1
|
Prieto-Baños S, Layton KKS. Tracing the evolution of key traits in dorid nudibranchs. PLoS One 2025; 20:e0317704. [PMID: 40173132 PMCID: PMC11964261 DOI: 10.1371/journal.pone.0317704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/03/2025] [Indexed: 04/04/2025] Open
Abstract
Reconstructing trait evolution is critically important for elucidating the processes generating biodiversity. However, this work is in its infancy in non-model clades for which we lack a basic understanding of their ecology and biology. Here, we compile information about prey preference, chemical acquisition and colour pattern in dorid nudibranchs (Nudibranchia: Doridoidei) and reconstruct their ancestral states using a multi-gene phylogeny to investigate the evolution of these key traits. Our analyses show that the most recent common ancestor (MRCA) of Doridoidei preferred sponge prey from which they sequestered metabolites, and subsequent shifts to different prey types and de novo synthesis of defensive compounds occurred multiple times independently across the phylogeny. Additionally, the MRCA likely exhibited complex colour patterns, including spots or stripes, with uniform morphotypes evolving in most families. Despite the fact that many dorid nudibranchs derive both metabolites and pigments from their prey, we found no evidence of correlated evolution amongst these traits. As part of this work, we present a multi-gene phylogeny for Doridoidei with representatives from 88 genera and 18 families, but there remain issues with poor support across the tree. Nonetheless, for the first time, we explore the evolution of key traits that contributed to the diversification of dorid nudibranchs, highlighting the need for more refined trait data and greater phylogenetic resolution for future work.
Collapse
Affiliation(s)
- Silvia Prieto-Baños
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kara K. S. Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
2
|
McCulloch KJ, Macias-Muñoz A, Mortazavi A, Briscoe AD. Multiple mechanisms of photoreceptor spectral tuning in Heliconius butterflies. Mol Biol Evol 2022; 39:6555095. [PMID: 35348742 PMCID: PMC9048915 DOI: 10.1093/molbev/msac067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara CA 93106, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution. Cells 2022; 11:cells11030510. [PMID: 35159319 PMCID: PMC8834487 DOI: 10.3390/cells11030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
A major driving force behind the evolution of species-specific traits and novel structures is alterations in gene regulatory networks (GRNs). Comprehending evolution therefore requires an understanding of the nature of changes in GRN structure and the responsible mechanisms. Here, we review two insect pigmentation GRNs in order to examine common themes in GRN evolution and to reveal some of the challenges associated with investigating changes in GRNs across different evolutionary distances at the molecular level. The pigmentation GRN in Drosophila melanogaster and other drosophilids is a well-defined network for which studies from closely related species illuminate the different ways co-option of regulators can occur. The pigmentation GRN for butterflies of the Heliconius species group is less fully detailed but it is emerging as a useful model for exploring important questions about redundancy and modularity in cis-regulatory systems. Both GRNs serve to highlight the ways in which redeployment of trans-acting factors can lead to GRN rewiring and network co-option. To gain insight into GRN evolution, we discuss the importance of defining GRN architecture at multiple levels both within and between species and of utilizing a range of complementary approaches.
Collapse
|
4
|
Piron-Prunier F, Persyn E, Legeai F, McClure M, Meslin C, Robin S, Alves-Carvalho S, Mohammad A, Blugeon C, Jacquin-Joly E, Montagné N, Elias M, Gauthier J. Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly-The Ithomiini Melinaea marsaeus. J Evol Biol 2021; 34:1704-1721. [PMID: 34570954 DOI: 10.1111/jeb.13940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.
Collapse
Affiliation(s)
- Florence Piron-Prunier
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Emma Persyn
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France.,Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Melanie McClure
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Laboratoire Écologie, Évolution,Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Stéphanie Robin
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France.,Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | - Ammara Mohammad
- Département de Biologie, Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Corinne Blugeon
- Département de Biologie, Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jérémy Gauthier
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France.,Geneva Natural History Museum, Geneva, Switzerland
| |
Collapse
|
5
|
Teng D, Li F, Zhang W. Using comprehensive machine-learning models to classify complex morphological characters. Ecol Evol 2021; 11:10421-10431. [PMID: 34367585 PMCID: PMC8328437 DOI: 10.1002/ece3.7845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022] Open
Abstract
Recognizing and classifying multiple morphological features, such as patterns, sizes, and textures, can provide a comprehensive understanding of their variability and phenotypic evolution. Yet, quantitatively measuring complex morphological characters remains challenging.We provide a machine learning-based pipeline (SVMorph) to consider and classify complex morphological characters in multiple organisms that have either small or large datasets.Our pipeline integrates two descriptors, histogram of oriented gradient and local binary pattern, to meet various classification needs. We also optimized feature extraction by adding image data augmentation to improve model generalizability.We tested SVMorph on two real-world examples to demonstrate that it can be used with small training datasets and limited computational resources. Comparing with multiple CNN-based methods and traditional techniques, we show that SVMorph is reliable and fast in texture-based individual classification. Thus, SVMorph can be used to efficiently classify multiple morphological characters in distinct nonmodel organisms.
Collapse
Affiliation(s)
- Dequn Teng
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
| | - Fengyuan Li
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| |
Collapse
|
6
|
Ramos RR, Francini RB, Habib MEEDM, Freitas AVL. Seasonal Patterns of Host Plant Use in an Assemblage of Heliconiini Butterflies (Lepidoptera: Nymphalidae) in a Neotropical forest. NEOTROPICAL ENTOMOLOGY 2021; 50:358-365. [PMID: 33683560 DOI: 10.1007/s13744-021-00855-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Insect-plant interactions involve physiological adaptations by insects to secondary metabolic compounds synthetized by host plants, which are considered essential for the determination of resources partitioning of these insects. Data on such phenomena are important to understand evolutionary and ecological processes. However, climatic factors also seem to play a key role in affecting these patterns. The present study aimed to investigate the influence of seasonal variation on patterns of host plant use (Passifloraceae) by Heliconiini butterflies (Nymphalidae: Heliconiinae) at a Neotropical site in Southeastern Brazil. A total of 12 species of Heliconiini were reported, with nine of them being resident and using five species of Passiflora (Passifloraceae) as larval host plants. Three host plant species accounted for 97% of the total use, and the use varied along the seasons highlighting the plasticity boundaries in Heliconiini and possible limiting factors.
