1
|
Burke M, Blatt B, Teixeira J, Pérez‐López D, Yue Y, Pan X, Hakim C, Yao G, Herzog R, Duan D. Adeno-Associated Virus 8 and 9 Myofibre Type/Size Tropism Profiling Reveals Therapeutic Effect of Microdystrophin in Canines. J Cachexia Sarcopenia Muscle 2025; 16:e13681. [PMID: 39790021 PMCID: PMC11718217 DOI: 10.1002/jcsm.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/08/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) 8 and 9 are in clinical trials for treating neuromuscular diseases such as Duchenne muscular dystrophy (DMD). Muscle consists of myofibres of different types and sizes. However, little is known about the fibre type and fibre size tropism of AAV in large mammals. METHODS We evaluated fibre type- and size-specific transduction properties of AAV8 and AAV9 in 17 dogs that received systemic gene transfer (dose 1.94 ± 0.52 × 1014 vg/kg; injected at 2.86 ± 0.30 months; harvested at 20.79 ± 3.30 months). For AAV8, two DMD dogs and three carrier dogs received an alkaline phosphatase (AP) reporter vector, and five DMD dogs received a four-repeat microdystrophin (uDys) vector. For AAV9, one normal and one DMD dog received the AP vector, and five DMD dogs received a five-repeat uDys vector. Association between AAV transduction and the fibre type/size was studied in three muscles that showed mosaic transgene expression, including the biceps femoris, teres major and latissimus dorsi. RESULTS Transgene expression was detected in 30%-45% of myofibres. In the AP reporter vector-injected dogs, neither AAV8 nor AAV9 showed a statistically significant fibre type preference. Interestingly, AP expression was enriched in smaller fibres. In uDys-treated DMD dogs, slow and fast myofibres were equally transduced. Notably, uDys-expressing myofibres were significantly larger than uDys-negative myofibres irrespective of the AAV serotype (p < 0.0001). In AAV8 uDys vector-injected dogs, the mini-Feret diameter was 15%, 16% and 23% larger in uDys-positive slow, fast and hybrid fibres, respectively; the cross-sectional area was 30%, 34% and 46% larger in uDys-positive slow, fast and hybrid fibres, respectively. In AAV9 uDys vector-injected dogs, the mini-Feret diameter was 12%, 13% and 25% larger in uDys-positive slow, fast and hybrid fibres, respectively; the cross-sectional area was 25%, 28% and 59% larger in uDys-positive slow, fast and hybrid fibres, respectively. CONCLUSIONS Our studies suggest that AAV8 and AAV9 transduce fast and slow myofibres at equivalent efficiency. Importantly, uDys therapy effectively prevented dystrophic myofibre atrophy. Our study provides important insight into systemic muscle AAV delivery in large mammals and supports further development of uDys gene therapy for DMD.
Collapse
Affiliation(s)
- Matthew J. Burke
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Braiden M. Blatt
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - James A. Teixeira
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Dennis O. Pérez‐López
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of EngineeringUniversity of MissouriColumbiaMissouriUSA
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric ResearchIndiana UniversityIndianapolisIndianaUSA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Chemical and Biomedical Engineering, College of EngineeringUniversity of MissouriColumbiaMissouriUSA
- Department of Biomedical Sciences, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Neurology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
2
|
Song L, Tai Y, Li JX, Cao S, Han J, Liu XZ, Cao S, Li MY, Zuo HX, Xing Y, Ma J, Jin X. Mollugin inhibits IL-1β production by reducing zinc finger protein 91-regulated Pro-IL-1β ubiquitination and inflammasome activity. Int Immunopharmacol 2025; 145:113757. [PMID: 39642566 DOI: 10.1016/j.intimp.2024.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Rubia cordifolia L. has been formally included in the Chinese Pharmacopoeia and utilized for centuries as a traditional Chinese medicine. Mollugin, a quinone compound, is a major active compound extracted from Rubia cordifolia L. Mollugin was reported has multiple pharmacological activity, including anti-inflammatory, anti-tumor effects. However, the anti-inflammatory mechanism is not yet clear. In this study, we explored the anti-inflammatory activity and potential mechanism of mollugin in vitro and in vivo. MATERIALS AND METHODS We explored the mechanisms that mollugin suppressed IL-1β expression through ZFP91 using various assays, including western blot, immunofluorescence, immunoprecipitation, MTT, RT-PCR, and ELISA assays in vitro. In vivo, oral administration of DSS induced colitis in mice and intraperitoneal injection of alum induced peritonitis in mice. RESULTS First, the results demonstrated that mollugin dramatically suppressed IL-1β secretion through reducing ZFP91 in macrophages. Crucially, we proved that mollugin inhibited K63-linked Pro-IL-1β ubiquitination through ZFP91 and limitated Pro-IL-1β cleavage efficacy. In addition, ZFP91-mediated Caspase-8 inflammasome component expression was inhibited by mollugin. Furthermore, mollugin inhibited the assembly of the Caspase-8 inflammasome complex by downregulating ZFP91. In vivo studies further revealed that mollugin improved DSS-induced colitis and alum-induced peritonitis in mice by reducing ZFP91. Notely, mollugin significantly altered the abundance of gut flora in DSS-induced colitis mice, which in turn ameliorated the colitis. CONCLUSION We present a novel finding that mollugin inhibition of ZFP91 is a crucial regulatory step, preventing undue inflammatory responses and thereby maintaining immune homeostasis. The current study offers new insight into the development of anti-inflammatory therapeutics targeting ZFP91.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yi Tai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jia Xuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shen Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xin Zhe Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Sheng Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
3
|
Wang D, Yu X, Gao K, Li F, Li X, Pu H, Zhang P, Guo S, Wang W. Sweroside alleviates pressure overload-induced heart failure through targeting CaMKⅡδ to inhibit ROS-mediated NF-κB/NLRP3 in cardiomyocytes. Redox Biol 2024; 74:103223. [PMID: 38851078 PMCID: PMC11219961 DOI: 10.1016/j.redox.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Ongoing inflammation in the heart is positively correlated with adverse remodeling, characterized by elevated levels of cytokines that stimulate activation of cardiac fibroblasts. It was found that CaMKIIδ response to Ang II or TAC triggers the accumulation of ROS in cardiomyocytes, which subsequently stimulates NF-κB/NLRP3 and leads to an increase in IL-6, IL-1β, and IL-18. This is an important causative factor in the occurrence of adverse remodeling in heart failure. Sweroside is a biologically active natural iridoids extracted from Lonicerae Japonicae Flos. It shows potent anti-inflammatory and antioxidant activity in various cardiovascular diseases. In this study, we found that sweroside inhibited ROS-mediated NF-κB/NLRP3 in Ang II-treated cardiomyocytes by directly binding to CaMKIIδ. Knockdown of CaMKⅡδ abrogated the effect of sweroside regulation on NF-κB/NLRP3 in cardiomyocytes. AAV-CaMKⅡδ induced high expression of CaMKⅡδ in the myocardium of TAC/Ang II-mice, and the inhibitory effect of sweroside on TAC/Ang Ⅱ-induced elevation of NF-κB/NLRP3 was impeded. Sweroside showed significant inhibitory effects on CaMKIIδ/NF-κB/NLRP3 in cardiomyocytes from TAC/Ang Ⅱ-induced mice. This would be able to mitigate the adverse events of myocardial remodeling and contractile dysfunction at 8 weeks after the onset of the inflammatory response. Taken together, our findings have revealed the direct protein targets and molecular mechanisms by which sweroside improves heart failure, thereby supporting the further development of sweroside as a therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Dong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kuo Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fanghe Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haiyin Pu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peng Zhang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
4
|
Tang M, Zhong L, Rong H, Li K, Ye M, Peng J, Ge J. Efficient retinal ganglion cells transduction by retro-orbital venous sinus injection of AAV-PHP.eB in mature mice. Exp Eye Res 2024; 244:109931. [PMID: 38763353 DOI: 10.1016/j.exer.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Gene therapy is one of the strategies that may reduce or reverse progressive neurodegeneration in retinal neurodegenerative diseases. However, efficiently delivering transgenes to retinal ganglion cells (RGCs) remains hard to achieve. In this study, we innovatively investigated transduction efficiency of adeno-associated virus (AAV)-PHP.eB in murine RGCs by retro-orbital venous sinus injection. Five doses of AAV-PHP.eB-EGFP were retro-orbitally injected in venous sinus in adult C57/BL6J mice. Two weeks after administration, RGCs transduction efficiency was quantified by retinal flat-mounts and frozen section co-labeling with RGCs marker Rbpms. In addition, safety of this method was evaluated by RGCs survival rate and retinal morphology. To conform efficacy of this new method, AAV-PHP.eB-CNTF was administrated into mature mice through single retro-orbital venous injection after optic nerve crush injury to evaluate axonal elongation. Results indicated that AAV- PHP.eB readily crossed the blood-retina barrier and was able to transduce more than 90% of RGCs when total dose of virus reached 5 × 1010 vector genomes (vg). Moreover, this technique did not affect RGCs survival rate and retinal morphology. Furthermore, retro-orbital venous delivery of AAV-PHP.eB-CNTF effectively transduced RGCs, robustly promoted axonal regeneration after optic nerve crush injury. Thus, novel AAV-PHP.eB retro-orbital injection provides a minimally invasive and efficient route for transgene delivery in treatment of retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingjun Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Liuxueying Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Huifeng Rong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingyi Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
6
|
Cimen I, Natarelli L, Abedi Kichi Z, Henderson JM, Farina FM, Briem E, Aslani M, Megens RTA, Jansen Y, Mann-Fallenbuchel E, Gencer S, Duchêne J, Nazari-Jahantigh M, van der Vorst EPC, Enard W, Döring Y, Schober A, Santovito D, Weber C. Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice. Sci Transl Med 2023; 15:eadf3357. [PMID: 37910599 DOI: 10.1126/scitranslmed.adf3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.
