1
|
Kaimenyi D, Rij M, Wendland J. Improved gene-targeting efficiency upon starvation in Saccharomycopsis. Fungal Genet Biol 2023; 167:103809. [PMID: 37169215 DOI: 10.1016/j.fgb.2023.103809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Commonly used fungal transformation protocols rely on the use of either electroporation or the lithium acetate/single strand carrier DNA/Polyethylene glycol/heat shock method. We have used the latter method previously in establishing DNA-mediated transformation in Saccharomycopsis schoenii, a CTG-clade yeast that exhibits necrotrophic mycoparasitism. To elucidate the molecular mechanisms of predation by Saccharomycopsis we aim at gene-function analyses to identify virulence-related pathways and genes. However, in spite of a satisfactory transformation efficiency our efforts were crippled by high frequency of ectopic integration of disruption cassettes. Here, we show that overnight starvation of S. schoenii cells, while reducing the number of transformants, resulted in a substantial increase in gene-targeting via homologous recombination. To demonstrate this, we have deleted the S. schoenii CHS1, HIS3 and LEU2 genes and determined the required size of the flanking homology regions. Additionally, we complemented the S. schoenii leu2 mutant with heterologous LEU2 gene from Saccharomycopsis fermentans. To demonstrate the usefulness of our approach we also generated a S. fermentans leu2 strain, suggesting that this approach may have broader applicability.
Collapse
Affiliation(s)
- Davies Kaimenyi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany
| | - Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany.
| |
Collapse
|
2
|
Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 2021; 24:102168. [PMID: 33665582 PMCID: PMC7907465 DOI: 10.1016/j.isci.2021.102168] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/20/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Methanol biotransformation can expand biorefinery substrate spectrum other than biomass by using methylotrophic microbes. Ogataea (Hansenula) polymorpha, a representative methylotrophic yeast, attracts much attention due to its thermotolerance, but the low homologous recombination (HR) efficiency hinders its precise genetic manipulation during cell factory construction. Here, recombination machinery engineering (rME) is explored for enhancing HR activity together with establishing an efficient CRISPR-Cas9 system in O. polymorpha. Overexpression of HR-related proteins and down-regulation of non-homologous end joining (NHEJ) increased HR rates from 20%-30% to 60%-70%. With these recombination perturbation mutants, a competition between HR and NHEJ is observed. This HR up-regulated system has been applied for homologous integration of large fragments and in vivo assembly of multiple fragments, which enables the production of fatty alcohols in O. polymorpha. These findings will simplify genetic engineering in non-conventional yeasts and facilitate the adoption of O. polymorpha as an attractive cell factory for industrial application.
Collapse
|
3
|
Ji Q, Mai J, Ding Y, Wei Y, Ledesma-Amaro R, Ji XJ. Improving the homologous recombination efficiency of Yarrowia lipolytica by grafting heterologous component from Saccharomyces cerevisiae. Metab Eng Commun 2020; 11:e00152. [PMID: 33294367 PMCID: PMC7691175 DOI: 10.1016/j.mec.2020.e00152] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
The oleaginous non-conventional yeast Yarrowia lipolytica has enormous potential as a microbial platform for the synthesis of various bioproducts. However, while the model yeast Saccharomyces cerevisiae has very high homologous recombination (HR) efficiency, non-homologous end-joining is dominant in Y. lipolytica, and foreign genes are randomly inserted into the genome. Consequently, the low HR efficiency greatly restricts the genetic engineering of this yeast. In this study, RAD52, the key component of the HR machinery in S. cerevisiae, was grafted into Y. lipolytica to improve HR efficiency. The gene ade2, whose deletion can result in a brown colony phenotype, was used as the reporter gene for evaluating the HR efficiency. The HR efficiency of Y. lipolytica strains before and after integrating the ScRad52 gene was compared using insets with homology arms of different length. The results showed that the strategy could achieve gene targeting efficiencies of up to 95% with a homology arm length of 1000 bp, which was 6.5 times of the wildtype strain and 1.6 times of the traditionally used ku70 disruption strategy. This study will facilitate the further genetic engineering of Y. lipolytica to make it a more efficient cell factory for the production of value-added compounds. The gene ade2 was chose as the reporter gene for evaluating the HR efficiency. RAD52 governing the HR machinery in S. cerevisiae was grafted into Y. lipolytica. RAD52 could improve the HR efficiency of Y. lipolytica. It was better than the traditionally used ku70 disruption strategy.
Collapse
Affiliation(s)
- Qingchun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jie Mai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, PR China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, PR China
| |
Collapse
|
4
|
Sharma N, Speed MC, Allen CP, Maranon DG, Williamson E, Singh S, Hromas R, Nickoloff JA. Distinct roles of structure-specific endonucleases EEPD1 and Metnase in replication stress responses. NAR Cancer 2020; 2:zcaa008. [PMID: 32743552 PMCID: PMC7380491 DOI: 10.1093/narcan/zcaa008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
Accurate DNA replication and segregation are critical for maintaining genome integrity and suppressing cancer. Metnase and EEPD1 are DNA damage response (DDR) proteins frequently dysregulated in cancer and implicated in cancer etiology and tumor response to genotoxic chemo- and radiotherapy. Here, we examine the DDR in human cell lines with CRISPR/Cas9 knockout of Metnase or EEPD1. The knockout cell lines exhibit slightly slower growth rates, significant hypersensitivity to replication stress, increased genome instability and distinct alterations in DDR signaling. Metnase and EEPD1 are structure-specific nucleases. EEPD1 is recruited to and cleaves stalled forks to initiate fork restart by homologous recombination. Here, we demonstrate that Metnase is also recruited to stalled forks where it appears to dimethylate histone H3 lysine 36 (H3K36me2), raising the possibility that H3K36me2 promotes DDR factor recruitment or limits nucleosome eviction to protect forks from nucleolytic attack. We show that stalled forks are cleaved normally in the absence of Metnase, an important and novel result because a prior study indicated that Metnase nuclease is important for timely fork restart. A double knockout was as sensitive to etoposide as either single knockout, suggesting a degree of epistasis between Metnase and EEPD1. We propose that EEPD1 initiates fork restart by cleaving stalled forks, and that Metnase may promote fork restart by processing homologous recombination intermediates and/or inducing H3K36me2 to recruit DDR factors. By accelerating fork restart, Metnase and EEPD1 reduce the chance that stalled replication forks will adopt toxic or genome-destabilizing structures, preventing genome instability and cancer. Metnase and EEPD1 are overexpressed in some cancers and thus may also promote resistance to genotoxic therapeutics.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Michael C Speed
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Christopher P Allen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| | - Elizabeth Williamson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sudha Singh
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas HealthScience Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1618 Campus Delivery, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
5
|
Irony-Tur Sinai M, Salamon A, Stanleigh N, Goldberg T, Weiss A, Wang YH, Kerem B. AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Res 2019; 47:9685-9695. [PMID: 31410468 PMCID: PMC6765107 DOI: 10.1093/nar/gkz689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/18/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Noemie Stanleigh
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Tchelet Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Aryeh Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| |
Collapse
|
6
|
Overexpression of RAD51 Enables PCR-Based Gene Targeting in Lager Yeast. Microorganisms 2019; 7:microorganisms7070192. [PMID: 31284488 PMCID: PMC6680445 DOI: 10.3390/microorganisms7070192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
Lager beer fermentations rely on specific polyploid hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus falling into the two groups of S. carlsbergensis/Saaz-type and S. pastorianus/Frohberg-type. These strains provide a terroir to lager beer as they have long traditional associations and local selection histories with specific breweries. Lager yeasts share, based on their common origin, several phenotypes. One of them is low transformability, hampering the gene function analyses required for proof-of-concept strain improvements. PCR-based gene targeting is a standard tool for manipulating S. cerevisiae and other ascomycetes. However, low transformability paired with the low efficiency of homologous recombination practically disable targeted gene function analyses in lager yeast strains. For genetic manipulations in lager yeasts, we employed a yeast transformation protocol based on lithium-acetate/PEG incubation combined with electroporation. We first introduced freely replicating CEN/ARS plasmids carrying ScRAD51 driven by a strong heterologous promoter into lager yeast. RAD51 overexpression in the Weihenstephan 34/70 lager yeast was necessary and sufficient in our hands for gene targeting using short-flanking homology regions of 50 bp added to a selection marker by PCR. We successfully targeted two independent loci, ScADE2/YOR128C and ScHSP104/YLL026W, and confirmed correct integration by diagnostic PCR. With these modifications, genetic alterations of lager yeasts can be achieved efficiently and the RAD51-containing episomal plasmid can be removed after successful strain construction.
