1
|
Ebdon S, Laetsch DR, Vila R, Baird SJE, Lohse K. Genomic regions of current low hybridisation mark long-term barriers to gene flow in scarce swallowtail butterflies. PLoS Genet 2025; 21:e1011655. [PMID: 40209170 PMCID: PMC12040345 DOI: 10.1371/journal.pgen.1011655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 04/29/2025] [Accepted: 03/14/2025] [Indexed: 04/12/2025] Open
Abstract
Many closely related species continue to hybridise after millions of generations of divergence. However, the extent to which current patterning in hybrid zones connects back to the speciation process remains unclear: does evidence for current multilocus barriers support the hypothesis of speciation due to multilocus divergence? We analyse whole-genome sequencing data to investigate the speciation history of the scarce swallowtails Iphiclidespodalirius and I . feisthamelii, which abut at a narrow ( ∼ 25 km) contact zone north of the Pyrenees. We first quantify the heterogeneity of effective migration rate under a model of isolation with migration, using genomes sampled across the range to identify long-term barriers to gene flow. Secondly, we investigate the recent ancestry of individuals from the hybrid zone using genome polarisation and estimate the coupling coefficient under a model of a multilocus barrier. We infer a low rate of long-term gene flow from I . feisthamelii into I . podalirius - the direction of which matches the admixture across the hybrid zone - and complete reproductive isolation across ≈ 33% of the genome. Our contrast of recent and long-term gene flow shows that regions of low recent hybridisation are indeed enriched for long-term barriers which maintain divergence between these hybridising sister species. This finding paves the way for future analysis of the evolution of reproductive isolation along the speciation continuum.
Collapse
Affiliation(s)
- Sam Ebdon
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R. Laetsch
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Konrad Lohse
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Wiens BJ, Colella JP. That's Not a Hybrid: How to Distinguish Patterns of Admixture and Isolation By Distance. Mol Ecol Resour 2025; 25:e14039. [PMID: 39467042 DOI: 10.1111/1755-0998.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Describing naturally occurring genetic variation is a fundamental goal of molecular phylogeography and population genetics. Popular methods for this task include STRUCTURE, a model-based algorithm that assigns individuals to genetic clusters, and principal component analysis (PCA), a parameter-free method. The ability of STRUCTURE to infer mixed ancestry makes it popular for documenting natural hybridisation, which is of considerable interest to evolutionary biologists, given that such systems provide a window into the speciation process. Yet, STRUCTURE can produce misleading results when its underlying assumptions are violated, like when genetic variation is distributed continuously across geographic space. To test the ability of STRUCTURE and PCA to accurately distinguish admixture from continuous variation, we use forward-time simulations to generate population genetic data under three demographic scenarios: two involving admixture and one with isolation by distance (IBD). STRUCTURE and PCA alone cannot distinguish admixture from IBD, but complementing these analyses with triangle plots, which visualise hybrid index against interclass heterozygosity, provides more accurate inference of demographic history, especially in cases of recent admixture. We demonstrate that triangle plots are robust to missing data, while STRUCTURE and PCA are not, and show that setting a low allele frequency difference threshold for ancestry-informative marker (AIM) identification can accurately characterise the relationship between hybrid index and interclass heterozygosity across demographic histories of admixture and range expansion. While STRUCTURE and PCA provide useful summaries of genetic variation, results should be paired with triangle plots before admixture is inferred.
Collapse
Affiliation(s)
- Ben J Wiens
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Jocelyn P Colella
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Dougherty PJ, Carling MD. Go west, young bunting: recent climate change drives rapid movement of a Great Plains hybrid zone. Evolution 2024; 78:1774-1789. [PMID: 39212586 PMCID: PMC11519009 DOI: 10.1093/evolut/qpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Describing how hybrid zones respond to anthropogenic influence can illuminate how the environment regulates both species distributions and reproductive isolation between species. In this study, we analyzed specimens collected from the Passerina cyanea×P. amoena hybrid zone between 2004 and 2007 and between 2019 and 2021 to explore changes in genetic structure over time. This comparison follows a previous study that identified a significant westward shift of the Passerina hybrid zone during the latter half of the twentieth century. A second temporal comparison of hybrid zone genetic structure presents unique potential to describe finer-scale dynamics and to identify potential mechanisms of observed changes more accurately. After concluding that the westward movement of the Passerina hybrid zone has accelerated in recent decades, we investigated potential drivers of this trend by modeling the influence of bioclimatic and landcover variables on genetic structure. We also incorporated eBird data to determine how the distributions of P. cyanea and P. amoena have responded to recent climate and landcover changes. We found that the distribution of P. cyanea in the northern Great Plains has shifted west to track a moving climatic niche, supporting anthropogenic climate change as a key mediator of introgression in this system.
Collapse
Affiliation(s)
- Paul J Dougherty
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, United States
- University of Wyoming Program in Ecology, Laramie, WY, United States
- University of Wyoming Museum of Vertebrates, Laramie, WY, United States
| | - Matthew D Carling
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, United States
- University of Wyoming Program in Ecology, Laramie, WY, United States
- University of Wyoming Museum of Vertebrates, Laramie, WY, United States
| |
Collapse
|
4
|
Long KM, Rivera-Colón AG, Bennett KFP, Catchen JM, Braun MJ, Brawn JD. Ongoing introgression of a secondary sexual plumage trait in a stable avian hybrid zone. Evolution 2024; 78:1539-1553. [PMID: 38753474 DOI: 10.1093/evolut/qpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei. Males with yellow collars are preferred by females and are more aggressive than parental M. candei, suggesting that sexual selection was responsible for the introgression of male traits. We assessed the spatial and temporal dynamics of this hybrid zone using historical (1989-1994) and contemporary (2017-2020) transect samples to survey both morphological and genetic variation. Genome-wide single nucleotide polymorphism data and several male phenotypic traits show that the genomic center of the zone has remained spatially stable, whereas the olive belly color of male M. vitellinus has continued to introgress over this time period. Our data suggest that sexual selection can continue to shape phenotypes dynamically, independent of a stable genomic transition between species.
Collapse
Affiliation(s)
- Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jeffrey D Brawn
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Horníková M, Lanier HC, Marková S, Escalante MA, Searle JB, Kotlík P. Genetic admixture drives climate adaptation in the bank vole. Commun Biol 2024; 7:863. [PMID: 39009753 PMCID: PMC11251159 DOI: 10.1038/s42003-024-06549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Genetic admixture introduces new variants at relatively high frequencies, potentially aiding rapid responses to environmental changes. Here, we evaluate its role in adaptive variation related to climatic conditions in bank voles (Clethrionomys glareolus) in Britain, using whole-genome data. Our results reveal loci showing excess ancestry from one of the two postglacial colonist populations inconsistent with overall admixture patterns. Notably, loci associated with climate adaptation exhibit disproportionate amounts of excess ancestry, highlighting the impact of admixture between colonist populations on local adaptation. The results suggest strong and localized selection on climate-adaptive loci, as indicated by steep clines and/or shifted cline centres, during population replacement. A subset, including a haemoglobin gene, is associated with oxidative stress responses, underscoring a role of oxidative stress in local adaptation. Our study highlights the important contribution of admixture during secondary contact between populations from distinct climatic refugia enriching adaptive diversity. Understanding these dynamics is crucial for predicting future adaptive capacity to anthropogenic climate change.
Collapse
Affiliation(s)
- Michaela Horníková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
- Sam Noble Museum, University of Oklahoma, Norman, OK, USA
| | - Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Marco A Escalante
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
7
|
Estévez Manso Galán L, Antonetti M, Ibañez AC, Sérsic AN, Cocucci AA. Phenotypic selection patterns in a hybrid zone between two Calceolaria species with contrasting pollinators: insights from field surveys and fitness assessments. THE NEW PHYTOLOGIST 2024; 243:440-450. [PMID: 38655668 DOI: 10.1111/nph.19775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Hybrid zones provide natural experimental settings to test hypotheses about species divergence. We concentrated on a hybrid swarm in which oil-collecting bees and flower-pecking birds act as pollinators of two Calceolaria species. We asked whether both pollinators contributed to flower divergence by differentially promoting prezygotic fitness at the phenotypic extremes that represent parentals. We studied pollinator-mediated selection on phenotypic traits critical in plant-pollinator mechanical interaction, namely plant height, reward-to-stigma distance, and flower shape. We utilised the quantity and quality of pollen deposited as fitness measures and distinguished between the contribution of the two pollinator types. Results showed uni- and bivariate disruptive selection for most traits through pollen grains deposited by both pollinators. Bird-mediated fitness favoured low plants with a long reward-to-stigma distance and a straight corolla, while bee-mediated fitness favoured tall plants with a short reward-to-stigma distance and curved corolla. In addition, stabilising selection at one end of the phenotypic range showed a bird-mediated reproductive asymmetry within the swarm. The disruptive pattern was countered, albeit weakly, by hybrids receiving higher-quality pollen on the stigmas. Results suggest that pollinator-mediated selection promotes divergence of integrated flower phenotypes mechanically adjusted either to bees or birds underscoring the importance of pollinator specialisation in diversification.
