1
|
Nevado B, Chapman MA, Brennan AC, Clark JW, Wong ELY, Batstone T, McCarthy SA, Tracey A, Torrance J, Sims Y, Abbott RJ, Filatov D, Hiscock SJ. Genomic changes and stabilization following homoploid hybrid speciation of the Oxford ragwort Senecio squalidus. Curr Biol 2024; 34:4412-4423.e5. [PMID: 39260362 DOI: 10.1016/j.cub.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that ∼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; cE3c, Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Adrian C Brennan
- Biosciences Department, University of Durham, Durham DH1 3LE, UK
| | - James W Clark
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Edgar L Y Wong
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Tom Batstone
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Alan Tracey
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Dmitry Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; University of Oxford Botanic Garden and Arboretum, Rose Lane, Oxford OX1 4AZ, UK
| |
Collapse
|
2
|
Xiang C, Tao H, Wang T, Meng H, Guan D, Li H, Wei X, Zhang W. Genome-wide identification and characterization of SRLK gene family reveal their roles in self-incompatibility of Erigeron breviscapus. BMC Genomics 2023; 24:402. [PMID: 37460954 DOI: 10.1186/s12864-023-09485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Self-incompatibility (SI) is a reproductive protection mechanism that plants acquired during evolution to prevent self-recession. As the female determinant of SI specificity, SRK has been shown to be the only recognized gene on the stigma and plays important roles in SI response. Asteraceae is the largest family of dicotyledonous plants, many of which exhibit self-incompatibility. However, systematic studies on SRK gene family in Asteraceae are still limited due to lack of high-quality genomic data. In this study, we performed the first systematic genome-wide identification of S-locus receptor like kinases (SRLKs) in the self-incompatible Asteraceae species, Erigeron breviscapus, which is also a widely used perennial medicinal plant endemic to China.52 SRLK genes were identified in the E. breviscapus genome. Structural analysis revealed that the EbSRLK proteins in E. breviscapus are conserved. SRLK proteins from E. breviscapus and other SI plants are clustered into 7 clades, and the majority of the EbSRLK proteins are distributed in Clade I. Chromosomal and duplication analyses indicate that 65% of the EbSRLK genes belong to tandem repeats and could be divided into six tandem gene clusters. Gene expression patterns obtained in E. breviscapus multiple-tissue RNA-Seq data revealed differential temporal and spatial features of EbSRLK genes. Among these, two EbSRLK genes having high expression levels in tongue flowers were cloned. Subcellular localization assay demonstrated that both of their fused proteins are localized on the plasma membrane. All these results indicated that EbSRLK genes possibly involved in SI response in E. breviscapus. This comprehensive genome-wide study of the SRLK gene family in E. breviscapus provides valuable information for understanding the mechanism of SSI in Asteraceae.
Collapse
Affiliation(s)
| | | | - Tiantao Wang
- Honghe University, Mengzi, 661100, Yunnan, China
| | | | - Dejun Guan
- Yunnan Zesheng Biotechnology Co., Ltd. Luxi, Qujing, 652400, Yunnan, China
| | - He Li
- Honghe University, Mengzi, 661100, Yunnan, China
| | - Xiang Wei
- Honghe University, Mengzi, 661100, Yunnan, China.
| | - Wei Zhang
- Honghe University, Mengzi, 661100, Yunnan, China.
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China), Beijing, 100081, China.
| |
Collapse
|
3
|
Shuri K, Saika K, Junko K, Michiharu K, Nagamitsu T, Iwata H, Tsumura Y, Mukai Y. Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa. Heredity (Edinb) 2012; 109:188-98. [PMID: 22669074 DOI: 10.1038/hdy.2012.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mating processes of local demes and spatial genetic structure of island populations at the self-incompatibility (S-) locus under negative frequency-dependent selection (NFDS) were evaluated in Prunus lannesiana var. speciosa in comparison with nuclear simple sequence repeat (SSR) loci that seemed to be evolutionarily neutral. Our observations of local mating patterns indicated that male-female pair fecundity was influenced by not only self-incompatibility, but also various factors, such as kinship, pollen production and flowering synchrony. In spite of the mating bias caused by these factors, the NFDS effect on changes in allele frequencies from potential mates to mating pollen was detected at the S-locus but not at the SSR loci, although the changes from adult to juvenile cohorts were not apparent at any loci. Genetic differentiation and isolation-by-distance over various spatial scales were smaller at the S-locus than at the SSR loci, as expected under the NFDS. Allele-sharing distributions among the populations also had a unimodal pattern at the S-locus, indicating the NFDS effect except for alleles unique to individual populations probably due to isolation among islands, although this pattern was not exhibited by the SSR loci. Our results suggest that the NFDS at the S-locus has an impact on both the mating patterns and the genetic structure in the P. lannesiana populations studied.
