1
|
Cheng T, Zhang T, Zhang P, He X, Sadiq FA, Li J, Sang Y, Gao J. The complex world of kefir: Structural insights and symbiotic relationships. Compr Rev Food Sci Food Saf 2024; 23:e13364. [PMID: 38847746 DOI: 10.1111/1541-4337.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Kefir milk, known for its high nutritional value and health benefits, is traditionally produced by fermenting milk with kefir grains. These grains are a complex symbiotic community of lactic acid bacteria, acetic acid bacteria, yeasts, and other microorganisms. However, the intricate coexistence mechanisms within these microbial colonies remain a mystery, posing challenges in predicting their biological and functional traits. This uncertainty often leads to variability in kefir milk's quality and safety. This review delves into the unique structural characteristics of kefir grains, particularly their distinctive hollow structure. We propose hypotheses on their formation, which appears to be influenced by the aggregation behaviors of the community members and their alliances. In kefir milk, a systematic colonization process is driven by metabolite release, orchestrating the spatiotemporal rearrangement of ecological niches. We place special emphasis on the dynamic spatiotemporal changes within the kefir microbial community. Spatially, we observe variations in species morphology and distribution across different locations within the grain structure. Temporally, the review highlights the succession patterns of the microbial community, shedding light on their evolving interactions.Furthermore, we explore the ecological mechanisms underpinning the formation of a stable community composition. The interplay of cooperative and competitive species within these microorganisms ensures a dynamic balance, contributing to the community's richness and stability. In kefir community, competitive species foster diversity and stability, whereas cooperative species bolster mutualistic symbiosis. By deepening our understanding of the behaviors of these complex microbial communities, we can pave the way for future advancements in the development and diversification of starter cultures for food fermentation processes.
Collapse
Affiliation(s)
- Tiantian Cheng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Tuo Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Pengmin Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaowei He
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Jiale Li
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Sriaporn C, Campbell KA, Van Kranendonk MJ, Handley KM. Bacterial and archaeal community distributions and cosmopolitanism across physicochemically diverse hot springs. ISME COMMUNICATIONS 2023; 3:80. [PMID: 37596308 PMCID: PMC10439147 DOI: 10.1038/s43705-023-00291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in the sediments (n = 76) of hot spring features, in the Taupō Volcanic Zone (New Zealand), spanning large differences in major anion water chemistry, pH (2.0-7.5), and temperature (17.5-92.9 °C). Community composition, based on 16S rRNA amplicon sequence variants (ASVs) was strongly influenced by both temperature and pH. However, certain lineages characterized diverse hot springs. At the domain level, bacteria and archaea shared broadly equivalent community abundances across physico-chemically diverse springs, despite slightly lower bacteria-to-archaea ratios and microbial 16S rRNA gene concentrations at higher temperatures. Communities were almost exclusively dominated by Proteobacteria, Euryarchaeota or Crenarchaeota. Eight archaeal and bacterial ASVs from Thermoplasmatales, Desulfurellaceae, Mesoaciditogaceae and Acidithiobacillaceae were unusually prevalent (present in 57.9-84.2% of samples) and abundant (1.7-12.0% sample relative abundance), and together comprised 44% of overall community abundance. Metagenomic analyses generated multiple populations associated with dominant ASVs, and showed characteristic traits of each lineage for sulfur, nitrogen and hydrogen metabolism. Differences in metabolic gene composition and genome-specific metabolism delineated populations from relatives. Genome coverage calculations showed that populations associated with each lineage were distributed across a physicochemically broad range of hot springs. Results imply that certain bacterial and archaeal lineages harbor different population structures and metabolic potentials for colonizing diverse hot spring environments.