Collapse
Affiliation(s)
- Lucía Estévez Manso Galán
- Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611(X5016GCA), Córdoba, Argentina
| | - Marco Antonetti
- Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611(X5016GCA), Córdoba, Argentina
| | - Ana C Ibañez
- Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611(X5016GCA), Córdoba, Argentina
| | - Alicia N Sérsic
- Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611(X5016GCA), Córdoba, Argentina
| | - Andrea A Cocucci
- Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield, 1611(X5016GCA), Córdoba, Argentina
| |
Collapse
|
8
|
Geng X, Summers J, Chen N. Ecological niche contributes to the persistence of the western × glaucous-winged gull hybrid zone. Ecol Evol 2024; 14:e11678. [PMID: 39005880 PMCID: PMC11239321 DOI: 10.1002/ece3.11678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Hybrid zones occur in nature when populations with limited reproductive barriers overlap in space. Many hybrid zones persist over time, and different models have been proposed to explain how selection can maintain hybrid zone stability. More empirical studies are needed to elucidate the role of ecological adaptation in maintaining stable hybrid zones. Here, we investigated the role of exogenous factors in maintaining a hybrid zone between western gulls (Larus occidentalis) and glaucous-winged gulls (L. glaucescens). We used ecological niche models (ENMs) and niche similarity tests to quantify and examine the ecological niches of western gulls, glaucous-winged gulls, and their hybrids. We found evidence of niche divergence between all three groups. Our results support the bounded superiority model, providing further evidence that exogenous selection favoring hybrids may be an important factor in maintaining this stable hybrid zone.
Collapse
Affiliation(s)
- Xuewen Geng
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Jeremy Summers
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Nancy Chen
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
9
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Diz AP, Skibinski DOF. Patterns of admixture and introgression in a mosaic Mytilus galloprovincialis and Mytilus edulis hybrid zone in SW England. Mol Ecol 2024; 33:e17233. [PMID: 38063472 DOI: 10.1111/mec.17233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024]
Abstract
The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.
Collapse
Affiliation(s)
- Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
11
|
Geng X, Summers J, Chen N. Ecological niche contributes to the persistence of the Western x Glaucous-winged Gull hybrid zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571742. [PMID: 38168246 PMCID: PMC10760172 DOI: 10.1101/2023.12.14.571742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hybrid zones occur in nature when populations with limited reproductive barriers overlap in space. Many hybrid zones persist over time, and different models have been proposed to explain how selection can maintain hybrid zone stability. More empirical studies are needed to elucidate the role of ecological adaptation in maintaining stable hybrid zones. Here, we investigated the role of exogenous factors in maintaining a hybrid zone between western gulls (Larus occidentalis) and glaucous-winged gulls (L. glaucescens). We used ecological niche models (ENMs) and niche similarity tests to quantify and examine the ecological niches of western gulls, glaucous-winged gulls, and their hybrids. We found evidence of niche divergence between all three groups. Our results best support the bounded superiority model, providing further evidence that exogenous selection favoring hybrids may be an important factor in maintaining this stable hybrid zone.
Collapse
Affiliation(s)
- Xuewen Geng
- Department of Biology, University of Rochester
| | | | - Nancy Chen
- Department of Biology, University of Rochester
| |
Collapse
|
12
|
Patterson CW, Drury JP. Interspecific behavioural interference and range dynamics: current insights and future directions. Biol Rev Camb Philos Soc 2023; 98:2012-2027. [PMID: 37364865 DOI: 10.1111/brv.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.
Collapse
Affiliation(s)
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
13
|
Kalaentzis K, Arntzen JW, Avcı A, van den Berg V, Beukema W, France J, Olgun K, van Riemsdijk I, Üzüm N, de Visser MC, Wielstra B. Hybrid zone analysis confirms cryptic species of banded newt and does not support competitive displacement since secondary contact. Ecol Evol 2023; 13:e10442. [PMID: 37664506 PMCID: PMC10468612 DOI: 10.1002/ece3.10442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
When two putatively cryptic species meet in nature, hybrid zone analysis can be used to estimate the extent of gene flow between them. Two recently recognized cryptic species of banded newt (genus Ommatotriton) are suspected to meet in parapatry in Anatolia, but a formal hybrid zone analysis has never been conducted. We sample populations throughout the range, with a focus on the supposed contact zone, and genotype them for 31 nuclear DNA SNP markers and mtDNA. We determine the degree of genetic admixture, introgression, and niche overlap. We reveal an extremely narrow hybrid zone, suggesting strong selection against hybrids, in line with species status. The hybrid zone does not appear to be positioned at an ecological barrier, and there is significant niche overlap. Therefore, the hybrid zone is best classified as a tension zone, maintained by intrinsic selection against hybrids. While the two banded newt species can evidently backcross, we see negligible introgression and the pattern is symmetric, which we interpret as supporting the fact that the hybrid zone has been practically stationary since its origin (while extensive hybrid zone movement has been suggested in other newt genera in the region). Our study illustrates the use of hybrid zone analysis to test cryptic species status.
Collapse
Affiliation(s)
- Konstantinos Kalaentzis
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Hydrobiological Station of Rhodes, Hellenic Centre for Marine ResearchRhodesGreece
| | - Jan W. Arntzen
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Aziz Avcı
- Department of BiologyAydın Adnan Menderes UniversityAydınTurkey
| | - Victor van den Berg
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Wouter Beukema
- Reptile, Amphibian and Fish Conservation Netherlands (RAVON)NijmegenThe Netherlands
| | - James France
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Kurtuluş Olgun
- Department of BiologyAydın Adnan Menderes UniversityAydınTurkey
| | - Isolde van Riemsdijk
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Plant Evolutionary EcologyInstitute of Evolution & Ecology, University of TübingenTübingenGermany
| | - Nazan Üzüm
- Department of BiologyAydın Adnan Menderes UniversityAydınTurkey
| | - Manon C. de Visser
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
| |
Collapse
|
14
|
Helmerson C, Weist P, Brieuc MSO, Maurstad MF, Schade FM, Dierking J, Petereit C, Knutsen H, Metcalfe J, Righton D, André C, Krumme U, Jentoft S, Hanel R. Evidence of hybridization between genetically distinct Baltic cod stocks during peak population abundance(s). Evol Appl 2023; 16:1359-1376. [PMID: 37492148 PMCID: PMC10363836 DOI: 10.1111/eva.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Range expansions can lead to increased contact of divergent populations, thus increasing the potential of hybridization events. Whether viable hybrids are produced will most likely depend on the level of genomic divergence and associated genomic incompatibilities between the different entities as well as environmental conditions. By taking advantage of historical Baltic cod (Gadus morhua) otolith samples combined with genotyping and whole genome sequencing, we here investigate the genetic impact of the increased spawning stock biomass of the eastern Baltic cod stock in the mid 1980s. The eastern Baltic cod is genetically highly differentiated from the adjacent western Baltic cod and locally adapted to the brackish environmental conditions in the deeper Eastern basins of the Baltic Sea unsuitable for its marine counterparts. Our genotyping results show an increased proportion of eastern Baltic cod in western Baltic areas (Mecklenburg Bay and Arkona Basin)-indicative of a range expansion westwards-during the peak population abundance in the 1980s. Additionally, we detect high frequencies of potential hybrids (including F1, F2 and backcrosses), verified by whole genome sequencing data for a subset of individuals. Analysis of mitochondrial genomes further indicates directional gene flow from eastern Baltic cod males to western Baltic cod females. Our findings unravel that increased overlap in distribution can promote hybridization between highly divergent populations and that the hybrids can be viable and survive under specific and favourable environmental conditions. However, the observed hybridization had seemingly no long-lasting impact on the continuous separation and genetic differentiation between the unique Baltic cod stocks.
