1
|
Henning PM, Shore JS, McCubbin AG. Transcriptome and Network Analyses of Heterostyly in Turnera subulata Provide Mechanistic Insights: Are S-Loci a Red-Light for Pistil Elongation? PLANTS 2020; 9:plants9060713. [PMID: 32503265 PMCID: PMC7356734 DOI: 10.3390/plants9060713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility (S)-locus of a small number of linked S-genes specific to short-styled morph genomes. Turnera possesses three S-genes, namely TsBAHD (controlling pistil characters), TsYUC6, and TsSPH1 (controlling stamen characters). Here, we compare pistil and stamen transcriptomes of floral morphs of T. subulata to investigate hypothesized S-gene function(s) and whether hormonal differences might contribute to physiological incompatibility. We then use network analyses to identify genetic networks underpinning heterostyly. We found a depletion of brassinosteroid-regulated genes in short styled (S)-morph pistils, consistent with hypothesized brassinosteroid-inactivating activity of TsBAHD. In S-morph anthers, auxin-regulated genes were enriched, consistent with hypothesized auxin biosynthesis activity of TsYUC6. Evidence was found for auxin elevation and brassinosteroid reduction in both pistils and stamens of S- relative to long styled (L)-morph flowers, consistent with reciprocal hormonal differences contributing to physiological incompatibility. Additional hormone pathways were also affected, however, suggesting S-gene activities intersect with a signaling hub. Interestingly, distinct S-genes controlling pistil length, from three species with independently evolved heterostyly, potentially intersect with phytochrome interacting factor (PIF) network hubs which mediate red/far-red light signaling. We propose that modification of the activities of PIF hubs by the S-locus could be a common theme in the evolution of heterostyly.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada;
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
- Correspondence:
| |
Collapse
|
2
|
Shore JS, Hamam HJ, Chafe PDJ, Labonne JDJ, Henning PM, McCubbin AG. The long and short of the S-locus in Turnera (Passifloraceae). THE NEW PHYTOLOGIST 2019; 224:1316-1329. [PMID: 31144315 DOI: 10.1111/nph.15970] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although the S-locus determines the long- and short-styled morphs, the genes were unknown in Turnera. We have now identified these genes. We used deletion mapping to identify, and then sequence, BAC clones and genome scaffolds to construct S/s haplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function. The s-haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. The S-haplotype possessed three additional genes and two inversions. TsSPH1 was expressed in filaments and anthers, TsYUC6 in anthers and TsBAHD in pistils. Long-homostyle mutants did not possess TsBAHD and a short-homostyle mutant did not express TsSPH1. Three hemizygous genes appear to determine S-morph characteristics in T. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene, TsBAHD, differs from that of Primula, but both may inactivate brassinosteroids causing short styles. TsYUC6 is involved in auxin synthesis and likely determines pollen characteristics. TsSPH1 is likely involved in filament elongation. We propose an incompatibility mechanism involving TsYUC6 and TsBAHD.
Collapse
Affiliation(s)
- Joel S Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Hasan J Hamam
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Paul D J Chafe
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Jonathan D J Labonne
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Paige M Henning
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Andrew G McCubbin
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| |
Collapse
|
3
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
4
|
Luo MC, You FM, Li P, Wang JR, Zhu T, Dandekar AM, Leslie CA, Aradhya M, McGuire PE, Dvorak J. Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials. BMC Genomics 2015; 16:707. [PMID: 26383694 PMCID: PMC4574618 DOI: 10.1186/s12864-015-1906-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutations often accompany DNA replication. Since there may be fewer cell cycles per year in the germlines of long-lived than short-lived angiosperms, the genomes of long-lived angiosperms may be diverging more slowly than those of short-lived angiosperms. Here we test this hypothesis. RESULTS We first constructed a genetic map for walnut, a woody perennial. All linkage groups were short, and recombination rates were greatly reduced in the centromeric regions. We then used the genetic map to construct a walnut bacterial artificial chromosome (BAC) clone-based physical map, which contained 15,203 exonic BAC-end sequences, and quantified with it synteny between the walnut genome and genomes of three long-lived woody perennials, Vitis vinifera, Populus trichocarpa, and Malus domestica, and three short-lived herbs, Cucumis sativus, Medicago truncatula, and Fragaria vesca. Each measure of synteny we used showed that the genomes of woody perennials were less diverged from the walnut genome than those of herbs. We also estimated the nucleotide substitution rate at silent codon positions in the walnut lineage. It was one-fifth and one-sixth of published nucleotide substitution rates in the Medicago and Arabidopsis lineages, respectively. We uncovered a whole-genome duplication in the walnut lineage, dated it to the neighborhood of the Cretaceous-Tertiary boundary, and allocated the 16 walnut chromosomes into eight homoeologous pairs. We pointed out that during polyploidy-dysploidy cycles, the dominant tendency is to reduce the chromosome number. CONCLUSION Slow rates of nucleotide substitution are accompanied by slow rates of synteny erosion during genome divergence in woody perennials.