Collapse
Affiliation(s)
- K Shuri
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Effect of balancing selection on spatial genetic structure within populations: theoretical investigations on the self-incompatibility locus and empirical studies in Arabidopsis halleri. Heredity (Edinb) 2010; 106:319-29. [PMID: 20531450 DOI: 10.1038/hdy.2010.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of selection on patterns of genetic structure within and between populations may be studied by contrasting observed patterns at the genes targeted by selection with those of unlinked neutral marker loci. Local directional selection on target genes will produce stronger population genetic structure than at neutral loci, whereas the reverse is expected for balancing selection. However, theoretical predictions on the intensity of this signal under precise models of balancing selection are still lacking. Using negative frequency-dependent selection acting on self-incompatibility systems in plants as a model of balancing selection, we investigated the effect of such selection on patterns of spatial genetic structure within a continuous population. Using numerical simulations, we tested the effect of the type of self-incompatibility system, the number of alleles at the self-incompatibility locus and the dominance interactions among them, the extent of gene dispersal, and the immigration rate on spatial genetic structure at the selected locus and at unlinked neutral loci. We confirm that frequency-dependent selection is expected to reduce the extent of spatial genetic structure as compared to neutral loci, particularly in situations with low number of alleles at the self-incompatibility locus, high frequency of codominant interactions among alleles, restricted gene dispersal and restricted immigration from outside populations. Hence the signature of selection on spatial genetic structure is expected to vary across species and populations, and we show that empirical data from the literature as well as data reported here on three natural populations of the herb Arabidopsis halleri confirm these theoretical results.
Collapse
|
5
|
|
6
|
Abbott RJ, Brennan AC, James JK, Forbes DG, Hegarty MJ, Hiscock SJ. Recent hybrid origin and invasion of the British Isles by a self-incompatible species, Oxford ragwort (Senecio squalidus L., Asteraceae). Biol Invasions 2008. [DOI: 10.1007/s10530-008-9382-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Busch JW, Schoen DJ. The evolution of self-incompatibility when mates are limiting. TRENDS IN PLANT SCIENCE 2008; 13:128-36. [PMID: 18296103 DOI: 10.1016/j.tplants.2008.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 05/23/2023]
Abstract
Self-incompatibility (SI) is a genetic barrier to inbreeding that is broadly distributed in angiosperms. In finite populations of SI plants, the loss of S-allele diversity can limit plant reproduction by reducing the availability of compatible mates. Many studies have shown that small or fragmented plant populations suffer from mate limitation. The advent of molecular typing of S-alleles in many species has paved the way to address quantitatively the importance of mate limitation, and to provide greater insight into why and how SI systems breakdown frequently in nature. In this review, we highlight the ecological factors that contribute to mate limitation in SI taxa, discuss their consequences for the evolution and functioning of SI, and propose new empirical research directions.
Collapse
Affiliation(s)
- Jeremiah W Busch
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC H3A 1B1, Canada.
| | | |
Collapse
|
8
|
Wagenius S, Lonsdorf E, Neuhauser C. Patch Aging and theS‐Allee Effect: Breeding System Effects on the Demographic Response of Plants to Habitat Fragmentation. Am Nat 2007; 169:383-97. [PMID: 17230399 DOI: 10.1086/511313] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 10/25/2006] [Indexed: 11/03/2022]
Abstract
We used empirical and modeling approaches to examine effects of plant breeding systems on demographic responses to habitat fragmentation. Empirically, we investigated effects of local flowering plant density on pollination and of population size on mate availability in a common, self-incompatible purple coneflower, Echinacea angustifolia, growing in fragmented prairie habitat. Pollination and recruitment increased with weighted local density around individual flowering plants. This positive density dependence is an Allee effect. In addition, mean mate compatibility between pairs of plants increased with population size. Based on this empirical study, we developed an individual-based, spatially explicit demographic model that incorporates autosomal loci and an S locus. We simulated habitat fragmentation in populations identical except for their breeding system, self-incompatible (SI) or self-compatible (SC). Both populations suffered reduced reproduction in small patches because of scarcity of plants within pollination distance (potential mates) and inbreeding depression. But SI species experienced an additional, genetic contribution to the Allee effect (S-Allee effect) caused by allele loss at the S locus, which reduces mate availability, thereby decreasing reproduction. The strength of the S-Allee effect increases through time (i.e., patches age) because random genetic drift reduces S-allele richness. We investigate how patch aging influences extinction and discuss how the S-Allee effect influences communities in fragmented habitat.