Collapse
Affiliation(s)
- Cecilia Helmerson
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | - Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
- Institute of Marine ResearchBergenNorway
| | - Marius F. Maurstad
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | | | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research KielGermany
| | | | - Halvor Knutsen
- Institute of Marine ResearchBergenNorway
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| | - Julian Metcalfe
- Centre for Environment Fisheries and Aquaculture ScienceLowestoftUK
| | - David Righton
- Centre for Environment Fisheries and Aquaculture ScienceLowestoftUK
| | - Carl André
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| | | |
Collapse
|
15
|
van Riemsdijk I, Arntzen JW, Bucciarelli GM, McCartney-Melstad E, Rafajlović M, Scott PA, Toffelmier E, Shaffer HB, Wielstra B. Two transects reveal remarkable variation in gene flow on opposite ends of a European toad hybrid zone. Heredity (Edinb) 2023; 131:15-24. [PMID: 37106116 PMCID: PMC10313803 DOI: 10.1038/s41437-023-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Speciation entails a reduction in gene flow between lineages. The rates at which genomic regions become isolated varies across space and time. Barrier markers are linked to putative genes involved in (processes of) reproductive isolation, and, when observed over two transects, indicate species-wide processes. In contrast, transect-specific putative barrier markers suggest local processes. We studied two widely separated transects along the 900 km hybrid zone between Bufo bufo and B. spinosus, in northern and southern France, for ~1200 RADseq markers. We used genomic and geographic cline analyses to identify barrier markers based on their restricted introgression, and found that some markers are transect-specific, while others are shared between transects. Twenty-six barrier markers were shared across both transects, of which some are clustered in the same chromosomal region, suggesting that their associated genes are involved in reduced gene flow across the entire hybrid zone. Transect-specific barrier markers were twice as numerous in the southern than in the northern transect, suggesting that the overall barrier effect is weaker in northern France. We hypothesize that this is consistent with a longer period of secondary contact in southern France. The smaller number of introgressed genes in the northern transect shows considerably more gene flow towards the southern (B. spinosus) than the northern species (B. bufo). We hypothesize that hybrid zone movement in northern France and hybrid zone stability in southern France explain this pattern. The Bufo hybrid zone provides an excellent opportunity to separate a general barrier effect from localized gene flow-reducing conditions.
Collapse
Affiliation(s)
- I van Riemsdijk
- Naturalis Biodiversity Center, Leiden, the Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
- Institute for Evolution and Ecology, Plant Evolutionary Ecology, Tübingen University, Tübingen, Germany.
| | - J W Arntzen
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - G M Bucciarelli
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
- Institute of the Environment, UC Davis, Davis, CA, USA
- Department of Wildlife, Fish, and Conservation Biology, UC Davis, Davis, CA, USA
| | - E McCartney-Melstad
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - M Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - P A Scott
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Natural Sciences Collegium, Eckerd College, 4200 54 Ave S, St Petersburg, FL, 33711, USA
| | - E Toffelmier
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - B Wielstra
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
16
|
Caeiro-Dias G, Brelsford A, Meneses-Ribeiro M, Crochet PA, Pinho C. Hybridization in late stages of speciation: Strong but incomplete genome-wide reproductive isolation and 'large Z-effect' in a moving hybrid zone. Mol Ecol 2023. [PMID: 37316984 DOI: 10.1111/mec.17035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
In organisms reproducing sexually, speciation occurs when increasing divergence results in pre- or post-zygotic reproductive isolation between lineages. Studies focusing on reproductive isolation origin in early stages of speciation are common and many rely on genomic scans to infer introgression providing limited information on the genomic architecture of reproductive isolation long-term maintenance. This study analyses a natural hybrid zone between two species in a late stage of speciation. We used ddRADseq genotyping in the contact between Podarcis bocagei and P. carbonelli to examine admixture extent, analyse hybrid zone stability and assess genome-wide variation in selection against introgression. We confirmed strong but incomplete reproductive isolation in a bimodal hybrid zone. New findings revealed population genetic structure within P. carbonelli in the contact zone; geographical and genomic clines analysis suggested strong selection against gene flow, but a relatively small proportion of the loci can introgress, mostly within the narrow contact zone. However, geographical clines revealed that a few introgressed loci show signs of potential positive selection, particularly into P. bocagei. Geographical clines also detected a signal of hybrid zone movement towards P. bocagei distribution. Genomic cline analysis revealed heterogeneous patterns of introgression among loci within the syntopy zone, but the majority maintain a strong association with the genomic background of origin. However, incongruences between both cline approaches were found, potentially driven by confounding effects on genomic clines. Last, an important role of the Z chromosome in reproductive isolation is suggested. Importantly, overall patterns of restricted introgression seem to result from numerous strong intrinsic barriers across the genome.
Collapse
Affiliation(s)
- Guilherme Caeiro-Dias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Alan Brelsford
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Biology Department, University of California Riverside, Riverside, California, USA
| | - Mariana Meneses-Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pierre-André Crochet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
17
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Pizarro AK, DeRaad DA, McCormack JE. Temporal stability of the hybrid zone between Calocitta magpie-jays revealed through comparison of museum specimens and iNaturalist photos. Ecol Evol 2023; 13:e9863. [PMID: 36937059 PMCID: PMC10017314 DOI: 10.1002/ece3.9863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white-throated magpie-jay (Calocitta formosa) and black-throated magpie-jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre-1973) and modern (post-2005) time periods-a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white-throated individuals in the northern range of the black-throated magpie-jay hints at the possibility of prehistorical long-distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species.
Collapse
Affiliation(s)
- Alana K. Pizarro
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | - Devon A. DeRaad
- Biodiversity Institute and Department of Ecology & Evolutionary BiologyKansas UniversityKansasLawrenceUSA
| | - John E. McCormack
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Lin XQ, Hou YM, Yang WZ, Shi SC, Zheng PY, Shih CK, Jiang JP, Xie F, Jiang JP, Xie F, 中国科学院大学, 北京100049, 中国, 首都师范大学生命科学学院, 北京100048, 中国, 美国国家自然历史博物馆, 史密森学会, 华盛顿20013–7012, 美国, 西藏生态安全监测网, 芒康生物多样性与生态监测站, 西藏 昌都854500, 中国, University of Chinese Academy of Sciences, Beijing 100049, China, College of Life Sciences, Capital Normal University, Beijing 100048, China, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013–7012, USA, Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China. A wide hybrid zone mediated by precipitation contributed to confused geographical structure of Scutiger boulengeri. Zool Res 2023; 44:3-19. [PMID: 36171715 PMCID: PMC9841186 DOI: 10.24272/j.issn.2095-8137.2022.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Confused geographical structure of a population and mitonuclear discordance are shaped by a combination of rapid changes in population demographics and shifts in ecology. In this study, we generated a time-calibrated phylogeny of Scutiger boulengeri, an endemic Xizang alpine toad occurring in mountain streams on the Qinghai-Xizang (Tibet) Plateau (QTP). Based on three mitochondrial DNA (mtDNA) genes, eight clades were assigned to three deeply divergent lineages. Analysis of nuclear DNA (nuDNA) genes revealed three distinct clusters without geographic structure, indicating significantly high rates of gene flow. Coalescent theory framework analysis (approximate Bayesian computation model DIYABC and Migrate-N) suggested that divergence of the main intraspecific clusters was the result of hybridization after secondary contact in the Holocene around 0.59 million years ago (Ma). The ratio of mtDNA F ST (fixation index) to nuDNA F ST was 2.3, thus failing to show male-biased dispersal. Geographic cline analysis showed that a wide hybrid zone was initially established in southwestern China, without significant reproductive isolation but with strong introgression in S. boulengeri, suggesting high hybrid fitness. Furthermore, mtDNA genes exhibited isolation by distance (IBD) while nuDNA genes exhibited significant isolation by environment (IBE). Results suggested that mitonuclear discordance may have initially been caused by geographic isolation, followed by precipitation-mediated hybridization, producing a wide hybrid zone and geographic structure confusion of nuDNA genes in S. boulengeri. This study indicated that complicated historical processes may have led to specific genetic patterns, with a specific climate factor facilitating gene flow in the system.
