1
|
Yu M, Wu G, Chang Y, Cai J, Wang C, Zhang D, Xu C. Comparative Transcriptomic Analysis Provides Insight into Spatiotemporal Expression Patterns of Pivotal Genes During Critical Growth Stages in Min Pig Breed. Biomolecules 2025; 15:180. [PMID: 40001483 PMCID: PMC11853420 DOI: 10.3390/biom15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The growth and development of animals are dynamic processes characterized by fluctuations. Min pigs, a local breed renowned for their superior meat quality, present an intriguing yet poorly understood relationship between this quality and their growth and development patterns. To elucidate this relationship, we employed a multi-faceted approach that included comparative transcriptomics, quantitative real-time PCR (qRT-PCR), selection pressure analysis of key genes, and three-dimensional protein structure simulations. Our findings revealed that 150 days (150 d) of age represented a pivotal turning point in the growth and development of Min pigs. Thirteen key genes exhibiting significant differential expression between early and late growth stages were identified. Notably, the CDK2 gene demonstrated specific high expression in the hind limb muscles and adipose tissues during the later growth stages. Comparative analysis with the African warthog revealed that while the CDK2 protein structure remained conserved, base mutations in upstream and downstream non-coding regions resulted in strong positive selection pressure on the CDK2 gene. These results suggest that CDK2 plays a crucial role in defining the spatiotemporal characteristics of meat development during the domestication of Min pigs. This study provides critical insights into the growth and development patterns of domestic pigs and offers a robust scientific foundation for improving meat quality traits through domestication.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Guandong Wu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Yang Chang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Jiancheng Cai
- China Lanxi Breeding Farm, Lanxi 151500, China; (J.C.); (C.W.)
| | - Chunan Wang
- China Lanxi Breeding Farm, Lanxi 151500, China; (J.C.); (C.W.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chunzhu Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| |
Collapse
|
2
|
Xie HB, Yan C, Adeola AC, Wang K, Huang CP, Xu MM, Qiu Q, Yin X, Fan CY, Ma YF, Yin TT, Gao Y, Deng JK, Okeyoyin AO, Oluwole OO, Omotosho O, Okoro VMO, Omitogun OG, Dawuda PM, Olaogun SC, Nneji LM, Ayoola AO, Sanke OJ, Luka PD, Okoth E, Lekolool I, Mijele D, Bishop RP, Han J, Wang W, Peng MS, Zhang YP. African Suid Genomes Provide Insights into the Local Adaptation to Diverse African Environments. Mol Biol Evol 2022; 39:6840307. [PMID: 36413509 PMCID: PMC9733430 DOI: 10.1093/molbev/msac256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
African wild suids consist of several endemic species that represent ancient members of the family Suidae and have colonized diverse habitats on the African continent. However, limited genomic resources for African wild suids hinder our understanding of their evolution and genetic diversity. In this study, we assembled high-quality genomes of a common warthog (Phacochoerus africanus), a red river hog (Potamochoerus porcus), as well as an East Asian Diannan small-ear pig (Sus scrofa). Phylogenetic analysis showed that common warthog and red river hog diverged from their common ancestor around the Miocene/Pliocene boundary, putatively predating their entry into Africa. We detected species-specific selective signals associated with sensory perception and interferon signaling pathways in common warthog and red river hog, respectively, which contributed to their local adaptation to savannah and tropical rainforest environments, respectively. The structural variation and evolving signals in genes involved in T-cell immunity, viral infection, and lymphoid development were identified in their ancestral lineage. Our results provide new insights into the evolutionary histories and divergent genetic adaptations of African suids.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xue Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chen-Yu Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jia-Kun Deng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja 900108, Nigeria
| | - Olufunke O Oluwole
- Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria
| | - Oladipo Omotosho
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Victor M O Okoro
- Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Ofelia G Omitogun
- Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi 970001, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Adeola O Ayoola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo 660213, Nigeria
| | - Pam D Luka
- National Veterinary Research Institute, Vom 930103, Nigeria
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | | | - Richard P Bishop
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Wen Wang
- Corresponding authors: E-mails: ; ; ;
| | | | | |
Collapse
|
3
|
Biogeography and conservation of desert warthog Phacochoerus aethiopicus and common warthog Phacochoerus africanus (Artiodactyla: Suidae) in the Horn of Africa. MAMMALIA 2022. [DOI: 10.1515/mammalia-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Two species of warthog are currently widely recognised, the poorly known desert warthog Phacochoerus aethiopicus and the widely distributed common warthog Phacochoerus africanus. Spatial data for both species were collected during field surveys and from the literature, museums, colleagues, naturalists, local experts, and online resources to assess their biogeography in the Horn of Africa (HoA). Their distributions were overlaid with ArcGIS datasets for altitude, rainfall, temperature, and ecoregions. Phacochoerus aethiopicus appears to be restricted to Ethiopia, Kenya, and Somalia, with no records west of the Eastern Rift Valley (ERV). The estimated current geographic distribution of P. aethiopicus is 1,109,000 km2. Phacochoerus africanus occurs in all five countries of the HoA and has an estimated current geographic distribution in the HoA of 1,213,000 km2. Phacochoerus africanus appears to be the more adaptable species although P. aethiopicus is able to live where mean annual rainfall is more variable. Although both species are allopatric over vast regions, they are sympatric in central east Ethiopia, north Somalia, central Kenya, north coast of Kenya, and southeast Kenya. Both suids remain locally common, their populations are, however, in decline due to the negative impacts on the environment by the rapidly growing human populations in all five countries.
Collapse
|
4
|
Garcia-Erill G, Jørgensen CHF, Muwanika VB, Wang X, Rasmussen MS, de Jong YA, Gaubert P, Olayemi A, Salmona J, Butynski TM, Bertola LD, Siegismund HR, Albrechtsen A, Heller R. Warthog Genomes Resolve an Evolutionary Conundrum and Reveal Introgression of Disease Resistance Genes. Mol Biol Evol 2022; 39:6627297. [PMID: 35779009 PMCID: PMC9250280 DOI: 10.1093/molbev/msac134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000–1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region’s importance in African biogeography. We found that immune system–related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Christian H F Jørgensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vincent B Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Malthe S Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Philippe Gaubert
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, HO 220005 Ile Ife, Nigeria
| | - Jordi Salmona
- Laboratoire Évolution & Diversité Biologique, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program & Lolldaiga Hills Research Programme, PO Box 149, Nanyuki 10400, Kenya
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Sarabia C, vonHoldt B, Larrasoaña JC, Uríos V, Leonard JA. Pleistocene climate fluctuations drove demographic history of African golden wolves (Canis lupaster). Mol Ecol 2020; 30:6101-6120. [PMID: 33372365 DOI: 10.1111/mec.15784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Pleistocene climate change impacted entire ecosystems throughout the world. In the northern hemisphere, the distribution of Arctic species expanded during glacial periods, while more temperate and mesic species contracted into climatic refugia, where isolation drove genetic divergence. Cycles of local cooling and warming in the Sahara region of northern Africa caused repeated contractions and expansions of savannah-like environments which connected mesic species isolated in refugia during interglacial times, possibly driving population expansions and contractions; divergence and geneflow in the associated fauna. Here, we use whole genome sequences of African golden wolves (Canis lupaster), a generalist mesopredator with a wide distribution in northern Africa to estimate their demographic history and past episodes of geneflow. We detect a correlation between divergence times and cycles of increased aridity-associated Pleistocene glacial cycles. A complex demographic history with responses to local climate change in different lineages was found, including a relict lineage north of the High Atlas Mountains of Morocco that has been isolated for more than 18,000 years, possibly a distinct ecotype.