Collapse
Affiliation(s)
- Chanenath Sriaporn
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen A Campbell
- School of Environment & Te Ao Mārama - Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
4
|
Stanojković A, Skoupý S, Škaloud P, Dvořák P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria). Front Microbiol 2022; 13:977454. [PMID: 36160208 PMCID: PMC9500459 DOI: 10.3389/fmicb.2022.977454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The sympatric occurrence of closely related lineages displaying conserved morphological and ecological traits is often characteristic of free-living microbes. Gene flow, recombination, selection, and mutations govern the genetic variability between these cryptic lineages and drive their differentiation. However, sequencing conservative molecular markers (e.g., 16S rRNA) coupled with insufficient population-level sampling hindered the study of intra-species genetic diversity and speciation in cyanobacteria. We used phylogenomics and a population genomic approach to investigate the extent of local genomic diversity and the mechanisms underlying sympatric speciation of Laspinema thermale. We found two cryptic lineages of Laspinema. The lineages were highly genetically diverse, with recombination occurring more frequently within than between them. That suggests the existence of a barrier to gene flow, which further maintains divergence. Genomic regions of high population differentiation harbored genes associated with possible adaptations to high/low light conditions and stress stimuli, although with a weak diversifying selection. Overall, the diversification of Laspinema species might have been affected by both genomic and ecological processes.
Collapse
Affiliation(s)
| | - Svatopluk Skoupý
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Choudoir MJ, DeAngelis KM. A framework for integrating microbial dispersal modes into soil ecosystem ecology. iScience 2022; 25:103887. [PMID: 35243247 PMCID: PMC8866892 DOI: 10.1016/j.isci.2022.103887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dispersal is a fundamental community assembly process that maintains soil microbial biodiversity across spatial and temporal scales, yet the impact of dispersal on ecosystem function is largely unpredictable. Dispersal is unique in that it contributes to both ecological and evolutionary processes and is shaped by both deterministic and stochastic forces. The ecosystem-level ramifications of dispersal outcomes are further compounded by microbial dormancy dynamics and environmental selection. Here we review the knowledge gaps and challenges that remain in defining how dispersal, environmental filtering, and microbial dormancy interact to influence the relationship between microbial community structure and function in soils. We propose the classification of microbial dispersal into three categories, through vegetative or active cells, through dormant cells, and through acellular dispersal, each with unique spatiotemporal dynamics and microbial trait associations. This conceptual framework should improve the integration of dispersal in defining soil microbial community structure-function relationships.
Collapse
|
6
|
Mod HK, Buri A, Yashiro E, Guex N, Malard L, Pinto-Figueroa E, Pagni M, Niculita-Hirzel H, van der Meer JR, Guisan A. Predicting spatial patterns of soil bacteria under current and future environmental conditions. THE ISME JOURNAL 2021; 15:2547-2560. [PMID: 33712699 PMCID: PMC8397778 DOI: 10.1038/s41396-021-00947-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/01/2023]
Abstract
Soil bacteria are largely missing from future biodiversity assessments hindering comprehensive forecasts of ecosystem changes. Soil bacterial communities are expected to be more strongly driven by pH and less by other edaphic and climatic factors. Thus, alkalinisation or acidification along with climate change may influence soil bacteria, with subsequent influences for example on nutrient cycling and vegetation. Future forecasts of soil bacteria are therefore needed. We applied species distribution modelling (SDM) to quantify the roles of environmental factors in governing spatial abundance distribution of soil bacterial OTUs and to predict how future changes in these factors may change bacterial communities in a temperate mountain area. Models indicated that factors related to soil (especially pH), climate and/or topography explain and predict part of the abundance distribution of most OTUs. This supports the expectations that microorganisms have specific environmental requirements (i.e., niches/envelopes) and that they should accordingly respond to environmental changes. Our predictions indicate a stronger role of pH over other predictors (e.g. climate) in governing distributions of bacteria, yet the predicted future changes in bacteria communities are smaller than their current variation across space. The extent of bacterial community change predictions varies as a function of elevation, but in general, deviations from neutral soil pH are expected to decrease abundances and diversity of bacteria. Our findings highlight the need to account for edaphic changes, along with climate changes, in future forecasts of soil bacteria.