Collapse
Affiliation(s)
- Stuart Wagenius
- Institute for Plant Conservation, Chicago Botanic Garden, Glencoe, Illinois 60022, USA.
| | | | | |
Collapse
|
9
|
Schueler S, Tusch A, Scholz F. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 2006; 15:3231-43. [PMID: 16968267 DOI: 10.1111/j.1365-294x.2006.03029.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gametophytic self-incompatibility (SI) systems in plants exhibit high polymorphism at the SI controlling S-locus because individuals with rare alleles have a higher probability to successfully pollinate other plants than individuals with more frequent alleles. This process, referred to as frequency-dependent selection, is expected to shape number, frequency distribution, and spatial distribution of self-incompatibility alleles in natural populations. We investigated the genetic diversity and the spatial genetic structure within a Prunus avium population at two contrasting gene loci: nuclear microsatellites and the S-locus. The S-locus revealed a higher diversity (15 alleles) than the eight microsatellites (4-12 alleles). Although the frequency distribution of S-alleles differed significantly from the expected equal distribution, the S-locus showed a higher evenness than the microsatellites (Shannon's evenness index for the S-locus: E = 0.91; for the microsatellites: E = 0.48-0.83). Also, highly significant deviations from neutrality were found for the S-locus whereas only minor deviations were found for two of eight microsatellites. A comparison of the frequency distribution of S-alleles in three age-cohorts revealed no significant differences, suggesting that different levels of selection acting on the S-locus or on S-linked sites might also affect the distribution and dynamics of S-alleles. Autocorrelation analysis revealed a weak but significant spatial genetic structure for the multilocus average of the microsatellites and for the S-locus, but could not ascertain differences in the extent of spatial genetic structure between these locus types. An indirect estimate of gene dispersal, which was obtained to explain this spatial genetic pattern, indicated high levels of gene dispersal within our population (sigma(g) = 106 m). This high gene dispersal, which may be partly due to the self-incompatibility system itself, aids the effective gene flow of the microsatellites, thereby decreasing the contrast between the neutral microsatellites and the S-locus.
Collapse
Affiliation(s)
- Silvio Schueler
- Institute for Forest Genetics and Forest Tree Breeding, Federal Research Centre for Forestry and Forest Products, Sieker Landstrasse 2, D-22927 Grosshansdorf, Germany.
| | | | | |
Collapse
|
10
|
Brennan AC, Harris SA, Hiscock SJ. THE POPULATION GENETICS OF SPOROPHYTIC SELF-INCOMPABILITY IN SENECIO SQUALIDUS L. (ASTERACEAE): THE NUMBER, FREQUENCY, AND DOMINANCE INTERACTIONS OF S ALLELES ACROSS ITS BRITISH RANGE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01100.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Brennan AC, Harris SA, Hiscock SJ. THE POPULATION GENETICS OF SPOROPHYTIC SELF-INCOMPATIBILITY IN SENECIO SQUALIDUS L. (ASTERACEAE): THE NUMBER, FREQUENCY, AND DOMINANCE INTERACTIONS OF S ALLELES ACROSS ITS BRITISH RANGE. Evolution 2006. [DOI: 10.1554/05-231.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Brennan AC, Harris SA, Hiscock SJ. Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): a successful colonizing species in the British Isles. THE NEW PHYTOLOGIST 2005; 168:475-86. [PMID: 16219086 DOI: 10.1111/j.1469-8137.2005.01517.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The strength of the self-incompatibility (SI) response in Senecio squalidus was measured across its British range. Geographic variation in SI was investigated and the extent and inheritance of pseudo-self-compatibility (PSC) and inbreeding depression were determined. Mean self-fruit-set per capitulum was calculated for individuals and sample populations. The heritability of PSC and the magnitude of inbreeding depression were assessed by comparing selfing rates and fitness trait values between SI and PSC parent-progeny lines. SI was found to be strongly expressed in S. squalidus throughout its British range, with only 3.1% of the individuals sampled showing PSC. This PSC had relatively low heritability with stronger expression of SI in selfed progeny relative to PSC parents. Inbreeding depression was shown to be great in S. squalidus, with mean life history stage values ranging from 0.18 to 0.25. The strength of SI in S. squalidus appears not to have weakened in response to its rapid colonization of Britain. The avoidance of inbreeding depression is likely to be the primary factor maintaining strong SI in this successful colonizing species.