Collapse
Affiliation(s)
- Carlos Sarabia
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| | - Bridgett vonHoldt
- Faculty of Ecology and Evolutionary Biology, University of Princeton, Princeton, NJ, USA
| | | | - Vicente Uríos
- Vertebrate Zoology Research Group, University of Alicante, Alicante, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| |
Collapse
|
6
|
Molecular Species Delimitation of Larks (Aves: Alaudidae), and Integrative Taxonomy of the Genus Calandrella, with the Description of a Range-Restricted African Relic Taxon. DIVERSITY 2020. [DOI: 10.3390/d12110428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Larks constitute an avian family of exceptional cryptic diversity and striking examples of convergent evolution. Therefore, traditional morphology-based taxonomy has recurrently failed to reflect evolutionary relationships. While taxonomy ideally should integrate morphology, vocalizations, behaviour, ecology, and genetics, this can be challenging for groups that span several continents including areas that are difficult to access. Here, we combine morphometrics and mitochondrial DNA to evaluate the taxonomy of Calandrella larks, with particular focus on the African C. cinerea and the Asian C. acutirostris complexes. We describe a new range-restricted West African taxon, Calandrella cinerea rufipecta ssp. nov. (type locality: Jos, Plateau State, Nigeria), with an isolated relic population 3000 km from its closest relative in the Rift Valley. We performed molecular species delimitation, employing coalescence-based multi-rate Poisson Tree Processes (mPTP) on cytochrome b sequences across 52 currently recognized lark species, including multiple taxa currently treated as subspecies. Three species-level splits were inferred within the genus Calandrella and another 13 across other genera, primarily among fragmented sub-Saharan taxa and taxa distributed from Northwest Africa to Arabia or East Africa. Previously unknown divergences date back as far as to the Miocene, indicating the presence of currently unrecognized species. However, we stress that taxonomic decisions should not be based on single datasets, such as mitochondrial DNA, although analyses of mitochondrial DNA can be a good indicator of taxa in need of further integrative taxonomic assessment.
Collapse
|
7
|
Hlongwane NL, Hadebe K, Soma P, Dzomba EF, Muchadeyi FC. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front Genet 2020; 11:344. [PMID: 32457791 PMCID: PMC7221027 DOI: 10.3389/fgene.2020.00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic diversity is of great importance and a prerequisite for genetic improvement and conservation programs in pigs and other livestock populations. The present study provides a genome wide analysis of the genetic variability and population structure of pig populations from different production systems in South Africa relative to global populations. A total of 234 pigs sampled in South Africa and consisting of village (n = 91), commercial (n = 60), indigenous (n = 40), Asian (n = 5) and wild (n = 38) populations were genotyped using Porcine SNP60K BeadChip. In addition, 389 genotypes representing village and commercial pigs from America, Europe, and Asia were accessed from a previous study and used to compare population clustering and relationships of South African pigs with global populations. Moderate heterozygosity levels, ranging from 0.204 for Warthogs to 0.371 for village pigs sampled from Capricorn municipality in Eastern Cape province of South Africa were observed. Principal Component Analysis of the South African pigs resulted in four distinct clusters of (i) Duroc; (ii) Vietnamese; (iii) Bush pig and Warthog and (iv) a cluster with the rest of the commercial (SA Large White and Landrace), village, Wild Boar and indigenous breeds of Koelbroek and Windsnyer. The clustering demonstrated alignment with genetic similarities, geographic location and production systems. The PCA with the global populations also resulted in four clusters that where populated with (i) all the village populations, wild boars, SA indigenous and the large white and landraces; (ii) Durocs (iii) Chinese and Vietnamese pigs and (iv) Warthog and Bush pig. K = 10 (The number of population units) was the most probable ADMIXTURE based clustering, which grouped animals according to their populations with the exception of the village pigs that showed presence of admixture. AMOVA reported 19.92%-98.62% of the genetic variation to be within populations. Sub structuring was observed between South African commercial populations as well as between Indigenous and commercial breeds. Population pairwise F ST analysis showed genetic differentiation (P ≤ 0.05) between the village, commercial and wild populations. A per marker per population pairwise F ST analysis revealed SNPs associated with QTLs for traits such as meat quality, cytoskeletal and muscle development, glucose metabolism processes and growth factors between both domestic populations as well as between wild and domestic breeds. Overall, the study provided a baseline understanding of porcine diversity and an important foundation for porcine genomics of South African populations.
Collapse
Affiliation(s)
- Nompilo Lucia Hlongwane
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Pranisha Soma
- Animal Production Institute, Agricultural Research Council, Irene, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | | |
Collapse
|
8
|
Fuchs J, Alström P, Yosef R, Olsson U. Miocene diversification of an open‐habitat predatorial passerine radiation, the shrikes (Aves: Passeriformes: Laniidae). ZOOL SCR 2019. [DOI: 10.1111/zsc.12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jérôme Fuchs
- UMR7205 Institut de Systématique, Evolution, Biodiversité CNRS MNHN UPMC EPHE, Muséum National d’Histoire Naturelle Sorbonne Université Paris France
| | - Per Alström
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre Uppsala University Uppsala Sweden
- Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | | | - Urban Olsson
- Department of Biology and Environmental Science University of Gothenburg Gothenburg Sweden
| |
Collapse
|
9
|
Goftishu M, Assefa Y, Niba A, Fininsa C, Nyamukondiwa C, Capdevielle-Dulac C, Le Ru BP. Phylogeography and Population Structure of the Mediterranean Corn Borer, Sesamia nonagrioides (Lepidoptera: Noctuidae), Across Its Geographic Range. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:396-406. [PMID: 30376077 DOI: 10.1093/jee/toy323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Sesamia nonagrioides (Lefèbvre) (Lepidoptera: Noctuidae), is a widespread insect pest in Africa, the Middle East, and Europe. However, its pest status varies across its distribution range. It is a major pest of maize in Europe and of sugarcane in Iran. In Africa, it is a major pest of maize in West Africa but not considered as a pest in East Africa. Recent surveys conducted in 2015 recorded S. nonagrioides to be a major pest of sugarcane in Ethiopia and reported the species for the first time in Botswana, outside its known geographic range. The genetic relationship of these records with the previously recorded population of S. nonagrioides was investigated using the cytochrome oxidase subunit I region of the mitochondrial genome. In total, 113 individuals across the geographic range of the species were analyzed and 63 haplotypes were identified. Phylogenetic analysis separated the populations into two clades with no distinct geographic distribution pattern. The genetic differentiation was also not associated with host plants and geographic distances. Results of the molecular analysis revealed the long-time establishment of S. nonagrioides population in Botswana and identified the newly recorded sugarcane population from Ethiopia as part of the wild host population in the country. The phylogeographic patterns observed among population of S. nonagrioides have probably been shaped by Pleistocene's climatic oscillations and geographic range expansions from different refugia with secondary contact and admixture. Possible reasons for the host-plant expansion by the Ethiopian population are discussed.
Collapse
Affiliation(s)
- Muluken Goftishu
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Yoseph Assefa
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
- Department of Crop Production, University of Swaziland, Luyengo Campus, Swaziland
| | - Augustine Niba
- Department of Biological and Environmental Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Chemeda Fininsa
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Claire Capdevielle-Dulac
- IRD/CNRS, UMR IRD 247 EGCE, Laboratoire Evolution Génomes Comportement et Ecologie, Avenue de la terrasse, BP1, 91198, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Bruno Pierre Le Ru
- IRD/CNRS, UMR IRD 247 EGCE, Laboratoire Evolution Génomes Comportement et Ecologie, Avenue de la terrasse, BP1, 91198, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| |
Collapse
|
10
|
Mans BJ, Featherston J, Kvas M, Pillay KA, de Klerk DG, Pienaar R, de Castro MH, Schwan TG, Lopez JE, Teel P, Pérez de León AA, Sonenshine DE, Egekwu NI, Bakkes DK, Heyne H, Kanduma EG, Nyangiwe N, Bouattour A, Latif AA. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick Borne Dis 2018; 10:219-240. [PMID: 30309738 DOI: 10.1016/j.ttbdis.2018.09.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/02/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
The systematics of the genera and subgenera within the soft tick family Argasidae is not adequately resolved. Different classification schemes, reflecting diverse schools of scientific thought that elevated or downgraded groups to genera or subgenera, have been proposed. In the most recent classification scheme, Argas and Ornithodoros are paraphyletic and the placement of various subgenera remains uncertain because molecular data are lacking. Thus, reclassification of the Argasidae is required. This will enable an understanding of soft tick systematics within an evolutionary context. This study addressed that knowledge gap using mitochondrial genome and nuclear (18S and 28S ribosomal RNA) sequence data for representatives of the subgenera Alectorobius, Argas, Chiropterargas, Ogadenus, Ornamentum, Ornithodoros, Navis (subgen. nov.), Pavlovskyella, Persicargas, Proknekalia, Reticulinasus and Secretargas, from the Afrotropical, Nearctic and Palearctic regions. Hard tick species (Ixodidae) and a new representative of Nuttalliella namaqua (Nuttalliellidae), were also sequenced with a total of 83 whole mitochondrial genomes, 18S rRNA and 28S rRNA genes generated. The study confirmed the utility of next-generation sequencing to retrieve systematic markers. Paraphyly of Argas and Ornithodoros was resolved by systematic analysis and a new species list is proposed. This corresponds broadly with the morphological cladistic analysis of Klompen and Oliver (1993). Estimation of divergence times using molecular dating allowed dissection of phylogeographic patterns for argasid evolution. The discovery of cryptic species in the subgenera Chiropterargas, Ogadenus and Ornithodoros, suggests that cryptic speciation is common within the Argasidae. Cryptic speciation has implications for past biological studies of soft ticks. These are discussed in particular for the Ornithodoros (Ornithodoros) moubata and Ornithodoros (Ornithodoros) savignyi groups.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa; Department of Life and Consumer Sciences, University of South Africa, South Africa.