Collapse
Affiliation(s)
- Heidi K Mod
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
| | - Aline Buri
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Erika Yashiro
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lucie Malard
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Marco Pagni
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hélène Niculita-Hirzel
- Department of Occupational Health and Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Yévenes M, Quiroz M, Maruyama F, Jorquera M, Gajardo G. Vibrio sp. ArtGut-C1, a polyhydroxybutyrate producer isolated from the gut of the aquaculture live diet Artemia (Crustacea). ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Abstract
Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms. For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance).
Collapse
|
9
|
Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat Microbiol 2019; 4:2456-2465. [DOI: 10.1038/s41564-019-0560-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 08/12/2019] [Indexed: 01/22/2023]
|
10
|
Palmer M, Venter SN, Coetzee MP, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145-158. [DOI: 10.1016/j.syapm.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
|
11
|
Thiel V, Garcia Costas AM, Fortney NW, Martinez JN, Tank M, Roden EE, Boyd ES, Ward DM, Hanada S, Bryant DA. " Candidatus Thermonerobacter thiotrophicus," A Non-phototrophic Member of the Bacteroidetes/Chlorobi With Dissimilatory Sulfur Metabolism in Hot Spring Mat Communities. Front Microbiol 2019; 9:3159. [PMID: 30687241 PMCID: PMC6338057 DOI: 10.3389/fmicb.2018.03159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
In this study we present evidence for a novel, thermophilic bacterium with dissimilatory sulfur metabolism, tentatively named “Candidatus Thermonerobacter thiotrophicus,” which is affiliated with the Bacteroides/Ignavibacteria/Chlorobi and which we predict to be a sulfate reducer. Dissimilatory sulfate reduction (DSR) is an important and ancient metabolic process for energy conservation with global importance for geochemical sulfur and carbon cycling. Characterized sulfate-reducing microorganisms (SRM) are found in a limited number of bacterial and archaeal phyla. However, based on highly diverse environmental dsrAB sequences, a variety of uncultivated and unidentified SRM must exist. The recent development of high-throughput sequencing methods allows the phylogenetic identification of some of these uncultured SRM. In this study, we identified a novel putative SRM inhabiting hot spring microbial mats that is a member of the OPB56 clade (“Ca. Kapabacteria”) within the Bacteroidetes/Chlorobi superphylum. Partial genomes for this new organism were retrieved from metagenomes from three different hot springs in Yellowstone National Park, United States, and Japan. Supporting the prediction of a sulfate-reducing metabolism for this organism during period of anoxia, diel metatranscriptomic analyses indicate highest relative transcript levels in situ for all DSR-related genes at night. The presence of terminal oxidases, which are transcribed during the day, further suggests that these organisms might also perform aerobic respiration. The relative phylogenetic proximity to the sulfur-oxidizing, chlorophototrophic Chlorobi further raises new questions about the evolution of dissimilatory sulfur metabolism.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amaya M Garcia Costas
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States.,Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Nathaniel W Fortney
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Joval N Martinez
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.,Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
12
|
Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EP, Sekowska A, Vallenet D. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 2018; 11:3-17. [PMID: 29280348 PMCID: PMC5743806 DOI: 10.1111/1751-7915.13043] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome annotation is, nowadays, performed via automatic pipelines that cannot discriminate between right and wrong annotations. Given their importance in increasing the accuracy of the genome annotations of other organisms, it is critical that the annotations of model organisms reflect the current annotation gold standard. The genome of Bacillus subtilis strain 168 was sequenced twenty years ago. Using a combination of inductive, deductive and abductive reasoning, we present a unique, manually curated annotation, essentially based on experimental data. This reveals how this bacterium lives in a plant niche, while carrying a paleome operating system common to Firmicutes and Tenericutes. Dozens of new genomic objects and an extensive literature survey have been included for the sequence available at the INSDC (AccNum AL009126.3). We also propose an extension to Demerec's nomenclature rules that will help investigators connect to this type of curated annotation via the use of common gene names.