Collapse
Affiliation(s)
- Ismail Cimen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - James M Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Floriana M Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 85152 Planegg-Martinsried, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, Netherlands
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Elizabeth Mann-Fallenbuchel
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Johan Duchêne
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 85152 Planegg-Martinsried, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Andreas Schober
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Institute of Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council (CNR), 20090 Milan, Italy
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 81337 Munich, Germany
| |
Collapse
|
7
|
Mirjalili Mohanna SZ, Korecki AJ, Simpson EM. rAAV-PHP.B escapes the mouse eye and causes lethality whereas rAAV9 can transduce aniridic corneal limbal stem cells without lethality. Gene Ther 2023; 30:670-684. [PMID: 37072572 PMCID: PMC10506911 DOI: 10.1038/s41434-023-00400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
Recently safety concerns have been raised in connection with high doses of recombinant adeno-associated viruses (rAAV). Therefore, we undertook a series of experiments to test viral capsid (rAAV9 and rAAV-PHP.B), dose, and route of administration (intrastromal, intravitreal, and intravenous) focused on aniridia, a congenital blindness that currently has no cure. The success of gene therapy for aniridia may depend on the presence of functional limbal stem cells (LSCs) in the damaged aniridic corneas and whether rAAV can transduce them. Both these concerns were unknown, and thus were also addressed by our studies. For the first time, we report ataxia and lethality after intravitreal or intrastromal rAAV-PHP.B virus injections. We demonstrated virus escape from the eye and transduction of non-ocular tissues by rAAV9 and rAAV-PHP.B capsids. We have also shown that intrastromal and intravitreal delivery of rAAV9 can transduce functional LSCs, as well as all four PAX6-expressing retinal cell types in aniridic eye, respectively. Overall, lack of adverse events and successful transduction of LSCs and retinal cells makes it clear that rAAV9 is the capsid of choice for future aniridia gene therapy. Our finding of rAAV lethality after intraocular injections will be impactful for other researchers developing rAAV-based gene therapies.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Wasala LP, Watkins TB, Wasala NB, Burke MJ, Yue Y, Lai Y, Yao G, Duan D. The Implication of Hinge 1 and Hinge 4 in Micro-Dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:459-470. [PMID: 36310439 PMCID: PMC10210230 DOI: 10.1089/hum.2022.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 11/04/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins (μDys) are currently in clinical trials. They all carry H1 and H4. In this study, we investigated whether these two hinges are essential for μDy function in murine DMD models. Three otherwise identical μDys were engineered to contain H1 and/or H4 and were named H1/H4 (with both H1 and H4), ΔH1 (without H1), and ΔH4 (without H4). These constructs were packaged in adeno-associated virus serotype-9 and delivered to the tibialis anterior muscle of 3-month-old male mdx4cv mice (1E12 vector genome particles/muscle). Three months later, we detected equivalent μDys expression in total muscle lysate. However, only H1/H4 and ΔH1 showed correct sarcolemmal localization. ΔH4 mainly existed as sarcoplasmic aggregates. H1/H4 and ΔH1, but not ΔH4, fully restored the dystrophin-associated protein complex and significantly improved the specific muscle force. Eccentric contraction-induced force decline was best protected by H1/H4, followed by ΔH1, but not by ΔH4. Next, we compared H1/H4 and ΔH1 in 6-week-old male mdx mice by intravenous injection (1E13 vector genome particles/mouse). Four months postinjection, H1/H4 significantly outperformed ΔH1 in extensor digitorum longus muscle force measurements but two constructs yielded comparable electrocardiography improvements. We conclude that H4 is essential for μDys function and H1 facilitates force production. Our findings will help develop next-generation μDys gene therapy.
Collapse
Affiliation(s)
- Lakmini P. Wasala
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Matthew J. Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
| | - Gang Yao
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine; The University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Maturana CJ, Chan A, Verpeut JL, Engel EA. Local and systemic administration of AAV vectors with alphaherpesvirus latency-associated promoter 2 drives potent transgene expression in mouse liver, kidney, and skeletal muscle. J Virol Methods 2023; 314:114688. [PMID: 36736702 PMCID: PMC10236909 DOI: 10.1016/j.jviromet.2023.114688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Adeno-associated virus (AAV) has great potential as a source of treatments for conditions that might respond to potent and ubiquitous transgene expression. However, among its drawbacks, the genetic "payload" of AAV vectors is limited to <4.9 kb and some commonly used gene promoters are sizeable and susceptible to transcriptional silencing. We recently described a short (404 bp), potent, and persistent promoter obtained from the genome of pseudorabies virus (PrV) called alphaherpesvirus latency-associated promoter 2 (LAP2). Here, we evaluated the biodistribution and potency of transgene expression in mouse peripheral tissues in response to local and systemic administration of AAV8-LAP2 and AAV9-LAP2. We found that administration of these vectors resulted in levels of transgene expression that were similar to the larger EF1α promoter. LAP2 drives potent transgene expression in mouse liver and kidney when administered systemically and in skeletal muscle in response to intramuscular delivery. Notably, in skeletal muscle, administration of vectors with LAP2 and EF1α promoters resulted in preferential transduction of myofibers type 2. A direct side-by-side comparison between LAP2 and the EF1α promoter revealed that, despite its smaller size, LAP2 was equally potent to the EF1α promoter and resulted in widespread gene expression after IV and IM administration of AAV8 or AAV9 vectors. Collectively, these findings suggest that constructs that include LAP2 may have the capacity to deliver large therapeutically effective payloads in support of future gene therapy protocols.
Collapse
Affiliation(s)
- Carola J Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Angela Chan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Morales ED, Yue Y, Watkins TB, Han J, Pan X, Gibson AM, Hu B, Brito‐Estrada O, Yao G, Makarewich CA, Babu GJ, Duan D. Dwarf Open Reading Frame (DWORF) Gene Therapy Ameliorated Duchenne Muscular Dystrophy Cardiomyopathy in Aged mdx Mice. J Am Heart Assoc 2023; 12:e027480. [PMID: 36695318 PMCID: PMC9973626 DOI: 10.1161/jaha.122.027480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.
Collapse
Affiliation(s)
- Emily D. Morales
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Aaron M. Gibson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Bryan Hu
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Omar Brito‐Estrada
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
- Department of PediatricsThe University of Cincinnati College of MedicineCincinnatiOH
| | - Gopal J. Babu
- Department of Cell Biology and Molecular MedicineRutgers, New Jersey Medical SchoolNewarkNJ
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
- Department of Neurology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical Sciences, College of Veterinary MedicineThe University of MissouriColumbiaMO
| |
Collapse
|
11
|
Optimisation of AAV-NDI1 Significantly Enhances Its Therapeutic Value for Correcting Retinal Mitochondrial Dysfunction. Pharmaceutics 2023; 15:pharmaceutics15020322. [PMID: 36839646 PMCID: PMC9960502 DOI: 10.3390/pharmaceutics15020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.