| | - Jonathan Featherston
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Marija Kvas
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Kerry-Anne Pillay
- The Biotechnology Platform, Agricultural Research Council-Biotechnology Platform, Onderstepoort 0110, South Africa
| | - Daniel G de Klerk
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Minique H de Castro
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Tom G Schwan
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Job E Lopez
- Department of Paediatrics, National School of Tropical Medicine, Paediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pete Teel
- Department of Entomology, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States; Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIH), Rockville, MD, United States
| | - Noble I Egekwu
- Agricultural Research Service, United States Department of Agriculture, Washington, D.C., United States
| | - Deon K Bakkes
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Heloise Heyne
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Esther G Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, P.O BOX 30197, 00100, Nairobi, Kenya
| | - Nkululeko Nyangiwe
- Döhne Agricultural Development Institute, Private Bag X15, Stutterheim, 4930, South Africa
| | - Ali Bouattour
- Laboratoire d'Entomologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Abdalla A Latif
- School of Life Sciences, University of KwaZulu-Natal, Durban, Westville, South Africa
| |
Collapse
|
11
|
Integrative taxonomy of Afrotropical Ornithodoros (Ornithodoros) (Acari: Ixodida: Argasidae). Ticks Tick Borne Dis 2018; 9:1006-1037. [DOI: 10.1016/j.ttbdis.2018.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/26/2023]
|
12
|
Morales-Corrêa e Castro AC, Barbosa NCCP. Recent evolutionary history of Chrysoperla externa (Hagen 1861) (Neuroptera: Chrysopidae) in Brazil. PLoS One 2017; 12:e0177414. [PMID: 28510607 PMCID: PMC5433706 DOI: 10.1371/journal.pone.0177414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
This work aimed to elucidate the distribution of Chrysoperla externa haplotypes and investigate whether it exhibits structure based on genetic composition as opposed to geographic location. The genetic diversity of C. externa, analyzed by AMOVA using the COI and 16S rRNA genes as mitochondrial markers, showed significant haplotype structure arising from genetic differences that was not associated with sampling location. This was reflected in the network grouping. Bayesian inference showed that haplotype distribution may have its origins in C. externa divergence into two distinct clades, which dispersed to various locations, and their subsequent diversification. The evolutionary history of C. externa may include multiple ancestral haplotypes differentiating within the same geographic area to generate the current broad genetic diversity, so that the earlier geographical history has been erased, and now we have highlighted its more recent genetic history.
Collapse
Affiliation(s)
- Adriana C. Morales-Corrêa e Castro
- Programa de Pós-Graduação em Biociências, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Univ. Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brazil
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Univ. Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP, Brazil
- * E-mail:
| | - Nara Cristina Chiarini Pena Barbosa
- Programa de Pós-Graduação em Biociências, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Univ. Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, SP, Brazil
| |
Collapse
|
13
|
Dolotovskaya S, Torroba Bordallo J, Haus T, Noll A, Hofreiter M, Zinner D, Roos C. Comparing mitogenomic timetrees for two African savannah primate genera (Chlorocebus and Papio). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Complete mitochondrial (mtDNA) genomes have proved to be useful in reconstructing primate phylogenies with higher resolution and confidence compared to reconstructions based on partial mtDNA sequences. Here, we analyse complete mtDNA genomes of African green monkeys (genus Chlorocebus), a widely distributed primate genus in Africa representing an interesting phylogeographical model for the evolution of savannah species. Previous studies on partial mtDNA sequences revealed nine major clades, suggesting several cases of para- and polyphyly among Chlorocebus species. However, in these studies, phylogenetic relationships among several clades were not resolved, and divergence times were not estimated. We analysed complete mtDNA genomes for ten Chlorocebus samples representing major mtDNA clades to find stronger statistical support in the phylogenetic reconstruction than in the previous studies and to estimate divergence times. Our results confirmed para- and polyphyletic relationships of most Chlorocebus species, while the support for the phylogenetic relationships between the mtDNA clades increased compared to the previous studies. Our results indicate an initial west–east division in the northern part of the Chlorocebus range with subsequent divergence into north-eastern and southern clades. This phylogeographic scenario contrasts with that for another widespread African savannah primate genus, the baboons (Papio), for which a dispersal from southern Africa into East and West Africa was suggested.
Collapse
Affiliation(s)
- Sofya Dolotovskaya
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
| | - Juan Torroba Bordallo
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
| | - Tanja Haus
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
- Cognitive Ethology Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg, Göttingen, Germany
| |
Collapse
|
14
|
Bertola LD, Jongbloed H, van der Gaag KJ, de Knijff P, Yamaguchi N, Hooghiemstra H, Bauer H, Henschel P, White PA, Driscoll CA, Tende T, Ottosson U, Saidu Y, Vrieling K, de Iongh HH. Phylogeographic Patterns in Africa and High Resolution Delineation of Genetic Clades in the Lion (Panthera leo). Sci Rep 2016; 6:30807. [PMID: 27488946 PMCID: PMC4973251 DOI: 10.1038/srep30807] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
Comparative phylogeography of African savannah mammals shows a congruent pattern in which populations in West/Central Africa are distinct from populations in East/Southern Africa. However, for the lion, all African populations are currently classified as a single subspecies (Panthera leo leo), while the only remaining population in Asia is considered to be distinct (Panthera leo persica). This distinction is disputed both by morphological and genetic data. In this study we introduce the lion as a model for African phylogeography. Analyses of mtDNA sequences reveal six supported clades and a strongly supported ancestral dichotomy with northern populations (West Africa, Central Africa, North Africa/Asia) on one branch, and southern populations (North East Africa, East/Southern Africa and South West Africa) on the other. We review taxonomies and phylogenies of other large savannah mammals, illustrating that similar clades are found in other species. The described phylogeographic pattern is considered in relation to large scale environmental changes in Africa over the past 300,000 years, attributable to climate. Refugial areas, predicted by climate envelope models, further confirm the observed pattern. We support the revision of current lion taxonomy, as recognition of a northern and a southern subspecies is more parsimonious with the evolutionary history of the lion.
Collapse
Affiliation(s)
- L D Bertola
- Leiden University, Institute of Environmental Sciences (CML), PO Box 9518, 2300 RA Leiden, The Netherlands.,Leiden University, Institute of Biology Leiden (IBL), PO Box 9505, 2300 RA Leiden, The Netherlands
| | - H Jongbloed
- Leiden University, Institute of Environmental Sciences (CML), PO Box 9518, 2300 RA Leiden, The Netherlands.,Leiden University, Institute of Biology Leiden (IBL), PO Box 9505, 2300 RA Leiden, The Netherlands
| | - K J van der Gaag
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - P de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - N Yamaguchi
- Qatar University, Department of Biological and Environmental Sciences, College of Arts and Sciences, PO Box 2713, Doha, Qatar
| | - H Hooghiemstra
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| | - H Bauer
- WildCRU, Recanati-Kaplan Centre, University of Oxford. Tubney House, Abingdon Road, OX13 5QL, UK
| | - P Henschel
- Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA
| | - P A White
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1496, USA
| | - C A Driscoll
- Wildlife Institute of India, Dehradun 248001, Uttarakhand, India
| | - T Tende
- A. P. Leventis Ornithological Research Institute, P.O. Box 13404 Jos, Nigeria
| | - U Ottosson
- A. P. Leventis Ornithological Research Institute, P.O. Box 13404 Jos, Nigeria
| | - Y Saidu
- Nigeria National Park Service, PMB 0258 Garki-Abuja, Nigeria
| | - K Vrieling
- Leiden University, Institute of Biology Leiden (IBL), PO Box 9505, 2300 RA Leiden, The Netherlands
| | - H H de Iongh
- Leiden University, Institute of Environmental Sciences (CML), PO Box 9518, 2300 RA Leiden, The Netherlands.,University of Antwerp, Department Biology, Evolutionary Ecology Group, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
15
|
Sithaldeen R, Ackermann RR, Bishop JM. Pleistocene aridification cycles shaped the contemporary genetic architecture of Southern African baboons. PLoS One 2015; 10:e0123207. [PMID: 25970269 PMCID: PMC4430493 DOI: 10.1371/journal.pone.0123207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/01/2015] [Indexed: 02/05/2023] Open
Abstract
Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa’s faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region’s biodiversity.