Collapse
Affiliation(s)
- Rainer Borriss
- Department of PhytomedicineHumboldt‐Universität zu BerlinLentzeallee 55‐5714195BerlinGermany
| | - Antoine Danchin
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
- School of Biomedical SciencesLi Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadPok Fu LamSAR Hong KongChina
| | - Colin R. Harwood
- The Centre for Bacterial Cell BiologyNewcastle UniversityBaddiley‐Clark BuildingRichardson RoadNewcastle upon TyneNE2 4AXUK
| | - Claudine Médigue
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| | - Eduardo P.C. Rocha
- Microbial Evolutionary Genomics UnitInstitut Pasteur28 rue du Docteur Roux75724Paris Cedex 15France
| | - Agnieszka Sekowska
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
| | - David Vallenet
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| |
Collapse
|
13
|
Cohan FM. Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0014-2016. [PMID: 29027519 PMCID: PMC11687548 DOI: 10.1128/microbiolspec.mtbp-0014-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Any two lineages, no matter how distant they are now, began their divergence as one population splitting into two lineages that could coexist indefinitely. The rate of origin of higher-level taxa is therefore the product of the rate of speciation times the probability that two new species coexist long enough to reach a particular level of divergence. Here I have explored these two parameters of disparification in bacteria. Owing to low recombination rates, sexual isolation is not a necessary milestone of bacterial speciation. Rather, irreversible and indefinite divergence begins with ecological diversification, that is, transmission of a bacterial lineage to a new ecological niche, possibly to a new microhabitat but at least to new resources. Several algorithms use sequence data from a taxon of focus to identify phylogenetic groups likely to bear the dynamic properties of species. Identifying these newly divergent lineages allows us to characterize the genetic bases of speciation, as well as the ecological dimensions upon which new species diverge. Speciation appears to be least frequent when a given lineage has few new resources it can adopt, as exemplified by photoautotrophs, C1 heterotrophs, and obligately intracellular pathogens; speciation is likely most rapid for generalist heterotrophs. The genetic basis of ecological divergence may determine whether ecological divergence is irreversible and whether lineages will diverge indefinitely into the future. Long-term coexistence is most likely when newly divergent lineages utilize at least some resources not shared with the other and when the resources themselves will coexist into the remote future.
Collapse
|
14
|
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2017; 14:563-75. [PMID: 27510863 DOI: 10.1038/nrmicro.2016.94] [Citation(s) in RCA: 3124] [Impact Index Per Article: 390.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Ulrich Szewzyk
- Technical University of Berlin, Department of Environmental Microbiology, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany
| | - Peter Steinberg
- The School of Biological, Earth and Environmental Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
15
|
Palinska KA, Schneider T, Surosz W. Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard. Polar Biol 2017. [DOI: 10.1007/s00300-017-2083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lelouvier B, Servant F, Païssé S, Brunet AC, Benyahya S, Serino M, Valle C, Ortiz MR, Puig J, Courtney M, Federici M, Fernández-Real JM, Burcelin R, Amar J. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology 2016; 64:2015-2027. [PMID: 27639192 DOI: 10.1002/hep.28829] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED The early detection of liver fibrosis among patients with nonalcoholic fatty liver disease (NAFLD) is an important clinical need. In view of the suggested role played by bacterial translocation in liver disease and obesity, we sought to investigate the relationship between blood microbiota and liver fibrosis (LF) in European cohorts of patients with severe obesity. We carried out a cross-sectional study of obese patients, well characterized with respect to the severity of the NAFLD, in the cohort FLORINASH. This cohort has been divided into a discovery cohort comprising 50 Spanish patients and then in a validation cohort of 71 Italian patients. Blood bacterial DNA was analyzed both quantitatively by 16S ribosomal DNA (rDNA) quantitative polymerase chain reaction and qualitatively by 16S rDNA targeted metagenomic sequencing and functional metagenome prediction. Spanish plasma bile acid contents were analyzed by liquid chromatography/mass spectrometry. The 16S rDNA concentration was significantly higher in patients of the discovery cohort with LF. By 16S sequencing, we found specific differences in the proportion of several bacterial taxa in both blood and feces that correlate with the presence of LF, thus defining a specific signature of the liver disease. Several secondary/primary bile acid ratios were also decreased with LF in the discovery cohort. We confirmed, in the validation cohort, the correlation between blood 16S rDNA concentration and LF, whereas we did not confirm the specific bacterial taxa signature, despite a similar trend in patients with more-severe fibrosis. CONCLUSION Changes in blood microbiota are associated with LF in obese patients. Blood microbiota analysis provides potential biomarkers for the detection of LF in this population. (Hepatology 2016;64:2015-2027).