Collapse
Affiliation(s)
- Renato Rogner Ramos
- Depto de Biologia Animal, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brazil.
| | - Ronaldo Bastos Francini
- Curso de Ciências Biológicas, Lab de Biologia da Conservação, Univ Católica de Santos, Santos, Brazil
| | | | - André Victor Lucci Freitas
- Depto de Biologia Animal, Instituto de Biologia, Univ Estadual de Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
van Schooten B, Meléndez-Rosa J, Van Belleghem SM, Jiggins CD, Tan JD, McMillan WO, Papa R. Divergence of chemosensing during the early stages of speciation. Proc Natl Acad Sci U S A 2020; 117:16438-16447. [PMID: 32601213 PMCID: PMC7371972 DOI: 10.1073/pnas.1921318117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair of Heliconius butterflies, Heliconius melpomene and Heliconius cydno We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes, HmOBP20 (involved in volatile detection) and HmGr56 (a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence between H. melpomene and H. cydno, two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries.
Collapse
Affiliation(s)
- Bas van Schooten
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925;
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
| | - Jesyka Meléndez-Rosa
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925;
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, CB2 8PQ Cambridge, United Kingdom
| | | | - W Owen McMillan
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925;
- Smithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico 00907
| |
Collapse
|
8
|
Mason AJ, Margres MJ, Strickland JL, Rokyta DR, Sasa M, Parkinson CL. Trait differentiation and modular toxin expression in palm-pitvipers. BMC Genomics 2020; 21:147. [PMID: 32046632 PMCID: PMC7014597 DOI: 10.1186/s12864-020-6545-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background Modularity is the tendency for systems to organize into semi-independent units and can be a key to the evolution and diversification of complex biological systems. Snake venoms are highly variable modular systems that exhibit extreme diversification even across very short time scales. One well-studied venom phenotype dichotomy is a trade-off between neurotoxicity versus hemotoxicity that occurs through the high expression of a heterodimeric neurotoxic phospholipase A2 (PLA2) or snake venom metalloproteinases (SVMPs). We tested whether the variation in these venom phenotypes could occur via variation in regulatory sub-modules through comparative venom gland transcriptomics of representative Black-Speckled Palm-Pitvipers (Bothriechis nigroviridis) and Talamancan Palm-Pitvipers (B. nubestris). Results We assembled 1517 coding sequences, including 43 toxins for B. nigroviridis and 1787 coding sequences including 42 toxins for B. nubestris. The venom gland transcriptomes were extremely divergent between these two species with one B. nigroviridis exhibiting a primarily neurotoxic pattern of expression, both B. nubestris expressing primarily hemorrhagic toxins, and a second B. nigroviridis exhibiting a mixed expression phenotype. Weighted gene coexpression analyses identified six submodules of transcript expression variation, one of which was highly associated with SVMPs and a second which contained both subunits of the neurotoxic PLA2 complex. The sub-module association of these toxins suggest common regulatory pathways underlie the variation in their expression and is consistent with known patterns of inheritance of similar haplotypes in other species. We also find evidence that module associated toxin families show fewer gene duplications and transcript losses between species, but module association did not appear to affect sequence diversification. Conclusion Sub-modular regulation of expression likely contributes to the diversification of venom phenotypes within and among species and underscores the role of modularity in facilitating rapid evolution of complex traits.
Collapse
Affiliation(s)
- Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Darin R Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 24105, USA
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA. .,Department of Forestry, and Environmental Conservation, Clemson University, Clemson, SC, USA.
| |
Collapse
|
9
|
Zhang W, Leon-Ricardo BX, van Schooten B, Van Belleghem SM, Counterman BA, McMillan WO, Kronforst MR, Papa R. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biol Evol 2019; 11:2963-2975. [PMID: 31518398 PMCID: PMC6821300 DOI: 10.1093/gbe/evz202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Butterfly eyes are complex organs that are composed of a diversity of proteins and they play a central role in visual signaling and ultimately, speciation, and adaptation. Here, we utilized the whole eye transcriptome to obtain a more holistic view of the evolution of the butterfly eye while accounting for speciation events that co-occur with ancient hybridization. We sequenced and assembled transcriptomes from adult female eyes of eight species representing all major clades of the Heliconius genus and an additional outgroup species, Dryas iulia. We identified 4,042 orthologous genes shared across all transcriptome data sets and constructed a transcriptome-wide phylogeny, which revealed topological discordance with the mitochondrial phylogenetic tree in the Heliconius pupal mating clade. We then estimated introgression among lineages using additional genome data and found evidence for ancient hybridization leading to the common ancestor of Heliconius hortense and Heliconius clysonymus. We estimated the Ka/Ks ratio for each orthologous cluster and performed further tests to demonstrate genes showing evidence of adaptive protein evolution. Furthermore, we characterized patterns of expression for a subset of these positively selected orthologs using qRT-PCR. Taken together, we identified candidate eye genes that show signatures of adaptive molecular evolution and provide evidence of their expression divergence between species, tissues, and sexes. Our results demonstrate: 1) greater evolutionary changes in younger Heliconius lineages, that is, more positively selected genes in the cydno-melpomene-hecale group as opposed to the sara-hortense-erato group, and 2) suggest an ancient hybridization leading to speciation among Heliconius pupal-mating species.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing, China
- Department of Ecology and Evolution, University of Chicago
| | | | - Bas van Schooten
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| | | | | | | | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| |
Collapse
|
10
|
Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G, Brien MN, Burg SL, Morochz C, Fairclough JPA, Vukusic P, Martin SJ, Doak S, Nadeau NJ. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 2019; 15:rsif.2017.0948. [PMID: 29669892 PMCID: PMC5938584 DOI: 10.1098/rsif.2017.0948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.
Collapse
Affiliation(s)
- Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - James E Bradford
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Adam L Washington
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | | | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Simon J Martin
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Scott Doak
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Lewis JJ, Reed RD. Genome-Wide Regulatory Adaptation Shapes Population-Level Genomic Landscapes in Heliconius. Mol Biol Evol 2019; 36:159-173. [PMID: 30452724 PMCID: PMC6340471 DOI: 10.1093/molbev/msy209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cis-regulatory evolution is an important engine of organismal diversification. Although recent studies have looked at genomic patterns of regulatory evolution between species, we still have a poor understanding of the magnitude and nature of regulatory variation within species. Here, we examine the evolution of regulatory element activity over wing development in three Heliconius erato butterfly populations to determine how regulatory variation is associated with population structure. We show that intraspecific divergence in chromatin accessibility and regulatory activity is abundant, and that regulatory variants are spatially clustered in the genome. Regions with strong population structure are highly enriched for regulatory variants, and enrichment patterns are associated with developmental stage and gene expression. We also found that variable regulatory elements are particularly enriched in species-specific genomic regions and long interspersed nuclear elements. Our findings suggest that genome-wide selection on chromatin accessibility and regulatory activity is an important force driving patterns of genomic divergence within Heliconius species. This work also provides a resource for the study of gene regulatory evolution in H. erato and other heliconiine butterflies.