Collapse
|
12
|
Park F. The heart is where AAV9 lies. Physiol Genomics 2022; 54:316-318. [PMID: 35816650 DOI: 10.1152/physiolgenomics.00102.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Frank Park
- The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, United States
| |
Collapse
|
13
|
Palfi A, Chadderton N, Millington-Ward S, Post I, Humphries P, Kenna PF, Farrar GJ. AAV-PHP.eB transduces both the inner and outer retina with high efficacy in mice. Mol Ther Methods Clin Dev 2022; 25:236-249. [PMID: 35474956 PMCID: PMC9018541 DOI: 10.1016/j.omtm.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated virus (AAV) vectors are one of the main gene delivery vehicles used in retinal gene therapy approaches; however, there is a need to further improve the efficacy, tropism, and safety of these vectors. In this study, using a CMV-EGFP expression cassette, we characterize the retinal utility of AAV-PHP.eB, a serotype recently developed by in vivo directed evolution, which can cross the blood-brain barrier and target neurons with high efficacy in mice. Systemic and intravitreal delivery of AAV-PHP.eB resulted in the high transduction efficacy of retinal ganglion and horizontal cells, with systemic delivery providing pan-retinal coverage of the mouse retina. Subretinal delivery transduced photoreceptors and retinal pigment epithelium cells robustly. EGFP expression (number of transduced cells and mRNA levels) were similar when the retinas were transduced systemically or intravitreally with AAV-PHP.eB or intravitreally with AAV2/2. Notably, in photoreceptors, EGFP fluorescence intensities and mRNA levels were 50–70 times higher, when subretinal injections with AAV-PHP.eB were compared to AAV2/8. Our results demonstrate the pan-retinal transduction of ganglion cells and extremely efficient transduction of photoreceptor and retinal pigment epithelium cells as the most valuable features of AAV-PHP.eB in the mouse retina.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Naomi Chadderton
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Sophia Millington-Ward
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Iris Post
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Pete Humphries
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Paul F Kenna
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| |
Collapse
|
14
|
Wasala NB, Million ED, Watkins TB, Wasala LP, Han J, Yue Y, Lu B, Chen SJ, Hakim CH, Duan D. The gRNA Vector Level Determines the Outcome of Systemic AAV CRISPR Therapy for Duchenne Muscular Dystrophy. Hum Gene Ther 2022; 33:518-528. [PMID: 35350865 PMCID: PMC9142771 DOI: 10.1089/hum.2021.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/13/2022] [Indexed: 01/19/2023] Open
Abstract
Adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR) editing holds promise to restore missing dystrophin in Duchenne muscular dystrophy (DMD). Intramuscular coinjection of CRISPR-associated protein 9 (Cas9) and guide RNA (gRNA) vectors resulted in robust dystrophin restoration in short-term studies in the mdx mouse model of DMD. Intriguingly, this strategy failed to yield efficient dystrophin rescue in muscle in a long-term (18-month) systemic injection study. In-depth analyses revealed a selective loss of the gRNA vector after long-term systemic, but not short-term local injection. To determine whether preferential gRNA vector depletion is due to the mode of delivery (local vs. systemic) or the duration of the study (short term vs. long term), we conducted a short-term systemic injection study. The gRNA (4e12 vg/mouse in the 1:1 group or 1.2e13 vg/mouse in the 3:1 group) and Cas9 (4e12 vg/mouse) vectors were coinjected intravenously into 4-week-old mdx mice. The ratio of the gRNA to Cas9 vector genome copy dropped from 1:1 and 3:1 at injection to 0.4:1 and 1:1 at harvest 3 months later, suggesting that the route of administration, rather than the experimental duration, determines preferential gRNA vector loss. Consistent with our long-term systemic injection study, the vector ratio did not influence Cas9 expression. However, the 3:1 group showed significantly higher dystrophin expression and genome editing, better myofiber size distribution, and a more pronounced improvement in muscle function and electrocardiography. Our data suggest that the gRNA vector dose determines the outcome of systemic AAV CRISPR therapy for DMD.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Lakmini P. Wasala
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Shi-jie Chen
- Department of Physics
- Department of Biochemistry, and
- Institute for Data Science and Informatics, The University of Missouri, Columbia, Missouri, USA
| | - Chady H. Hakim
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, Missouri, USA
- Departments of Neurology, School of Medicine, The University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, The University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Benevides ES, Sunshine MD, Rana S, Fuller DD. Optogenetic activation of the diaphragm. Sci Rep 2022; 12:6503. [PMID: 35444167 PMCID: PMC9021282 DOI: 10.1038/s41598-022-10240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Impaired diaphragm activation is common in many neuromuscular diseases. We hypothesized that expressing photoreceptors in diaphragm myofibers would enable light stimulation to evoke functional diaphragm activity, similar to endogenous bursts. In a mouse model, adeno-associated virus (AAV) encoding channelrhodopsin-2 (AAV9-CAG-ChR2-mVenus, 6.12 × 1011 vg dose) was delivered to the diaphragm using a minimally invasive method of microinjection to the intrapleural space. At 8-18 weeks following AAV injection, mice were anesthetized and studied during spontaneous breathing. We first showed that diaphragm electromyographic (EMG) potentials could be evoked with brief presentations of light, using a 473 nm high intensity LED. Evoked potential amplitude increased with intensity or duration of the light pulse. We next showed that in a paralyzed diaphragm, trains of light pulses evoked diaphragm EMG activity which resembled endogenous bursting, and this was sufficient to generate respiratory airflow. Light-evoked diaphragm EMG bursts showed no diminution after up to one hour of stimulation. Histological evaluation confirmed transgene expression in diaphragm myofibers. We conclude that intrapleural delivery of AAV9 can drive expression of ChR2 in the diaphragm and subsequent photostimulation can evoke graded compound diaphragm EMG activity similar to endogenous inspiratory bursting.
Collapse
Affiliation(s)
- Ethan S Benevides
- Rehabilitation Science PhD Program, University of Florida, Gainesville, Florida, USA.,Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA. .,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA. .,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
16
|
He X, Liu J, Gu F, Chen J, Lu YW, Ding J, Guo H, Nie M, Kataoka M, Lin Z, Hu X, Chen H, Liao X, Dong Y, Min W, Deng ZL, Pu WT, Huang ZP, Wang DZ. Cardiac CIP protein regulates dystrophic cardiomyopathy. Mol Ther 2022; 30:898-914. [PMID: 34400329 PMCID: PMC8822131 DOI: 10.1016/j.ymthe.2021.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Xin He
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jianming Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Wei Lu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Jian Ding
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Haipeng Guo
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Critical Care and Emergency Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mao Nie
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA
| | - Huaqun Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Biology, Nanjing Normal University, Nanjing, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Wang Min
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong-Liang Deng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Xing Y, Wang JY, Li MY, Zhang ZH, Jin HL, Zuo HX, Ma J, Jin X. Convallatoxin inhibits IL-1β production by suppressing zinc finger protein 91-mediated pro-IL-1β ubiquitination and caspase-8 inflammasome activity. Br J Pharmacol 2021; 179:1887-1907. [PMID: 34825365 DOI: 10.1111/bph.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE ZFP91 positively regulates IL-1β production in macrophages and may be a potential therapeutic target to treat inflammatory-related diseases. Therefore, we investigated whether this process is modulated by convallatoxin, which is a cardiac glycoside isolated from the traditional Chinese medicinal plant Adonis amurensis Regel et Radde. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms by which convallatoxin inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, liver injury was induced by an intraperitoneal injection of D-GalN and LPS, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. KEY RESULTS We confirmed that convallatoxin inhibited the release of IL-1β by downregulating ZFP91. Importantly, we found that convallatoxin significantly reduced K63-linked polyubiquitination of pro-IL-1β regulated by ZFP91 and decreased the efficacy of pro-IL-1β cleavage. Moreover, convallatoxin suppressed ZFP91-mediated activation of the non-canonical caspase-8 inflammasome and MAPK signaling pathways in macrophages. Furthermore, we showed that ZFP91 promoted the assembly of the caspase-8 inflammasome complex, whereas convallatoxin treatment reversed this result. In vivo studies further demonstrated that convallatoxin ameliorated D-GalN/LPS-induced liver injury, DSS-induced colitis, and alum-induced peritonitis by downregulating ZFP91. CONCLUSION AND IMPLICATIONS We report for the first time that convallatoxin-mediated inhibition of ZFP91 is an important regulatory event that prevents inappropriate inflammatory responses to maintain of immune homeostasis. This mechanism provides new perspectives for the development of convallatoxin as a novel anti-inflammatory drug targeting ZFP91.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
18
|
Hutt JA, Assaf BT, Bolon B, Cavagnaro J, Galbreath E, Grubor B, Kattenhorn LM, Romeike A, Whiteley LO. Scientific and Regulatory Policy Committee Points to Consider: Nonclinical Research and Development of In Vivo Gene Therapy Products, Emphasizing Adeno-Associated Virus Vectors. Toxicol Pathol 2021; 50:118-146. [PMID: 34657529 DOI: 10.1177/01926233211041962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality. Nonetheless, GTx safety assessment remains complex and is designed on a case-by-case basis that is determined by the disease indication and product attributes. This article describes our current understanding of fundamental biological principles and possible procedures (emphasizing those related to toxicology and toxicologic pathology) needed to support research and development of in vivo GTx products. This article is not intended to provide comprehensive guidance on all GTx modalities but instead provides an overview relevant to in vivo GTx generally by utilizing recombinant adeno-associated virus-based GTx-the most common in vivo GTx platform-to exemplify the main points to be considered in nonclinical research and development of GTx products.