Collapse
Affiliation(s)
| | | | | | - Anne-Claire Brunet
- Vaiomer SAS, Labège, France.,IMT, Université Paul Sabatier, Toulouse, France
| | | | | | | | - Maria Rosa Ortiz
- Department of Diabetes, Endocrinology, and Nutrition, IDIBGI, Girona, Spain - CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josep Puig
- Department of Radiology, IDI, IDIBGI, Girona, Spain
| | | | - Massimo Federici
- Department of Systems Medicine and Center for Atherosclerosis, University of Rome "Tor Vergata", Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, IDIBGI, Girona, Spain - CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rémy Burcelin
- Vaiomer SAS, Labège, France.,INSERM U1048, I2MC, Toulouse, France
| | - Jacques Amar
- Vaiomer SAS, Labège, France.,INSERM U1048, I2MC, Toulouse, France.,Rangueil Hospital, Department of Therapeutics, Toulouse, France
| |
Collapse
|
17
|
Becker NS, Margos G, Blum H, Krebs S, Graf A, Lane RS, Castillo-Ramírez S, Sing A, Fingerle V. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genomics 2016; 17:734. [PMID: 27632983 PMCID: PMC5025617 DOI: 10.1186/s12864-016-3016-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/13/2016] [Indexed: 11/12/2022] Open
Abstract
Background The Borrelia burgdorferi sensu lato (s.l.) species complex consists of tick-transmitted bacteria and currently comprises approximately 20 named and proposed genospecies some of which are known to cause Lyme Borreliosis. Species have been defined via genetic distances and ecological niches they occupy. Understanding the evolutionary relationship of species of the complex is fundamental to explaining patterns of speciation. This in turn forms a crucial basis to frame testable hypotheses concerning the underlying processes including host and vector adaptations. Results Illumina Technology was used to obtain genome-wide sequence data for 93 strains of 14 named genospecies of the B. burgdorferi species complex and genomic data already published for 18 additional strain (including one new species) was added. Phylogenetic reconstruction based on 114 orthologous single copy genes shows that the genospecies represent clearly distinguishable taxa with recent and still ongoing speciation events apparent in Europe and Asia. The position of Borrelia species in the phylogeny is consistent with host associations constituting a major driver for speciation. Interestingly, the data also demonstrate that vector associations are an additional driver for diversification in this tick-borne species complex. This is particularly obvious in B. bavariensis, a rodent adapted species that has diverged from the bird-associated B. garinii most likely in Asia. It now consists of two populations one of which most probably invaded Europe following adaptation to a new vector (Ixodes ricinus) and currently expands its distribution range. Conclusions The results imply that genotypes/species with novel properties regarding host or vector associations have evolved recurrently during the history of the species complex and may emerge at any time. We suggest that the finding of vector associations as a driver for diversification may be a general pattern for tick-borne pathogens. The core genome analysis presented here provides an important source for investigations of the underlying mechanisms of speciation in tick-borne pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3016-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noémie S Becker
- Faculty of Biology, Division of Evolutionary Biology, Ludwig Maximilians University of Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Helmut Blum
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Alexander Graf
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210, Cuernavaca, Morelos, Mexico
| | - Andreas Sing
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
18
|
Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, Lelouvier B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016; 56:1138-47. [PMID: 26865079 DOI: 10.1111/trf.13477] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent studies have revealed that the blood of healthy humans is not as sterile as previously supposed. The objective of this study was to provide a comprehensive description of the microbiome present in different fractions of the blood of healthy individuals. STUDY DESIGN AND METHODS The study was conducted in 30 healthy blood donors to the French national blood collection center (Établissement Français du Sang). We have set up a 16S rDNA quantitative polymerase chain reaction assay as well as a 16S targeted metagenomics sequencing pipeline specifically designed to analyze the blood microbiome, which we have used on whole blood as well as on different blood fractions (buffy coat [BC], red blood cells [RBCs], and plasma). RESULTS Most of the blood bacterial DNA is located in the BC (93.74%), and RBCs contain more bacterial DNA (6.23%) than the plasma (0.03%). The distribution of 16S DNA is different for each fraction and spreads over a relatively broad range among donors. At the phylum level, blood fractions contain bacterial DNA mostly from the Proteobacteria phylum (more than 80%) but also from Actinobacteria, Firmicutes, and Bacteroidetes. At deeper taxonomic levels, there are striking differences between the bacterial profiles of the different blood fractions. CONCLUSION We demonstrate that a diversified microbiome exists in healthy blood. This microbiome has most likely an important physiologic role and could be implicated in certain transfusion-transmitted bacterial infections. In this regard, the amount of 16S bacterial DNA or the microbiome profile could be monitored to improve the safety of the blood supply.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacques Amar
- Vaiomer SAS, Labège.,Department of Therapeutics, Rangueil Hospital, Toulouse, France
| | | |
Collapse
|
19
|
Louca S, Doebeli M. Transient dynamics of competitive exclusion in microbial communities. Environ Microbiol 2015; 18:1863-74. [DOI: 10.1111/1462-2920.13058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Stilianos Louca
- Biodiversity Research Centre; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Michael Doebeli
- Department of Zoology; University of British Columbia; Vancouver BC V6T 1Z4 Canada
- Department of Mathematics; University of British Columbia; Vancouver BC V6T 1Z2 Canada
| |
Collapse
|
20
|
Lluch J, Servant F, Païssé S, Valle C, Valière S, Kuchly C, Vilchez G, Donnadieu C, Courtney M, Burcelin R, Amar J, Bouchez O, Lelouvier B. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline. PLoS One 2015; 10:e0142334. [PMID: 26544955 PMCID: PMC4636327 DOI: 10.1371/journal.pone.0142334] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
Background Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin). However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples. Results We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding) pipeline based on the Illumina MiSeq technology for the analysis of bacterial DNA in human and animal tissues. This was successfully achieved in various mouse tissues despite the high abundance of eukaryotic DNA and PCR inhibitors in these samples. We extensively tested this pipeline on mock communities, negative controls, positive controls and tissues and demonstrated the presence of novel tissue specific bacterial DNA profiles in a variety of organs (including brain, muscle, adipose tissue, liver and heart). Conclusion The high throughput and excellent reproducibility of the method ensured exhaustive and precise coverage of the 16S rDNA bacterial variants present in mouse tissues. This optimized 16S metagenomic sequencing pipeline will allow the scientific community to catalogue the bacterial DNA profiles of different tissues and will provide a database to analyse host/bacterial interactions in relation to homeostasis and disease.