Collapse
Affiliation(s)
- Riashna Sithaldeen
- Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Rebecca Rogers Ackermann
- Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Jacqueline M. Bishop
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- * E-mail:
| |
Collapse
|
16
|
Stoffel C, Dufresnes C, Okello JBA, Noirard C, Joly P, Nyakaana S, Muwanika VB, Alcala N, Vuilleumier S, Siegismund HR, Fumagalli L. Genetic consequences of population expansions and contractions in the common hippopotamus (Hippopotamus amphibius) since the Late Pleistocene. Mol Ecol 2015; 24:2507-20. [PMID: 25827243 DOI: 10.1111/mec.13179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 11/30/2022]
Abstract
Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.
Collapse
Affiliation(s)
- Céline Stoffel
- Department of Ecology and Evolution, Laboratory for Conservation Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stanton DWG, Hart J, Galbusera P, Helsen P, Shephard J, Kümpel NF, Wang J, Ewen JG, Bruford MW. Distinct and diverse: range-wide phylogeography reveals ancient lineages and high genetic variation in the endangered okapi (Okapia johnstoni). PLoS One 2014; 9:e101081. [PMID: 25007188 PMCID: PMC4090074 DOI: 10.1371/journal.pone.0101081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022] Open
Abstract
The okapi is an endangered, evolutionarily distinctive even-toed ungulate classified within the giraffidae family that is endemic to the Democratic Republic of Congo. The okapi is currently under major anthropogenic threat, yet to date nothing is known about its genetic structure and evolutionary history, information important for conservation management given the species' current plight. The distribution of the okapi, being confined to the Congo Basin and yet spanning the Congo River, also makes it an important species for testing general biogeographic hypotheses for Congo Basin fauna, a currently understudied area of research. Here we describe the evolutionary history and genetic structure of okapi, in the context of other African ungulates including the giraffe, and use this information to shed light on the biogeographic history of Congo Basin fauna in general. Using nuclear and mitochondrial DNA sequence analysis of mainly non-invasively collected samples, we show that the okapi is both highly genetically distinct and highly genetically diverse, an unusual combination of genetic traits for an endangered species, and feature a complex evolutionary history. Genetic data are consistent with repeated climatic cycles leading to multiple Plio-Pleistocene refugia in isolated forests in the Congo catchment but also imply historic gene flow across the Congo River.
Collapse
Affiliation(s)
| | - John Hart
- Lukuru Foundation, Projet Tshuapa-Lomami-Lualaba (TL2), Kinshasa, Democratic Republic of Congo
| | - Peter Galbusera
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Jill Shephard
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Noëlle F. Kümpel
- Conservation Programmes, Zoological Society of London, London, United Kingdom
| | - Jinliang Wang
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - John G. Ewen
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | |
Collapse
|
18
|
Dobigny G, Tatard C, Gauthier P, Ba K, Duplantier JM, Granjon L, Kergoat GJ. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats pleistocene history. PLoS One 2013; 8:e77815. [PMID: 24223730 PMCID: PMC3815218 DOI: 10.1371/journal.pone.0077815] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
A phylogeographic study was conducted on the Nile grass rat, Arvicanthis niloticus, a rodent species that is tightly associated with open grasslands from the Sudano-Sahelian regions. Using one mitochondrial (cytochrome b) and one nuclear (intron 7 of Beta Fibrinogen) gene, robust patterns were retrieved that clearly show that (i) the species originated in East Africa concomitantly with expanding grasslands some 2 Ma, and (ii) four parapatric and genetically well-defined lineages differentiated essentially from East to West following Pleistocene bioclimatic cycles. This strongly points towards allopatric genetic divergence within savannah refuges during humid episodes, then dispersal during arid ones; secondary contact zones would have then stabilized around geographic barriers, namely, Niger River and Lake Chad basins. Our results pertinently add to those obtained for several other African rodent as well as non-rodent species that inhabit forests, humid zones, savannahs and deserts, all studies that now allow one to depict a more comprehensive picture of the Pleistocene history of the continent south of the Sahara. In particular, although their precise location remains to be determined, at least three Pleistocene refuges are identified within the West and Central African savannah biome.
Collapse
Affiliation(s)
- Gauthier Dobigny
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
- Centre Régional Agrhymet, Rive Droite, Niamey, Niger
| | - Caroline Tatard
- Inra, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Philippe Gauthier
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Khalilou Ba
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Dakar, Senegal
| | - Jean-Marc Duplantier
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Laurent Granjon
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Dakar, Senegal
| | - Gael J. Kergoat
- Inra, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| |
Collapse
|
19
|
Thomassen HA, Freedman AH, Brown DM, Buermann W, Jacobs DK. Regional differences in seasonal timing of rainfall discriminate between genetically distinct East African giraffe taxa. PLoS One 2013; 8:e77191. [PMID: 24194870 PMCID: PMC3806738 DOI: 10.1371/journal.pone.0077191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 09/08/2013] [Indexed: 11/18/2022] Open
Abstract
Masai (Giraffa tippelskirchi), Reticulated (G. reticulata) and Rothschild's (G. camelopardalis) giraffe lineages in East Africa are morphologically and genetically distinct, yet in Kenya their ranges abut. This raises the question of how divergence is maintained among populations of a large mammal capable of long-distance travel, and which readily hybridize in zoos. Here we test four hypotheses concerning the maintenance of the phylogeographic boundaries among the three taxa: 1) isolation-by-distance; 2) physical barriers to dispersal; 3) general habitat differences resulting in habitat segregation; or 4) regional differences in the seasonal timing of rainfall, and resultant timing of browse availability. We used satellite remotely sensed and climate data to characterize the environment at the locations of genotyped giraffes. Canonical variate analysis, random forest algorithms, and generalized dissimilarity modelling were employed in a landscape genetics framework to identify the predictor variables that best explained giraffes' genetic divergence. We found that regional differences in the timing of precipitation, and resulting green-up associated with the abundance of browse, effectively discriminate between taxa. Local habitat conditions, topographic and human-induced barriers, and geographic distance did not aid in discriminating among lineages. Our results suggest that selection associated with regional timing of events in the annual climatic cycle may help maintain genetic and phenotypic divergence in giraffes. We discuss potential mechanisms of maintaining divergence, and suggest that synchronization of reproduction with seasonal rainfall cycles that are geographically distinct may contribute to reproductive isolation. Coordination of weaning with green-up cycles could minimize the costs of lactation and predation on the young. Our findings are consistent with theory and empirical results demonstrating the efficacy of seasonal or phenologically dictated selection pressures in contributing to the reproductive isolation of parapatric populations.
Collapse
Affiliation(s)
- Henri A. Thomassen
- Center for Tropical Research, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Adam H. Freedman
- Center for Tropical Research, University of California Los Angeles, Los Angeles, California, United States of America
| | - David M. Brown
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wolfgang Buermann
- Center for Tropical Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - David K. Jacobs
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Haus T, Roos C, Zinner D. Discordance Between Spatial Distributions of Y-Chromosomal and Mitochondrial Haplotypes in African Green Monkeys ( Chlorocebus spp.): A Result of Introgressive Hybridization or Cryptic Diversity? INT J PRIMATOL 2013; 34:986-999. [PMID: 24098065 PMCID: PMC3789887 DOI: 10.1007/s10764-013-9717-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/11/2013] [Indexed: 01/06/2023]
Abstract
Introgressive hybridization may cause substantial discordances among phylogenies based on different genetic markers. Such discordances have been found in diverse mammal species including primates. A recent study of mitochondrial DNA (mtDNA) revealed several poly- and paraphyletic relationships in African green monkeys (Chlorocebus), suggesting contemporary and/or ancient introgressive hybridization among almost all parapatric species of the genus. However, mtDNA analyses alone do not allow us to draw conclusions concerning introgression events. In this study we analyzed two Y chromosomal (Y-chr) markers for 30 African green monkey samples and compared the resulting genetic relationships to those based on published mtDNA data. In line with the results for mtDNA, we found no Y-chr evidence of hypothesized hybridization among Chlorocebus sabaeus and C. tantalus in the northern part of the contact zone in West Africa, and we found two distinct and distantly related Y-chr haplotypes within the range of C. tantalus, suggesting possible cryptic genetic diversity rather than ancient introgressive hybridization in this species. In contrast, Y-chr data revealed monophyletic relationships within Chlorocebus pygerythrus from East Africa, suggesting that mtDNA paraphylies found in this species are most likely to be the result of ancient introgressive hybridization and subsequent cytonuclear extinction of an earlier taxon. Our results accentuate the importance of analyzing sex chromosomal data in addition to mtDNA to obtain more information on the potential outcomes of hybridization with respect to genetic and species diversity. Analysis of more diverse nuclear marker sets is needed to obtain a more complete picture of the African green monkey evolution.