Collapse
Affiliation(s)
- Julie A Hutt
- Greenfield Pathology Services, Inc, Greenfield, IN, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Pfizer Inc, Cambridge, MA, USA
| | | | | | | | - Branka Grubor
- Biogen, Preclinical Safety/Comparative Pathology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
19
|
Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, Akman HO, Gao G, Hirano M. Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency. Ann Neurol 2021; 90:640-652. [PMID: 34338329 PMCID: PMC9307066 DOI: 10.1002/ana.26185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Carlos Lopez-Gomez
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria/Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Maria J Sanchez-Quintero
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Area del Corazón. Hospital Clínico Universitario Virgen de la Victoria, CIBERCV. Instituto de Investigación Biomédica de Málaga-IBIMA. UMA, Málaga, Spain
| | - Eung Jeon Lee
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Gulio Kleiner
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Saba Tadesse
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Jun Xie
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Hasan Orhan Akman
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Guangping Gao
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
20
|
Völkner M, Pavlou M, Büning H, Michalakis S, Karl MO. Optimized Adeno-Associated Virus Vectors for Efficient Transduction of Human Retinal Organoids. Hum Gene Ther 2021; 32:694-706. [PMID: 33752467 DOI: 10.1089/hum.2020.321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The most widely used vectors for gene delivery in the retina are recombinant adeno-associated virus (rAAV) vectors. They have proven to be safe and effective in retinal gene therapy studies aimed to treat inherited retinal dystrophies, although with various limitations in transduction efficiency. Novel variants with modified capsid sequences have been engineered to improve transduction and overcome limitations of naturally occurring variants. Although preclinical evaluation of rAAV vectors based on such novel capsids is mostly done in animal models, the use of human induced pluripotent stem cell (hiPSC)-derived organoids offers an accessible and abundant human testing platform for rAAV evaluation. In this study, we tested the novel capsids, AAV9.GL and AAV9.NN, for their tropism and transduction efficiency in hiPSC-derived human retinal organoids (HROs) with all major neuronal and glial cell types in a laminated structure. These variants are based on the AAV9 capsid and were engineered to display specific surface-exposed peptide sequences, previously shown to improve the retinal transduction properties in the context of AAV2. To this end, HROs were transduced with increasing concentrations of rAAV9, rAAV9.GL, or rAAV9.NN carrying a self-complementary genome with a cytomegalovirus-enhanced green fluorescent protein (eGFP) cassette and were monitored for eGFP expression. The rAAV vectors transduced HROs in a dose-dependent manner, with rAAV9.NN achieving the highest efficiency and fastest onset kinetics, leading to detectable eGFP signals in photoreceptors, some interneurons, and Müller glia already at 2 days post-transduction. The potency-enhancing effect of the NN peptide insert was replicated when using the corresponding AAV2-based version (rAAV2.NN). Taken together, we report the application of an HRO system for screening novel AAV vectors and introduce novel vector candidates with enhanced transduction efficiency for human retinal cells.
Collapse
Affiliation(s)
- Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Marina Pavlou
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mike O Karl
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,CRTD-Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,TU Dresden, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
21
|
Couch LS, Fiedler J, Chick G, Clayton R, Dries E, Wienecke LM, Fu L, Fourre J, Pandey P, Derda AA, Wang BX, Jabbour R, Shanmuganathan M, Wright P, Lyon AR, Terracciano CM, Thum T, Harding SE. Circulating microRNAs predispose to takotsubo syndrome following high-dose adrenaline exposure. Cardiovasc Res 2021; 118:1758-1770. [PMID: 34155498 PMCID: PMC9214785 DOI: 10.1093/cvr/cvab210] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Takotsubo syndrome (TTS) is an acute heart failure, typically triggered by high adrenaline during physical or emotional stress. It is distinguished from myocardial infarction (MI) by a characteristic pattern of ventricular basal hypercontractility with hypokinesis of apical segments, and in the absence of culprit coronary occlusion. We aimed to understand whether recently discovered circulating biomarkers miR-16 and miR-26a, which differentiate TTS from MI at presentation, were mechanistically involved in the pathophysiology of TTS. METHODS AND RESULTS miR-16 and miR-26a were co-overexpressed in rats with AAV and TTS induced with an adrenaline bolus. Untreated isolated rat cardiomyocytes were transfected with pre-/anti-miRs and functionally assessed. Ventricular basal hypercontraction and apical depression were accentuated in miR-transfected animals after induction of TTS. In vitro miR-16 and/or miR-26a overexpression in isolated apical (but not basal), cardiomyocytes produced strong depression of contraction, with loss of adrenaline sensitivity. They also enhanced the initial positive inotropic effect of adrenaline in basal cells. Decreased contractility after TTS-miRs was reproduced in non-failing human apical cardiomyocytes. Bioinformatic profiling of miR targets, followed by expression assays and functional experiments, identified reductions of CACNB1 (L-type calcium channel Cavβ subunit), RGS4 (regulator of G-protein signalling 4), and G-protein subunit Gβ (GNB1) as underlying these effects. CONCLUSION miR-16 and miR-26a sensitize the heart to TTS-like changes produced by adrenaline. Since these miRs have been associated with anxiety and depression, they could provide a mechanism whereby priming of the heart by previous stress causes an increased likelihood of TTS in the future.
Collapse
Affiliation(s)
- Liam S Couch
- Corresponding author. Tel: +44 207 594 3009, E-mail:
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Giles Chick
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rory Clayton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eef Dries
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Laura M Wienecke
- National Heart and Lung Institute, Imperial College London, London, UK,Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lu Fu
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jerome Fourre
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pragati Pandey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anselm A Derda
- National Heart and Lung Institute, Imperial College London, London, UK,Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Brian X Wang
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Richard Jabbour
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Peter Wright
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Life Sciences, University of Roehampton, London, UK
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Cardiology, Royal Brompton Hospital, London, UK
| | | | - Thomas Thum
- National Heart and Lung Institute, Imperial College London, London, UK,Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
22
|
Zhou W, Xi D, Shi Y, Wang L, Zhong H, Huang Z, Liu Y, Tang Y, Lu N, Wang Y, Zhang Z, Pei J, Tang N, He F. MicroRNA‑1929‑3p participates in murine cytomegalovirus‑induced hypertensive vascular remodeling through Ednra/NLRP3 inflammasome activation. Int J Mol Med 2021; 47:719-731. [PMID: 33416142 PMCID: PMC7797461 DOI: 10.3892/ijmm.2020.4829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the development of vascular remodeling in essential hypertension (EH) by mediating the effects of human cytomegalovirus (HCMV) on the vascular system. Therefore, the aim of the present study was to investigate the effects of murine cytomegalovirus (MCMV) infection on blood pressure and vascular function in mice, in order to elucidate the role of miR‑1929‑3p in this process. For model development, 7‑month‑old C57BL/6J mice were infected with the Smith strain of MCMV, and MCMV DNA, IgG and IgM were detected. Subsequently, blood pressure was measured via the carotid artery, and the morphological changes of the aorta were evaluated by hematoxylin and eosin and Masson's trichrome staining. miR‑1929‑3p transfection was performed using an adeno‑associated virus packaged vector and the changes in vascular structure were then observed. The levels of nitric oxide (NO) and endothelial NO synthase were also assessed with colorimetry. Vascular remodeling and expression of NLRP3 inflammasome pathway‑related proteins were detected by immunohistochemistry and western blotting. Endothelin‑1 (ET‑1), interleukin (IL)‑1β and IL‑18 were assayed by ELISA. The results revealed that MCMV infection increased the blood pressure, promoted vascular remodeling, caused endothelial cell injury, and downregulated miR‑1929‑3p. However, these effects were alleviated by miR‑1929‑3p overexpression, which downregulated endothelin A receptor (Ednra) and NLRP3 inflammasome, as well as endothelial injury‑ and vascular remodeling‑related genes. Taken together, the findings of the present study indicated that overexpression of miR‑1929‑3p may improve MCMV‑induced vascular remodeling, possibly via the deactivation of the NLRP3 inflammasome by ET‑1/Ednra.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Dongmei Xi
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yunzhong Shi
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Lamei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University
| | - Hua Zhong
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Zhen Huang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yongmin Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yan Tang
- Department of Geriatrics, The First Affiliated Hospital of Medical College of Shihezi University
| | - Ning Lu
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yongjia Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Zhengyu Zhang
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jiaxin Pei
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Na Tang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Fang He
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| |
Collapse
|
23
|
Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, Newby GA, Doherty SP, Narisu N, Sheng Q, Krilow C, Lin CY, Gordon LB, Cao K, Collins FS, Brown JD, Liu DR. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021; 589:608-614. [PMID: 33408413 PMCID: PMC7872200 DOI: 10.1038/s41586-020-03086-7] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.
Collapse
Affiliation(s)
- Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wayne A Cabral
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zheng-Mei Xiong
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Urraca L Tavarez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay M Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yantenew G Gete
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaojing Mao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sean P Doherty
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chad Krilow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Kronos, Bio Inc., Cambridge, MA, USA
| | - Leslie B Gordon
- Hasbro Children's Hospital, Alpert Medical School of Brown University, Providence, RI, USA
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
24
|
Schlesinger-Laufer M, Douvdevany G, Haimovich-Caspi L, Zohar Y, Shofty R, Kehat I. A simple adeno-associated virus-based approach for the generation of cardiac genetic models in rats. F1000Res 2020; 9:ISF-1441. [PMID: 33604024 PMCID: PMC7863997 DOI: 10.12688/f1000research.27675.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Heart failure is a major health problem and progress in this field relies on better understanding of the mechanisms and development of novel therapeutics using animal models. The rat may be preferable to the mouse as a cardiovascular disease model due to its closer physiology to humans and due to its large size that facilitates surgical and monitoring procedures. However, unlike the mouse, genetic manipulation of the rat genome is challenging. Methods: Here we developed a simple, refined, and robust cardiac-specific rat transgenic model based on an adeno-associated virus (AAV) 9 containing a cardiac troponin T promoter. This model uses a single intraperitoneal injection of AAV and does not require special expertise or equipment. Results: We characterize the AAV dose required to achieve a high cardiac specific level of expression of a transgene in the rat heart using a single intraperitoneal injection to neonates. We show that at this AAV dose GFP expression does not result in hypertrophy, a change in cardiac function or other evidence for toxicity. Conclusions: The model shown here allows easy and fast transgenic based disease modeling of cardiovascular disease in the rat heart, and can also potentially be expanded to deliver Cas9 and gRNAs or to deliver small hairpin (sh)RNAs to also achieve gene knockouts and knockdown in the rat heart.