Collapse
Affiliation(s)
- Xiu-Qin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Meng Hou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Zhao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Chao Shi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu-Yang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chung-Kun Shih
- College of Life Sciences, Capital Normal University, Beijing 100048, China,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013–7012, USA
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China,Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China,Mangkang Biodiversity and Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China,E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
22
|
Tominaga A, Yoshikawa N, Matsui M, Nagata N, Sato Y. The emergence of a cryptic lineage and cytonuclear discordance through past hybridization in the Japanese fire-bellied newt, Cynops pyrrhogaster (Amphibia: Urodela). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Discrepancies in geographic variation patterns between nuclear DNA and mitochondrial DNA (mtDNA) are the result of the complicated differentiation processes in organisms and are the key to understanding their true evolutionary processes. The genetic differentiation of the northern and Southern-Izu lineages of the Japanese newt, Cynops pyrrhogaster, was investigated through their single nucleotide polymorphism variations obtained via multiplexed ISSR genotyping by sequencing (MIG-seq). We found three genetic groups (Tohoku, N-Kanto and S-Kanto), that were not detected by mtDNA variations, in the northern lineage. N-Kanto has intermediate genetic characteristics between Tohoku and S-Kanto. The genetic groups are now moderately isolated from each other and have unique genetic characteristics. An estimation of the evolutionary history using the approximate Bayesian computation (ABC) approach suggested that Tohoku diverged from the common ancestor of S-Kanto and S-Izu. Then, S-Kanto and S-Izu split, and the recent hybridization between Tohoku and S-Kanto gave rise to N-Kanto. The origin of N-Kanto through the hybridization is relatively young and seems to be related to changes in the distributions of Tohoku and S-Kanto as a result of climatic oscillation in the Pleistocene. We conclude that the mitochondrial genome of S-Kanto was captured in Tohoku and that the original mitochondrial genome of Tohoku was entirely removed through hybridization.
Collapse
Affiliation(s)
- Atsushi Tominaga
- Faculty of Education, University of the Ryukyus , Senbaru 1, Nishihara, Okinawa 903-0213 , Japan
| | - Natsuhiko Yoshikawa
- National Museum of Nature and Science , 4-1-1 Amakubo, Tsukuba, Ibaraki 305 - 0005 , Japan
| | - Masafumi Matsui
- Graduate School of Human and Environmental Studies, Kyoto University , Yoshida Nihonmatsu-cho, Sakyo, Kyoto 606 - 8501 , Japan
| | - Nobuaki Nagata
- National Museum of Nature and Science , 4-1-1 Amakubo, Tsukuba, Ibaraki 305 - 0005 , Japan
| | - Yukuto Sato
- Faculty of Medicine, University of the Ryukyus , Uehara 207, Nishihara, Okinawa 903 - 0215 , Japan
| |
Collapse
|
23
|
Bird Communities in a Changing World: The Role of Interspecific Competition. DIVERSITY 2022. [DOI: 10.3390/d14100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Significant changes in the environment have the potential to affect bird species abundance and distribution, both directly, through a modification of the landscape, habitats, and climate, and indirectly, through a modification of biotic interactions such as competitive interactions. Predicting and mitigating the consequences of global change thus requires not only a sound understanding of the role played by biotic interactions in current ecosystems, but also the recognition and study of the complex and intricate effects that result from the perturbation of these ecosystems. In this review, we emphasize the role of interspecific competition in bird communities by focusing on three main predictions derived from theoretical and empirical considerations. We provide numerous examples of population decline and displacement that appeared to be, at least in part, driven by competition, and were amplified by environmental changes associated with human activities. Beyond a shift in relative species abundance, we show that interspecific competition may have a negative impact on species richness, ecosystem services, and endangered species. Despite these findings, we argue that, in general, the role played by interspecific competition in current communities remains poorly understood due to methodological issues and the complexity of natural communities. Predicting the consequences of global change in these communities is further complicated by uncertainty regarding future environmental conditions and the speed and efficacy of plastic and evolutionary responses to fast-changing environments. Possible directions of future research are highlighted.
Collapse
|
24
|
Pereira Martins AR, Martins LP, Ho W, McMillan WO, Ready JS, Barrett R. Scale-dependent environmental effects on phenotypic distributions in Heliconius butterflies. Ecol Evol 2022; 12:e9286. [PMID: 36177141 PMCID: PMC9471044 DOI: 10.1002/ece3.9286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Identifying the relative importance of different mechanisms responsible for the emergence and maintenance of phenotypic diversity can be challenging, as multiple selective pressures and stochastic events are involved in these processes. Therefore, testing how environmental conditions shape the distribution of phenotypes can offer important insights on local adaptation, divergence, and speciation. The red-yellow Müllerian mimicry ring of Heliconius butterflies exhibits a wide diversity of color patterns across the Neotropics and is involved in multiple hybrid zones, making it a powerful system to investigate environmental drivers of phenotypic distributions. Using the distantly related Heliconius erato and Heliconius melpomene co-mimics and a multiscale distribution approach, we investigated whether distinct phenotypes of these species are associated with different environmental conditions. We show that Heliconius red-yellow phenotypic distribution is strongly driven by environmental gradients (especially thermal and precipitation variables), but that phenotype and environment associations vary with spatial scale. While co-mimics are usually predicted to occur in similar environments at large spatial scales, patterns at local scales are not always consistent (i.e., different variables are best predictors of phenotypic occurrence in different locations) or congruent (i.e., co-mimics show distinct associations with environment). We suggest that large-scale analyses are important for identifying how environmental factors shape broad mimetic phenotypic distributions, but that local studies are essential to understand the context-dependent biotic, abiotic, and historical mechanisms driving finer-scale phenotypic transitions.
Collapse
Affiliation(s)
- Ananda R. Pereira Martins
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Lucas P. Martins
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | | | - Jonathan S. Ready
- Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
| | | |
Collapse
|
25
|
Bhargav VV, Freeland JR, Dorken ME. Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca). Heredity (Edinb) 2022; 129:195-201. [PMID: 35933492 PMCID: PMC9411187 DOI: 10.1038/s41437-022-00557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Interspecific hybridization has varied consequences for offspring fitness, with implications for the maintenance of species integrity. Hybrid vigour, when it occurs, can peak in first-generation (F1) hybrids and then decline in advanced-generation (F2+) hybrids. This hybrid breakdown, together with the processes affecting patterns of hybridization and hybrid fitness, determine the evolutionary stability of hybrid zones. An extensive hybrid zone in North America involving the cattails Typha latifolia, T. angustifolia, and their invasive hybrid T. × glauca is characterized by hybrid vigour among F1s, but the fitness of advanced-generation hybrids has not been studied. We compared seed germination and plant growth of T. latifolia (parental L), F1 T. × glauca (F1), hybrid backcrosses to T. angustifolia (bcA) and T. latifolia (bcL), and advanced-generation (F2) hybrids. Consistent with expectations under hybrid breakdown, we found reduced plant growth for F2 hybrids in comparison with F1s (plant height and above-ground biomass) and parental Ls (above-ground biomass). Backcrossed hybrids had intermediate measures of plant growth and bcLs were characterized by reduced seed germination in comparison with parental Ls. Hybrid breakdown could make the formation of F1s in North America finite because (1) hybridization among cattails is asymmetric, with T. angustifolia but not T. latifolia subject to genetic swamping, and (2) T. angustifolia is less common and subject to competitive displacement by F1s. Hybrid breakdown is therefore expected to reduce hybrid frequencies over time, contributing to the long-term maintenance of T. latifolia - the only native cattail in the study region.
Collapse
Affiliation(s)
- V Vikram Bhargav
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Joanna R Freeland
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Marcel E Dorken
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
26
|
Shilling MD, Krueger-Hadfield SA, McClintock JB. Genetic Evidence Supports Species Delimitation of Luidia in the Northern Gulf of Mexico. THE BIOLOGICAL BULLETIN 2022; 243:28-37. [PMID: 36108035 DOI: 10.1086/720972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractAccurate species delimitation is crucial to understanding biodiversity. In the northern Gulf of Mexico, recent genetic evidence has suggested that the tricolor Luidia lawrencei is not a species distinct from the gray Luidia clathrata. We collected Luidia specimens from Apalachee Bay, Florida, and morphologically identified 11 as L. clathrata and 16 as L. lawrencei. We sequenced 1074 bp of the cytochrome c oxidase subunit I (COI) and found ~14% divergence between L. clathrata and L. lawrencei, suggesting two distinct species (within-species divergence was <1%). Two specimens were phenotypically L. lawrencei (i.e., tricolor morph) but mitochondrially were L. clathrata. Our findings lend support to maintaining L. clathrata and L. lawrencei as distinct species. However, the species boundary between these two taxa may be porous, and ongoing hybridization may occur when the two species are found in sympatry. Future work with nuclear markers is warranted to determine the frequency of hybridization and the extent of introgression. Clarifying the genetic relationship between these species will provide a baseline for assessing ongoing changes in connectivity of these two highly abundant sea stars in the rapidly warming northern Gulf of Mexico.