Collapse
Affiliation(s)
- James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| |
Collapse
|
12
|
Rodrigues ASB, Silva SE, Pina-Martins F, Loureiro J, Castro M, Gharbi K, Johnson KP, Dietrich CH, Borges PAV, Quartau JA, Jiggins CD, Paulo OS, Seabra SG. Assessing genotype-phenotype associations in three dorsal colour morphs in the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae) using genomic and transcriptomic resources. BMC Genet 2016; 17:144. [PMID: 27846816 PMCID: PMC5111214 DOI: 10.1186/s12863-016-0455-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background Colour polymorphisms are common among animal species. When combined with genetic and ecological data, these polymorphisms can be excellent systems in which to understand adaptation and the molecular changes underlying phenotypic evolution. The meadow spittlebug, Philaenus spumarius (L.) (Hemiptera, Aphrophoridae), a widespread insect species in the Holarctic region, exhibits a striking dorsal colour/pattern balanced polymorphism. Although experimental crosses have revealed the Mendelian inheritance of this trait, its genetic basis remains unknown. In this study we aimed to identify candidate genomic regions associated with the colour balanced polymorphism in this species. Results By using restriction site-associated DNA (RAD) sequencing we were able to obtain a set of 1,837 markers across 33 individuals to test for associations with three dorsal colour phenotypes (typicus, marginellus, and trilineatus). Single and multi-association analyses identified a total of 60 SNPs associated with dorsal colour morphs. The genome size of P. spumarius was estimated by flow cytometry, revealing a 5.3 Gb genome, amongst the largest found in insects. A partial genome assembly, representing 24% of the total size, and an 81.4 Mb transcriptome, were also obtained. From the SNPs found to be associated with colour, 35% aligned to the genome and 10% to the transcriptome. Our data suggested that major loci, consisting of multi-genomic regions, may be involved in dorsal colour variation among the three dorsal colour morphs analysed. However, no homology was found between the associated loci and candidate genes known to be responsible for coloration pattern in other insect species. The associated markers showed stronger differentiation of the trilineatus colour phenotype, which has been shown previously to be more differentiated in several life-history and physiological characteristics as well. It is possible that colour variation and these traits are linked in a complex genetic architecture. Conclusions The loci detected to have an association with colour and the genomic and transcriptomic resources developed here constitute a basis for further research on the genetic basis of colour pattern in the meadow spittlebug P. spumarius. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0455-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana S B Rodrigues
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal.
| | - Sara E Silva
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| | - Francisco Pina-Martins
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal.,Centro de Estudos do Ambiente e do Mar (CESAM), DBA/FCUL, Lisbon, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, King's Buildings, The University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Paulo A V Borges
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
| | - José A Quartau
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| | - Sofia G Seabra
- Computational Biology and Population Genomics Group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, P-1749-016, Portugal
| |
Collapse
|
13
|
Havens LA, MacManes MD. Characterizing the adult and larval transcriptome of the multicolored Asian lady beetle, Harmonia axyridis. PeerJ 2016; 4:e2098. [PMID: 27326374 PMCID: PMC4911953 DOI: 10.7717/peerj.2098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/10/2016] [Indexed: 11/20/2022] Open
Abstract
The reasons for the evolution and maintenance of striking visual phenotypes are as widespread as the species that display these phenotypes. While study systems such as Heliconius and Dendrobatidae have been well characterized and provide critical information about the evolution of these traits, a breadth of new study systems, in which the phenotype of interest can be easily manipulated and quantified, are essential for gaining a more general understanding of these specific evolutionary processes. One such model is the multicolored Asian lady beetle, Harmonia axyridis, which displays significant elytral spot and color polymorphism. Using transcriptome data from two life stages, adult and larva, we characterize the transcriptome, thereby laying a foundation for further analysis and identification of the genes responsible for the continual maintenance of spot variation in H. axyridis.
Collapse
Affiliation(s)
- Lindsay A Havens
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire , Durham , NH , United States
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire , Durham , NH , United States
| |
Collapse
|
14
|
Bourgeois YXC, Bertrand JAM, Delahaie B, Cornuault J, Duval T, Milá B, Thébaud C. Candidate Gene Analysis Suggests Untapped Genetic Complexity in Melanin-Based Pigmentation in Birds. J Hered 2016; 107:327-35. [PMID: 26995742 DOI: 10.1093/jhered/esw017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Studies on melanin-based color variation in a context of natural selection have provided a wealth of information on the link between phenotypic and genetic variation. Here, we evaluated associations between melanic plumage patterns and genetic polymorphism in the Réunion grey white-eye (Zosterops borbonicus), a species in which mutations on MC1R do not seem to play any role in explaining melanic variation. This species exhibits 5 plumage color variants that can be grouped into 3 color forms which occupy discrete geographic regions in the lowlands of Réunion, and a fourth high-elevation form which comprises 2 color morphs (grey and brown) and represents a true color polymorphism. We conducted a comprehensive survey of sequence variation in 96 individuals at a series of 7 candidate genes other than MC1R that have been previously shown to influence melanin-based color patterns in vertebrates, including genes that have rarely been studied in a wild bird species before: POMC, Agouti, TYR, TYRP1, DCT, Corin, and SLC24A5 Of these 7 genes, 2 (Corin and TYRP1) displayed an interesting shift in allele frequencies between lowland and highland forms and a departure from mutation-drift equilibrium consistent with balancing selection in the polymorphic highland form only. Sequence variation at Agouti, a gene frequently involved in melanin-based pigmentation patterning, was not associated with color forms or morphs. Thus, we suggest that functionally important changes in loci other than those classically studied are involved in the color polymorphism exhibited by the Réunion grey white-eye and possibly many other nonmodel species.
Collapse
Affiliation(s)
- Yann X C Bourgeois
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá).
| | - Joris A M Bertrand
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Boris Delahaie
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Josselin Cornuault
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Thomas Duval
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Borja Milá
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| | - Christophe Thébaud
- From the Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Université Paul Sabatier, Toulouse 3-Centre National de la Recherche Scientifique (CNRS)-École Nationale de Formation Agronomique (ENFA), 118 route de Narbonne, F-31062 Toulouse, France (Bourgeois, Bertrand, Delahaie, Cornuault, and Thébaud); Hémisphères, BP 438, 98822 Poindimié, Nouvelle-Calédonie (Duval); and Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), José Gutiérrez Abascal 2, Madrid E-28006, Spain (Milá)
| |
Collapse
|
15
|
Zhang W, Dasmahapatra KK, Mallet J, Moreira GRP, Kronforst MR. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol 2016; 17:25. [PMID: 26921238 PMCID: PMC4769579 DOI: 10.1186/s13059-016-0889-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Background Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded ‘postman’ wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. Results We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Conclusions Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0889-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | | | - James Mallet
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Gilson R P Moreira
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
17
|
Piron Prunier F, Chouteau M, Whibley A, Joron M, Llaurens V. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew034. [PMID: 27271971 PMCID: PMC4896466 DOI: 10.1093/jisesa/iew034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/07/2016] [Indexed: 05/03/2023]
Abstract
Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms.