Collapse
Affiliation(s)
- Michal Schlesinger-Laufer
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, 1 Efron Street, P.O. Box 9697, Haifa, 3109601, Israel
| | - Guy Douvdevany
- Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, P.O. Box 9697, Haifa, 3109601, Israel
| | - Lilac Haimovich-Caspi
- Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, P.O. Box 9697, Haifa, 3109601, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Medical Center, HaAliya HaShniya St 8, Haifa, 3109601, Israel
| | - Rona Shofty
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, 1 Efron Street, P.O. Box 9697, Haifa, 3109601, Israel
| | - Izhak Kehat
- Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, P.O. Box 9697, Haifa, 3109601, Israel
| |
Collapse
|
25
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
26
|
Tomczyk M, Kraszewska I, Mąka R, Waligórska A, Dulak J, Jaźwa-Kusior A. Characterization of hepatic macrophages and evaluation of inflammatory response in heme oxygenase-1 deficient mice exposed to scAAV9 vectors. PLoS One 2020; 15:e0240691. [PMID: 33057437 PMCID: PMC7561190 DOI: 10.1371/journal.pone.0240691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/30/2020] [Indexed: 12/05/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are characterised by low immunogenicity, although humoral and cellular responses may be triggered upon infection. Following systemic administration high levels of vector particles accumulate within the liver. Kupffer cells (KCs) are liver resident macrophages and an important part of the liver innate immune system. Decreased functional activity of KCs can contribute to exaggerated inflammatory response upon antigen exposure. Heme oxygenase-1 (HO-1) deficiency is associated with considerably reduced numbers of KCs. In this study we aimed to investigate the inflammatory responses in liver and to characterise two populations of hepatic macrophages in adult wild type (WT) and HO-1 knockout (KO) mice following systemic administration of one or two doses (separated by 3 months) of self-complementary (sc)AAV9 vectors. At steady state, the livers of HO-1 KO mice contained significantly higher numbers of monocyte-derived macrophages (MDMs), but significantly less KCs than their WT littermates. Three days after re-administration of scAAV9 we observed increased mRNA level of monocyte chemoattractant protein-1 (Mcp-1) in the livers of both WT and HO-1 KO mice, but the protein level and the macrophage infiltration were not affected. Three days after the 1st and 3 days after the 2nd vector dose the numbers of AAV genomes in the liver were comparable between both genotypes indicating similar transduction efficiency, but the percentage of transgene-expressing MDMs and KCs was higher in WT than in HO-1 KO mice. In the primary culture, KCs were able to internalize AAV9 particles without induction of TLR9-mediated immune responses, but no transgene expression was observed. In conclusion, in vivo and in vitro cultured KCs have different susceptibility to scAAV9 vectors. Regardless of the presence or absence of HO-1 and initial numbers of KCs in the liver, scAAV9 exhibits a low potential to stimulate inflammatory response at the analysed time points.
Collapse
Affiliation(s)
- Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Robert Mąka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Waligórska
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- * E-mail:
| |
Collapse
|
27
|
Cheng Y, Li H, Wang L, Li J, Kang W, Rao P, Zhou F, Wang X, Huang C. Optogenetic approaches for termination of ventricular tachyarrhythmias after myocardial infarction in rats in vivo. JOURNAL OF BIOPHOTONICS 2020; 13:e202000003. [PMID: 32246523 DOI: 10.1002/jbio.202000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Cardiac optogenetics facilitates the painless manipulation of the heart with optical energy and was recently shown to terminate ventricular tachycardia (VT) in explanted mice heart. This study aimed to evaluate the optogenetic-based termination of induced VT under ischemia in an open-chest rat model and to develop an optimal, optical-manipulation procedure. VT was induced by burst stimulation after ligation of the left anterior descending coronary artery, and the termination effects of the optical manipulation, including electrical anti-tachycardia pacing (ATP) and spontaneous recovery, were tested. Among different multisegment optical modes, four repeated illuminations of 1000 ms in duration with 1-second interval at a 20-times intensity threshold on the right ventricle achieved the highest termination rate of 86.14% ± 4.145%, higher than that achieved by ATP and spontaneous termination. We demonstrated that optogenetic-based cardioversion is feasible and effective in vivo, with the underlying mechanism involving the light-triggered, ChR2-induced depolarization of the illuminated myocardium, in turn generating an excitation that disrupts the preexisting reentrant wave front.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Wen Kang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Fang Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
28
|
Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, He X, Wei G, Liao W, Liao Y, Zhong L, Bin J. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine 2020; 57:102832. [PMID: 32574955 PMCID: PMC7322255 DOI: 10.1016/j.ebiom.2020.102832] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identifying effective drugs to suppress vascular inflammation is a promising strategy to delay the progression of abdominal aortic aneurysm (AAA). Itaconate has a vital role in regulating inflammatory activation in various inflammatory diseases. However, the role of itaconate in the progression of AAA is unknown. In this study, we explored the inhibitory effect of itaconate on AAA formation and its underlying mechanisms. METHODS Quantitative PCR, western blotting and immunohistochemistry were used to determine Irg1 and downstream Nrf2 expression in human and mouse AAA samples. Liquid chromatograph-mass spectrometry (LC-MS) analysis was performed to measure the abundance of itaconate. OI treatment and Irg1 knockdown were performed to study the role of OI in AAA formation. Nrf2 intervention in vivo was performed to detect the critical role of Nrf2 in the beneficial effect of OI on AAA. FINDINGS We found that itaconate suppressed the formation of angiotensin II (Ang II)-induced AAA in apolipoprotein E-deficient (Apoe-/-) mice, while Irg1 deficiency exerted the opposite effect. Mechanistically, itaconate inhibited vascular inflammation by enabling Nrf2 to function as a transcriptional repressor of downstream inflammatory genes via alkylation of Keap1. Moreover, Nrf2 deficiency significantly aggravated inflammatory factor expression and promoted AAA formation. In addition, Keap1 overexpression significantly promoted Ang II-induced AAA formation, which was inhibited by itaconate. INTERPRETATION Itaconate inhibited AAA formation by suppressing vascular inflammation, and therapeutic approaches to increase itaconate are potentially beneficial for preventing AAA formation. FUNDING National Natural Science Foundations of China and Guangzhou regenerative medicine and Health Laboratory of Guangdong.
Collapse
Affiliation(s)
- Haoyu Song
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiaofei Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yanxian Lai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
29
|
Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y, Bin J. METTL3 Induces AAA Development and Progression by Modulating N6-Methyladenosine-Dependent Primary miR34a Processing. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:394-411. [PMID: 32650237 PMCID: PMC7347714 DOI: 10.1016/j.omtn.2020.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Identifying effective drugs to delay the progression of aortic aneurysms is a formidable challenge in vascular medicine. Methyltransferase-like 3 (METTL3) plays a key role in catalyzing the formation of N6-methyladenosine (m6A), but despite the functional importance of METTL3 and m6A in various fundamental biological processes, their roles in abdominal aortic aneurysm (AAA) are unknown. Here, we found that METTL3 knockdown in apolipoprotein E-deficient (ApoE−/−) mice treated with angiotensin II suppressed the formation of AAAs, while METTL3 overexpression exerted the opposite effects. Similar results were obtained in a calcium chloride (CaCl2)-induced mouse AAA model. Mechanistically, METTL3-dependent m6A methylation promoted primary microRNA-34a (miR-34a, pri-miR34a) maturation through DGCR8. Moreover, miR-34a overexpression significantly decreased SIRT1 expression and aggravated AAA formation, while miR-34a deficiency produced the opposite effects. In a rescue experiment, miR-34a knockdown or forced expression of SIRT1 partially attenuated the protective effects of METTL3 deficiency against AAA formation. Our studies reveal an important role for METTL3/m6A-mediated miR-34a maturation in AAA formation and provide a novel therapeutic target and diagnostic biomarker for AAA treatment.