Collapse
|
7
|
Ding Y, Wang KF, Wang WJ, Ma YR, Shi TQ, Huang H, Ji XJ. Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering. Appl Microbiol Biotechnol 2019; 103:4313-4324. [DOI: 10.1007/s00253-019-09802-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/28/2022]
|
8
|
Abdul-Razak HH, Rocca CJ, Howe SJ, Alonso-Ferrero ME, Wang J, Gabriel R, Bartholomae CC, Gan CHV, Garín MI, Roberts A, Blundell MP, Prakash V, Molina-Estevez FJ, Pantoglou J, Guenechea G, Holmes MC, Gregory PD, Kinnon C, von Kalle C, Schmidt M, Bueren JA, Thrasher AJ, Yáñez-Muñoz RJ. Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency. Sci Rep 2018; 8:8214. [PMID: 29844458 PMCID: PMC5974076 DOI: 10.1038/s41598-018-26439-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
Genome editing is the introduction of directed modifications in the genome, a process boosted to therapeutic levels by designer nucleases. Building on the experience of ex vivo gene therapy for severe combined immunodeficiencies, it is likely that genome editing of haematopoietic stem/progenitor cells (HSPC) for correction of inherited blood diseases will be an early clinical application. We show molecular evidence of gene correction in a mouse model of primary immunodeficiency. In vitro experiments in DNA-dependent protein kinase catalytic subunit severe combined immunodeficiency (Prkdc scid) fibroblasts using designed zinc finger nucleases (ZFN) and a repair template demonstrated molecular and functional correction of the defect. Following transplantation of ex vivo gene-edited Prkdc scid HSPC, some of the recipient animals carried the expected genomic signature of ZFN-driven gene correction. In some primary and secondary transplant recipients we detected double-positive CD4/CD8 T-cells in thymus and single-positive T-cells in blood, but no other evidence of immune reconstitution. However, the leakiness of this model is a confounding factor for the interpretation of the possible T-cell reconstitution. Our results provide support for the feasibility of rescuing inherited blood disease by ex vivo genome editing followed by transplantation, and highlight some of the challenges.
Collapse
Affiliation(s)
- H H Abdul-Razak
- AGCTlab.org, Centre for Gene and Cell Therapy, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - C J Rocca
- AGCTlab.org, Centre for Gene and Cell Therapy, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - S J Howe
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Gene Transfer Technology Group, UCL Institute for Women's Health, University College London, London, UK
| | - M E Alonso-Ferrero
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Wang
- Sangamo Therapeutics, Inc., Richmond, California, USA
| | - R Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - C C Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - C H V Gan
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - M I Garín
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII)/Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - A Roberts
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - M P Blundell
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - V Prakash
- AGCTlab.org, Centre for Gene and Cell Therapy, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - F J Molina-Estevez
- AGCTlab.org, Centre for Gene and Cell Therapy, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII)/Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - J Pantoglou
- AGCTlab.org, Centre for Gene and Cell Therapy, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - G Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII)/Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - M C Holmes
- Sangamo Therapeutics, Inc., Richmond, California, USA
| | - P D Gregory
- Sangamo Therapeutics, Inc., Richmond, California, USA
| | - C Kinnon
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - C von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - M Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - J A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII)/Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - A J Thrasher
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - R J Yáñez-Muñoz
- AGCTlab.org, Centre for Gene and Cell Therapy, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK.
| |
Collapse
|
9
|
p53 isoforms regulate premature aging in human cells. Oncogene 2018; 37:2379-2393. [PMID: 29429991 PMCID: PMC5954431 DOI: 10.1038/s41388-017-0101-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/05/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Cellular senescence is a hallmark of normal aging and aging-related syndromes, including the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), a rare genetic disorder caused by a single mutation in the LMNA gene that results in the constitutive expression of a truncated splicing mutant of lamin A known as progerin. Progerin accumulation leads to increased cellular stresses including unrepaired DNA damage, activation of the p53 signaling pathway and accelerated senescence. We previously established that the p53 isoforms Δ133p53 and p53β regulate senescence in normal human cells. However, their role in premature aging is unknown. Here, we report that p53 isoforms are expressed in primary fibroblasts derived from HGPS patients, are associated with their accelerated senescence and that their manipulation can restore the replication capacity of HGPS fibroblasts. We found that in near-senescent HGPS fibroblasts, which exhibit low levels of Δ133p53 and high levels of p53β, restoration of Δ133p53 expression was sufficient to extend replicative lifespan and delay senescence, despite progerin levels and abnormal nuclear morphology remaining unchanged. Conversely, Δ133p53 depletion or p53β overexpression accelerated the onset of senescence in otherwise proliferative HGPS fibroblasts. Our data indicate that Δ133p53 exerts its role by modulating full-length p53 (FLp53) signaling to extend the replicative lifespan and promotes the repair of spontaneous progerin-induced DNA double strand breaks (DSBs). We showed that Δ133p53 dominant-negative inhibition of FLp53 occurs directly at the p21/CDKN1A and miR-34a promoters, two p53-senescence associated genes. In addition, Δ133p53 expression increased expression of the DNA repair RAD51, likely through upregulation of E2F1, a transcription factor that activates RAD51, to promote repair of DSBs. In summary, our data indicate that Δ133p53 modulates p53 signaling to repress progerin-induced early onset of senescence in HGPS cells. Therefore, restoration of Δ133p53 expression may be a novel therapeutic strategy to treat aging-associated phenotypes of HGPS in vivo.
Collapse
|
10
|
Horvath M, Steinbiss HH, Reiss B. Gene Targeting Without DSB Induction Is Inefficient in Barley. FRONTIERS IN PLANT SCIENCE 2017; 7:1973. [PMID: 28105032 PMCID: PMC5214849 DOI: 10.3389/fpls.2016.01973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.
Collapse
Affiliation(s)
| | | | - Bernd Reiss
- Plant DNA Recombination Group, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
11
|
Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Rep 2016; 14:1555-1566. [PMID: 26854237 DOI: 10.1016/j.celrep.2016.01.019] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/08/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 induces DNA double-strand breaks that are repaired by cell-autonomous repair pathways, namely, non-homologous end-joining (NHEJ), or homology-directed repair (HDR). While HDR is absent in G1, NHEJ is active throughout the cell cycle and, thus, is largely favored over HDR. We devised a strategy to increase HDR by directly synchronizing the expression of Cas9 with cell-cycle progression. Fusion of Cas9 to the N-terminal region of human Geminin converted this gene-editing protein into a substrate for the E3 ubiquitin ligase complex APC/Cdh1, resulting in a cell-cycle-tailored expression with low levels in G1 but high expression in S/G2/M. Importantly, Cas9-hGem(1/110) increased the rate of HDR by up to 87% compared to wild-type Cas9. Future developments may enable high-resolution expression of genome engineering proteins, which might increase HDR rates further, and may contribute to a better understanding of DNA repair pathways due to spatiotemporal control of DNA damage induction.