Collapse
|
13
|
Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A. Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 2005; 171:279-89. [PMID: 15944365 PMCID: PMC1456519 DOI: 10.1534/genetics.104.035915] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) systems are widespread mechanisms that prevent self-fertilization in angiosperms. They are generally encoded by one genome region containing several multiallelic genes, usually called the S-locus. They involve a recognition step between the pollen and the pistil component and pollen is rejected when it shares alleles with the pistil. The direct consequence is that rare alleles are favored, such that the S-alleles are subject to negative frequency-dependent selection. Several theoretical articles have predicted the specific patterns of polymorphism, compared to neutral loci, expected for such genes under balancing selection. For instance, many more alleles should be maintained and populations should be less differentiated than for neutral loci. However, empirical tests of these predictions in natural populations have remained scarce. Here, we compare the genetic structure at the S-locus and microsatellite markers for five natural populations of the rare species Brassica insularis. As in other Brassica species, B. insularis has a sporophytic SI system for which molecular markers are available. Our results match well the theoretical predictions and constitute the first general comparison of S-allele and neutral polymorphism.
Collapse
Affiliation(s)
- Sylvain Glémin
- UMR 5171 Génome, Populations, Interactions, Adaptations, Université Montpellier II, F-34095 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
14
|
Castric V, Vekemans X. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 2004; 13:2873-89. [PMID: 15367105 DOI: 10.1111/j.1365-294x.2004.02267.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S-alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de génétique et évolution des populations végétales, UMR CNRS 8016, Cité Scientifique, Bâtiment SN2, 59655 Villeneuve d'Ascq Cedex, France.
| | | |
Collapse
|
15
|
Brennan AC, Harris SA, Hiscock SJ. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): avoidance of mating constraints imposed by low S-allele number. Philos Trans R Soc Lond B Biol Sci 2003; 358:1047-50. [PMID: 12831471 PMCID: PMC1693209 DOI: 10.1098/rstb.2003.1300] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senecio squalidus L. (Asteraceae) has been the subject of several ecological and population genetic studies due to its well-documented history of introduction, establishment and spread throughout Britain in the past 300 years. Our recent studies have focused on identifying and quantifying factors associated with the sporophytic self-incompatibility (SSI) system of S. squalidus that may have contributed to its success as a colonist. These findings are of general biological interest because they provide important insights into the short-term evolutionary dynamics of a plant mating system. The number of S-alleles in populations and their dominance interactions were investigated in eight wild British populations using cross-diallel studies. The numbers of S-alleles in British S. squalidus populations are typically low (average of 5.3 S-alleles) and the entire British population is estimated to possess no more than 7-11 S-alleles. Such low numbers of S-alleles are most probably a consequence of population bottlenecks associated with introduction and colonization. Potential evolutionary impacts on SSI caused by a paucity of S-alleles, such as restricted mate availability, are discussed, and we suggest that increased dominance interactions between S-alleles may be an important short-term means of increasing mate availability when S-allele numbers are low.
Collapse
Affiliation(s)
- Adrian C Brennan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | |
Collapse
|
16
|
Hiscock SJ, Tabah DA. The different mechanisms of sporophytic self-incompatibility. Philos Trans R Soc Lond B Biol Sci 2003; 358:1037-45. [PMID: 12831470 PMCID: PMC1693206 DOI: 10.1098/rstb.2003.1297] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flowering plants have evolved a multitude of mechanisms to avoid self-fertilization and promote outbreeding. Self-incompatibility (SI) is by far the most common of these, and is found in ca. 60% of flowering plants. SI is a genetically controlled pollen-pistil recognition system that provides a barrier to fertilization by self and self-related pollen in hermaphrodite (usually co-sexual) flowering plants. Two genetically distinct forms of SI can be recognized: gametophytic SI (GSI) and sporophytic SI (SSI), distinguished by how the incompatibility phenotype of the pollen is determined. GSI appears to be the most common mode of SI and can operate through at least three different mechanisms, two of which have been characterized extensively at a molecular level in the Solanaceae and Papaveraceae. Because molecular studies of SSI have been largely confined to species from the Brassicaceae, predominantly Brassica species, it is not yet known whether SSI, like GSI, can operate through different molecular mechanisms. Molecular studies of SSI are now being carried out on Ipomoea trifida (Convolvulaceae) and Senecio squalidus (Asteraceae) and are providing important preliminary data suggesting that SSI in these two families does not share the same molecular mechanism as that of the Brassicaceae. Here, what is currently known about the molecular regulation of SSI in the Brassicaceae is briefly reviewed, and the emerging data on SSI in I. trifida, and more especially in S. squalidus, are discussed.
Collapse
Affiliation(s)
- Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | |
Collapse
|