Collapse
Affiliation(s)
- Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Cardiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Song
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyun Si
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqiang Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
30
|
Rao P, Wang L, Cheng Y, Wang X, Li H, Zheng G, Li Z, Jiang C, Zhou Q, Huang C. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:1401-1416. [PMID: 32206418 PMCID: PMC7075614 DOI: 10.1364/boe.381480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
This study determines whether near-infrared (NIR) light can drive tissue-penetrating cardiac optical control with upconversion luminescent materials. Adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) was injected intravenously to rats to achieve ChR2 expression in the heart. The upconversion nanoparticles (UCNP) NaYF4:Yb/Tm or upconversion microparticles (UCMP) NaYF4 to upconvert blue light were selected to fabricate freestanding polydimethylsiloxane films. These were attached on the ventricle and covered with muscle tissue. Additionally, a 980-nm NIR laser was programmed and illuminated on the film or the tissue. The NIR laser successfully captured ectopic paced rhythm in the heart, which displays similar manipulation characteristics to those triggered by blue light. Our results highlight the feasibility of tissue-penetration cardiac optogenetics by NIR and demonstrate the potential to use external optical manipulation for non-invasive or weakly invasive applications in cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- These authors contributed equally to this work
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- These authors contributed equally to this work
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Co-corresponding authors
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, 570311, Haikou, China
| | - Guoxing Zheng
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
- Co-corresponding authors
| | - Zile Li
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
| | - Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Qing Zhou
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| |
Collapse
|
31
|
Nissanka N, Moraes CT. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep 2020; 21:e49612. [PMID: 32073748 DOI: 10.15252/embr.201949612] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes a subset of the genes which are responsible for oxidative phosphorylation. Pathogenic mutations in the human mtDNA are often heteroplasmic, where wild-type mtDNA species co-exist with the pathogenic mtDNA and a bioenergetic defect is only seen when the pathogenic mtDNA percentage surpasses a threshold for biochemical manifestations. mtDNA segregation during germline development can explain some of the extreme variation in heteroplasmy from one generation to the next. Patients with high heteroplasmy for deleterious mtDNA species will likely suffer from bona-fide mitochondrial diseases, which currently have no cure. Shifting mtDNA heteroplasmy toward the wild-type mtDNA species could provide a therapeutic option to patients. Mitochondrially targeted engineered nucleases, such as mitoTALENs and mitoZFNs, have been used in vitro in human cells harboring pathogenic patient-derived mtDNA mutations and more recently in vivo in a mouse model of a pathogenic mtDNA point mutation. These gene therapy tools for shifting mtDNA heteroplasmy can also be used in conjunction with other therapies aimed at eliminating and/or preventing the transfer of pathogenic mtDNA from mother to child.
Collapse
Affiliation(s)
- Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
The 3' Untranslated Region Protects the Heart from Angiotensin II-Induced Cardiac Dysfunction via AGGF1 Expression. Mol Ther 2020; 28:1119-1132. [PMID: 32061268 DOI: 10.1016/j.ymthe.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
The messenger RNA (mRNA) 3' untranslated regions (3' UTRs), as cis-regulated elements bound by microRNAs (miRNAs), affect their gene translation. However, the role of the trans-regulation of 3' UTRs during heart dysfunction remains elusive. Compared with administration of angiogenic factor with G-patch and forkhead-associate domains 1 (Aggf1), ectopic expression of Aggf1 with its 3' UTR significantly suppressed cardiac dysfunction in angiotensin II-infused mice, with upregulated expression of both Aggf1 and myeloid cell leukemia 1 (Mcl1). Along their 3' UTRs, Mcl1 and Aggf1 mRNAs share binding sites for the same miRNAs, including miR-105, miR-101, and miR-93. We demonstrated that the protein-coding Mcl1 and Aggf1 mRNAs communicate and co-regulate each other's expression through competition for these three miRNAs that target both transcripts via their 3' UTRs. Our results indicate that Aggf1 3' UTR, as a trans-regulatory element, accelerates the cardioprotective role of Aggf1 in response to hypertensive conditions by elevating Mcl1 expression. Our work broadens the scope of gene therapy targets and provides a new insight into gene therapy strategies involving 3' UTRs.
Collapse
|
33
|
Bhere D, Arghiani N, Lechtich ER, Yao Y, Alsaab S, Bei F, Matin MM, Shah K. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep 2020; 10:1779. [PMID: 32019988 PMCID: PMC7000780 DOI: 10.1038/s41598-020-58072-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNA expression has been implicated in cancer. Numerous strategies have been explored to modulate miR but sub-optimal delivery and inability to concurrently target multiple pathways involved in tumor progression have limited their efficacy. In this study, we explored the potential co-modulation of upregulated miR-21 and downregulated miR-7 to enhance therapeutic outcomes in heterogenic tumor types. We first engineered lentiviral (LV) and adeno-associated viral (AAV) vectors that preferentially express anti-sense miR against miR-21(miRzip-21) and show that modulating miR-21 via miRzip extensively targets tumor cell proliferation, migration and invasion in vitro in a broad spectrum of cancer types and has therapeutic efficacy in vivo. Next, we show a significantly increased expression of caspase-mediated apoptosis by simultaneously downregulating miR-21 and upregulating miR-7 in different tumor cells. In vivo co-treatment with AAV-miRzip-21 and AAV-miR-7 in mice bearing malignant brain tumors resulted in significantly decreased tumor burden with a corresponding increase in survival. To our knowledge, this is the first study that demonstrates the therapeutic efficacy of simultaneously upregulating miR-7 and downregulating miR-21 and establishes a roadmap towards clinical translation of modulating miRs for various cancer types.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nahid Arghiani
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Alsaab
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Joint Center of Excellence in Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maryam M Matin
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
34
|
Muraine L, Bensalah M, Dhiab J, Cordova G, Arandel L, Marhic A, Chapart M, Vasseur S, Benkhelifa-Ziyyat S, Bigot A, Butler-Browne G, Mouly V, Negroni E, Trollet C. Transduction Efficiency of Adeno-Associated Virus Serotypes After Local Injection in Mouse and Human Skeletal Muscle. Hum Gene Ther 2020; 31:233-240. [PMID: 31880951 DOI: 10.1089/hum.2019.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adeno-associated virus (AAV) vector is an efficient tool for gene delivery in skeletal muscle. AAV-based therapies show promising results for treatment of various genetic disorders, including muscular dystrophy. These dystrophies represent a heterogeneous group of diseases affecting muscles and typically characterized by progressive skeletal muscle wasting and weakness and the development of fibrosis. The tropism of each AAV serotype has been extensively studied using systemic delivery routes, but very few studies have compared their transduction efficiency through direct intramuscular injection. Yet, in some muscular dystrophies, where only a few muscles are primarily affected, a local intramuscular injection to target these muscles would be the most appropriate route. A comprehensive comparison between different recombinant AAV (rAAV) serotypes is therefore needed. In this study, we investigated the transduction efficiency of rAAV serotypes 1-10 by local injection in skeletal muscle of control C57BL/6 mice. We used a CMV-nls-LacZ reporter cassette allowing nuclear expression of LacZ to easily localize targeted cells. Detection of β-galactosidase activity on muscle cryosections demonstrated that rAAV serotypes 1, 7, 8, 9, and 10 were more efficient than the others, with rAAV9 being the most efficient in mice. Furthermore, using a model of human muscle xenograft in immunodeficient mice, we observed that in human muscle, rAAV8 and rAAV9 had similar transduction efficiency. These findings demonstrate for the first time that the human muscle xenograft can be used to evaluate AAV-based therapeutical approaches in a human context.
Collapse
Affiliation(s)
- Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Mona Bensalah
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Jamila Dhiab
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Gonzalo Cordova
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Alix Marhic
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | | | | | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, U974, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
35
|
Zygmunt DA, Xu R, Jia Y, Ashbrook A, Menke C, Shao G, Yoon JH, Hamilton S, Pisharath H, Bolon B, Martin PT. rAAVrh74.MCK. GALGT2 Demonstrates Safety and Widespread Muscle Glycosylation after Intravenous Delivery in C57BL/6J Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:305-319. [PMID: 31890730 PMCID: PMC6923506 DOI: 10.1016/j.omtm.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
rAAVrh74.MCK.GALGT2 is a surrogate gene therapy that inhibits muscular dystrophy in multiple animal models. Here, we report on a dose-response study of functional muscle GALGT2 expression as well as toxicity and biodistribution studies after systemic intravenous (i.v.) delivery of rAAVrh74.MCK.GALGT2. A dose of 4.3 × 1014vg/kg (measured with linear DNA standard) resulted in GALGT2-induced glycosylation in the majority of skeletal myofibers throughout the body and in almost all cardiomyocytes, while several lower doses also showed significant muscle glycosylation. No adverse clinical signs or treatment-dependent changes in tissue or organ pathology were noted at 1 or 3 months post-treatment. Blood cell and serum enzyme chemistry measures in treated mice were all within the normal range except for alkaline phosphatase (ALP) activity, which was elevated in serum but not in tissues. Some anti-rAAVrh74 capsid T cell responses were noted at 4 weeks post-treatment, but all such responses were not present at 12 weeks. Using intramuscular delivery, GALGT2-induced muscle glycosylation was increased in Cmah-deficient mice, which have a humanized sialoglycome, relative to wild-type mice, suggesting that use of mice may underestimate GALGT2 activity in human muscle. These data demonstrate safety and high transduction of muscles throughout the body plan with i.v. delivery of rAAVrh74.MCK.GALGT2.