Collapse
Affiliation(s)
- Tony Gutschner
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Monika Haemmerle
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lynda Chin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Gravells P, Ahrabi S, Vangala RK, Tomita K, Brash JT, Brustle LA, Chung C, Hong JM, Kaloudi A, Humphrey TC, Porter ACG. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair. Hum Mol Genet 2015; 24:7097-110. [PMID: 26423459 PMCID: PMC4654060 DOI: 10.1093/hmg/ddv409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
Collapse
Affiliation(s)
- Polly Gravells
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rajani K Vangala
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Kazunori Tomita
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - James T Brash
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Lena A Brustle
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Christopher Chung
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Julia M Hong
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Aikaterini Kaloudi
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| |
Collapse
|
13
|
Hatada S, Subramanian A, Mandefro B, Ren S, Kim HW, Tang J, Funari V, Baloh RH, Sareen D, Arumugaswami V, Svendsen CN. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:998-1010. [PMID: 26185257 DOI: 10.5966/sctm.2015-0050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. SIGNIFICANCE The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells.
Collapse
Affiliation(s)
- Seigo Hatada
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aparna Subramanian
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Berhan Mandefro
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Songyang Ren
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ho Won Kim
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jie Tang
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vincent Funari
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vaithilingaraja Arumugaswami
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
14
|
Nonviral gene targeting at rDNA locus of human mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:135189. [PMID: 23762822 PMCID: PMC3666425 DOI: 10.1155/2013/135189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Background. Genetic modification, such as the addition of exogenous genes to the MSC genome, is crucial to their use as cellular vehicles. Due to the risks associated with viral vectors such as insertional mutagenesis, the safer nonviral vectors have drawn a great deal of attention. Methods. VEGF, bFGF, vitamin C, and insulin-transferrin-selenium-X were supplemented in the MSC culture medium. The cells' proliferation and survival capacity was measured by MTT, determination of the cumulative number of cells, and a colony-forming efficiency assay. The plasmid pHr2-NL was constructed and nucleofected into MSCs. The recombinants were selected using G418 and characterized using PCR and Southern blotting. Results. BFGF is critical to MSC growth and it acted synergistically with vitamin C, VEGF, and ITS-X, causing the cells to expand significantly. The neomycin gene was targeted to the rDNA locus of human MSCs using a nonviral human ribosomal targeting vector. The recombinant MSCs retained multipotential differentiation capacity, typical levels of hMSC surface marker expression, and a normal karyotype, and none were tumorigenic in nude mice. Conclusions. Exogenous genes can be targeted to the rDNA locus of human MSCs while maintaining the characteristics of MSCs. This is the first nonviral gene targeting of hMSCs.
Collapse
|
15
|
Zelensky AN, Sanchez H, Ristic D, Vidic I, van Rossum-Fikkert SE, Essers J, Wyman C, Kanaar R. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res 2013; 41:6475-89. [PMID: 23666627 PMCID: PMC3711438 DOI: 10.1093/nar/gkt375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair.
Collapse
Affiliation(s)
- Alex N Zelensky
- Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rahman SH, Bobis-Wozowicz S, Chatterjee D, Gellhaus K, Pars K, Heilbronn R, Jacobs R, Cathomen T. The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther 2013; 24:67-77. [PMID: 23072634 PMCID: PMC3555098 DOI: 10.1089/hum.2012.168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/08/2012] [Indexed: 01/28/2023] Open
Abstract
Parameters that regulate or affect the cell cycle or the DNA repair choice between non-homologous end-joining and homology-directed repair (HDR) are excellent targets to enhance therapeutic gene targeting. Here, we have evaluated the impact of five cell-cycle modulating drugs on targeted genome engineering mediated by DNA double-strand break (DSB)-inducing nucleases, such as zinc-finger nucleases (ZFNs). For a side-by-side comparison, we have established four reporter cell lines by integrating a mutated EGFP gene into either three transformed human cell lines or primary umbilical cord-derived mesenchymal stromal cells (UC-MSCs). After treatment with different cytostatic drugs, cells were transduced with adeno-associated virus (AAV) vectors that encode a nuclease or a repair donor to rescue EGFP expression through DSB-induced HDR. We show that transient cell-cycle arrest increased AAV transduction and AAV-mediated HDR up to six-fold in human cell lines and ten-fold in UC-MSCs, respectively. Targeted gene correction was observed in up to 34% of transduced cells. Both the absolute and the relative gene-targeting frequencies were dependent on the cell type, the cytostatic drug, the vector dose, and the nuclease. Treatment of cells with the cyclin-dependent kinase inhibitor indirubin-3'-monoxime was especially promising as this compound combined high stimulatory effects with minimal cytotoxicity. In conclusion, indirubin-3'-monoxime significantly improved AAV transduction and the efficiency of AAV/ZFN-mediated gene targeting and may thus represent a promising compound to enhance DSB-mediated genome engineering in human stem cells, such as UC-MSCs, which hold great promise for future clinical applications.
Collapse
Affiliation(s)
- Shamim H Rahman
- Laboratory of Cell and Gene Therapy, Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Magwood AC, Mundia MM, Baker MD. High levels of wild-type BRCA2 suppress homologous recombination. J Mol Biol 2012; 421:38-53. [PMID: 22579622 DOI: 10.1016/j.jmb.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022]
Abstract
Endogenous levels of the BRCA2 (breast cancer susceptibility 2) protein promote homologous recombination by regulating the essential strand exchange protein RAD51. To examine BRCA2 function in homologous recombination, we expressed human BRCA2 in control mouse hybridoma cells, as well as those that were depleted of endogenous Brca2 by small interfering RNA. With moderate human BRCA2 expression, homologous recombination was stimulated. Conversely, a higher level of BRCA2 reduced homologous recombination and DNA-damage-induced Rad51 foci formation. Cells expressing high levels of BRCA2 feature normal growth, increased sensitivity to mitomycin C, and increased illegitimate recombination. BRCA2-overexpressing cells are also characterized by suppression of p53 transcriptional regulation and a corresponding reduction in the expression of the p53-responsive genes Noxa and p21. Notably, in cells expressing high levels of BRCA2, small interfering RNA depletion of human BRCA2 or ectopic expression of Rad51 increases homologous recombination and decreases illegitimate recombination. Thus, high levels of wild-type BRCA2 perturb Rad51-mediated homologous recombination, and relatively normal recombination responses can be restored by rebalancing recombination factors.
Collapse
Affiliation(s)
- Alissa C Magwood
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
18
|
Optimizing the design of oligonucleotides for homology directed gene targeting. PLoS One 2011; 6:e14795. [PMID: 21483664 PMCID: PMC3071677 DOI: 10.1371/journal.pone.0014795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. Methodology/Principal Findings In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA) polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. Conclusion and Significance A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases) in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA.
Collapse
|
19
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
20
|
Delacôte F, Perez C, Guyot V, Mikonio C, Potrel P, Cabaniols JP, Delenda C, Pâques F, Duchateau P. Identification of genes regulating gene targeting by a high-throughput screening approach. J Nucleic Acids 2011; 2011:947212. [PMID: 21716659 PMCID: PMC3118287 DOI: 10.4061/2011/947212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/23/2011] [Indexed: 12/29/2022] Open
Abstract
Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.