Collapse
|
27
|
Burbrink FT, Crother BI, Murray CM, Smith BT, Ruane S, Myers EA, Pyron RA. Empirical and philosophical problems with the subspecies rank. Ecol Evol 2022; 12:e9069. [PMID: 35845367 PMCID: PMC9271888 DOI: 10.1002/ece3.9069] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Species-level taxonomy derives from empirical sources (data and techniques) that assess the existence of spatiotemporal evolutionary lineages via various species "concepts." These concepts determine if observed lineages are independent given a particular methodology and ontology, which relates the metaphysical species concept to what "kind" of thing a species is in reality. Often, species concepts fail to link epistemology back to ontology. This lack of coherence is in part responsible for the persistence of the subspecies rank, which in modern usage often functions as a placeholder between the evolutionary events of divergence or collapse of incipient species. Thus, prospective events like lineages merging or diverging require information from unknowable future information. This is also conditioned on evidence that the lineage already has a detectably distinct evolutionary history. Ranking these lineages as subspecies can seem attractive given that many lineages do not exhibit intrinsic reproductive isolation. We argue that using subspecies is indefensible on philosophical and empirical grounds. Ontologically, the rank of subspecies is either identical to that of species or undefined in the context of evolutionary lineages representing spatiotemporally defined individuals. Some species concepts more inclined to consider subspecies, like the Biological Species Concept, are disconnected from evolutionary ontology and do not consider genealogy. Even if ontology is ignored, methods addressing reproductive isolation are often indirect and fail to capture the range of scenarios linking gene flow to species identity over space and time. The use of subspecies and reliance on reproductive isolation as a basis for an operational species concept can also conflict with ethical issues governing the protection of species. We provide a way forward for recognizing and naming species that links theoretical and operational species concepts regardless of the magnitude of reproductive isolation.
Collapse
Affiliation(s)
- Frank T. Burbrink
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Brian I. Crother
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Christopher M. Murray
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Brian Tilston Smith
- Department of OrnithologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Edward A. Myers
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
- Department of Vertebrate ZoologySmithsonian Institution, National Museum of Natural HistoryWashingtonDistrict of ColumbiaUSA
| | - Robert Alexander Pyron
- Department of Vertebrate ZoologySmithsonian Institution, National Museum of Natural HistoryWashingtonDistrict of ColumbiaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
28
|
Gregorio Martínez J, David Rangel-Medrano J, Johanna Yepes-Acevedo A, Restrepo-Escobar N, Judith Márquez E. Species limits and introgression in Pimelodus from the Magdalena-Cauca River basin. Mol Phylogenet Evol 2022; 173:107517. [DOI: 10.1016/j.ympev.2022.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
29
|
Aguillon SM, Rohwer VG. Revisiting a classic hybrid zone: Movement of the northern flicker hybrid zone in contemporary times. Evolution 2022; 76:1082-1090. [PMID: 35318662 DOI: 10.1111/evo.14474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/22/2023]
Abstract
Natural hybrid zones have provided important insights into the evolutionary process, and their geographic dynamics over time can help to disentangle the underlying biological processes that maintain them. Here, we leverage replicated sampling of an identical transect across the hybrid zone between yellow-shafted and red-shafted flickers in the Great Plains to assess its stability over ∼60 years (1955-1957 to 2016-2018). We identify a ∼73-km westward shift in the hybrid zone center toward the range of the red-shafted flicker, but find no associated changes in width over our sampling period. In fact, the hybrid zone remains remarkably narrow, suggesting some kind of selective pressure maintains the zone. By comparing to previous work in the same geographic region, it appears likely that the movement in the hybrid zone has occurred in the years since the early 1980s. This recent movement may be related to changes in climate or land management practices that have allowed westward movement of yellow-shafted flickers into the Great Plains.
Collapse
Affiliation(s)
- Stepfanie M Aguillon
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, 14850.,Current Address: Department of Biology, Stanford University, Stanford, California, 94305
| | - Vanya G Rohwer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853.,Cornell University Museum of Vertebrates, Ithaca, New York, 14850
| |
Collapse
|
30
|
Driver R, Ferretti V, Burton ES, McCoy MW, Duerr KC, Curry RL. Spatiotemporal variation in hatching success and nestling sex ratios track rapid movement of a songbird hybrid zone. Am Nat 2022; 200:264-274. [DOI: 10.1086/720207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Ge D, Feijó A, Wen Z, Lissovsky A, Zhang D, Cheng J, Yan C, Mu D, Wu X, Xia L, Yang Q. Ancient introgression underlying the unusual mito‐nuclear discordance and coat phenotypic variation in the Moupin pika. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | | | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Sciences Sichuan China
| | - Danping Mu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology Xinjiang University Urumqi China
| | - Xinlai Wu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development Hebei University Baoding China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
32
|
Li Y, Zhang X, Wang L, Sork VL, Mao L, Fang Y. Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China. ANNALS OF BOTANY 2022; 129:231-245. [PMID: 34893791 PMCID: PMC8796672 DOI: 10.1093/aob/mcab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Contemporary patterns of genetic admixture reflect imprints of both ancient and recent gene flow, which can provide us with valuable information on hybridization history in response to palaeoclimate change. Here, we examine the relationships between present admixture patterns and past climatic niche suitability of two East Asian Cerris oaks (Quercus acutissima and Q. chenii) to test the hypothesis that the mid-Pliocene warm climate promoted while the Pleistocene cool climate limited hybridization among local closely related taxa. METHODS We analyse genetic variation at seven nuclear microsatellites (1111 individuals) and three chloroplast intergenic spacers (576 individuals) to determine the present admixture pattern and ancient hybridization history. We apply an information-theoretic model selection approach to explore the associations of genetic admixture degree with past climatic niche suitability at multiple spatial scales. KEY RESULTS More than 70 % of the hybrids determined by Bayesian clustering analysis and more than 90 % of the individuals with locally shared chloroplast haplotypes are concentrated within a mid-Pliocene contact zone between ~30°N and 35°N. Climatic niche suitabilities for Q. chenii during the mid-Pliocene Warm Period [mPWP, ~3.264-3.025 million years ago (mya)] and during the Last Glacial Maximum (LGM, ~0.022 mya) best explain the admixture patterns across all Q. acutissima populations and across those within the ancient contact zone, respectively. CONCLUSIONS Our results highlight that palaeoclimate change shapes present admixture patterns by influencing the extent of historical range overlap. Specifically, the mid-Pliocene warm climate promoted ancient contact, allowing widespread hybridization throughout central China. In contrast, the Pleistocene cool climate caused the local extinction of Q. chenii, reducing the probability of interspecific gene flow in most areas except those sites having a high level of ecological stability.
Collapse
Affiliation(s)
- Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwang Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7239, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1496, USA
| | - Lingfeng Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
33
|
Sequeira F, Arntzen JW, van Gulik D, Hajema S, Diaz RL, Wagt M, van Riemsdijk I. Genetic traces of hybrid zone movement across a fragmented habitat. J Evol Biol 2022; 35:400-412. [PMID: 35043504 DOI: 10.1111/jeb.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Theoretical and empirical studies suggest that the structure and position of hybrid zones can change over time. Evidence for moving hybrid zones has been directly inferred by repeated sampling over time, or indirectly through the detection of genetic footprints left by the receding species and the resulting asymmetric patterns of introgression across markers. We here investigate a hybrid zone formed by two subspecies of the Iberian golden-striped salamander, Chioglossa lusitanica, using a panel of 35 nuclear loci (31 SNPs and 4 allozymes) and one mitochondrial locus in a transect in central Portugal. We found concordant and coincident clines for most of the nuclear loci (n=22, 63%), defining a narrow hybrid zone of ca. 6 km wide, with the centre positioned ca. 15 km south of the Mondego river. Asymmetric introgression was observed at another 14 loci. Their clines are displaced towards the north, with positions located either close to the Mondego river (n=6), or further northwards (n=8). We interpret these profiles as genetic traces of the southward displacement of C. lusitanica lusitanica by C. l. longipes over the wider Mondego river valley. We noted the absence of significant linkage disequilibrium and we inferred low levels of effective selection per locus against hybrids, suggesting that introgression in the area of species replacement occurred under a neutral diffusion process. A species distribution model suggests that the C. lusitanica hybrid zone coincides with a narrow corridor of fragmented habitat. From the position of the displaced clines, we infer that patches of locally suitable habitat trapped some genetic variants that became disassociated from the southward moving hybrid zone. This study highlights the influence of habitat availability on hybrid zone movement.