Collapse
Affiliation(s)
- Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Rui Xu
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Ying Jia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA.,Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chelsea Menke
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Guohong Shao
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Jung Hae Yoon
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Sonia Hamilton
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Harshan Pisharath
- Animal Resource Center and Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Tulalamba W, Weinmann J, Pham QH, El Andari J, VandenDriessche T, Chuah MK, Grimm D. Distinct transduction of muscle tissue in mice after systemic delivery of AAVpo1 vectors. Gene Ther 2019; 27:170-179. [PMID: 31624368 DOI: 10.1038/s41434-019-0106-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The human musculature is a promising and pivotal target for human gene therapy, owing to numerous diseases that affect this tissue and that are often monogenic, making them amenable to treatment and potentially cure on the genetic level. Particularly attractive would be the possibility to deliver clinically relevant DNA to muscle tissue from a minimally invasive, intravenous vector delivery. To date, this aim has been approximated by the use of Adeno-associated viruses (AAV) of different serotypes (rh.74, 8, 9) that are effective, but unfortunately not specific to the muscle and hence not ideal for use in patients. Here, we have thus studied the muscle tropism and activity of another AAV serotype, AAVpo1, that was previously isolated from pigs and found to efficiently transduce muscle following direct intramuscular injection in mice. The new data reported here substantiate the usefulness of AAVpo1 for muscle gene therapies by showing, for the first time, its ability to robustly transduce all major muscle tissues, including heart and diaphragm, from peripheral infusion. Importantly, in stark contrast to AAV9 that forms the basis for ongoing clinical gene therapy trials in the muscle, AAVpo1 is nearly completely detargeted from the liver, making it a very attractive and potentially safer option.
Collapse
Affiliation(s)
- Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium.,Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Jonas Weinmann
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Straße 65, 88400, Biberach an der Riß, Germany
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium. .,Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium.
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium. .,Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium.
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
37
|
Pan X, Sands SA, Yue Y, Zhang K, LeVine SM, Duan D. An Engineered Galactosylceramidase Construct Improves AAV Gene Therapy for Krabbe Disease in Twitcher Mice. Hum Gene Ther 2019; 30:1039-1051. [PMID: 31184217 PMCID: PMC6761594 DOI: 10.1089/hum.2019.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Krabbe disease is an inherited neurodegenerative disease caused by mutations in the galactosylceramidase gene. In the infantile form, patients die before 3 years of age. Systemic adeno-associated virus serotype 9 (AAV9) gene therapy was recently shown to reverse the disease course in human patients in another lethal infantile neurodegenerative disease. To explore AAV9 therapy for Krabbe disease, we engineered a codon-optimized AAV9 galactosylceramidase vector. We further incorporated features to allow AAV9-derived galactosylceramidase to more efficiently cross the blood-brain barrier and be secreted from transduced cells. We tested the optimized vector by a single systemic injection in the twitcher mouse, an authentic Krabbe disease model. Untreated twitcher mice showed characteristic neuropathology and motion defects. They died prematurely with a median life span of 41 days. Intravenous injection in 2-day-old twitcher mice reduced central and peripheral neuropathology and significantly improved the gait pattern and body weight. Noticeably, the median life span was extended to 150 days. Intraperitoneal injection in 6- to 12-day-old twitcher mice also significantly improved the motor function, body weight, and median life span (to 104 days). Our results far exceed the ≤70 days median life span seen in all reported stand-alone systemic AAV therapies. Our study highlights the importance of vector engineering for Krabbe disease gene therapy. The engineered vector warrants further development.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Scott A. Sands
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Steven M. LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
38
|
Abstract
A resurgence in the development of newer gene therapy systems has led to recent successes in the treatment of B cell cancers, retinal degeneration and neuromuscular atrophy. Gene therapy offers the ability to treat the patient at the root cause of their malady by restoring normal gene function and arresting the pathological progression of their genetic disease. The current standard of care for most genetic diseases is based upon the symptomatic treatment with polypharmacy while minimizing any potential adverse effects attributed to the off-target and drug-drug interactions on the target or other organs. In the kidney, however, the development of gene therapy modifications to specific renal cells has lagged far behind those in other organ systems. Some positive strides in the past few years provide continued enthusiasm to invest the time and effort in the development of new gene therapy vectors for medical intervention to treat kidney diseases. This mini-review will systematically describe the pros and cons of the most commonly tested gene therapy vector systems derived from adenovirus, retrovirus, and adeno-associated virus and provide insight about their potential utility as a therapy for various types of genetic diseases in the kidney.
Collapse
Affiliation(s)
- Lori Davis
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
39
|
Sun Y, Zhong L, He X, Wang S, Lai Y, Wu W, Song H, Chen Y, Yang Y, Liao W, Liao Y, Bin J. LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA. J Mol Cell Cardiol 2019; 131:66-81. [DOI: 10.1016/j.yjmcc.2019.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/14/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
|
40
|
Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis. Nat Commun 2019; 10:2145. [PMID: 31086184 PMCID: PMC6513984 DOI: 10.1038/s41467-019-10116-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Although angiotensin II (AngII) is known to cause renal injury and fibrosis, the underlying mechanisms remain poorly characterized. Here we show that hypertensive nephropathy (HN) patients and AngII-infused mice exhibit elevated levels of circulating miR103a-3p. We observe a positive correlation between miR-103a-3p levels and AngII-induced renal dysfunction. miR-103a-3p suppresses expression of the sucrose non-fermentable-related serine/threonine-protein kinase SNRK in glomerular endothelial cells, and glomeruli of HN patients and AngII-infused mice show reduced endothelial expression of SNRK. We find that SNRK exerts anti-inflammatory effects by interacting with activated nuclear factor-κB (NF-κB)/p65. Overall, we demonstrate that AngII increases circulating miR-103a-3p levels, which reduces SNRK levels in glomerular endothelial cells, resulting in the over-activation of NF-κB/p65 and, consequently, renal inflammation and fibrosis. Together, our work identifies miR-103a-3p/SNRK/NF-κB/p65 as a regulatory axis of AngII-induced renal inflammation and fibrosis. Angiotensin II is known to cause renal inflammation and fibrosis. Here Lu et al. show that levels of circulating miR-103a-3p are elevated in hypertensive nephropathy patients and in an animal model of angiotensin II-induced renal dysfunction, and that miR-103a-3p suppresses SNRK expression leading to the activation of the pro-inflammatory NF-κB pathway in glomerular endothelial cells.
Collapse
|
41
|
Wasala LP, Hakim CH, Yue Y, Yang NN, Duan D. Systemic Delivery of Adeno-Associated Viral Vectors in Mice and Dogs. Methods Mol Biol 2019; 1937:281-294. [PMID: 30706404 PMCID: PMC6690205 DOI: 10.1007/978-1-4939-9065-8_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many diseases affect multiple tissues and/or organ systems, or affect tissues that are broadly distributed. For these diseases, an effective gene therapy will require systemic delivery of the therapeutic vector to all affected locations. Adeno-associated virus (AAV) has been used as a gene therapy vector for decades in preclinical studies and human trials. These studies have shown outstanding safety and efficacy of the AAV vector for gene therapy. Recent studies have revealed yet another unique feature of the AAV vector. Specifically, AAV can lead to bodywide gene transfer following a single intravascular injection. Here we describe the protocols for effective systemic delivery of AAV in both neonatal and adult mice and dogs. We also share lessons we learned from systemic gene therapy in the murine and canine models of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Lakmini P Wasala
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.
- Department of Bioengineering, The University of Missouri, Columbia, MO, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA.
| |
Collapse
|
42
|
McCall AL, Stankov SG, Cowen G, Cloutier D, Zhang Z, Yang L, Clement N, Falk DJ, Byrne BJ. Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy. Curr Gene Ther 2019; 19:197-207. [PMID: 31223086 DOI: 10.2174/1566523219666190621113807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pompe disease is a fatal neuromuscular disorder caused by a deficiency in acid α-glucosidase, an enzyme responsible for glycogen degradation in the lysosome. Currently, the only approved treatment for Pompe disease is enzyme replacement therapy (ERT), which increases patient survival, but does not fully correct the skeletal muscle pathology. Skeletal muscle pathology is not corrected with ERT because low cation-independent mannose-6-phosphate receptor abundance and autophagic accumulation inhibits the enzyme from reaching the lysosome. Thus, a therapy that more efficiently targets skeletal muscle pathology, such as adeno-associated virus (AAV), is needed for Pompe disease. OBJECTIVE The goal of this project was to deliver a rAAV9-coGAA vector driven by a tissue restrictive promoter will efficiently transduce skeletal muscle and correct autophagic accumulation. METHODS Thus, rAAV9-coGAA was intravenously delivered at three doses to 12-week old Gaa-/- mice. 1 month after injection, skeletal muscles were biochemically and histologically analyzed for autophagy-related markers. RESULTS At the highest dose, GAA enzyme activity and vacuolization scores achieved therapeutic levels. In addition, resolution of autophagosome (AP) accumulation was seen by immunofluorescence and western blot analysis of autophagy-related proteins. Finally, mice treated at birth demonstrated persistence of GAA expression and resolution of lysosomes and APs compared to those treated at 3 months. CONCLUSION In conclusion, a single systemic injection of rAAV9-coGAA ameliorates vacuolar accumulation and prevents autophagic dysregulation.