Collapse
Affiliation(s)
- Florence Piron Prunier
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Mathieu Chouteau
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Annabel Whibley
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Mathieu Joron
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| |
Collapse
|
18
|
Liu S, Wang M, Li X. Pupal melanization is associated with higher fitness in Spodoptera exigua. Sci Rep 2015; 5:10875. [PMID: 26039886 PMCID: PMC4454190 DOI: 10.1038/srep10875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
Melanism has long been thought to be a habitat adaptation with a fitness cost. Here we reported a homozygous melanic strain (SEM) of Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae) established with black pupae spontaneously occurring within a typical laboratory population (SEW). The melanization is expressed globally, and only in the pupal stage. After pupation, the melanic SEM pupae gradually accumulate melanin to become completely black within 6 hours, whereas the wild-type SEW pupae gradually turn yellow-brown. The melanic SEM strain exhibits faster development in all life stages, heavier pupa weight, more mating time, higher fecundity, and accordingly, higher net reproductive rate and population trend index. While no reproductive isolation was observed between the SEM and SEW strains, the mating times per female of the reciprocal crosses and the SEM intracrosses were significantly higher than those of the SEW intracrosses. This represents a rare case of melanization that has fitness gains, rather than costs. Analysis of the life-history traits of this case and 14 previously reported cases of insect melanism indicate that none of melanization origin, stage, space and variation type determining whether melanism will cause fitness gain or cost.
Collapse
Affiliation(s)
- Sisi Liu
- 1] Department of Pesticide Science, College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China [2] Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona [3] Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Mo Wang
- 1] Department of Pesticide Science, College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China [2] Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianchun Li
- 1] Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona [2] State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Sánchez Herrera M, Kuhn WR, Lorenzo-Carballa MO, Harding KM, Ankrom N, Sherratt TN, Hoffmann J, Van Gossum H, Ware JL, Cordero-Rivera A, Beatty CD. Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some neotropical polythore damselflies. PLoS One 2015; 10:e0125074. [PMID: 25923455 PMCID: PMC4414280 DOI: 10.1371/journal.pone.0125074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/19/2015] [Indexed: 11/30/2022] Open
Abstract
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these “wingforms” do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it.
Collapse
Affiliation(s)
- Melissa Sánchez Herrera
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - William R. Kuhn
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Maria Olalla Lorenzo-Carballa
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kathleen M. Harding
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
| | - Nikole Ankrom
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | | | - Joachim Hoffmann
- ALAUDA—Arbeitsgemeinschaft für landschaftsökologische Untersuchungen und Datenanalysen, Hamburg, Germany
| | - Hans Van Gossum
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jessica L. Ware
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America
| | - Adolfo Cordero-Rivera
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
| | - Christopher D. Beatty
- Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Galiza, Spain
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Peña C, Espeland M. Diversity dynamics in Nymphalidae butterflies: effect of phylogenetic uncertainty on diversification rate shift estimates. PLoS One 2015; 10:e0120928. [PMID: 25830910 PMCID: PMC4382342 DOI: 10.1371/journal.pone.0120928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/09/2015] [Indexed: 01/27/2023] Open
Abstract
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.
Collapse
Affiliation(s)
- Carlos Peña
- Laboratory of Genetics, Department of Biology, University of Turku, Turku, Finland
| | - Marianne Espeland
- Museum of Comparative Zoology, Harvard University, Cambridge, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| |
Collapse
|
21
|
|
22
|
An evolutionary and developmental approach toward understanding of growth variations of two closely related dwarfism of Galium verum. Biologia (Bratisl) 2015. [DOI: 10.2478/s11756-014-0479-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Meng Z, Lei C, Chen X, Jiang S. Complete mitochondrial genome sequence of Heliconius melpomene rosina (Insecta: Lepidoptera: Nymphalidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:3911-3912. [PMID: 25484166 DOI: 10.3109/19401736.2014.987261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Postman Butterfly (Heliconius melpomene) is one of the heliconiine butterflies found in the Central and South America. In this study, the complete mitochondrial genome sequence of its subspecies, Heliconius melpomene rosina, is determined for the first time. Results show that this circular genome is 15,327 bp in length, and consists of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and a putative control region (D-loop). The genome organization, nucleotide composition and codon usage are identical to those reported from other butterfly mitochondrial genomes. The whole nucleotide composition is 39.33% of A, 42.33% of T, 10.88% of C and 7.46% of G, with a relatively lower level of G and an extremely higher AT content of 81.66%. Most of the PCGs initiate with the ATN start codons except for ND1 and COX1 genes, which separately start with TTG and CGA. Totally 13 PCGs terminate with the standard canonical stop codons of TAA/TAG/TGA or an incomplete stop codon of T- -. The mitochondrial genome sequence reported here would be potentially useful for the phylogenetic studies in butterflies.
Collapse
Affiliation(s)
- Ziye Meng
- a Key Laboratory of Insect Resources Utilization & Sustainable Pest Management of Hubei Province , Institute of Insect Resources, Huazhong Agricultural University , Wuhan , Hubei Province , China and
| | - Chaoliang Lei
- a Key Laboratory of Insect Resources Utilization & Sustainable Pest Management of Hubei Province , Institute of Insect Resources, Huazhong Agricultural University , Wuhan , Hubei Province , China and
| | - Xiaoqin Chen
- b College of Applied Chemistry and Biotechnology, Shenzhen Polytechnic , Shenzhen , Guangdong Province , China
| | - Shihong Jiang
- b College of Applied Chemistry and Biotechnology, Shenzhen Polytechnic , Shenzhen , Guangdong Province , China
| |
Collapse
|
24
|
Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol 2014; 395:367-78. [PMID: 25196151 DOI: 10.1016/j.ydbio.2014.08.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022]
Abstract
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.