Collapse
Affiliation(s)
- Tanja Haus
- Cognitive Ethology Laboratory and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, Georg-August-University, 37075 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory and Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Jacquet F, Nicolas V, Colyn M, Kadjo B, Hutterer R, Decher J, Akpatou B, Cruaud C, Denys C. Forest refugia and riverine barriers promote diversification in the West African pygmy shrew (Crocidura obscuriorcomplex, Soricomorpha). ZOOL SCR 2013. [DOI: 10.1111/zsc.12039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- François Jacquet
- Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR 7205, Laboratoire Mammifères et Oiseaux; 55 rue Buffon 75005 Paris France
| | - Violaine Nicolas
- Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR 7205, Laboratoire Mammifères et Oiseaux; 55 rue Buffon 75005 Paris France
| | - Marc Colyn
- Université de Rennes 1, CNRS, Ecobio UMR 6553, Station Biologique; 35380 Paimpont France
| | - Blaise Kadjo
- Université de Cocody-Abidjan-UFR Biosciences, Systématique, Biologie et Ecologie des Mammifères; 22 BP 582 Abidjan 22 Côte d'Ivoire
| | - Rainer Hutterer
- Zoologisches Forschungsmuseum A. Koenig, Section of Mammals; Adenauerallee 160 D-53113 Bonn Germany
| | - Jan Decher
- Zoologisches Forschungsmuseum A. Koenig, Section of Mammals; Adenauerallee 160 D-53113 Bonn Germany
| | - Bertin Akpatou
- Université de Cocody-Abidjan-UFR Biosciences, Systématique, Biologie et Ecologie des Mammifères; 22 BP 582 Abidjan 22 Côte d'Ivoire
| | - Corinne Cruaud
- Génoscope, Centre National de Séquençage; 2 rue Gaston Crémieux CP5706 91057 Evry Cedex France
| | - Christiane Denys
- Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR 7205, Laboratoire Mammifères et Oiseaux; 55 rue Buffon 75005 Paris France
| |
Collapse
|
22
|
Koubínová D, Irwin N, Hulva P, Koubek P, Zima J. Hidden diversity in Senegalese bats and associated findings in the systematics of the family Vespertilionidae. Front Zool 2013; 10:48. [PMID: 23938084 PMCID: PMC3751436 DOI: 10.1186/1742-9994-10-48] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/01/2013] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The Vespertilionidae is the largest family of bats, characterized by high occurrence of morphologically convergent groups, which impedes the study of their evolutionary history. The situation is even more complicated in the tropics, where certain regions remain under-sampled. RESULTS Two hundred and thirteen vespertilionid bats from Senegal (West Africa) were studied with the use of non-differentially stained karyotypes and multi-locus sequence data analysed with maximum likelihood and Bayesian methods. These bats were identified as 10 different taxa, five of which were distinctive from their nominate species (Pipistrellus hesperidus, Nycticeinops schlieffenii, Scotoecus hirundo, Neoromicia nana and N. somalica), based on both karyotypes and molecular data. These five cryptic taxa are unrelated, suggesting that these West African populations have long been isolated from other African regions. Additionally, we phylogenetically analysed 166 vespertilionid taxa from localities worldwide using GenBank data (some 80% of the genera of the family) and 14 representatives of closely related groups, together with our Senegalese specimens. The systematic position of several taxa differed from previous studies and the tribes Pipistrellini and Vespertilionini were redefined. The African Pipistrellus rueppellii was basal to the Pipistrellus/Nyctalus clade and the Oriental species Glischropus tylopus was basal to the East Asian pipistrelles within the tribe Pipistrellini. The African genus Neoromicia was confirmed to be diphyletic. Based on GenBank data, Eptesicus was polyphyletic, with the Asian E. nasutus and E. dimissus both supported as phylogenetically distinct from the Eptesicus clade. The subfamily Scotophilinae was confirmed as one of the basal branches of Vespertilionidae. CONCLUSIONS New taxa and new systematic arrangements show that there is still much to resolve in the vespertilionids and that West Africa is a biogeographic hotspot with more diversity to be discovered.
Collapse
Affiliation(s)
- Darina Koubínová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12844 Praha 2, Czech Republic
| | - Nancy Irwin
- Biology Department, University of York, Heslington, YO10 5DD York, UK
| | - Pavel Hulva
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12844 Praha 2, Czech Republic
| | - Petr Koubek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 60365 Brno, Czech Republic
- Department of Forest Protection and Game Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, 16521 Praha-Suchdol, Czech Republic
| | - Jan Zima
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 60365 Brno, Czech Republic
| |
Collapse
|
23
|
Brito JC, Godinho R, Martínez-Freiría F, Pleguezuelos JM, Rebelo H, Santos X, Vale CG, Velo-Antón G, Boratyński Z, Carvalho SB, Ferreira S, Gonçalves DV, Silva TL, Tarroso P, Campos JC, Leite JV, Nogueira J, Álvares F, Sillero N, Sow AS, Fahd S, Crochet PA, Carranza S. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol Rev Camb Philos Soc 2013; 89:215-31. [DOI: 10.1111/brv.12049] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/28/2013] [Accepted: 06/19/2013] [Indexed: 11/28/2022]
Affiliation(s)
- José C. Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - Fernando Martínez-Freiría
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | | | - Hugo Rebelo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG U.K
| | - Xavier Santos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - Cândida G. Vale
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - Zbyszek Boratyński
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Science; University of Jyväskylä; Survontie 9 Finland
| | - Sílvia B. Carvalho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - Sónia Ferreira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - Duarte V. Gonçalves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - Teresa L. Silva
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - Pedro Tarroso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - João C. Campos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - João V. Leite
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - Joana Nogueira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
- Departamento de Biologia da; Faculdade de Ciências da Universidade do Porto; Porto 4169-007 Portugal
| | - Francisco Álvares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto; Vairão 4485-661 Portugal
| | - Neftalí Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE) da Universidade do Porto; Porto 4169-007 Portugal
| | - Andack S. Sow
- Département de Biologie; Université Abdelmalek Essaâdi; Tétouan 93002 Morocco
| | - Soumia Fahd
- Département de Biologie; Université Abdelmalek Essaâdi; Tétouan 93002 Morocco
| | - Pierre-André Crochet
- EPHE-UMR 5175; Centre d'Ecologie Fonctionnelle et Evolutive; Montpellier F-34293 France
| | - Salvador Carranza
- Institute of Evolutionary Biology; CSIC-Universitat Pompeu Fabra; Barcelona E-08003 Spain
| |
Collapse
|
24
|
Haus T, Akom E, Agwanda B, Hofreiter M, Roos C, Zinner D. Mitochondrial diversity and distribution of African green monkeys (chlorocebus gray, 1870). Am J Primatol 2013; 75:350-60. [PMID: 23307319 PMCID: PMC3613741 DOI: 10.1002/ajp.22113] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/19/2012] [Accepted: 11/23/2012] [Indexed: 11/21/2022]
Abstract
African green monkeys (Chlorocebus) represent a widely distributed and morphologically diverse primate genus in sub-Saharan Africa. Little attention has been paid to their genetic diversity and phylogeny. Based on morphological data, six species are currently recognized, but their taxonomy remains disputed. Here, we aim to characterize the mitochondrial (mt) DNA diversity, biogeography and phylogeny of African green monkeys. We analyzed the complete mitochondrial cytochrome b gene of 126 samples using feces from wild individuals and material from zoo and museum specimens with clear geographical provenance, including several type specimens. We found evidence for nine major mtDNA clades that reflect geographic distributions rather than taxa, implying that the mtDNA diversity of African green monkeys does not conform to existing taxonomic classifications. Phylogenetic relationships among clades could not be resolved suggesting a rapid early divergence of lineages. Several discordances between mtDNA and phenotype indicate that hybridization may have occurred in contact zones among species, including the threatened Bale monkey (Chlorocebus djamdjamensis). Our results provide both valuable data on African green monkeys' genetic diversity and evolution and a basis for further molecular studies on this genus.