Collapse
Affiliation(s)
- Jérôme Lluch
- Vaiomer SAS, Labège, France
- INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | | | | | - Sophie Valière
- INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- INRA, UAR1209, Castanet-Tolosan, France
| | - Claire Kuchly
- INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- INRA, UAR1209, Castanet-Tolosan, France
| | - Gaëlle Vilchez
- INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- INRA, UAR1209, Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- INRA, UMR1388, GenPhySE, Castanet-Tolosan, France
| | | | | | - Jacques Amar
- INSERM U1048, I2MC, Toulouse, France
- Rangueil Hospital, Department of Therapeutics, Toulouse, France
| | - Olivier Bouchez
- INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- INRA, UMR1388, GenPhySE, Castanet-Tolosan, France
| | | |
Collapse
|
21
|
Debroas D, Hugoni M, Domaizon I. Evidence for an active rare biosphere within freshwater protists community. Mol Ecol 2015; 24:1236-47. [DOI: 10.1111/mec.13116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Didier Debroas
- Laboratoire ‘Microorganismes: Génome et Environnement’; Clermont Université; Université Blaise Pascal; BP 10448 F-63000 Clermont-Ferrand France
- CNRS; UMR 6023; LMGE; Aubiere F-63171 France
| | - Mylène Hugoni
- Laboratoire ‘Microorganismes: Génome et Environnement’; Clermont Université; Université Blaise Pascal; BP 10448 F-63000 Clermont-Ferrand France
- CNRS; UMR 6023; LMGE; Aubiere F-63171 France
| | - Isabelle Domaizon
- INRA; UMR 42 Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques; F-74200 Thonon Les Bains France
| |
Collapse
|
22
|
Marcelletti S, Scortichini M. Definition of Plant-Pathogenic Pseudomonas Genomospecies of the Pseudomonas syringae Complex Through Multiple Comparative Approaches. PHYTOPATHOLOGY 2014; 104:1274-1282. [PMID: 24875383 DOI: 10.1094/phyto-12-13-0344-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A total of 34 phytopathogenic strain genomes belonging to the Pseudomonas syringae species complex and related species, including many pathotype strains, were assessed using average nucleotide identity (ANI) analysis. Their taxonomic relationships were consistently confirmed by the tetranucleotide frequency correlation coefficient (TETRA) values, multilocus sequence typing analysis (MLSA) performed with seven housekeeping genes, using both maximum likelihood and Bayesian methods, and split consensus network analyses. The ANI, MLSA, and split consensus analyses provided consistent and identical results. We confirmed the occurrence of the well-demarcated genomospecies inferred sensu Gardan et al. using DNA-DNA hybridization and ribotyping analyses. However, some P. syringae strains of the pathovars morsprunorum and lachrymans were placed in different genomospecies in our analyses. Genomospecies 1, 2, 4, 6, and 9 resulted well demarcated, whereas strains of genomospecies 3 and 8 had ANI values between 95 and 96% in some cases, confirming that this threshold reveals very closely related species that might represent cases of splitting entities or the convergence of different species to the same ecological niche. This study confirms the robustness of the combination of genomic and phylogenetic approaches in revealing taxonomic relationships among closely related bacterial strains and provides the basis for a further reliable demarcation of the phytopathogenic Pseudomonas species. Within each species, the pathovars might represent distinct ecological units. The possibility of performing extensive and standardized host range and phenotypic tests with many strains of different pathovars can assist phytobacteriologists for better determining the boundaries of these ecological units.