Collapse
|
25
|
Rapti Z, Duennes MA, Cameron SA. Defining the colour pattern phenotype in bumble bees (Bombus): a new model for evo devo. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12356] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoi Rapti
- Department of Mathematics; University of Illinois; 1409 West Green Street Urbana IL 61801 USA
| | - Michelle A. Duennes
- Department of Entomology; University of Illinois; 320 Morrill Hall Urbana IL 61801 USA
| | - Sydney A. Cameron
- Department of Entomology; University of Illinois; 320 Morrill Hall Urbana IL 61801 USA
| |
Collapse
|
26
|
Thompson MJ, Timmermans MJTN, Jiggins CD, Vogler AP. The evolutionary genetics of highly divergent alleles of the mimicry locus in Papilio dardanus. BMC Evol Biol 2014; 14:140. [PMID: 25081189 PMCID: PMC4262259 DOI: 10.1186/1471-2148-14-140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The phylogenetic history of genes underlying phenotypic diversity can offer insight into the evolutionary origin of adaptive traits. This is especially true where single genes have large phenotypic effects, for example in determining polymorphic mimicry in butterflies. Here, we characterise the evolutionary history of two candidate genes for the mimicry switch in the polymorphic Batesian mimic Papilio dardanus coding for the transcription factors engrailed and invected. RESULTS We show that phased haplotypes associated with the dominant morphs f. poultoni and f. planemoides are phylogenetically highly divergent, in particular at non-synonymous sites. Some non-synonymous changes are shared between the divergent alleles suggesting either convergence or a shared ancestry. Gene trees for invected do not show this pattern. Despite their great divergence, all engrailed alleles of P. dardanus were monophyletic with respect to alleles of closely related species. Phylogenetic analyses therefore reveal no evidence for introgression from other species. A McDonald-Kreitman test conducted on a population sample from South Africa confirms a significant excess of intraspecific non-synonymous diversity in P. dardanus engrailed, suggesting long-term balanced polymorphism at this locus. CONCLUSIONS The divergence between engrailed haplotypes suggests an evolutionary history distorted by selection with multiple changes reflecting recurrent selective sweeps. The high level of intraspecific polymorphism observed is characteristic of balancing selection on this locus, as expected if the gene engrailed is under phenotypic selection for the maintenance of multiple mimetic morphs. Non-synonymous changes in key functional portions of a major transcription factor are likely to be deleterious but if maintained in a dominant allele at low frequency, heterozygosity would reduce the associated genetic load.
Collapse
Affiliation(s)
- Martin J Thompson
- />Department of Life Sciences, Natural History Museum, London, SW7 5BD UK
- />Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Martijn JTN Timmermans
- />Department of Life Sciences, Natural History Museum, London, SW7 5BD UK
- />Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ United Kingdom
| | - Chris D Jiggins
- />Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Alfried P Vogler
- />Department of Life Sciences, Natural History Museum, London, SW7 5BD UK
- />Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ United Kingdom
| |
Collapse
|
27
|
Aymone ACB, Lothhammer N, Valente VLDS, de Araújo AM. Embryogenesis of Heliconius erato (Lepidoptera, Nymphalidae): a contribution to the anatomical development of an evo-devo model organism. Dev Growth Differ 2014; 56:448-59. [PMID: 25112499 DOI: 10.1111/dgd.12144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/23/2014] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
This study reports on the embryogenesis of Heliconius erato phyllis between blastoderm formation and the prehatching larval stage. Syncytial blastoderm formation occurred approximately 2 h after egg laying (AEL) and at about 4 h, the cellular blastoderm was formed. The germ band arose from the entire length of the blastoderm, and rapidly became compacted occupying approximately two-thirds of the egg length. At about 7 h AEL, protocephalon and protocorm differentiation occurred. Continued proliferation of the germ band was followed by penetration into the yolk mass, forming a C-shaped embryo at about 10 h. Approximately 12 h AEL, the gnathal, thoracic and abdominal segments became visible. The primordium of the mouthparts and thoracic legs formed as paired evaginations, while the prolegs formed as paired lobes. At about 30 h, the embryo reversed dorsoventrally. Approximately 32 h AEL, the protocephalon and gnathal segments fused, shifting the relative position of the rudimentary appendages in this region. At about 52 h, the embryo was U-shaped in lateral view and at approximately 56 h, the bristles began evagination from the larval cuticle. Larvae hatched at about 72 h. We found that H. erato phyllis followed an embryonic pattern consistent with long-germ embryogenesis. Thus, we believe that H. erato phyllis should be classified as a long-germ lepidopteran. The study of H. erato phyllis embryogenesis provided a structural glimpse into the morphogenetic events that occur in the Heliconius egg period. This study could help future molecular approaches to understanding the evolution of Heliconius development.
Collapse
Affiliation(s)
- Ana Carolina Bahi Aymone
- Post-Graduate Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15053, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | | | | | | |
Collapse
|
28
|
Perrard A, Arca M, Rome Q, Muller F, Tan J, Bista S, Nugroho H, Baudoin R, Baylac M, Silvain JF, Carpenter JM, Villemant C. Geographic variation of melanisation patterns in a hornet species: genetic differences, climatic pressures or aposematic constraints? PLoS One 2014; 9:e94162. [PMID: 24740142 PMCID: PMC3989226 DOI: 10.1371/journal.pone.0094162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/11/2014] [Indexed: 01/13/2023] Open
Abstract
Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism.