Collapse
Affiliation(s)
- Fabien Delacôte
- Cellectis SA, 102 Avenue Gaston Roussel, 93340 Romainville Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liao HK, Essner JJ. Use of RecA fusion proteins to induce genomic modifications in zebrafish. Nucleic Acids Res 2011; 39:4166-79. [PMID: 21266475 PMCID: PMC3105420 DOI: 10.1093/nar/gkq1363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The bacterial recombinase RecA forms a nucleic acid-protein filament on single-stranded (ss) DNA during the repair of double-strand breaks (DSBs) that efficiently undergoes a homology search and engages in pairing with the complementary DNA sequence. We utilized the pairing activity of RecA–DNA filaments to tether biochemical activities to specific chromosomal sites. Different filaments with chimeric RecA proteins were tested for the ability to induce loss of heterozygosity at the golden locus in zebrafish after injection at the one-cell stage. A fusion protein between RecA containing a nuclear localization signal (NLS) and the DNA-binding domain of Gal4 (NLS-RecA-Gal4) displayed the most activity. Our results demonstrate that complementary ssDNA filaments as short as 60 nucleotides coated with NLS-RecA-Gal4 protein are able to cause loss of heterozygosity in ∼3% of the injected embryos. We demonstrate that lesions in ∼9% of the F0 zebrafish are transmitted to subsequent generations as large chromosomal deletions. Co-injection of linear DNA with the NLS-RecA-Gal4 DNA filaments promotes the insertion of the DNA into targeted genomic locations. Our data support a model whereby NLS-RecA-Gal4 DNA filaments bind to complementary target sites on chromatin and stall DNA replication forks, resulting in a DNA DSB.
Collapse
Affiliation(s)
- Hsin-Kai Liao
- Department of Genetics, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
22
|
Moscariello M, Sutherland B. Saccharomyces cerevisiae-based system for studying clustered DNA damages. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:447-456. [PMID: 20552213 PMCID: PMC2906745 DOI: 10.1007/s00411-010-0303-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.
Collapse
Affiliation(s)
- Mario Moscariello
- Brookhaven National Laboratory, Biology Department, Upton, NY 11973, USA.
| | | |
Collapse
|
23
|
Ochiai H, Fujita K, Suzuki KI, Nishikawa M, Shibata T, Sakamoto N, Yamamoto T. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 2010; 15:875-85. [PMID: 20604805 DOI: 10.1111/j.1365-2443.2010.01425.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We showed that engineered zinc-finger nucleases (ZFNs), which consist of a zinc-finger DNA-binding array and a nuclease domain of the restriction enzyme FokI, can introduce mutations at a specific genomic site in the sea urchin embryo. Using bacterial one-hybrid screening with zinc-finger randomized libraries and a single-strand annealing assay in cultured cells, ZFNs targeting the sea urchin Hemicentrotus pulcherrimus homologue of HesC (HpHesC) were efficiently selected. Consistent with the phenotype observed in embryos injected with an antisense morpholino oligonucleotide against HpHesC, an increase in the primary mesenchyme cell population was observed in embryos injected with a pair of HpHesC ZFN mRNAs. In addition, sequence analysis of the mutations showed that deletions and insertions occurred at the HpHesC target site in the embryos injected with the HpHesC ZFN mRNAs. These results suggest that targeted gene disruption using ZFNs is feasible for the sea urchin embryo.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Bedayat B, Abdolmohamadi A, Ye L, Maurisse R, Parsi H, Schwarz J, Emamekhoo H, Nicklas JA, O'Neill JP, Gruenert DC. Sequence-specific correction of genomic hypoxanthine-guanine phosphoribosyl transferase mutations in lymphoblasts by small fragment homologous replacement. Oligonucleotides 2010; 20:7-16. [PMID: 19995283 DOI: 10.1089/oli.2009.0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oligo/polynucleotide-based gene targeting strategies provide new options for achieving sequence-specific modification of genomic DNA and have implications for the development of new therapies and transgenic animal models. One such gene modification strategy, small fragment homologous replacement (SFHR), was evaluated qualitatively and quantitatively in human lymphoblasts that contain a single base substitution in the hypoxanthine-guanine phosphoribosyl transferase (HPRT1) gene. Because HPRT1 mutant cells are readily discernable from those expressing the wild type (wt) gene through growth in selective media, it was possible to identify and isolate cells that have been corrected by SFHR. Transfection of HPRT1 mutant cells with polynucleotide small DNA fragments (SDFs) comprising wild type HPRT1 (wtHPRT1) sequences resulted in clones of cells that grew in hypoxanthine-aminopterin-thymidine (HAT) medium. Initial studies quantifying the efficiency of correction in 3 separate experiments indicate frequencies ranging from 0.1% to 2%. Sequence analysis of DNA and RNA showed correction of the HPRT1 mutation. Random integration was not indicated after transfection of the mutant cells with an SDF comprised of green fluorescent protein (GFP) sequences that are not found in human genomic DNA. Random integration was also not detected following Southern blot hybridization analysis of an individual corrected cell clone.
Collapse
Affiliation(s)
- Babak Bedayat
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schaefer DG, Delacote F, Charlot F, Vrielynck N, Guyon-Debast A, Le Guin S, Neuhaus JM, Doutriaux MP, Nogué F. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair (Amst) 2010; 9:526-33. [PMID: 20189889 DOI: 10.1016/j.dnarep.2010.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 01/16/2023]
Abstract
Gene targeting (GT) is a major tool for basic and applied research during which the transforming DNA, which shares sequence homology with a chromosomal target, integrates at the corresponding locus by homologous recombination (HR). In eukaryotes, GT recruits enzymes from the HR-mediated double strand break repair pathway. Different mechanisms of HR have been described which depend on the Rad52 epistasis group of genes, but which specific mechanism is used by the cell for GT remains unclear. In Saccharomyces cerevisiae, the RAD52 protein is essential for GT, and the RAD51 protein plays a minor role. In filamentous fungi and animal cells, however, GT depends on RAD51 and is weakly affected by suppression of RAD52. Genetic evidence also indicates that the non-homologous end-joining pathway of DSB repair has a negative impact on GT efficiencies, but how the balance between these two pathways is controlled is poorly understood. Here, we have examined the role of RAD51 in the only plant that exhibits high GT frequencies, the model bryophyte Physcomitrella patens. Our results show that the two RAD51 proteins have partially redundant functions in the maintenance of genome integrity and resistance to ionizing radiation. Furthermore, we demonstrate that loss of function of the two RAD51 proteins completely abolishes GT and strongly increases illegitimate integration rates in this moss. These findings demonstrate for the first time in plant the critical role of RAD51 in controlling the balance between targeted and random integration events observed upon transgenesis, and confirm that P. patens is a particularly interesting tool for studying GT in higher eukaryotes.
Collapse
Affiliation(s)
- D G Schaefer
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes, UR254, INRA, Route de St Cyr, 78026 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Anand T, Vijayaraghavan R, Bansal I, Bhattacharya BK. Role of inflammatory cytokines and DNA damage repair proteins in sulfur mustard exposed mice liver. Toxicol Mech Methods 2009; 19:356-62. [PMID: 19778212 DOI: 10.1080/15376510902903766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (bis-(2-chloroethyl) sulfide) is an alkylating agent, and produces blisters on skin and causes systemic toxicity and DNA strand breaks. The mechanism and role of inflammatory cytokines, receptors, and DNA damage signaling pathway specific genes were studied in sulfur mustard (SM) exposed mouse liver. Female mice were exposed percutaneously with 1.0 L.D50 of SM (8.1 mg/kg body weight). Inflammatory cytokine gene expression profiles were determined at 1 and 3 days post-exposure to SM and DNA damage signaling pathway specific, double strand break repair proteins gene expression profile at 1, 3, and 7 days were examined by DNA microarrays and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Anti-inflammatory cytokines and receptors were down-regulated from day 1 to day 3. Pro-inflammatory genes TNF-alpha, TNF receptors were up-regulated from day 1 to day 3. Double strand DNA break repair proteins Rad23, Rad50, Rad51, Rad52, and Rad54l were down-regulated from day 1 to day 7. This result indicates sulfur mustard causes inflammatory response, activates the cascade of events in the signal transduction pathway, and promotes irreversible double strand DNA breaks in chromosomal DNA, which is leading to cell death.