Collapse
Affiliation(s)
- Fernando Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jan W Arntzen
- Institute of Biology, Leiden University, Leiden, The Netherlands.,Naturalis Biodiversity Centre, P. O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - Davy van Gulik
- Hogeschool Leiden, P. O. Box 382, 2300 AJ, Leiden, The Netherlands
| | - Steven Hajema
- Hogeschool Leiden, P. O. Box 382, 2300 AJ, Leiden, The Netherlands
| | - Ruben Lopez Diaz
- Hogeschool Leiden, P. O. Box 382, 2300 AJ, Leiden, The Netherlands
| | - Mattijn Wagt
- Hogeschool Leiden, P. O. Box 382, 2300 AJ, Leiden, The Netherlands
| | - Isolde van Riemsdijk
- Naturalis Biodiversity Centre, P. O. Box 9517, 2300 RA, Leiden, The Netherlands.,Hogeschool Leiden, P. O. Box 382, 2300 AJ, Leiden, The Netherlands
| |
Collapse
|
34
|
van Riemsdijk I, Arntzen JW, Babik W, Bogaerts S, Franzen M, Kalaentzis K, Litvinchuk SN, Olgun K, Wijnands JWPM, Wielstra B. Next-generation phylogeography of the banded newts (Ommatotriton): A phylogenetic hypothesis for three ancient species with geographically restricted interspecific gene flow and deep intraspecific genetic structure. Mol Phylogenet Evol 2021; 167:107361. [PMID: 34775056 DOI: 10.1016/j.ympev.2021.107361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Technological developments now make it possible to employ many markers for many individuals in a phylogeographic setting, even for taxa with large and complex genomes such as salamanders. The banded newt (genus Ommatotriton) from the Near East has been proposed to contain three species (O. nesterovi, O. ophryticus and O. vittatus) with unclear phylogenetic relationships, apparently limited interspecific gene flow and deep intraspecific geographic mtDNA structure. We use parallel tagged amplicon sequencing to obtain 177 nuclear DNA markers for 35 banded newts sampled throughout the range. We determine population structure (with Bayesian clustering and principal component analysis), interspecific gene flow (by determining the distribution of species-diagnostic alleles) and phylogenetic relationships (by maximum likelihood inference of concatenated sequence data and based on a summary-coalescent approach). We confirm that the three proposed species are genetically distinct. A sister relationship between O. nesterovi and O. ophryticus is suggested. We find evidence for introgression between O. nesterovi and O. ophryticus, but this is geographically limited. Intraspecific structuring is extensive, with the only recognized banded newt subspecies, O. vittatus cilicensis, representing the most distinct lineage below the species level. While mtDNA mostly mirrors the pattern observed in nuclear DNA, all banded newt species show mito-nuclear discordance as well.
Collapse
Affiliation(s)
- Isolde van Riemsdijk
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands; Institute for Evolution and Ecology, Auf der Morgenstelle 5, D-72076, Tübingen University, Tübingen, Germany
| | - Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Michael Franzen
- Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstraße 21, 81247 München, Germany
| | - Konstantinos Kalaentzis
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St. Petersburg, Russia
| | - Kurtuluş Olgun
- Department of Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey
| | - Jan Willem P M Wijnands
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
35
|
Cruzan MB, Thompson PG, Diaz NA, Hendrickson EC, Gerloff KR, Kline KA, Machiorlete HM, Persinger JM. Weak coupling among barrier loci and waves of neutral and adaptive introgression across an expanding hybrid zone. Evolution 2021; 75:3098-3114. [PMID: 34668193 PMCID: PMC9298192 DOI: 10.1111/evo.14381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Hybridization can serve as an evolutionary stimulus, but we have little understanding of introgression at early stages of hybrid zone formation. We analyze reproductive isolation and introgression between a range‐limited and a widespread species. Reproductive barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clines with centers shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations with the per‐generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range‐limited species.
Collapse
Affiliation(s)
- Mitchell B Cruzan
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Pamela G Thompson
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Nicolas A Diaz
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | - Katie R Gerloff
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Katie A Kline
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | | |
Collapse
|
36
|
Frayer ME, Payseur BA. Demographic history shapes genomic ancestry in hybrid zones. Ecol Evol 2021; 11:10290-10302. [PMID: 34367575 PMCID: PMC8328415 DOI: 10.1002/ece3.7833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Demographic factors such as migration rate and population size can impede or facilitate speciation. In hybrid zones, reproductive boundaries between species are tested and demography mediates the opportunity for admixture between lineages that are partially isolated. Genomic ancestry is a powerful tool for revealing the history of admixed populations, but models and methods based on local ancestry are rarely applied to structured hybrid zones. To understand the effects of demography on ancestry in hybrids zones, we performed individual-based simulations under a stepping-stone model, treating migration rate, deme size, and hybrid zone age as parameters. We find that the number of ancestry junctions (the transition points between genomic regions with different ancestries) and heterogenicity (the genomic proportion heterozygous for ancestry) are often closely connected to demographic history. Reducing deme size reduces junction number and heterogenicity. Elevating migration rate increases heterogenicity, but migration affects junction number in more complex ways. We highlight the junction frequency spectrum as a novel and informative summary of ancestry that responds to demographic history. A substantial proportion of junctions are expected to fix when migration is limited or deme size is small, changing the shape of the spectrum. Our findings suggest that genomic patterns of ancestry could be used to infer demographic history in hybrid zones.
Collapse
Affiliation(s)
- Megan E. Frayer
- Laboratory of GeneticsUniversity of Wisconsin MadisonMadisonWIUSA
| | - Bret A. Payseur
- Laboratory of GeneticsUniversity of Wisconsin MadisonMadisonWIUSA
| |
Collapse
|
37
|
Wen G, Fu J. Isolation and reconnection: Demographic history and multiple contact zones of the green odorous frog (Odorrana margaretae) around the Sichuan Basin. Mol Ecol 2021; 30:4103-4117. [PMID: 34145663 DOI: 10.1111/mec.16021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 01/25/2023]
Abstract
The green odorous frog (Odorrana margaretae) displays a circular distribution around the Sichuan Basin of western China and possesses multiple replicate hybrid zones between lineages with high levels of divergence. To gain an understanding of the speciation process, we obtained 1540 SNPs from 29 populations and 227 individuals using ddRAD sequencing. Population structure analysis revealed three groups within the species: the West, North & South, and East groups. Demographic inference showed that they were initially isolated at ~2 million years ago, and subsequent post-glacial expansion produced the current circular distribution with four secondary contact zones. Hybridization in those zones involved lineages with various levels of divergence and produced greatly different patterns of introgression. Contact zones between the East and North & South groups (E-S and E-N) had contrast admixture levels but both showed a general lack of potential barrier loci. Meanwhile, the reconnection of the West and North & South groups produced two contact zones along the rim of the Basin. The S-W zone had extensive admixture while the N-W zone had limited admixture within a narrow geographic distance. Both showed substantial barrier effects, and a large number of potential barrier loci were shared. We also detected strong coupling among these loci. The N-W hybrid zone involved two highly-diverged lineages (FST = 0.704) and many loci have reached fixation around the hybrid zone. This study system offers a unique opportunity to understand the dynamics of introgression in contact zones and the architecture of reproductive isolation at different stages of speciation.