Collapse
Affiliation(s)
- Tanja Haus
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
D’Amato ME, Alechine E, Cloete KW, Davison S, Corach D. Where is the game? Wild meat products authentication in South Africa: a case study. INVESTIGATIVE GENETICS 2013; 4:6. [PMID: 23452350 PMCID: PMC3621286 DOI: 10.1186/2041-2223-4-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/14/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wild animals' meat is extensively consumed in South Africa, being obtained either from ranching, farming or hunting. To test the authenticity of the commercial labels of meat products in the local market, we obtained DNA sequence information from 146 samples (14 beef and 132 game labels) for barcoding cytochrome c oxidase subunit I and partial cytochrome b and mitochondrial fragments. The reliability of species assignments were evaluated using BLAST searches in GenBank, maximum likelihood phylogenetic analysis and the character-based method implemented in BLOG. The Kimura-2-parameter intra- and interspecific variation was evaluated for all matched species. RESULTS The combined application of similarity, phylogenetic and character-based methods proved successful in species identification. Game meat samples showed 76.5% substitution, no beef samples were substituted. The substitutions showed a variety of domestic species (cattle, horse, pig, lamb), common game species in the market (kudu, gemsbok, ostrich, impala, springbok), uncommon species in the market (giraffe, waterbuck, bushbuck, duiker, mountain zebra) and extra-continental species (kangaroo). The mountain zebra Equus zebra is an International Union for Conservation of Nature (IUCN) red listed species. We also detected Damaliscus pygargus, which is composed of two subspecies with one listed by IUCN as 'near threatened'; however, these mitochondrial fragments were insufficient to distinguish between the subspecies. The genetic distance between African ungulate species often overlaps with within-species distance in cases of recent speciation events, and strong phylogeographic structure determines within-species distances that are similar to the commonly accepted distances between species. CONCLUSIONS The reliability of commercial labeling of game meat in South Africa is very poor. The extensive substitution of wild game has important implications for conservation and commerce, and for the consumers making decisions on the basis of health, religious beliefs or personal choices.Distance would be a poor indicator for identification of African ungulates species. The efficiency of the character-based method is reliant upon availability of large reference data. The current higher availability of cytochrome b data would make this the marker of choice for African ungulates. The encountered problems of incomplete or erroneous information in databases are discussed.
Collapse
Affiliation(s)
- Maria Eugenia D’Amato
- Biotechnology Department, Forensic DNA Lab, University of the Western Cape, Modderdam Road, Bellville, 7535, South Africa
| | - Evguenia Alechine
- Servicio de Huellas Digitales Genéticas, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
| | - Kevin Wesley Cloete
- Biotechnology Department, Forensic DNA Lab, University of the Western Cape, Modderdam Road, Bellville, 7535, South Africa
| | - Sean Davison
- Biotechnology Department, Forensic DNA Lab, University of the Western Cape, Modderdam Road, Bellville, 7535, South Africa
| | - Daniel Corach
- Servicio de Huellas Digitales Genéticas, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
| |
Collapse
|
26
|
Pan-African genetic structure in the African buffalo (Syncerus caffer): investigating intraspecific divergence. PLoS One 2013; 8:e56235. [PMID: 23437100 PMCID: PMC3578844 DOI: 10.1371/journal.pone.0056235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today.
Collapse
|
27
|
Barlow A, Baker K, Hendry CR, Peppin L, Phelps T, Tolley KA, Wüster CE, Wüster W. Phylogeography of the widespread African puff adder (Bitis arietans) reveals multiple Pleistocene refugia in southern Africa. Mol Ecol 2013; 22:1134-57. [PMID: 23286376 DOI: 10.1111/mec.12157] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/19/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
Abstract
Evidence from numerous Pan-African savannah mammals indicates that open-habitat refugia existed in Africa during the Pleistocene, isolated by expanding tropical forests during warm and humid interglacial periods. However, comparative data from other taxonomic groups are currently lacking. We present a phylogeographic investigation of the African puff adder (Bitis arietans), a snake that occurs in open-habitat formations throughout sub-Saharan Africa. Multiple parapatric mitochondrial clades occur across the current distribution of B. arietans, including a widespread southern African clade that is subdivided into four separate clades. We investigated the historical processes responsible for generating these phylogeographic patterns in southern Africa using species distribution modelling and genetic approaches. Our results show that interior regions of South Africa became largely inhospitable for B. arietans during glacial maxima, whereas coastal and more northerly areas remained habitable. This corresponds well with the locations of refugia inferred from mitochondrial data using a continuous phylogeographic diffusion model. Analysis of data from five anonymous nuclear loci revealed broadly similar patterns to mtDNA. Secondary admixture was detected between previously isolated refugial populations. In some cases, this is limited to individuals occurring near mitochondrial clade contact zones, but in other cases, more extensive admixture is evident. Overall, our study reveals a complex history of refugial isolation and secondary expansion for puff adders and a mosaic of isolated refugia in southern Africa. We also identify key differences between the processes that drove isolation in B. arietans and those hypothesized for sympatric savannah mammals.
Collapse
Affiliation(s)
- Axel Barlow
- School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South-West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter- and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long-standing savannah refuge in the south.
Collapse
Affiliation(s)
- E D Lorenzen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
29
|
Stoffberg S, Schoeman MC, Matthee CA. Correlated genetic and ecological diversification in a widespread southern African horseshoe bat. PLoS One 2012; 7:e31946. [PMID: 22384108 PMCID: PMC3288067 DOI: 10.1371/journal.pone.0031946] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/16/2012] [Indexed: 12/04/2022] Open
Abstract
The analysis of molecular data within a historical biogeographical framework, coupled with ecological characteristics can provide insight into the processes driving diversification. Here we assess the genetic and ecological diversity within a widespread horseshoe bat Rhinolophus clivosus sensu lato with specific emphasis on the southern African representatives which, although not currently recognized, were previously described as a separate species R. geoffroyi comprising four subspecies. Sequence divergence estimates of the mtDNA control region show that the southern African representatives of R. clivosus s.l. are as distinct from samples further north in Africa than they are from R. ferrumequinum, the sister-species to R. clivosus. Within South Africa, five genetically supported geographic groups exist and these groups are corroborated by echolocation and wing morphology data. The groups loosely correspond to the distributions of the previously defined subspecies and Maxent modelling shows a strong correlation between the detected groups and ecoregions. Based on molecular clock calibrations, it is evident that climatic cycling and related vegetation changes during the Quaternary may have facilitated diversification both genetically and ecologically.
Collapse
Affiliation(s)
- Samantha Stoffberg
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Republic of South Africa.
| | | | | |
Collapse
|
30
|
Castiglia R, Solano E, Makundi RH, Hulselmans J, Verheyen E, Colangelo P. Rapid chromosomal evolution in the mesic four‐striped grass rat
Rhabdomys dilectus
(Rodentia, Muridae) revealed by mtDNA phylogeographic analysis. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2011.00627.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy
| | - Emanuela Solano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy
| | - Rhodes H. Makundi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jan Hulselmans
- University of Antwerp, Evolutionary Ecology Group, Antwerp, Belgium
| | | | - Paolo Colangelo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy
| |
Collapse
|
31
|
Miller JM, Hallager S, Monfort SL, Newby J, Bishop K, Tidmus SA, Black P, Houston B, Matthee CA, Fleischer RC. Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus). CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0149-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Mitochondrial phylogeography of baboons (Papio spp.): indication for introgressive hybridization? BMC Evol Biol 2009; 9:83. [PMID: 19389236 PMCID: PMC2681462 DOI: 10.1186/1471-2148-9-83] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 04/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Baboons of the genus Papio are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome b gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range. Results Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa). Conclusion Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.