Collapse
Affiliation(s)
- T Anand
- Defence Research & Development Establishment, Gwalior, India.
| | | | | | | |
Collapse
|
27
|
Liu C, Wang Z, Huen MSY, Lu LY, Liu DP, Huang JD. Cell death caused by single-stranded oligodeoxynucleotide-mediated targeted genomic sequence modification. Oligonucleotides 2009; 19:281-6. [PMID: 19653881 DOI: 10.1089/oli.2009.0191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted gene repair directed by single-stranded oligodeoxynucleotides (ssODNs) offers a promising tool for biotechnology and gene therapy. However, the methodology is currently limited by its low frequency of repair events, variability, and low viability of "corrected" cells. In this study, we showed that during ssODN-mediated gene repair reaction, a significant population of corrected cells failed to divide, and were much more prone to undergo apoptosis, as marked by processing of caspases and PARP-1. In addition, we found that apoptotic cell death triggered by ssODN-mediated gene repair was largely independent of the ATM/ATR kinase. Furthermore, we examined the potential involvement of the mismatch repair (MMR) proteins in this "correction reaction-induced" cell death. Result showed that while defective MMR greatly enhanced the efficiency of gene correction, compromising the MMR system did not yield any viable corrected clone, indicating that the MMR machinery, although plays a critical role in determining ssODN-directed repair, was not involved in the observed cellular genotoxic responses.
Collapse
Affiliation(s)
- Chenli Liu
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Matsunami K, Otsuka H, Xu H, Firdawes S, Yamamoto A, Ishimaru A, Fukuzawa M, Miyagawa S. Molecular cloning of pig Rad51, Rad52, and Rad54 genes, which are involved in homologous recombination machinery. Transplant Proc 2008; 40:2776-8. [PMID: 18929859 DOI: 10.1016/j.transproceed.2008.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The low rate of homologous recombination in somatic cells is considered to be an urgent issue. Therefore, we molecularly cloned three genes that relate to efficient homologous recombination. METHODS Polymerase chain reaction (PCR) was performed to isolate candidate cDNA fragments from a pig spleen cDNA library with the corresponding primer sets deduced from multiple alignment analysis of other mammalian genes. A 5'- and 3'-RACE PCR experiment was performed to determine the complete cDNA sequences. RESULTS The complete cDNA sequences of the pig RAD51, RAD52, and RAD54 genes, which are closely related to homologous recombination events, were identified using molecular cloning technique. The cDNA sequences of three genes were successfully isolated by PCR-based methods. As a result, we determined the sequences of pig RAD51 (1663 bp, 339 aa), RAD52 (1884 bp, 406 aa), and RAD54 (2884 bp, 747 aa). The nucleic acid sequence homologies of the pig RAD51, RAD52, and RAD54 genes compared with the corresponding human genes were 92.9%, 77.3%, and 90.0%; the corresponding amino acid sequence homologies were 98.8%, 71.1%, and 95.0%, respectively. CONCLUSION The knockout of alpha-1,3-galactosyltransferase in pigs resulted in a drastic reduction in xenoantigenicity. However, other xenoantigens, in particular, the non-Gal antigens, also need to be down-regulated. Gene transfer to alter expression levels of these recombination-related molecules and/or ex ante evaluation of expression profiles of these genes in primary cultures of somatic cells constitute a new approach to enhancing homologous recombination events during the production of gene knockout pigs.
Collapse
Affiliation(s)
- K Matsunami
- Division of Organ Transplantation, Department of Molecular therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee SA, Roques C, Magwood AC, Masson JY, Baker MD. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression. DNA Repair (Amst) 2008; 8:170-81. [PMID: 18992372 DOI: 10.1016/j.dnarep.2008.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 08/11/2008] [Accepted: 10/01/2008] [Indexed: 01/15/2023]
Abstract
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.
Collapse
Affiliation(s)
- Shauna A Lee
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1 Canada
| | | | | | | | | |
Collapse
|
30
|
Bertolini LR, Bertolini M, Maga EA, Madden KR, Murray JD. Increased gene targeting in Ku70 and Xrcc4 transiently deficient human somatic cells. Mol Biotechnol 2008; 41:106-14. [PMID: 18759011 DOI: 10.1007/s12033-008-9098-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 08/13/2008] [Indexed: 11/30/2022]
Abstract
The insertion of foreign DNA at a specific genomic locus directed by homologous DNA sequences, or gene targeting, is an inefficient process in mammalian somatic cells. Given the key role of non-homologous end joining (NHEJ) pathway in DNA double-strand break (DSB) repair in mammalian cells, we investigated the effects of decreasing NHEJ protein levels on gene targeting. Here we demonstrate that the transient knockdown of integral NHEJ proteins, Ku70 and Xrcc4, by RNAi in human HCT116 cells has a remarkable effect on gene targeting/random insertions ratios. A timely transfection of an HPRT-based targeting vector after RNAi treatment led to a 70% reduction in random integration events and a 33-fold increase in gene targeting at the HPRT locus. These findings bolster the role of NHEJ proteins in foreign DNA integration in vivo, and demonstrate that their transient depletion by RNAi is a viable approach to increase the frequency of gene targeting events. Understanding how foreign DNA integrates into a cell's genome is important to advance strategies for biotechnology and genetic medicine.
Collapse
|
31
|
Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 2008; 7:686-93. [PMID: 18243065 DOI: 10.1016/j.dnarep.2007.12.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 12/19/2022]
Abstract
The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.
Collapse
Affiliation(s)
- Hannah L Klein
- Department of Biochemistry, New York University School of Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
32
|
Lu H, Yue J, Meng X, Nickoloff JA, Shen Z. BCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage. Nucleic Acids Res 2007; 35:7160-70. [PMID: 17947333 PMCID: PMC2175368 DOI: 10.1093/nar/gkm732] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Homologous recombination (HR) is critical for maintaining genome stability through precise repair of DNA double-strand breaks (DSBs) and restarting stalled or collapsed DNA replication forks. HR is regulated by many proteins through distinct mechanisms. Some proteins have direct enzymatic roles in HR reactions, while others act as accessory factors that regulate HR enzymatic activity or coordinate HR with other cellular processes such as the cell cycle. The breast cancer susceptibility gene BRCA2 encodes a critical accessory protein that interacts with the RAD51 recombinase and this interaction fluctuates during the cell cycle. We previously showed that a BRCA2- and p21-interacting protein, BCCIP, regulates BRCA2 and RAD51 nuclear focus formation, DSB-induced HR and cell cycle progression. However, it has not been clear whether BCCIP acts exclusively through BRCA2 to regulate HR and whether BCCIP also regulates the alternative DSB repair pathway, non-homologous end joining. In this study, we found that BCCIP fragments that interact with BRCA2 or with p21 each inhibit DSB repair by HR. We further show that transient down-regulation of BCCIP in human cells does not affect non-specific integration of transfected DNA, but significantly inhibits homology-directed gene targeting. Furthermore, human HT1080 cells with constitutive down-regulation of BCCIP display increased levels of spontaneous single-stranded DNA (ssDNA) and DSBs. These data indicate that multiple BCCIP domains are important for HR regulation, that BCCIP is unlikely to regulate non-homologous end joining, and that BCCIP plays a critical role in resolving spontaneous DNA damage.