Collapse
Affiliation(s)
- Guannan Wen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
39
|
Grummer JA, Avila LJ, Morando MM, Leaché AD. Four Species Linked by Three Hybrid Zones: Two Instances of Repeated Hybridization in One Species Group (Genus Liolaemus). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hybridization is an evolutionary process that can generate diverse outcomes, such as reinforcing species boundaries, generating new species, or facilitating the introgression of locally-adapted alleles into new genomic backgrounds. Liolaemus is a highly diverse clade of South American lizards with ~260 species and as many as ten new species are described each year. Previous Liolaemus studies have detected gene flow and introgression among species using phylogenetic network methods and/or through comparisons of nuclear and mitochondrial DNA patterns, yet no study has systematically studied hybrid zones between Liolaemus species. Here, we compared three hybrid zones between four species in the Liolaemus fitzingerii group of lizards in Central Argentina where two species, L. melanops and L. xanthoviridis, each hybridize with two other species (L. shehuen and L. fitzingerii). We sampled three transects that were each ~120 km in length and sequenced both mitochondrial and genome-wide SNP data for 267 individuals. In our analyses of nuclear DNA, we also compared bi-allelic SNPs to phased alleles (50 bp RAD loci). Population structure analyses confirmed that boundaries separating species are sharp, and all clines are <65 km wide. Cline center estimates were consistent between SNPs and phased alleles, but cline width estimates were significantly different with the SNPs producing wider estimates. The mitochondrial clines are narrower and shifted 4–20 km southward in comparison to the nuclear clines in all three hybrid zones, indicating that either each of the species has sex-biased dispersal (males northward or females southward), the population densities are unequal, or that the hybrid zones are moving north over time. These comparisons indicate that some patterns of hybridization are similar across hybrid zones (mtDNA clines all narrower and shifted to the south), whereas cline width is variable. Hybridization in the L. fitzingerii group is common and geographically localized; further studies are needed to investigate whether hybrid zones act as hard species boundaries or promoters of speciation through processes such as reinforcement. Nonetheless, this study provides insights into both biotic and abiotic mechanisms helping to maintain species boundaries within the speciose Liolaemus system.
Collapse
|
40
|
García NC, Robinson WD. Current and Forthcoming Approaches for Benchmarking Genetic and Genomic Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.622603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current attrition of biodiversity extends beyond loss of species and unique populations to steady loss of a vast genomic diversity that remains largely undescribed. Yet the accelerating development of new techniques allows us to survey entire genomes ever faster and cheaper, to obtain robust samples from a diversity of sources including degraded DNA and residual DNA in the environment, and to address conservation efforts in new and innovative ways. Here we review recent studies that highlight the importance of carefully considering where to prioritize collection of genetic samples (e.g., organisms in rapidly changing landscapes or along edges of geographic ranges) and what samples to collect and archive (e.g., from individuals of little-known subspecies or populations, even of species not currently considered endangered). Those decisions will provide the sample infrastructure to detect the disappearance of certain genotypes or gene complexes, increases in inbreeding levels, and loss of genomic diversity as environmental conditions change. Obtaining samples from currently endangered, protected, and rare species can be particularly difficult, thus we also focus on studies that use new, non-invasive ways of obtaining genomic samples and analyzing them in these cases where other sampling options are highly constrained. Finally, biological collections archiving such samples face an inherent contradiction: their main goal is to preserve biological material in good shape so it can be used for scientific research for centuries to come, yet the technologies that can make use of such materials are advancing faster than collections can change their standardized practices. Thus, we also discuss current and potential new practices in biological collections that might bolster their usefulness for future biodiversity conservation research.
Collapse
|
41
|
Tominaga A, Matsui M, Matsui M. Structure and movement of the hybrid zone between two divergent lineages of the Japanese newt
Cynops pyrrhogaster
(Amphibia: Urodela) in central Japan. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Masafumi Matsui
- Graduate School of Human and Environmental Studies Kyoto University Kyoto Japan
| | | |
Collapse
|
42
|
Pflugbeil G, Affenzeller M, Tribsch A, Comes HP. Primary hybrid zone formation in Tephroseris helenitis (Asteraceae), following postglacial range expansion along the central Northern Alps. Mol Ecol 2021; 30:1704-1720. [PMID: 33548078 PMCID: PMC8048512 DOI: 10.1111/mec.15832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
Distinguishing between secondary versus primary hybrid zone formation remains a challenging task as, for instance, the time window in which these historical (vicariant) versus contemporary (environmental-selective) processes are distinguishable may be relatively narrow. Here, we examine the origin and structure of a transition zone between two subspecies of Tephroseris helenitis along the central Northern Alps, using molecular (AFLP) and morphological (achene type) data in combination with ecological niche models (ENMs) to hindcast ranges at the Last Glacial Maximum (LGM) and mid-Holocene. Samples were collected over a c. 350 km long transect, largely covered by ice during the LGM. Genetically nonadmixed individuals of subspp. helenitis versus salisburgensis dominated the westernmost versus eastern transect areas, with admixed individuals occurring in between. Clines for achene morphology and outlier loci potentially under climate-driven selection were steep, largely noncoincidental, and displaced to the east of the cline centre for neutral AFLPs. During the LGM, ssp. helenitis should have been able to persist in a refugium southwest of the transect, while suitable habitat for ssp. salisburgensis was apparently absent at this time. Together with patterns of genetic and clinal variation, our ENM data are suggestive of a primary hybrid zone that originated after the species' postglacial, eastward expansion. The observed clinal changes may thus reflect random/nonadaptive processes during expansion and selection on particular loci, and possibly achene type, in response to a long-term, west-to-east climate gradient in the direction of more stressful (e.g., wetter/cooler) conditions. Overall, this study adds to the vast hybrid zone literature a rare example of a hybrid zone caused by primary differentiation within a plant species, underlaid by historical range expansion.
Collapse
Affiliation(s)
- Georg Pflugbeil
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Andreas Tribsch
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
43
|
Mauldin MR, Haynie ML, Vrla SC, Bradley RD. Temporal evaluation of a woodrat (genus Neotoma) hybrid zone based on genotypic and georeferenced data. J Mammal 2021. [DOI: 10.1093/jmammal/gyaa164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mauldin et al. (2014) examined 103 woodrats collected in 1988 from a putative contact zone located in Major County, Oklahoma, and provided evidence for a substantial level of hybridization between Neotoma floridana and N. micropus. This site was resampled in 2010, with 42 woodrats collected, and again in 2011, when an additional 88 woodrats were collected from 11 localities along a transect extending northwest to southeast of the center of the hybrid zone. These specimens were examined to: 1) serve as independent data sets, separated by 22 years, for a temporal comparison of hybrid zone characteristics and 2) determine the geographic extent of genetic introgression between the two species. All individuals were genotyped at 11 genetic markers (eight microsatellite loci, one mitochondrial gene—Cytochrome b, and two nuclear introns—intron 2 of the vertebrate alcohol dehydrogenase gene and intron 7 of the beta-fibrinogen gene) that were shown to be informative in the original study. Levels of allelic introgression were assessed at 12 localities (11 new localities, as well as the previously sampled putative contact zone) to determine size and continuity of the hybrid zone. Expanded geographic sampling revealed evidence of genetic introgression at 11 of 12 localities, although only two localities were determined to be active areas of hybridization in 2011. The temporal comparison revealed that characteristics of the hybrid zone (i.e., frequency of hybridization, directionality, location of the zone, and ratios of hybrid classes) remained similar between sampling events. These findings suggest hybridization between these species is ongoing but is intermittent and potentially ephemeral in this region.
Collapse
Affiliation(s)
- Matthew R Mauldin
- Department of Biological Sciences, Texas Tech University, Lubbock, TX-3131, USA
| | - Michelle L Haynie
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA
| | - Sarah C Vrla
- Department of Biological Sciences, Texas Tech University, Lubbock, TX-3131, USA
| | - Robert D Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX-3131, USA
- The Museum of Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
44
|
López‐Delgado J, van Riemsdijk I, Arntzen JW. Tracing species replacement in Iberian marbled newts. Ecol Evol 2021; 11:402-414. [PMID: 33437438 PMCID: PMC7790658 DOI: 10.1002/ece3.7060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Secondary contact between closely related species can lead to the formation of hybrid zones, allowing for interspecific gene flow. Hybrid zone movement can take place if one of the species possesses a competitive advantage over the other, ultimately resulting in species replacement. Such hybrid zone displacement is predicted to leave a genomic footprint across the landscape in the form of asymmetric gene flow (or introgression) of selectively neutral alleles from the displaced to the advancing species. Hybrid zone movement has been suggested for marbled newts in the Iberian Peninsula, supported by asymmetric gene flow and a distribution relict (i.e., an enclave) of Triturus marmoratus in the range of T. pygmaeus. We developed a panel of nuclear and mitochondrial SNP markers to test for the presence of a T. marmoratus genomic footprint in the Lisbon peninsula, south of the enclave. We found no additional populations of T. marmoratus. Analysis with the software Structure showed no genetic traces of T. marmoratus in T. pygmaeus. A principal component analysis showed some variation within the local T. pygmaeus, but it is unclear if this represents introgression from T. marmoratus. The results may be explained by (a) species replacement without introgressive hybridization and (b) displacement with hybridization followed by the near-complete erosion of the footprint by purifying selection. We predict that testing for a genomic footprint north of the reported enclave would confirm that species replacement in these marbled newts occurred with hybridization.