Collapse
|
33
|
Nicolas V, Bryja J, Akpatou B, Konecny A, Lecompte E, Colyn M, Lalis A, Couloux A, Denys C, Granjon L. Comparative phylogeography of two sibling species of forest-dwelling rodent (Praomys rostratus and P. tullbergi) in West Africa: different reactions to past forest fragmentation. Mol Ecol 2009; 17:5118-34. [PMID: 19120992 DOI: 10.1111/j.1365-294x.2008.03974.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two sibling species of the rodent genus Praomys occur in West African forests: P. tullbergi and P. rostratus. By sampling across their geographical ranges (459 individuals from 77 localities), we test the hypothesis that climatic oscillations during the Quaternary made an impact on the observed pattern of cytochrome b sequence variation. We show that, although these two species have parapatric geographical distributions, their phylogeographical histories are dissimilar, which could be related to their distinct ecological requirements. Since the arid phases of the Pleistocene were characterized by isolated forest patches, and intervening wetter periods by forest expansion, these changes in forest cover may be the common mechanism responsible for the observed phylogeographical patterns in both of these species. For example, in both species, most clades had either allopatric or parapatric geographical distributions; however, genetic diversity was much lower in P. tullbergi than in P. rostratus. The genetic pattern of P. tullbergi fits the refuge hypothesis, indicating that a very small number of populations survived in distinct forest blocks during the arid phases, then expanded again with forest recovery. In contrast, a number of populations of P. rostratus appear to have survived during the dry periods in more fragmented forest habitats, with varying levels of gene flow between these patches depending on climatic conditions and forest extent. In addition, historical variations of the West African hydrographic network could also have contributed to the pattern of genetic differentiation observed in both species.
Collapse
Affiliation(s)
- V Nicolas
- Muséum National d'Histoire Naturelle, Département de Systématique et Evolution, UMR 5202, Laboratoire Mammifères et Oiseaux, 57 rue Cuvier, CP 51, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dehghani R, Wanntorp L, Pagani P, Källersjö M, Werdelin L, Veron G. Phylogeography of the white-tailed mongoose (Herpestidae, Carnivora, Mammalia) based on partial sequences of the mtDNA control region. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00502.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
LORENZEN ELINED, ARCTANDER PETER, SIEGISMUND HANSR. High variation and very low differentiation in wide ranging plains zebra (Equus quagga): insights from mtDNA and microsatellites. Mol Ecol 2008; 17:2812-24. [DOI: 10.1111/j.1365-294x.2008.03781.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Guillaumet A, Crochet PA, Pons JM. Climate-driven diversification in two widespread Galerida larks. BMC Evol Biol 2008; 8:32. [PMID: 18230151 PMCID: PMC2275783 DOI: 10.1186/1471-2148-8-32] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 01/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major impact of Plio-Pleistocene climatic oscillations on the current genetic structure of many species is widely recognised but their importance in driving speciation remains a matter of controversies. In addition, since most studies focused on Europe and North America, the influence of many other biogeographic barriers such as the Sahara remains poorly understood. In this paper, climate-driven diversification was investigated by using a comparative phylogeographic approach in combination with phenotypic data in two avian species groups distributed on both sides of the deserts belt of Africa and Asia. In particular, we tested whether: 1) vicariance diversification events are concomitant with past climatic events; and 2) current ecological factors (using climate and competition as proxies) contribute to phenotypic divergence between allopatric populations. RESULTS Mitochondrial and nuclear sequence data indicated that the crested and Thekla lark species groups diverged in the early Pliocene and that subsequent speciation events were congruent with major late Pliocene and Pleistocene climatic events. In particular, steep increase in aridity in Africa near 2.8 and 1.7 million years ago were coincident with two north-south vicariance speciation events mediated by the Sahara. Subsequent glacial cycles of the last million years seem to have shaped patterns of genetic variation within the two widespread species (G. cristata and G. theklae). The Sahara appears to have allowed dispersal from the tropical areas during climatic optima but to have isolated populations north and south of it during more arid phases. Phenotypic variation did not correlate with the history of populations, but was strongly influenced by current ecological conditions. In particular, our results suggested that (i) desert-adapted plumage evolved at least three times and (ii) variation in body size was mainly driven by interspecific competition, but the response to competition was stronger in more arid areas. CONCLUSION Climatic fluctuations of the Plio-Pleistocene strongly impacted diversification patterns in the Galerida larks. Firstly, we found that cladogenesis coincides with major climatic changes, and the Sahara appears to have played a key role in driving speciation events. Secondly, we found that morphology and plumage were strongly determined by ecological factors (interspecific competition, climate) following vicariance.
Collapse
Affiliation(s)
- Alban Guillaumet
- Institut des Sciences de l'Evolution, C.C. 63, Université de Montpellier II, Place E. BATAILLON, 34095 Montpellier Cedex, France.
| | | | | |
Collapse
|
37
|
Funk SM, Verma SK, Larson G, Prasad K, Singh L, Narayan G, Fa JE. The pygmy hog is a unique genus: 19th century taxonomists got it right first time round. Mol Phylogenet Evol 2007; 45:427-36. [PMID: 17905601 DOI: 10.1016/j.ympev.2007.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 08/08/2007] [Accepted: 08/08/2007] [Indexed: 11/25/2022]
Abstract
The pygmy hog, Sus salvanius, the smallest and rarest extant suid was first described as the only member of the genus Porcula. It is currently regarded as member of the genus Sus and a sister taxon of the domestic pig/Eurasian wild boar (Sus scrofa). Phylogenetic analyses of 2316 bp from three mtDNA loci (control-region, cytochrome b, 16S) by Bayesian inference and statistical testing of alternative phylogenetic hypotheses all support the original classification of the pygmy hog as a unique genus. Thus, we propose that the species name Porcula salvania should be resurrected. The reclassification will heighten awareness of the need for the future protection and survival of this unique species.
Collapse
Affiliation(s)
- Stephan M Funk
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Jersey JE3 5BP, Channel Islands, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Moodley Y, Bruford MW. Molecular biogeography: towards an integrated framework for conserving pan-African biodiversity. PLoS One 2007; 2:e454. [PMID: 17520013 PMCID: PMC1866246 DOI: 10.1371/journal.pone.0000454] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/24/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Biogeographic models partition ecologically similar species assemblages into discrete ecoregions. However, the history, relationship and interactions between these regions and their assemblages have rarely been explored. METHODOLOGY/PRINCIPAL FINDINGS Here we develop a taxon-based approach that explicitly utilises molecular information to compare ecoregion history and status, which we exemplify using a continentally distributed mammalian species: the African bushbuck (Tragelaphus scriptus). We reveal unprecedented levels of genetic diversity and structure in this species and show that ecoregion biogeographic history better explains the distribution of molecular variation than phenotypic similarity or geography. We extend these data to explore ecoregion connectivity, identify core habitats and infer ecological affinities from them. CONCLUSIONS/SIGNIFICANCE This analysis defines 28 key biogeographic regions for sub-Saharan Africa, and provides a valuable framework for the incorporation of genetic and biogeographic information into a more widely applicable model for the conservation of continental biodiversity.
Collapse
Affiliation(s)
- Yoshan Moodley
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
39
|
Muwanika VB, Nyakaana S, Siegismund HR, Arctander P. Population genetic structure of the common warthog (Phacochoerus africanus) in Uganda: evidence for a strong philopatry among warthogs and social structure breakdown in a disturbed population. Afr J Ecol 2007. [DOI: 10.1111/j.1365-2028.2006.00671.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Lorenzen ED, Simonsen BT, Kat PW, Arctander P, Siegismund HR. Hybridization between subspecies of waterbuck (Kobus ellipsiprymnus) in zones of overlap with limited introgression. Mol Ecol 2006; 15:3787-99. [PMID: 17032274 DOI: 10.1111/j.1365-294x.2006.03059.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two subspecies of waterbuck (Kobus ellipsiprymnus), common (Kobus ellipsiprymnus ellipsiprymnus) and defassa (Kobus ellipsiprymnus defassa), are recognized based on differences in rump pattern, coat colour and geographical distribution. These forms are parapatrically distributed with an area of range overlap in East Africa, where phenotypically intermediate populations occur. Variation in 478 bp of the mitochondrial DNA control region and 14 polymorphic microsatellite loci were used to describe the genetic structure and phylogeographical pattern of the species, and to assess if the intermediate populations are the results of hybridization. In total, 186 individuals from 11 localities were analysed. A high degree of genetic differentiation was found between subspecies, although this was most evident from the microsatellite data. Hybridization was suggested in the phenotypically and geographically intermediate Nairobi NP population in Kenya. A neighbour-joining (NJ) tree based on microsatellite population genetic distances grouped Nairobi between the common and defassa populations, and a Bayesian analysis clearly showed introgression. Individuals sampled in Samburu NP, Kenya, had a common waterbuck phenotype, but introgression was suggested by both markers. Although a high degree of maternal defassa input was indicated from the sequence data, the Samburu population grouped with the common waterbuck in the microsatellite population genetic distance tree, with high support. Analyses of linkage disequilibrium and maximum-likelihood estimates of genetic drift suggested that admixture between subspecies is a recent event. The fact that introgression is limited between subspecies could be caused by chromosomal differences, hindering gene flow between common and defassa waterbuck.