Collapse
Affiliation(s)
- Huimei Lu
- Department of Radiation Oncology, The Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
33
|
Rukść A, Birmingham EC, Baker MD. Altered DNA repair and recombination responses in mouse cells expressing wildtype or mutant forms of RAD51. DNA Repair (Amst) 2007; 6:1876-89. [PMID: 17719855 DOI: 10.1016/j.dnarep.2007.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/21/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022]
Abstract
Rad51, a homolog of Esherichia coli RecA, is a DNA-dependent ATPase that binds cooperatively to single-stranded DNA forming a nucleoprotein filament, which functions in the strand invasion step of homologous recombination. In this study, we examined DNA repair and recombination responses in mouse hybridoma cells stably expressing wildtype Rad51, or Walker box lysine variants, Rad51-K133A or Rad51-K133R, deficient in ATP binding and ATP hydrolysis, respectively. A unique feature is the recovery of stable transformants expressing Rad51-K133A. Augmentation of the endogenous pool of Rad51 by over-expression of transgene-encoded wildtype Rad51 enhances cell growth and gene targeting, but has minimal effects on cell survival to DNA damage induced by ionizing radiation (IR) or mitomycin C (MMC). Whereas expression of Rad51-K133A impedes growth, in general, neither Rad51-K133A nor Rad51-K133R significantly affected survival to IR- or MMC-induced damage, but did significantly reduce gene targeting. Expression of wildtype Rad51, Rad51-K133A or Rad51-K133R did not affect the frequency of intrachromosomal homologous recombination. However, in both gene targeting and intrachromosomal homologous recombination, wildtype and mutant Rad51 transgene expression altered the recombination mechanism: in gene targeting, wildtype Rad51 expression stimulates crossing over, while expression of Rad51-K133A or Rad51-K133R perturbs gene conversion; in intrachromosomal homologous recombination, cell lines expressing wildtype Rad51, Rad51-K133A or Rad51-K133R display increased deletion formation by intrachromosomal homologous recombination. The results suggest that ATP hydrolysis by Rad51 is more important for some homologous recombination functions than it is for other aspects of DNA repair.
Collapse
Affiliation(s)
- Ania Rukść
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
34
|
Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics. BMC Mol Biol 2007; 8:30. [PMID: 17493262 PMCID: PMC1884169 DOI: 10.1186/1471-2199-8-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/10/2007] [Indexed: 12/16/2022] Open
Abstract
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes.
Collapse
|
35
|
Vasileva A, Linden RM, Jessberger R. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res 2006; 34:3345-60. [PMID: 16822856 PMCID: PMC1488886 DOI: 10.1093/nar/gkl455] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ∼5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR.
Collapse
Affiliation(s)
- Ana Vasileva
- Department of Gene and Cell Medicine, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - R. Michael Linden
- Department of Gene and Cell Medicine, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - Rolf Jessberger
- Department of Gene and Cell Medicine, Mount Sinai School of MedicineNew York, NY 10029, USA
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology01307 Dresden, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
So S, Nomura Y, Adachi N, Kobayashi Y, Hori T, Kurihara Y, Koyama H. Enhanced gene targeting efficiency by siRNA that silences the expression of the Bloom syndrome gene in human cells. Genes Cells 2006; 11:363-71. [PMID: 16611240 DOI: 10.1111/j.1365-2443.2006.00944.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene targeting via homologous recombination is a powerful tool for studying gene function, but the targeting efficiency in human cell lines is too low for generating knockout mutants. Several cell lines null for the gene responsible for Bloom syndrome, BLM, have shown elevated targeting efficiencies. Therefore, we reasoned that gene targeting would be enhanced by transient suppression of BLM expression by RNA interference. To test this, we constructed a gene correction assay system to measure gene targeting frequencies using a disrupted hypoxanthine phosphoribosyltransferase (HPRT) locus in the human HT1080 cell line, and examined the effect of small interfering RNA (siRNA) for BLM on gene targeting. When HPRT-null cells pretreated with BLM siRNA were co-transfected with the siRNA and a gene correction vector, the gene targeting frequency was elevated three-fold, while the random integration frequency was marginally affected. Remarkably, in BLM heterozygous (+/-) cells derived from HPRT-null cells, the BLM siRNA treatment gave more than five-fold higher targeting frequencies, even with one-tenth the amount of BLM siRNA used for BLM+/+ cells. Furthermore, in the human pre-B cell line Nalm-6, the siRNA treatment enhanced gene targeting 6.3-fold and > 5.8-fold at the HPRT and adenine phosphoribosyltransferase (APRT) loci, respectively. These results indicate that transient suppression of BLM expression by siRNA stimulates gene targeting in human cells, facilitating a further improvement of gene targeting protocols for human cell lines.
Collapse
Affiliation(s)
- Sairei So
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD, Kleer CG. The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia 2006; 7:1011-9. [PMID: 16331887 PMCID: PMC1502020 DOI: 10.1593/neo.05472] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/26/2005] [Accepted: 08/29/2005] [Indexed: 01/02/2023] Open
Abstract
The Polycomb group protein EZH2 is a transcriptional repressor involved in controlling cellular memory and has been linked to aggressive and metastatic breast cancer. Here we report that EZH2 decreased the expression of five RAD51 paralog proteins involved in homologous recombination (HR) repair of DNA double-strand breaks (RAD51B/RAD51L1, RAD51C/RAD51L2, RAD51D/RAD51L3, XRCC2, and XRCC3), but did not affect the levels of DMC1, a gene that only functions in meiosis. EZH2 overexpression impaired the formation of RAD51 repair foci at sites of DNA breaks. Overexpression of EZH2 resulted in decreased cell survival and clonogenic capacity following DNA damage induced independently by etoposide and ionizing radiation. We suggest that EZH2 may contribute to breast tumorigenesis by specific downregulation of RAD51-like proteins and by impairment of HR repair. We provide mechanistic insights into the function of EZH2 in mammalian cells and uncover a link between EZH2, a regulator of homeotic gene expression, and HR DNA repair. Our study paves the way for exploring the blockade of EZH2 overexpression as a novel approach for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Michael Zeidler
- Department of Pathology, University of Michigan, Arbor, MI, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Michigan, Arbor, MI, USA
- Comprehensive Cancer and Geriatrics Center, University of Michigan, Arbor, MI, USA
| | - Qi Cao
- Department of Pathology, University of Michigan, Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Arbor, MI, USA
- Comprehensive Cancer and Geriatrics Center, University of Michigan, Arbor, MI, USA
- Department of Urology, University of Michigan, Arbor, MI, USA
| | | | - Sofia D. Merajver
- Department of Pathology, University of Michigan, Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Arbor, MI, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan, Arbor, MI, USA
- Comprehensive Cancer and Geriatrics Center, University of Michigan, Arbor, MI, USA
| |
Collapse
|
38
|
Di Primio C, Galli A, Cervelli T, Zoppè M, Rainaldi G. Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res 2005; 33:4639-48. [PMID: 16106043 PMCID: PMC1187822 DOI: 10.1093/nar/gki778] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
When exogenous DNA is stably introduced in mammalian cells, it is typically integrated in random positions, and only a minor fraction enters a pathway of homologous recombination (HR). The complex Rad51/Rad52 is a major player in the management of exogenous DNA in eukaryotic organisms and plays a critical role in the choice of repair system. In Saccharomyces cerevisiae, the pathway of choice is HR, mediated by Rad52 (ScRad52), which differs slightly from its human homologue. Here, we present an approach that utilizes ScRad52 to enhance HR in human cells containing a specific substrate for recombination. Clones of HeLa cells were produced expressing functional ScRad52. These cells showed enhanced resistance to DNA damaging treatments and revealed a different distribution of Rad51 foci (a marker of recombination complex formation). More significantly, ScRad52 expression resulted in an up to 37-fold increase in gene targeting by HR. In the same cells, random integration of exogenous DNA was significantly reduced, consistent with the view that HR and non-homologous end joining are alternative competing pathways. Expression of ScRad52 could offer a major improvement for experiments requiring gene targeting by HR, both in basic research and in gene therapy studies.
