Wolosin JM, Chung SH. Divergent effects of Wnt/β-catenin signaling modifiers on the preservation of human limbal epithelial progenitors according to culture condition. Sci Rep 2017; 7:15241. [PMID: 29127331 PMCID: PMC5681568 DOI: 10.1038/s41598-017-15454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/25/2017] [Indexed: 11/10/2022] Open
Abstract
Wnt signaling plays an important role in the regulation of self-renewal in stem cells. Here we investigated the effect of CHIR99021, the primary transducer of the Wnt signaling canonical pathway, and IWP2, a wide action Wnt signal blocker, on the growth and differentiation of the limbal epithelial progenitor cells when these cells are cultured in two different, common culture approaches, outgrowth from limbal biopsy explants and isolated cell seeded in low calcium medium. Consistent with their expected effects, irrespective of the culture system, IWP2 decreased total β-catenin while CHIR99021 increased it in nuclear localization. However, IWP2 increased stem/progenitor cell marker (p63α and ABCG2) content and clonogenic capacity in the explants but had opposite effects on isolated cells. CHIR99021 reduced the growth rate, stem/progenitor cell marker content and clonogenic capacity in the explants but also had the opposite effect on the isolated cells. These results show that the outcome of Wnt/β-catenin signaling modification is dependent on the culture systems. Transplantation of limbal epithelial sheets from explant cultures is one of the standard treatments of limbal stem cell deficiency. Our study shows that Wnt-associated activity has a strong negative impact on stem/progenitor cell preservation in limbal explant cultures.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - J Mario Wolosin
- Department of Ophthalmology, Eye and Vison Research Institute and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Fiorica C, Palumbo FS, Pitarresi G, Bongiovì F, Giammona G. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydr Polym 2017; 166:281-290. [PMID: 28385234 DOI: 10.1016/j.carbpol.2017.02.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 01/11/2023]
Abstract
In this work we prepared hydrogels based on hyaluronic acid and β-cyclodextrins to sustain the release of both corneal epithelial cells and dexamethasone. This steroid is administered as eye drops several times per day to reduce the risk of rejection in the post operative period after the cornea transplantation and cell release techniques. Hydrogels were produced by crosslinking an amino derivative of hyaluronic acid, with the divinyl sulfone derivative of β-cyclodextrins, this last employed as a crosslinker and solubilizing agent. Drug release studies revealed that dexamethasone containing samples are able to extend the release of this drug for at least five days. Biological studies, conducted with human corneal epithelial cells, showed that it is possible to employ the hydrogels for the temporary seeding of the cells and their potential release onto the cornea.
Collapse
Affiliation(s)
- Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Flavia Bongiovì
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed.18, 90128 Palermo, Italy
| |
Collapse
|