Collapse
Affiliation(s)
- Julia López‐Delgado
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute for BiologyLeiden UniversityLeidenThe Netherlands
- Present address:
University of LeedsLeedsUnited Kingdom
| | - Isolde van Riemsdijk
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Present address:
Institute for Evolution and Ecology, Tübingen UniversityLeedsGermany
| | | |
Collapse
|
45
|
Arntzen JW, López‐Delgado J, Riemsdijk I, Wielstra B. A genomic footprint of a moving hybrid zone in marbled newts. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan W. Arntzen
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden University Leiden The Netherlands
| | - Julia López‐Delgado
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden University Leiden The Netherlands
| | - Isolde Riemsdijk
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden University Leiden The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden University Leiden The Netherlands
| |
Collapse
|
46
|
Calfee E, Agra MN, Palacio MA, Ramírez SR, Coop G. Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas. PLoS Genet 2020; 16:e1009038. [PMID: 33075065 PMCID: PMC7595643 DOI: 10.1371/journal.pgen.1009038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/29/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recent biological invasions offer 'natural' laboratories to understand the genetics and ecology of adaptation, hybridization, and range limits. One of the most impressive and well-documented biological invasions of the 20th century began in 1957 when Apis mellifera scutellata honey bees swarmed out of managed experimental colonies in Brazil. This newly-imported subspecies, native to southern and eastern Africa, both hybridized with and out-competed previously-introduced European honey bee subspecies. Populations of scutellata-European hybrid honey bees rapidly expanded and spread across much of the Americas in less than 50 years. We use broad geographic sampling and whole genome sequencing of over 300 bees to map the distribution of scutellata ancestry where the northern and southern invasions have presently stalled, forming replicated hybrid zones with European bee populations in California and Argentina. California is much farther from Brazil, yet these hybrid zones occur at very similar latitudes, consistent with the invasion having reached a climate barrier. At these range limits, we observe genome-wide clines for scutellata ancestry, and parallel clines for wing length that span hundreds of kilometers, supporting a smooth transition from climates favoring scutellata-European hybrid bees to climates where they cannot survive winter. We find no large effect loci maintaining exceptionally steep ancestry transitions. Instead, we find most individual loci have concordant ancestry clines across South America, with a build-up of somewhat steeper clines in regions of the genome with low recombination rates, consistent with many loci of small effect contributing to climate-associated fitness trade-offs. Additionally, we find no substantial reductions in genetic diversity associated with rapid expansions nor complete dropout of scutellata ancestry at any individual loci on either continent, which suggests that the competitive fitness advantage of scutellata ancestry at lower latitudes has a polygenic basis and that scutellata-European hybrid bees maintained large population sizes during their invasion. To test for parallel selection across continents, we develop a null model that accounts for drift in ancestry frequencies during the rapid expansion. We identify several peaks within a larger genomic region where selection has pushed scutellata ancestry to high frequency hundreds of kilometers past the present cline centers in both North and South America and that may underlie high-fitness traits driving the invasion.
Collapse
Affiliation(s)
- Erin Calfee
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | | | - María Alejandra Palacio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad de Mar del Plata, Balcarce, Argentina
| | - Santiago R. Ramírez
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
47
|
Quilodrán CS, Tsoupas A, Currat M. The Spatial Signature of Introgression After a Biological Invasion With Hybridization. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The accumulation of genome-wide molecular data has emphasized the important role of hybridization in the evolution of many organisms, which may carry introgressed genomic segments resulting from past admixture events with other taxa. Despite a number of examples of hybridization occurring during biological invasions, the resulting spatial patterns of genomic introgression remain poorly understood. Preliminary simulation studies have suggested a heterogeneous spatial level of introgression for invasive taxa after range expansion. We investigated in detail the robustness of this pattern and its persistence over time for both invasive and local organisms. Using spatially explicit simulations, we explored the spatial distribution of introgression across the area of colonization of an invasive taxon hybridizing with a local taxon. The general pattern for neutral loci supported by our results is an increasing introgression of local genes into the invasive taxon with the increase in the distance from the source of the invasion and a decreasing introgression of invasive genes into the local taxon. However, we also show there is some variation in this general trend depending on the scenario investigated. Spatial heterogeneity of introgression within a given taxon is thus an expected neutral pattern in structured populations after a biological invasion with a low to moderate amount of hybridization. We further show that this pattern is consistent with published empirical observations. Using additional simulations, we argue that the spatial pattern of Neanderthal introgression in modern humans, which has been documented to be higher in Asia than in Europe, can be explained by a model of hybridization with Neanderthals in Eurasia during the range expansion of modern humans from Africa. Our results support the view that weak hybridization during range expansion may explain spatially heterogeneous introgression patterns without the need to invoke selection.
Collapse
|
48
|
Stewart KA, Taylor SA. Leveraging eDNA to expand the study of hybrid zones. Mol Ecol 2020; 29:2768-2776. [PMID: 32557920 PMCID: PMC7496085 DOI: 10.1111/mec.15514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/18/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Hybrid zones are important windows into ecological and evolutionary processes. Our understanding of the significance and prevalence of hybridization in nature has expanded with the generation and analysis of genome‐spanning data sets. That said, most hybridization research still has restricted temporal and spatial resolution, which limits our ability to draw broad conclusions about evolutionary and conservation related outcomes. Here, we argue that rapidly advancing environmental DNA (eDNA) methodology could be adopted for studies of hybrid zones to increase temporal sampling (contemporary and historical), refine and geographically expand sampling density, and collect data for taxa that are difficult to directly sample. Genomic data in the environment offer the potential for near real‐time biological tracking of hybrid zones, and eDNA provides broad, but as yet untapped, potential to address eco‐evolutionary questions.
Collapse
Affiliation(s)
- Kathryn A Stewart
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Scott A Taylor
- Department Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
49
|
Capblancq T, Després L, Mavárez J. Genetic, morphological and ecological variation across a sharp hybrid zone between two alpine butterfly species. Evol Appl 2020; 13:1435-1450. [PMID: 32684968 PMCID: PMC7359832 DOI: 10.1111/eva.12925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022] Open
Abstract
Identifying the mechanisms involved in the formation and maintenance of species is a central question in evolutionary biology, and distinguishing the selective drivers of populations' divergence from demographic processes is of particular interest to better understand the speciation process. Hybrid zones are recognized to provide ideal places to investigate the genetic architecture of speciation and to identify the mechanisms allowing diverging species to maintain their integrity in the face of gene flow. Here, we studied two alpine butterfly species, Coenonympha macromma and C. gardetta, which can be found flying together and hybridizing in narrow contact zones in the southern French Alps. We characterized the genomic composition of individuals, their morphology and their local habitat requirements, within and around a hybrid zone. Genetic diversity analysis at 794 SNPs revealed that all individuals within the hybrid zone were highly admixed, which was not the case outside the hybrid zone. Cline analysis showed that, despite ongoing hybridization, 56 out of 122 loci differentially fixed or nearly so between the two species were impermeable to introgression across the sharp hybrid zone (9 km wide). We also found concordance in cline position and width among genetic, morphological and environmental variation, suggesting a coupling of different reproductive barriers. Habitat characteristics such as the presence of trees and shrubs and the start of the growing season were strongly associated with the genetic variation, and we found evidence of divergence at genetic markers associated with morphology and physiology, putatively involved in visual or environmental reproductive isolation. We discuss the various behavioural and ecological factors that might interplay to maintain current levels of divergence and gene flow between this species pair.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Laboratoire d’Écologie AlpineUMR UGA‐USMB‐CNRS 5553Université Grenoble AlpesGrenobleFrance
- Department of Plant BiologyUniversity of VermontBurlingtonVTUSA
| | - Laurence Després
- Laboratoire d’Écologie AlpineUMR UGA‐USMB‐CNRS 5553Université Grenoble AlpesGrenobleFrance
| | - Jesús Mavárez
- Laboratoire d’Écologie AlpineUMR UGA‐USMB‐CNRS 5553Université Grenoble AlpesGrenobleFrance
- Departamento de Ciencias Biológicas y AmbientalesUniversidad Jorge Tadeo LozanoBogotáColombia
| |
Collapse
|
50
|
Tonzo V, Papadopoulou A, Ortego J. Genomic footprints of an old affair: Single nucleotide polymorphism data reveal historical hybridization and the subsequent evolution of reproductive barriers in two recently diverged grasshoppers with partly overlapping distributions. Mol Ecol 2020; 29:2254-2268. [DOI: 10.1111/mec.15475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|