Collapse
Affiliation(s)
| | | | | | | | - Giuseppe Rainaldi
- To whom correspondence should be addressed. Tel: +39 050 3153108; Fax: +39 050 3153327;
| |
Collapse
|
39
|
Mon H, Kusakabe T, Lee JM, Kawaguchi Y, Koga K. In vivo DNA double-strand breaks enhance gene targeting in cultured silkworm cells. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:99-106. [PMID: 15364292 DOI: 10.1016/j.cbpc.2004.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 02/04/2023]
Abstract
Alteration of genomic information through homologous recombination (HR) is a powerful tool for reverse genetics in bacteria, yeast, and mice. The low frequency of HR is, however, a major obstacle to achieve efficient gene targeting. In this study, we have developed an assay system for investigating the frequency of gene targeting in cultured silkworm cells using a firefly luciferase gene as a reporter. The introduction of a DNA double-strand break (DSB) either in the chromosomal target locus or in the targeting construct drastically increased the frequency of gene targeting. Interestingly, the inhibition of poly(ADP-ribose) polymerase (PARP), a protein known to play an important role in overall suppression of the HR pathway, stimulated the targeting efficiency, whereas the overexpression of two silkworm RecA homologs, BmRad51 and BmDmc1, had no effect. The presently devised assay system may serve as a useful tool to improve the gene targeting efficiency in the silkworm (Bombyx mori).
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Silkworm Science, Faculty of Agriculture, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
During the last decade, chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligodeoxynucleotides have been used to make permanent and specific sequence changes in the genome, with the ultimate goal of curing human genetic disorders caused by mutations. There have been large variations observed in the rate of gene repair in these studies. This has been due, at least in part, to the lack of standardized assay conditions and the paucity of mechanistic studies in the early developmental stages. Previously, it was proposed that strand pairing is the rate-limiting step and mismatch DNA repair is involved in the gene repair process. We propose an alternative model, in which an oligonucleotide is assimilated to the target DNA during active transcription, leading to formation of a transient D-loop. The trafficking of RNA polymerase is interrupted by the D-loop, and the stalled RNA polymerase complex may signal for recruitment of DNA repair proteins, including transcription-coupled DNA repair and nucleotide-excision repair. Thus, oligonucleotides can be considered as a class of DNA-damaging agents that cause a transient but major structural change in DNA. Understanding of the recognition and repair pathways to process this unusual DNA structure may have relevance in physiologic processes, transcription, and DNA replication.
Collapse
Affiliation(s)
- Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
41
|
Yoo S, McKee BD. Functional analysis of the Drosophila Rad51 gene (spn-A) in repair of DNA damage and meiotic chromosome segregation. DNA Repair (Amst) 2005; 4:231-42. [PMID: 15590331 DOI: 10.1016/j.dnarep.2004.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 09/20/2004] [Accepted: 09/24/2004] [Indexed: 11/24/2022]
Abstract
Rad51 is a crucial enzyme in DNA repair, mediating the strand invasion and strand exchange steps of homologous recombination (HR). Mutations in the Drosophila Rad51 gene (spn-A) disrupt somatic as well as meiotic double-strand break (DSB) repair, similar to fungal Rad51 genes. However, the sterility of spn-A mutant females prevented a thorough analysis of the role of Rad51 in meiosis. In this study, we generated transgenic animals that express spn-A dsRNA under control of an inducible promoter, and examined the effects of inhibiting expression of spn-A on DNA repair, meiotic recombination and meiotic chromosome pairing and segregation. We found that depletion of spn-A mRNA had no effect on the viability of non-mutagen-treated transgenic animals but greatly reduced the survival of larvae that were exposed to the radiomimetic drug MMS, in agreement with the MMS and X-ray sensitivity of spn-A mutant animals. We also found that increases in dose of spn-A gene enhanced larval resistance to MMS exposure, suggesting that at high damage levels, Rad51 protein levels may be limiting for DNA repair. spn-A RNAi strongly stimulated X-X nondisjunction and decreased recombination along the X in female meiosis, consistent with a requirement of Rad51 in meiotic recombination. However, neither RNAi directed against the spn-A mRNA nor homozygosity for a spn-A null mutation had any effect on male fertility or on X-Y segregation in male meiosis, indicating that Rad51 likely plays no role in male meiotic chromosome pairing. Our results support a central role for Rad51 in HR in both somatic and meiotic DSB repair, but indicate that Rad51 in Drosophila is dispensable for meiotic chromosome pairing. Our results also provide the first demonstration that RNAi can be used to inhibit the functions of meiotic genes in Drosophila.
Collapse
Affiliation(s)
- Siuk Yoo
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Urbach A, Schuldiner M, Benvenisty N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. ACTA ACUST UNITED AC 2005; 22:635-41. [PMID: 15277709 DOI: 10.1634/stemcells.22-4-635] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human embryonic stem (ES) cells are pluripotent cells derived from blastocyst-stage embryos. It has been suggested that these cells should play a major role in transplantation medicine and be able to advance our knowledge in human embryology. We propose that these cells should also play a vital role in the creation of models of human disorders. This aspect would be most valuable where animal models failed to faithfully recapitulate the human phenotype. Lesch-Nyhan disease is caused by a mutation in the HPRT1 gene that triggers an overproduction of uric acid, causing gout-like symptoms and urinary stones, in addition to neurological disorders. Due to biochemical differences between humans and rodents, a mouse lacking the HPRT expression will fail to accumulate uric acid. In this research we demonstrate a model for Lesch-Nyhan disease by mutating the HPRT1 gene in human ES cells using homologous recombination. We have verified the mutation in the HPRT1 allele at the DNA and RNA levels. By using selection media, we show that HPRT1 activity is abolished in the mutant cells, and the HPRT1-cells show a higher rate of uric acid accumulation than the wild-type cells. Therefore, these cells recapitulate to some extent the characteristics of Lesch-Nyhan syndrome and can help researchers further investigate this genetic disease and analyze drugs that will prevent the onset of its symptoms. We therefore suggest that human diseases may be modeled using human ES cells.
Collapse
Affiliation(s)
- Achiya Urbach
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
43
|
Richardson C. RAD51, genomic stability, and tumorigenesis. Cancer Lett 2005; 218:127-39. [PMID: 15670890 DOI: 10.1016/j.canlet.2004.08.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 08/06/2004] [Indexed: 12/19/2022]
Abstract
Genomic instability is characteristic of malignant cells, and a strong correlation exists between abnormal karyotype and tumorigenicity. Increased expression of the homologous recombination and DNA repair protein Rad51 has been reported in immortalized cell lines and multiple primary tumor cell types which could alter recombination pathways to contribute to the chromosomal rearrangements found in these cells. In addition, Rad51 participates in a complex network of interactions that includes DNA damage sensors, tumor suppressors, and cell cycle and apoptotic regulators, and mutation of many of these proteins have also been associated with tumor initiation or progression. Insights into the connection between disregulated Rad51 and malignant phenotype indicate that Rad51 is a potential target for new anti-cancer regimens including those that use siRNA technology.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Pathology, Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1150 St Nicholas Ave., New York, NY 10032, USA.
| |
Collapse
|
44
|
Yun S, Lie-A-Cheong C, Porter ACG. Discriminatory suppression of homologous recombination by p53. Nucleic Acids Res 2004; 32:6479-89. [PMID: 15601996 PMCID: PMC545454 DOI: 10.1093/nar/gkh986] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/19/2004] [Accepted: 11/19/2004] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is used in vertebrate somatic cells for essential, RAD51-dependent, repair of DNA double-strand-breaks (DSBs), but inappropriate HR can cause genome instability. A transcriptional transactivation-independent role for p53 in suppressing HR has been established, but is not detected in all HR assays. To address the basis of such exceptions, and the possibility that suppression by p53 may be discriminatory, we have conducted a controlled comparison of the effects of p53 depletion on three different kinds of HR. We show that, within the same cells, p53 depletion promotes both intra-chromosomal HR (ICHR) and extra-chromosomal HR (ECHR), but not homologous DNA integration (gene targeting; GT). This conclusion holds true for both spontaneous and DSB-induced ICHR and GT. We show further that non-conservative ICHR is more susceptible than conservative ICHR to inhibition by p53. These results provide strong evidence that p53 can discriminate between different forms of HR and, despite the fact that GT is used experimentally for gene disruption, is consistent with the possibility that p53 preferentially suppresses genome-destabilizing forms of HR. While the mechanism of suppression by p53 remains unclear, our data suggest that it is independent of mismatch repair and of changes in RAD51 protein levels.