Collapse
Affiliation(s)
- Eline D Lorenzen
- Institute of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
41
|
Barnett R, Yamaguchi N, Barnes I, Cooper A. The origin, current diversity and future conservation of the modern lion (Panthera leo). Proc Biol Sci 2006; 273:2119-25. [PMID: 16901830 PMCID: PMC1635511 DOI: 10.1098/rspb.2006.3555] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 03/20/2006] [Indexed: 11/12/2022] Open
Abstract
Understanding the phylogeographic processes affecting endangered species is crucial both to interpreting their evolutionary history and to the establishment of conservation strategies. Lions provide a key opportunity to explore such processes; however, a lack of genetic diversity and shortage of suitable samples has until now hindered such investigation. We used mitochondrial control region DNA (mtDNA) sequences to investigate the phylogeographic history of modern lions, using samples from across their entire range. We find the sub-Saharan African lions are basal among modern lions, supporting a single African origin model of modern lion evolution, equivalent to the 'recent African origin' model of modern human evolution. We also find the greatest variety of mtDNA haplotypes in the centre of Africa, which may be due to the distribution of physical barriers and continental-scale habitat changes caused by Pleistocene glacial oscillations. Our results suggest that the modern lion may currently consist of three geographic populations on the basis of their recent evolutionary history: North African-Asian, southern African and middle African. Future conservation strategies should take these evolutionary subdivisions into consideration.
Collapse
Affiliation(s)
- Ross Barnett
- Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
42
|
|
43
|
Three genetically divergent lineages of the Oryx in eastern Africa: Evidence for an ancient introgressive hybridization. CONSERV GENET 2006. [DOI: 10.1007/s10592-005-9066-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Moodley Y, Harley EH. Population structuring in mountain zebras (Equus zebra): The molecular consequences of divergent demographic histories. CONSERV GENET 2006. [DOI: 10.1007/s10592-005-9083-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Okello JBA, Nyakaana S, Masembe C, Siegismund HR, Arctander P. Mitochondrial DNA variation of the common hippopotamus: evidence for a recent population expansion. Heredity (Edinb) 2006; 95:206-15. [PMID: 16030528 DOI: 10.1038/sj.hdy.6800711] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial DNA control region sequence variation was obtained and the population history of the common hippopotamus was inferred from 109 individuals from 13 localities covering six populations in sub-Saharan Africa. In all, 100 haplotypes were defined, of which 98 were locality specific. A relatively low overall nucleotide diversity was observed (pi = 1.9%), as compared to other large mammals so far studied from the same region. Within populations, nucleotide diversity varied from 1.52% in Zambia to 1.92% in Queen Elizabeth and Masai Mara. Overall, low but significant genetic differentiation was observed in the total data set (F(ST) = 0.138; P = 0.001), and at the population level, patterns of differentiation support previously suggested hippopotamus subspecies designations (F(CT) = 0.103; P = 0.015). Evidence that the common hippopotamus recently expanded were revealed by: (i) lack of clear geographical structure among haplotypes, (ii) mismatch distributions of pairwise differences (r = 0.0053; P = 0.012) and site-frequency spectra, (iii) Fu's neutrality statistics (F(S) = -155.409; P < 0.00001) and (iv) Fu and Li's statistical tests (D* = -3.191; P < 0.01, F* = -2.668; P = 0.01). Mismatch distributions, site-frequency spectra and neutrality statistics performed at subspecies level also supported expansion of Hippopotamus amphibius across Africa. We interpret observed common hippopotamus population history in terms of Pleistocene drainage overflow and suggest recognising the three subspecies that were sampled in this study as separate management units in future conservation planning.
Collapse
Affiliation(s)
- J B A Okello
- Molecular Biology Laboratory, Makerere University Institute of Environment & Natural Resources, PO Box 7298, Kampala, Uganda.
| | | | | | | | | |
Collapse
|
46
|
Berger EM, Leus K, Vercammen P, Schwarzenberger F. Faecal steroid metabolites for non-invasive assessment of reproduction in common warthogs (Phacochoerus africanus), red river hogs (Potamochoerus porcus) and babirusa (Babyrousa babyrussa). Anim Reprod Sci 2006; 91:155-71. [PMID: 15876499 DOI: 10.1016/j.anireprosci.2005.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 02/28/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to analyse faecal steroid metabolites in African and South East Asian pig species kept in European zoos. Species studied were the warthog (Phacochoerus africanus), the red river hog (Potamochoerus porcus) and the babirusa (Babyrousa babyrussa). Faecal samples were collected 1-3 times per week from non-pregnant and pregnant captive female warthogs (n = 9), red river hogs (n = 7) and babirusas (n = 5). Enzyme-immunoassays for faecal progesterone, androgen, and oestrogen metabolites, were tested for their ability to determine follicular and luteal phases. In all three species, oestrous cycles could be monitored with 20alpha-OH- and 20-oxo-pregnane assays. In contrast, oestrogens and androgens were not useful in characterising follicular activity during the oestrous cycle in any species. Faecal 20alpha-OH- and 20-oxo-pregnane values were significantly correlated. Faecal pregnane concentrations revealed species-specific differences. Luteal phase values of 20alpha-OH-pregnanes were considerably higher than 20-oxo-pregnanes; 20alpha-OH-pregnanes were in the range of 3-10 microg/g in warthogs and red river hogs, whereas concentrations were 30-200 microg/g faeces in the babirusa. Regular oestrus cycles had a length of about 35 days in all three species studied. Results indicated a seasonal influence on the occurrence of reproductive cycles in the warthog with anoestrous periods in the European summer. The red river hog was found to be a seasonal and poly oestrous breeder; oestrus cycles started by January and continued until summer. In contrast, the babirusa showed non-seasonal ovarian cyclicity. In pregnant red river hogs, progesterone metabolites were comparable to luteal phase values of the oestrous cycle during the first 3 months of gestation, but did further increase during the last month of pregnancy. Oestrogens and 17-oxo-androstanes were significantly elevated during the second half of gestation. In summary, the reproductive biology of three exotic pig species was studied using non-invasive faecal steroid analysis and these methods were used for comparative investigations of oestrous cycles, pregnancy and seasonality.
Collapse
Affiliation(s)
- Eva M Berger
- Department of Natural Sciences - Biochemistry, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | |
Collapse
|
47
|
Rohland N, Pollack JL, Nagel D, Beauval C, Airvaux J, Pääbo S, Hofreiter M. The Population History of Extant and Extinct Hyenas. Mol Biol Evol 2005; 22:2435-43. [PMID: 16120805 DOI: 10.1093/molbev/msi244] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have analyzed partial DNA sequences of the mitochondrial cytochrome b gene from extant striped, brown, and spotted hyenas as well as from Pleistocene cave hyenas. Sequences of the Pleistocene cave hyenas from Eurasia and modern spotted hyenas from Africa are intermixed in phylogenetic analyses, questioning any taxonomic delineation between the two groups. Contrary to cave hyenas in Eurasia, spotted hyenas in Africa show a phylogeographic pattern with little geographical overlap between two mitochondrial DNA (mtDNA) clades, suggesting two Pleistocene refugia in the north and south of Africa. Our results, furthermore, suggest three waves of migration from Africa to Eurasia for spotted hyenas, around 3, 1, and 0.3 MYA. A recent emigration of striped hyenas from Africa to Eurasia took place less than 0.1 MYA, resulting in a dramatic expansion of the geographical range of striped hyenas. In striped hyenas and within the geographical range of mtDNA clades in spotted hyenas, we found identical sequences several thousand kilometers apart, indicating a high rate of migration during the Pleistocene as well as the Holocene. Both striped and brown hyenas show low amounts of genetic diversity, with the latter ones displaying just a single haplotype.
Collapse
Affiliation(s)
- Nadin Rohland
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Hewitt GM. The structure of biodiversity - insights from molecular phylogeography. Front Zool 2004; 1:4. [PMID: 15679920 PMCID: PMC544936 DOI: 10.1186/1742-9994-1-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 10/26/2004] [Indexed: 11/23/2022] Open
Abstract
DNA techniques, analytical methods and palaeoclimatic studies are greatly advancing our knowledge of the global distribution of genetic diversity, and how it evolved. Such phylogeographic studies are reviewed from Arctic, Temperate and Tropical regions, seeking commonalities of cause in the resulting genetic patterns. The genetic diversity is differently patterned within and among regions and biomes, and is related to their histories of climatic changes. This has major implications for conservation science.
Collapse
|