Collapse
Affiliation(s)
- Angela L McCall
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sylvia G Stankov
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Gabrielle Cowen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Denise Cloutier
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Zizhao Zhang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Lin Yang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Nathalie Clement
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Darin J Falk
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Eser Ocak P, Ocak U, Sherchan P, Zhang JH, Tang J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res 2018; 98:29-41. [PMID: 30345547 DOI: 10.1002/jnr.24327] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
Abstract
Major facilitator superfamily domain-containing protein-2a (Mfsd2a) which was considered as an orphan transporter has recently gained attention for its regulatory role in the maintenance of proper functioning of the blood-brain barrier. Besides the major role of Mfsd2a in maintaining the barrier function, increasing evidence has emerged with regard to the contributions of Mfsd2a to various biological processes such as transport, cell fusion, cell cycle, inflammation and regeneration, managing tumor growth, functioning of other organs with barrier functions or responses to injury. The purpose of this article is to review the different roles of Mfsd2a and its involvement in the physiological and pathophysiological processes primarily in the central nervous system and throughout the mammalian body under the lights of the current literature.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Umut Ocak
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
44
|
Yoshimura M, Ueta Y. Advanced genetic and viral methods for labelling and manipulation of oxytocin and vasopressin neurones in rats. Cell Tissue Res 2018; 375:311-327. [PMID: 30338378 DOI: 10.1007/s00441-018-2932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Rats have been widely used as one of the most common laboratory animals for biological research, because their physiology, pathology, and behavioral characteristics are highly similar to humans. Recent developments in rat genetic modification techniques have now led to further their utility for a broad range of research questions, including the ability to specifically label individual neurones, and even manipulate neuronal function in rats. We have succeeded in generating several transgenic rat lines that enable visualization of specific neurones due to their expression of fluorescently-tagged oxytocin, vasopressin, and c-fos protein. Furthermore, we have been able to generate novel transgenic rat lines in which we can activate vasopressin neurones using optogenetic and chemogenetic techniques. In this review, we will summarize the techniques of genetic modification for labeling and manipulating the specific neurones. Successful examples of generating transgenic rat lines in our lab and usefulness of these rats will also be introduced. These transgenic rat lines enable the interrogation of neuronal function and physiology in a way that was not possible in the past, providing novel insights into neuronal mechanisms both in vivo and ex vivo.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
45
|
Kennedy TL, Guiraud S, Edwards B, Squire S, Moir L, Babbs A, Odom G, Golebiowski D, Schneider J, Chamberlain JS, Davies KE. Micro-utrophin Improves Cardiac and Skeletal Muscle Function of Severely Affected D2/ mdx Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:92-105. [PMID: 30417024 PMCID: PMC6216100 DOI: 10.1016/j.omtm.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by mutations in the dystrophin gene. DMD boys are wheelchair-bound around 12 years and generally survive into their twenties. There is currently no effective treatment except palliative care, although personalized treatments such as exon skipping, stop codon read-through, and viral-based gene therapies are making progress. Patients present with skeletal muscle pathology, but most also show cardiomyopathy by the age of 10. A systemic therapeutic approach is needed that treats the heart and skeletal muscle defects in all patients. The dystrophin-related protein utrophin has been shown to compensate for the lack of dystrophin in the mildly affected BL10/mdx mouse. The purpose of this investigation was to demonstrate that AAV9-mediated micro-utrophin transgene delivery can not only functionally replace dystrophin in the heart, but also attenuate the skeletal muscle phenotype in severely affected D2/mdx mice. The data presented here show that utrophin can indeed alleviate the pathology in skeletal and cardiac muscle in D2/mdx mice. These results endorse the view that utrophin modulation has the potential to increase the quality life of all DMD patients whatever their mutation.
Collapse
Affiliation(s)
- Tahnee L Kennedy
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | - Simon Guiraud
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | - Ben Edwards
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | - Sarah Squire
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | - Lee Moir
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | - Arran Babbs
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | - Guy Odom
- Wellstone Muscular Dystrophy Research Centre, Department of Neurology, University of Washington, Seattle, WA, USA
| | | | | | - Jeffrey S Chamberlain
- Wellstone Muscular Dystrophy Research Centre, Department of Neurology, University of Washington, Seattle, WA, USA
| | - Kay E Davies
- Oxford Neuromuscular Centre at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| |
Collapse
|
46
|
Xu R, Jia Y, Zygmunt DA, Cramer ML, Crowe KE, Shao G, Maki AE, Guggenheim HN, Hood BC, Griffin DA, Peterson E, Bolon B, Cheatham JP, Cheatham SL, Flanigan KM, Rodino-Klapac LR, Chicoine LG, Martin PT. An Isolated Limb Infusion Method Allows for Broad Distribution of rAAVrh74.MCK. GALGT2 to Leg Skeletal Muscles in the Rhesus Macaque. Mol Ther Methods Clin Dev 2018; 10:89-104. [PMID: 30073180 PMCID: PMC6070685 DOI: 10.1016/j.omtm.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
Recombinant adeno-associated virus (rAAV)rh74.MCK.GALGT2 is a muscle-specific gene therapy that is being developed to treat forms of muscular dystrophy. Here we report on an isolated limb infusion technique in a non-human primate model, where hindlimb blood flow is transiently isolated using balloon catheters to concentrate vector in targeted leg muscles. A bilateral dose of 2.5 × 1013 vector genomes (vg)/kg/limb was sufficient to induce GALGT2-induced glycosylation in 10%-60% of skeletal myofibers in all leg muscles examined. There was a 19-fold ± 6-fold average limb-wide increase in vector genomes per microgram genomic DNA at a bilateral dose of 2.5 × 1013 vg/kg/limb compared with a bilateral dose of 6 × 1012 vg/kg/limb. A unilateral dose of 6 × 1013 vg/kg/limb showed a 12- ± 3-fold increase in treated limb muscles compared to contralateral untreated limb muscles, which received vector only after release into the systemic circulation from the treated limb. Variability in AAV biodistribution between different segments of the same muscle was 125% ± 18% for any given dose, while variability between the same muscle for any given treatment dose was 45% ± 7%. These experiments demonstrate that treatment of muscles throughout the leg with rAAVrh74.MCK.GALGT2 can be accomplished safely using an isolated limb infusion technique, where balloon catheters transiently isolate the limb vasculature, but that intra- and inter-muscle transduction variability is a significant issue.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Ying Jia
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Deborah A. Zygmunt
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Megan L. Cramer
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kelly E. Crowe
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Guohong Shao
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Agatha E. Maki
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Haley N. Guggenheim
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Benjamin C. Hood
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Danielle A. Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Ellyn Peterson
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | | | - John P. Cheatham
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Sharon L. Cheatham
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kevin M. Flanigan
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Louis G. Chicoine
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Paul T. Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H. Rapid and Complete Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia. Mol Ther 2018; 26:1940-1952. [PMID: 29853274 PMCID: PMC6094869 DOI: 10.1016/j.ymthe.2018.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 01/15/2023] Open
Abstract
Friedreich ataxia (FA) is a rare mitochondrial disease characterized by sensory and spinocerebellar ataxia, hypertrophic cardiomyopathy, and diabetes, for which there is no treatment. FA is caused by reduced levels of frataxin (FXN), an essential mitochondrial protein involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Despite significant progress in recent years, to date, there are no good models to explore and test therapeutic approaches to stop or reverse the ganglionopathy and the sensory neuropathy associated to frataxin deficiency. Here, we report a new conditional mouse model with complete frataxin deletion in parvalbumin-positive cells that recapitulate the sensory ataxia and neuropathy associated to FA, albeit with a more rapid and severe course. Interestingly, although fully dysfunctional, proprioceptive neurons can survive for many weeks without frataxin. Furthermore, we demonstrate that post-symptomatic delivery of frataxin-expressing AAV allows for rapid and complete rescue of the sensory neuropathy associated with frataxin deficiency, thus establishing the pre-clinical proof of concept for the potential of gene therapy in treating FA neuropathy.
Collapse
Affiliation(s)
- Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Charline de Montigny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Nadège Vaucamps
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
48
|
Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem 2018; 62:455-465. [PMID: 29950320 PMCID: PMC6056713 DOI: 10.1042/ebc20170113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) is a multi-copy genome whose cell copy number varies depending on tissue type. Mutations in mtDNA can cause a wide spectrum of diseases. Mutated mtDNA is often found as a subset of the total mtDNA population in a cell or tissue, a situation known as heteroplasmy. As mitochondrial dysfunction only presents after a certain level of heteroplasmy has been acquired, ways to artificially reduce or replace the mutated species have been attempted. This review addresses recent approaches and advances in this field, focusing on the prevention of pathogenic mtDNA transfer via mitochondrial donation techniques such as maternal spindle transfer and pronuclear transfer in which mutated mtDNA in the oocyte or fertilized embryo is substituted with normal copies of the mitochondrial genome. This review also discusses the molecular targeting and cleavage of pathogenic mtDNA to shift heteroplasmy using antigenomic therapy and genome engineering techniques including Zinc-finger nucleases and transcription activator-like effector nucleases. Finally, it considers CRISPR technology and the unique difficulties that mitochondrial genome editing presents.
Collapse
|
49
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
50
|
Wiley LA, Burnight ER, Kaalberg EE, Jiao C, Riker MJ, Halder JA, Luse MA, Han IC, Russell SR, Sohn EH, Stone EM, Tucker BA, Mullins RF. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Hum Gene Ther 2018; 29:424-436. [PMID: 29160116 DOI: 10.1089/hum.2017.179] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Emily E Kaalberg
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Chunhua Jiao
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Megan J Riker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jennifer A Halder
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Meagan A Luse
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Ian C Han
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Stephen R Russell
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Elliott H Sohn
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|