Collapse
Affiliation(s)
- Sheng Yun
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
45
|
Feederle R, Delecluse HJ, Rouault JP, Schepers A, Hammerschmidt W. Efficient somatic gene targeting in the lymphoid human cell line DG75. Gene 2004; 343:91-7. [PMID: 15563834 DOI: 10.1016/j.gene.2004.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/09/2004] [Indexed: 11/21/2022]
Abstract
Among the different approaches used to define the function of a protein of interest, alteration and/or deletion of its encoding gene is the most direct strategy. Homologous recombination between the chromosomal gene locus and an appropriately designed targeting vector results in an alteration or knockout of the gene of interest. Homologous recombination is easily performed in yeast or in murine embryonic stem cells, but is cumbersome in more differentiated and diploid somatic cell lines. Here we describe an efficient method for targeting both alleles of a complex human gene locus in DG75 cells, a cell line of lymphoid origin. The experimental approach included a conditional knockout strategy with three genotypic markers, which greatly facilitated the generation and phenotypic identification of targeted recombinant cells. The vector was designed such that it could be reused for two consecutive rounds of recombination to target both alleles. The human DG75 cell line appears similar to the chicken DT40 pre B-cell line, which supports efficient homologous recombination. Therefore, the DG75 cell line is a favorable addition to the limited number of cell lines amenable to gene targeting and should prove useful for studying gene function through targeted gene alteration or deletion in human somatic cells.
Collapse
Affiliation(s)
- Regina Feederle
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistr. 25, Munich D-81377, Germany
| | | | | | | | | |
Collapse
|
46
|
Carpenter AJ, Porter ACG. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell 2004; 15:5700-11. [PMID: 15456904 PMCID: PMC532048 DOI: 10.1091/mbc.e04-08-0732] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.
Collapse
Affiliation(s)
- Adam J Carpenter
- Gene Targeting Group, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London W12 ONN, United Kingdom
| | | |
Collapse
|
47
|
Brachman EE, Kmiec EB. DNA replication and transcription direct a DNA strand bias in the process of targeted gene repair in mammalian cells. J Cell Sci 2004; 117:3867-74. [PMID: 15265980 DOI: 10.1242/jcs.01250] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repair of point mutations can be directed by modified single-stranded DNA oligonucleotides and regulated by cellular activities including homologous recombination, mismatch repair and transcription. Now, we report that DNA replication modulates the gene repair process by influencing the frequency with which either DNA strand is corrected. An SV40-virus-based system was used to investigate the role of DNA synthesis on gene repair in COS-1 cells. We confirm that transcription exerts a strand bias on the gene repair process even when correction takes place on actively replicating templates. We were able to distinguish between the influences of transcription and replication on strand bias by changing the orientation of a gene encoding enhanced green fluorescent protein relative to the origin of replication, and confirmed the previously observed bias towards the untranscribed strand. We report that DNA replication can increase the level of untranscribed strand preference only if that strand also serves as the lagging strand in DNA synthesis. Furthermore, the effect of replication on gene repair frequency and strand bias appears to be independent of certain mismatched base pairs and oligonucleotide length.
Collapse
Affiliation(s)
- Erin E Brachman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
48
|
Djuzenova C, Mühl B, Schakowski R, Oppitz U, Flentje M. Normal expression of DNA repair proteins, hMre11, Rad50 and Rad51 but protracted formation of Rad50 containing foci in X-irradiated skin fibroblasts from radiosensitive cancer patients. Br J Cancer 2004; 90:2356-63. [PMID: 15150571 PMCID: PMC2409526 DOI: 10.1038/sj.bjc.6601878] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 03/17/2004] [Accepted: 03/25/2004] [Indexed: 12/04/2022] Open
Abstract
About 5% of oncology patients treated by radiation therapy develop acute or late radiotoxic effects whose molecular mechanisms remain poorly understood. In this study, we evaluated the potential role of DNA repair proteins in the hypersensitivity of cancer patients to radiation therapy. The expression levels and focal nuclear distribution of DNA repair proteins, hMre11, Rad50 and Rad51 were investigated in skin fibroblasts strains derived from cancer patients with adverse early skin reaction to radiotherapy using Western blot and foci immunofluorescence techniques, respectively. Cells from cancer patients with normal reaction to radiotherapy as well as cells from apparently healthy subjects served as controls. Cellular radiosensitivity after in vitro irradiation was assessed by the clonogenic survival assay. The clonogenic survival assay and Western blot analysis of the DNA repair proteins did not reveal any abnormalities in cellular radiosensitivity in vitro and in protein expression levels or their migration patterns in the fibroblasts derived from cancer patients with hypersensitive reaction to radiotherapy. In contrast, in vitro irradiated cells from radiosensitive patients exhibited a significantly higher number of nuclei with focally concentrated Rad50 protein than in both control groups. The observed alteration of the distribution of radiation-induced Rad50 foci in cells derived from cancer patients with acute side reactions to radiotherapy might contribute to their radiation therapy outcome. These data suggest the usefulness of the Rad50 foci analysis for predicting clinical response of cancer patients to radiotherapy.
Collapse
Affiliation(s)
- C Djuzenova
- Klinik für Strahlentherapie der Universität Würzburg, Josef-Schneider-Strasse 11, D-97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Ardelt P, Kausch I, Böhle A. Gene and antisense therapy of bladder cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 539:155-83. [PMID: 15088904 DOI: 10.1007/978-1-4419-8889-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Peter Ardelt
- Department of Urology, Medical University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
50
|
Richardson C, Stark JM, Ommundsen M, Jasin M. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 2004; 23:546-53. [PMID: 14724582 DOI: 10.1038/sj.onc.1207098] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic instability is characteristic of tumor cells, and a strong correlation exists between abnormal karyotype and tumorigenicity. Increased expression of the homologous recombination and DNA repair protein Rad51 has been reported in immortalized and tumor cells, which could alter recombination pathways to contribute to the chromosomal rearrangements found in these cells. We used a genetic system to examine the potential for multiple double-strand breaks to lead to genome rearrangements in the presence of increased Rad51 expression. Analysis of repair revealed a novel class of products consistent with crossing over, involving gene conversion associated with an exchange of flanking markers leading to chromosomal translocations. Increased Rad51 also promoted aneuploidy and multiple chromosomal rearrangements. These data provide a link between elevated Rad51 protein levels, genome instability, and tumor progression.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Pathology, Institute of Cancer Genetics, Columbia University College of Physicians and Surgeons, 1150 St Nicholas Avenue, New York, NY 10032, USA.
| | | | | | | |
Collapse
|