Collapse
Affiliation(s)
- Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, Canada.
| | - Pingchuan Li
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, Canada.
| | - Ji-Rui Wang
- Department of Plant Sciences, University of California, Davis, CA, USA. .,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China.
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | - Mallikarjuna Aradhya
- United States Department of Agriculture-Agricultural Research Service Clonal Repository, Davis, CA, USA.
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Li J, Webster MA, Smith MC, Gilmartin PM. Floral heteromorphy in Primula vulgaris: progress towards isolation and characterization of the S locus. ANNALS OF BOTANY 2011; 108:715-726. [PMID: 21803742 PMCID: PMC3170159 DOI: 10.1093/aob/mcr181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/16/2011] [Indexed: 05/27/2023]
Abstract
BACKGROUND The common primrose, Primula vulgaris, along with many other species of the Primulaceae, exhibits floral heteromorphy in which different individuals develop one of two possible forms of flower, known as pin and thrum. Both flower types are hermaphrodite and exhibit reciprocal positions of male and female reproductive structures, which together with a sporophytic incompatibility system, prevent self-pollination and promote out-crossing. The development of the two different forms of flower is controlled by a co-adapted linkage group of genes known as the S locus. SCOPE Here progress towards identification and characterization of these genes is described to provide a molecular genetic explanation of the different floral characteristics that define heterostyly in Primula as observed and described by Charles Darwin. Previous work to identify and characterize developmental mutations linked to the P. vulgaris S locus, together with the isolation of S locus-linked genes and polymorphic DNA sequences markers, is summarized. The development of tools are described which will facilitate isolation and characterization of the S locus and its environs, including the creation of two expressed sequence tag libraries from pin and thrum flowers, as well as the construction and screening of two bacterial artificial chromosome (BAC) libraries containing thrum genomic DNA. Screening of these libraries with four S locus-linked sequences has enabled us to assemble four BAC contigs representing over 40 individual overlapping BAC clones which represent over 2·2 Mb of S locus-linked genomic sequence. PCR-based approaches for identification of the allelic origin of these BACs are described as well as identification of an additional 14 S locus-linked genes within BAC-end sequences. CONCLUSIONS On-going work to assemble the four S locus-linked contigs into one contiguous sequence spanning the S locus is outlined in preparation for sequence analysis and characterization of the genes located within this region.
Collapse
|
6
|
Positional cloning of the s haplotype determining the floral and incompatibility phenotype of the long-styled morph of distylous Turnera subulata. Mol Genet Genomics 2010; 285:101-11. [PMID: 21113621 DOI: 10.1007/s00438-010-0590-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Heterostyly is a plant breeding system occurring in approximately 28 plant families and it has often been used as a model system in plant genetics and evolution. Although heterostyly has been studied for over a century beginning with Charles Darwin, the genes determining floral architecture and incompatibility are still unknown. To identify the genes residing at the S-locus of distylous Turnera subulata, we used a positional cloning strategy and assembled three BAC contigs across the S-locus region. In total, 31 overlapping BAC clones were assembled into contigs 1, 2 and SL. We developed and mapped numerous co-dominant markers from the ends of BAC clones across the S-locus region and assayed X-ray deletion mutants to delimit the region of the contig containing the S-locus. Deletion mapping revealed that a single BAC clone (L22s) within contig-SL contains the s haplotype, while two additional BAC clones (I1 and K15) may contain parts of the dominant S haplotype. Furthermore, we exploited the contigs assembled and investigated the rates of recombination at the S-locus as well as in two regions on either side of the S-locus. We found that recombination rates (estimated in kb/cM) are 2-5 times lower at the S-locus relative to flanking regions, although they are not statistically significant. The present study represents a landmark in the molecular characterization of the S-locus of a heterostylous species. We are now on the verge of identifying the genes that have remained elusive since Darwin's comprehensive study of heterostylous systems more than 125 years ago.