Collapse
Affiliation(s)
- Adrien Perrard
- UMR 7205 ISYEB, Muséum National d'Histoire Naturelle, Paris, France
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- * E-mail:
| | - Mariangela Arca
- Unité de Recherche IRD 072-UPR9034 CNRS, Laboratoire Evolution Génomes et Spéciation, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Quentin Rome
- UMR 7205 ISYEB, Muséum National d'Histoire Naturelle, Paris, France
| | - Franck Muller
- UMR 7205 ISYEB, Muséum National d'Histoire Naturelle, Paris, France
| | - Jiangli Tan
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Sanjaya Bista
- Entomology Division, Nepal Agricultural Research Council (NARC), Lalitpur, Nepal
| | - Hari Nugroho
- Museum Zoologicum Bogoriense, Indonesian Institute of Sciences, Cibinong, Bogor, Indonesia
| | | | - Michel Baylac
- UMR 7205 ISYEB, Muséum National d'Histoire Naturelle, Paris, France
| | - Jean-François Silvain
- Unité de Recherche IRD 072-UPR9034 CNRS, Laboratoire Evolution Génomes et Spéciation, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - James M. Carpenter
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Claire Villemant
- UMR 7205 ISYEB, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
29
|
Martin A, McCulloch KJ, Patel NH, Briscoe AD, Gilbert LE, Reed RD. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo 2014; 5:7. [PMID: 24499528 PMCID: PMC3922110 DOI: 10.1186/2041-9139-5-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background While the ecological factors that drive phenotypic radiations are often well understood, less is known about the generative mechanisms that cause the emergence and subsequent diversification of novel features. Heliconius butterflies display an extraordinary diversity of wing patterns due in part to mimicry and sexual selection. Identifying the genetic drivers of this crucible of evolution is now within reach, as it was recently shown that cis-regulatory variation of the optix transcription factor explains red pattern differences in the adaptive radiations of the Heliconius melpomene and Heliconius erato species groups. Results Here, we compare the developmental expression of the Optix protein across a large phylogenetic sample of butterflies and infer that its color patterning role originated at the base of the neotropical passion-vine butterfly clade (Lepidoptera, Nymphalidae, Tribe: Heliconiini), shortly predating multiple Optix-driven wing pattern radiations in the speciose Heliconius and Eueides genera. We also characterize novel Optix and Doublesex expression in the male-specific pheromone wing scales of the basal heliconiines Dryas and Agraulis, thus illustrating that within the Heliconinii lineage, Optix has been evolutionarily redeployed in multiple contexts in association with diverse wing features. Conclusions Our findings reveal that the repeated co-option of Optix into various aspects of wing scale specification was associated with multiple evolutionary novelties over a relatively short evolutionary time scale. In particular, the recruitment of Optix expression in colored scale cell precursors was a necessary condition to the explosive diversification of passion-vine butterfly wing patterns. The novel deployment of a gene followed by spatial modulation of its expression in a given cell type could be a common mode of developmental innovation for triggering phenotypic radiations.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Pardo-Diaz C, Jiggins CD. Neighboring genes shaping a single adaptive mimetic trait. Evol Dev 2014; 16:3-12. [DOI: 10.1111/ede.12058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina Pardo-Diaz
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ United Kingdom
| | - Chris D. Jiggins
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ United Kingdom
- Smithsonian Tropical Research Institute; Balboa AA2072 Panama
| |
Collapse
|
31
|
Kronforst MR, Hansen MEB, Crawford NG, Gallant JR, Zhang W, Kulathinal RJ, Kapan DD, Mullen SP. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep 2013; 5:666-77. [PMID: 24183670 PMCID: PMC4388300 DOI: 10.1016/j.celrep.2013.09.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/09/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites.
Collapse
Affiliation(s)
- Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Aymone ACB, Valente VLS, de Araújo AM. Ultrastructure and morphogenesis of the wing scales in Heliconius erato phyllis (Lepidoptera: Nymphalidae): what silvery/brownish surfaces can tell us about the development of color patterning? ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:349-359. [PMID: 23792046 DOI: 10.1016/j.asd.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Usually the literature on Heliconius show three types of scales, classified based on the correlation between color and ultrastructure: type I - white and yellow, type II - black, and type III - orange and red. The ultrastructure of the scales located at the silvery/brownish surfaces of males/females is for the first time described in this paper. Besides, we describe the ontogeny of pigmentation, the scale morphogenesis and the maturation timing of scales fated to different colors in Heliconius erato phyllis. The silvery/brownish surfaces showed ultrastructurally similar scales to the type I, II and III. The ontogeny of pigmentation follows the sequence red, black, silvery/brownish and yellow. The maturation of yellow-fated scales, however, occurred simultaneously with the red-fated scales, before the pigmentation becomes visible. In spite of the scales at the silvery/brownish surfaces being ultrastructurally similar to the yellow, red and black scales, they mature after them; this suggests that the maturation timing does not show a relationship with the scale ultrastructure, with the deposition timing of the yellow pigment. The analysis of H. erato phyllis scale morphogenesis, as well as the scales ultrastructure and maturation timing, provided new findings into the developmental architecture of color pattern in Heliconius.
Collapse
Affiliation(s)
- A C B Aymone
- Post-Graduate Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15053, 91501-970 Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
34
|
Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, Protas M, Rosenblum EB, Schneider CJ, Hoekstra HE. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res 2012; 25:411-33. [PMID: 22578174 DOI: 10.1111/j.1755-148x.2012.01014.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals display incredibly diverse color patterns yet little is known about the underlying genetic basis of these phenotypes. However, emerging results are reshaping our view of how the process of phenotypic evolution occurs. Here, we outline recent research from three particularly active areas of investigation: melanin pigmentation in Drosophila, wing patterning in butterflies, and pigment variation in lizards. For each system, we highlight (i) the function and evolution of color variation, (ii) various approaches that have been used to explore the genetic basis of pigment variation, and (iii) conclusions regarding the genetic basis of convergent evolution which have emerged from comparative analyses. Results from these studies indicate that natural variation in pigmentation is a particularly powerful tool to examine the molecular basis of evolution, especially with regard to convergent or parallel evolution. Comparison of these systems also reveals that the molecular basis of convergent evolution is heterogeneous, sometimes involving conserved mechanisms and sometimes not. In the near future, additional work in other emerging systems will substantially expand the scope of available comparisons.
Collapse
|
35
|
Abstract
Technological advances in biology have begun to dramatically change the way we think about evolution, development, health and disease. The ability to sequence the genomes of many individuals within a population, and across multiple species, has opened the door to the possibility of answering some long-standing and perplexing questions about our own genetic heritage. One such question revolves around the nature of cellular hyperproliferation. This cellular behavior is used to effect wound healing in most animals, as well as, in some animals, the regeneration of lost body parts. Yet at the same time, cellular hyperproliferation is the fundamental pathological condition responsible for cancers in humans. Here, I will discuss why microevolution, macroevolution and developmental biology all have to be taken into consideration when interpreting studies of both normal and malignant hyperproliferation. I will also illustrate how a synthesis of evolutionary sciences and developmental biology through the study of diverse model organisms can inform our understanding of both health and disease.
Collapse
|
36
|
Hines HM, Papa R, Ruiz M, Papanicolaou A, Wang C, Nijhout HF, McMillan WO, Reed RD. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation. BMC Genomics 2012; 13:288. [PMID: 22747837 PMCID: PMC3443447 DOI: 10.1186/1471-2164-13-288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022] Open
Abstract
Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jones RT, Salazar PA, ffrench-Constant RH, Jiggins CD, Joron M. Evolution of a mimicry supergene from a multilocus architecture. Proc Biol Sci 2012; 279:316-25. [PMID: 21676976 PMCID: PMC3223682 DOI: 10.1098/rspb.2011.0882] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/26/2011] [Indexed: 11/12/2022] Open
Abstract
The origin and evolution of supergenes have long fascinated evolutionary biologists. In the polymorphic butterfly Heliconius numata, a supergene controls the switch between multiple different forms, and results in near-perfect mimicry of model species. Here, we use a morphometric analysis to quantify the variation in wing pattern observed in two broods of H. numata with different alleles at the supergene locus, 'P'. Further, we genotype the broods to associate the variation we capture with genetic differences. This allows us to begin mapping the quantitative trait loci that have minor effects on wing pattern. In addition to finding loci on novel chromosomes, our data, to our knowledge, suggest for the first time that ancestral colour-pattern loci, known to have major effects in closely related species, may contribute to the wing patterns displayed by H. numata, despite the large transfer of effects to the supergene.
Collapse
Affiliation(s)
- Robert T Jones
- School of Biosciences, University of Exeter, Penryn TR10 9EZ, UK.
| | | | | | | | | |
Collapse
|
38
|
Ferguson LC, Maroja L, Jiggins CD. Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies. Dev Genes Evol 2011; 221:297-308. [PMID: 22139062 DOI: 10.1007/s00427-011-0380-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
The evolution of pigmentation in vertebrates and flies has involved repeated divergence at a small number of genes related to melanin synthesis. Here, we study insect melanin synthesis genes in Heliconius butterflies, a group characterised by its diversity of wing patterns consisting of black (melanin), and yellow and red (ommochrome) pigmented scales. Consistent with their respective biochemical roles in Drosophila melanogaster, ebony is upregulated in non-melanic wing regions destined to be pigmented red whilst tan is upregulated in melanic regions. Wing regions destined to be pigmented yellow, however, are downregulated for both genes. This pattern is conserved across multiple divergent and convergent phenotypes within the Heliconii, suggesting a conserved mechanism for the development of black, red and yellow pattern elements across the genus. Linkage mapping of five melanin biosynthesis genes showed that, in contrast to other organisms, these genes do not control pattern polymorphism. Thus, the pigmentation genes themselves are not the locus of evolutionary change but lie downstream of a wing pattern regulatory factor. The results suggest a modular system in which particular combinations of genes are switched on whenever red, yellow or black pattern elements are favoured by natural selection for diverse and mimetic wing patterns.
Collapse
Affiliation(s)
- Laura C Ferguson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK CB2 3EJ
| | | | | |
Collapse
|
39
|
Jung S, Menda N, Redmond S, Buels RM, Friesen M, Bendana Y, Sanderson LA, Lapp H, Lee T, MacCallum B, Bett KE, Cain S, Clements D, Mueller LA, Main D. The Chado Natural Diversity module: a new generic database schema for large-scale phenotyping and genotyping data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar051. [PMID: 22120662 PMCID: PMC3225077 DOI: 10.1093/database/bar051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Linking phenotypic with genotypic diversity has become a major requirement for basic and applied genome-centric biological research. To meet this need, a comprehensive database backend for efficiently storing, querying and analyzing large experimental data sets is necessary. Chado, a generic, modular, community-based database schema is widely used in the biological community to store information associated with genome sequence data. To meet the need to also accommodate large-scale phenotyping and genotyping projects, a new Chado module called Natural Diversity has been developed. The module strictly adheres to the Chado remit of being generic and ontology driven. The flexibility of the new module is demonstrated in its capacity to store any type of experiment that either uses or generates specimens or stock organisms. Experiments may be grouped or structured hierarchically, whereas any kind of biological entity can be stored as the observed unit, from a specimen to be used in genotyping or phenotyping experiments, to a group of species collected in the field that will undergo further lab analysis. We describe details of the Natural Diversity module, including the design approach, the relational schema and use cases implemented in several databases.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture and Landscape, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chamberlain NL, Hill RI, Baxter SW, Jiggins CD, Kronforst MR. Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species. Heredity (Edinb) 2011; 107:200-4. [PMID: 21304546 PMCID: PMC3119732 DOI: 10.1038/hdy.2011.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/16/2010] [Accepted: 12/20/2010] [Indexed: 11/09/2022] Open
Abstract
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.
Collapse
Affiliation(s)
- N L Chamberlain
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - R I Hill
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - S W Baxter
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - M R Kronforst
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
41
|
JORGE LEONARDOR, CORDEIRO-ESTRELA PEDRO, KLACZKO LOUISB, MOREIRA GILSONRP, FREITAS ANDRÉVL. Host-plant dependent wing phenotypic variation in the neotropical butterfly Heliconius erato. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01610.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Wu GC, Joron M, Jiggins CD. Signatures of selection in loci governing major colour patterns in Heliconius butterflies and related species. BMC Evol Biol 2010; 10:368. [PMID: 21114846 PMCID: PMC3001726 DOI: 10.1186/1471-2148-10-368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Protein-coding change is one possible genetic mechanism underlying the evolution of adaptive wing colour pattern variation in Heliconius butterflies. Here we determine whether 38 putative genes within two major Heliconius patterning loci, HmYb and HmB, show evidence of positive selection. Ratios of nonsynonymous to synonymous nucleotide changes (ω) were used to test for selection, as a means of identifying candidate genes within each locus that control wing pattern. Results Preliminary analyses using 454 transcriptome and Bacterial Artificial Chromosome (BAC) sequences from three Heliconius species highlighted a cluster of genes within each region showing relatively higher rates of sequence evolution. Other genes within the region appear to be highly constrained, and no ω estimates exceeded one. Three genes from each locus with the highest average pairwise ω values were amplified from additional Heliconius species and races. Two selected genes, fizzy-like (HmYb) and DALR (HmB), were too divergent for amplification across species and were excluded from further analysis. Amongst the remaining genes, HM00021 and Kinesin possessed the highest background ω values within the HmYb and HmB loci, respectively. After accounting for recombination, these two genes both showed evidence of having codons with a signature of selection, although statistical support for this signal was not strong in any case. Conclusions Tests of selection reveal a cluster of candidate genes in each locus, suggesting that weak directional selection may be occurring within a small region of each locus, but coding changes alone are unlikely to explain the full range of wing pattern diversity. These analyses pinpoint many of the same genes believed to be involved in the control of colour patterning in Heliconius that have been identified through other studies implementing different research methods.