Collapse
|
7
|
Characterization of X-ray-generated floral mutants carrying deletions at the S-locus of distylous Turnera subulata. Heredity (Edinb) 2010; 105:235-43. [DOI: 10.1038/hdy.2010.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Wang S, Zhang L, Meyer E, Matz MV. Construction of a high-resolution genetic linkage map and comparative genome analysis for the reef-building coral Acropora millepora. Genome Biol 2009; 10:R126. [PMID: 19900279 PMCID: PMC3091320 DOI: 10.1186/gb-2009-10-11-r126] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/12/2009] [Accepted: 11/10/2009] [Indexed: 01/22/2023] Open
Abstract
A high-resolution genetic linkage map for the coral Acropora millepora is constructed and compared with other metazoan genomes, revealing syntenic blocks. Background Worldwide, coral reefs are in decline due to a range of anthropogenic disturbances, and are now also under threat from global climate change. Virtually nothing is currently known about the genetic factors that might determine whether corals adapt to the changing climate or continue to decline. Quantitative genetics studies aiming to identify the adaptively important genomic loci will require a high-resolution genetic linkage map. The phylogenetic position of corals also suggests important applications for a coral genetic map in studies of ancestral metazoan genome architecture. Results We constructed a high-resolution genetic linkage map for the reef-building coral Acropora millepora, the first genetic map reported for any coral, or any non-Bilaterian animal. More than 500 single nucleotide polymorphism (SNP) markers were developed, most of which are transferable in populations from Orpheus Island and Great Keppel Island. The map contains 429 markers (393 gene-based SNPs and 36 microsatellites) distributed in 14 linkage groups, and spans 1,493 cM with an average marker interval of 3.4 cM. Sex differences in recombination were observed in a few linkage groups, which may be caused by haploid selection. Comparison of the coral map with other metazoan genomes (human, nematode, fly, anemone and placozoan) revealed synteny regions. Conclusions Our study develops a framework that will be essential for future studies of adaptation in coral and it also provides an important resource for future genome sequence assembly and for comparative genomics studies on the evolution of metazoan genome structure.
Collapse
Affiliation(s)
- Shi Wang
- Section of Integrative Biology, School of Biological Sciences, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
9
|
Bernhardt SA, Blair C, Sylla M, Bosio C, Black WC. Evidence of multiple chromosomal inversions in Aedes aegypti formosus from Senegal. INSECT MOLECULAR BIOLOGY 2009; 18:557-569. [PMID: 19754736 DOI: 10.1111/j.1365-2583.2009.00895.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chromosomal inversions are prevalent in mosquito species but polytene chromosomes are difficult to prepare and visualize in members of the tribe Aedinii and thus there exists only indirect evidence of inversions. We constructed an F(1) intercross family using a P(1) female from a laboratory strain of Aedes aegypti aegypti (Aaa) and a P(1) male Aedes aegypti formosus (Aaf) from a strain collected from south-eastern Senegal. Recombination rates in the F(2) offspring were severely reduced and genotype ratios suggested a deleterious recessive allele on chromosome 3. The F(2) linkage map was incongruent in most respects with the established map for Aaa. Furthermore, no increased recombination was detected in F(5) offspring. Recombination rates and gene order were consistent with the presence in Aaf of at least four large inversions on chromosome 1, a single small inversion on chromosome 2 and three inversions on chromosome 3.
Collapse
Affiliation(s)
- S A Bernhardt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | |
Collapse
|
10
|
Labonne JJD, Goultiaeva A, Shore JS. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles. Mol Genet Genomics 2009; 281:673-85. [PMID: 19283410 DOI: 10.1007/s00438-009-0439-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.
Collapse
Affiliation(s)
- Jonathan J D Labonne
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | | | | |
Collapse
|
11
|
Labonne JDJ, Vaisman A, Shore JS. Construction of a first genetic map of distylous Turnera and a fine-scale map of the S-locus region. Genome 2008; 51:471-8. [PMID: 18545271 DOI: 10.1139/g08-031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a prelude to discovery of genes involved in floral dimorphism and incompatibility, a genetic map of distylous Turnera was constructed along with a fine-scale map of the S-locus region. The genetic map consists of 79 PCR-based molecular markers (48 AFLP, 18 RAPD, 9 ISSR, 4 RAMP), 5 isozyme loci, one additional gene, and the S-locus, spanning a total distance of 683.3 cM. The 86 markers are distributed in 5 linkage groups, corresponding to the haploid chromosome number. Molecular markers tightly linked or co-segregating with the S-locus in an initial mapping population of 94 individuals were used to assay an additional 642 progeny to construct a map of the S-locus region. The fine-scale map consists of 2 markers (IS864a and RP45E9) flanking the S-locus at distances of 0.41 and 0.54 cM, respectively, and 3 additional markers (OPK14c, RP45G18, and RP81E18) co-segregating with the S-locus in the total mapping population of 736 individuals. The genetic map constructed will serve as a framework for localization of genes outside the S-locus affecting distyly, while molecular markers of the fine-scale map will be used to initiate chromosome walking to find the genes residing at the S-locus.
Collapse
Affiliation(s)
- J D J Labonne
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | | | | |
Collapse
|