Collapse
Affiliation(s)
- Grace C Wu
- Department of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
43
|
Nadeau NJ, Jiggins CD. A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends Genet 2010; 26:484-92. [DOI: 10.1016/j.tig.2010.08.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 12/20/2022]
|
44
|
Walters JR, Harrison RG. Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 2010; 27:2000-13. [PMID: 20375075 DOI: 10.1093/molbev/msq092] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seminal fluid proteins (SFPs) directly influence a wide range of reproductive processes, including fertilization, sperm storage, egg production, and immune response. Like many other reproductive proteins, the molecular evolution of SFPs is generally characterized by rapid and frequently adaptive evolution. However, the evolutionary processes underlying this often-documented pattern have not yet been confidently determined. A robust understanding of the processes governing SFP evolution will ultimately require identifying SFPs and characterizing their evolution in many different taxa, often where only limited genomic resources are available. Here, we report the first comprehensive molecular genetic and evolutionary analysis of SFPs conducted in Lepidoptera (moths and butterflies). We have identified 51 novel SFPs from two species of Heliconius butterflies (Heliconius erato and Heliconius melpomene) by combining "indirect" bioinformatic and expression analyses of expressed sequence tags from male accessory gland and wing tissues with "direct" proteomic analyses of spermatophores. Proteomic analyses identified fewer SFPs than the indirect criteria but gave consistent results. Of 51 SFPs, 40 were identified in both species but fewer than half could be functionally annotated via similarity searches (Blast, IPRscan, etc.). The majority of annotated Heliconius SFPs were predicted to be chymotrypsins. Comparisons of Heliconius SFPs with those from fruit fly, mosquito, honeybee, and cricket suggest that gene turnover is high among these proteins and that SFPs are rarely conserved across insect orders. Pairwise estimates of evolutionary rates between SFPs and nonreproductive proteins show that, on average, Heliconius SFPs are evolving rapidly. At least one of these SFPs is evolving adaptively (dN/dS > 1), implicating a role for positive selection in this rapid evolution. This work establishes a strong precedent for future research on the causes and consequences of reproductive protein evolution in the Lepidoptera. Butterflies and moths have an extremely rich history of organismal research, which will provide an informative ecological context for further molecular evolutionary investigations.
Collapse
Affiliation(s)
- James R Walters
- Department of Ecology and Evolutionary Biology, Cornell University, USA.
| | | |
Collapse
|
45
|
Balogh ACV, Gamberale-Stille G, Tullberg BS, Leimar O. FEATURE THEORY AND THE TWO-STEP HYPOTHESIS OF MÜLLERIAN MIMICRY EVOLUTION. Evolution 2010; 64:810-22. [DOI: 10.1111/j.1558-5646.2009.00852.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Ferguson L, Lee SF, Chamberlain N, Nadeau N, Joron M, Baxter S, Wilkinson P, Papanicolaou A, Kumar S, Kee TJ, Clark R, Davidson C, Glithero R, Beasley H, Vogel H, Ffrench-Constant R, Jiggins C. Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus. Mol Ecol 2010; 19 Suppl 1:240-54. [PMID: 20331783 DOI: 10.1111/j.1365-294x.2009.04475.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of Heliconius melpomene, and also between sister species. Here, we used fine-scale linkage mapping to identify and sequence a BAC tilepath across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total, 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next-generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.
Collapse
|
47
|
Martin A, Kapan DD, Gilbert LE. Wing Patterns in the Mist. PLoS Genet 2010; 6:e1000822. [PMID: 20140236 PMCID: PMC2816675 DOI: 10.1371/journal.pgen.1000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Arnaud Martin
- Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Durrell D. Kapan
- Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Lawrence E. Gilbert
- Section of Integrative Biology, School of Biological Sciences and Brackenridge Field Laboratory, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman BA, Dawson A, Beltran M, Perez-Espona S, Chamberlain N, Ferguson L, Clark R, Davidson C, Glithero R, Mallet J, McMillan WO, Kronforst M, Joron M, ffrench-Constant RH, Jiggins CD. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet 2010; 6:e1000794. [PMID: 20140188 PMCID: PMC2816687 DOI: 10.1371/journal.pgen.1000794] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 11/30/2009] [Indexed: 11/19/2022] Open
Abstract
Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are "hotspots" for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by approximately 100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.
Collapse
Affiliation(s)
- Simon W. Baxter
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola J. Nadeau
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Luana S. Maroja
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Paul Wilkinson
- School of Biosciences, University of Exeter in Cornwall, Penryn, United Kingdom
| | - Brian A. Counterman
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anna Dawson
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Margarita Beltran
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Silvia Perez-Espona
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Nicola Chamberlain
- Harvard FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Laura Ferguson
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Richard Clark
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Claire Davidson
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - James Mallet
- The Galton Laboratory, University College London, London, United Kingdom
| | - W. Owen McMillan
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Marcus Kronforst
- Harvard FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mathieu Joron
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R, Ferguson L, Joron M, Ffrench-Constant RH, Smith CP, Nielsen DM, Chen R, Jiggins CD, Reed RD, Halder G, Mallet J, McMillan WO. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet 2010; 6:e1000796. [PMID: 20140239 PMCID: PMC2816678 DOI: 10.1371/journal.pgen.1000796] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
Collapse
Affiliation(s)
- Brian A Counterman
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Eizirik E, David VA, Buckley-Beason V, Roelke ME, Schäffer AA, Hannah SS, Narfström K, O'Brien SJ, Menotti-Raymond M. Defining and mapping mammalian coat pattern genes: multiple genomic regions implicated in domestic cat stripes and spots. Genetics 2010; 184:267-75. [PMID: 19858284 PMCID: PMC2815922 DOI: 10.1534/genetics.109.109629] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/12/2009] [Indexed: 11/18/2022] Open
Abstract
Mammalian coat patterns (e.g., spots, stripes) are hypothesized to play important roles in camouflage and other relevant processes, yet the genetic and developmental bases for these phenotypes are completely unknown. The domestic cat, with its diversity of coat patterns, is an excellent model organism to investigate these phenomena. We have established three independent pedigrees to map the four recognized pattern variants classically considered to be specified by a single locus, Tabby; in order of dominance, these are the unpatterned agouti form called "Abyssinian" or "ticked" (T(a)), followed by Spotted (T(s)), Mackerel (T(M)), and Blotched (t(b)). We demonstrate that at least three different loci control the coat markings of the domestic cat. One locus, responsible for the Abyssinian form (herein termed the Ticked locus), maps to an approximately 3.8-Mb region on cat chromosome B1. A second locus controls the Tabby alleles T(M) and t(b), and maps to an approximately 5-Mb genomic region on cat chromosome A1. One or more additional loci act as modifiers and create a spotted coat by altering mackerel stripes. On the basis of our results and associated observations, we hypothesize that mammalian patterned coats are formed by two distinct processes: a spatially oriented developmental mechanism that lays down a species-specific pattern of skin cell differentiation and a pigmentation-oriented mechanism that uses information from the preestablished pattern to regulate the synthesis of melanin profiles.
Collapse
Affiliation(s)
- Eduardo Eizirik
- Department of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|