Collapse
|
23
|
Rey J, Deschavanne P, Tuffery P. BactPepDB: a database of predicted peptides from a exhaustive survey of complete prokaryote genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau106. [PMID: 25377257 PMCID: PMC4221844 DOI: 10.1093/database/bau106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the recent progress in complete genome sequencing, mining the increasing amount of genomic information available should in theory provide the means to discover new classes of peptides. However, annotation pipelines often do not consider small reading frames likely to be expressed. BactPepDB, available online at http://bactpepdb.rpbs.univ-paris-diderot.fr, is a database that aims at providing an exhaustive re-annotation of all complete prokaryotic genomes—chromosomal and plasmid DNA—available in RefSeq for coding sequences ranging between 10 and 80 amino acids. The identified peptides are classified as (i) previously identified in RefSeq, (ii) entity-overlapping (intragenic) or intergenic, and (iii) potential pseudogenes—intergenic sequences corresponding to a portion of a previously annotated larger gene. Additional information is related to homologs within order, predicted signal sequence, transmembrane segments, disulfide bonds, secondary structure, and the existence of a related 3D structure in the Protein Databank. As a result, BactPepDB provides insights about candidate peptides, and provides information about their conservation, together with some of their expected biological/structural features. The BactPepDB interface allows to search for candidate peptides in the database, or to search for peptides similar to a query, according to the multiple properties predicted or related to genomic localization. Database URL:http://www.yeastgenome.org/
Collapse
Affiliation(s)
- Julien Rey
- INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France
| | - Patrick Deschavanne
- INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France
| | - Pierre Tuffery
- INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France INSERM, U973, MTi, F-75205 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France and RPBS, F-75205 Paris, France
| |
Collapse
|
24
|
Bacterial diversity in saline-alkali ponds rearing common carp (Cyprinus carpio) as revealed by 16S rRNA gene sequences. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0378-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Deng J, Brettar I, Luo C, Auchtung J, Konstantinidis KT, Rodrigues JLM, Höfle M, Tiedje JM. Stability, genotypic and phenotypic diversity of Shewanella baltica in the redox transition zone of the Baltic Sea. Environ Microbiol 2014; 16:1854-66. [PMID: 24286373 DOI: 10.1111/1462-2920.12344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
Abstract
Studying how bacterial strains diverge over space and time and how divergence leads to ecotype formation is important for understanding structure and dynamics of environmental communities. Here we assess the ecological speciation and temporal dynamics of a collection of Shewanella baltica strains from the redox transition zone of the central Baltic Sea, sampled at three time points over a course of 12 years, with a subcollection containing 46 strains subjected to detailed genetic and physiological characterization. Nine clades were consistently recovered by three different genotyping approaches: gyrB gene sequencing, multilocus sequence typing (MLST) and whole genome clustering of data from comparative genomic hybridization, and indicated specialization according to nutrient availability, particle association and temporal distribution. Genomic analysis suggested higher intra- than inter-clade recombination that might result from niche partitioning. Substantial heterogeneity in carbon utilization and respiratory capabilities suggested rapid diversification within the same 'named' species and physical habitat and showed consistency with genetic relatedness. At least two major ecotypes, represented by MLST clades A and E, were proposed based on genetic, ecological and physiological distinctiveness. This study suggests that genetic analysis in conjunction with phenotypic evaluation can provide better understanding of the ecological framework and evolutionary trajectories of microbial species.
Collapse
Affiliation(s)
- Jie Deng
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Colman DR, Garcia JR, Crossey LJ, Karlstrom K, Jackson-Weaver O, Takacs-Vesbach C. An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs. GEOBIOLOGY 2014; 12:83-98. [PMID: 24286205 DOI: 10.1111/gbi.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal springs harbor unique microbial communities that have provided insight into the early evolution of life, expanded known microbial diversity, and documented a deep Earth biosphere. Mesothermal (cool but above ambient temperature) continental springs, however, have largely been ignored although they may also harbor unique populations of micro-organisms influenced by deep subsurface fluid mixing with near surface fluids. We investigated the microbial communities of 28 mesothermal springs in diverse geologic provinces of the western United States that demonstrate differential mixing of deeply and shallowly circulated water. Culture-independent analysis of the communities yielded 1966 bacterial and 283 archaeal 16S rRNA gene sequences. The springs harbored diverse taxa and shared few operational taxonomic units (OTUs) across sites. The Proteobacteria phylum accounted for most of the dataset (81.2% of all 16S rRNA genes), with 31 other phyla/candidate divisions comprising the remainder. A small percentage (~6%) of bacterial 16S rRNA genes could not be classified at the phylum level, but were mostly distributed in those springs with greatest inputs of deeply sourced fluids. Archaeal diversity was limited to only four springs and was primarily composed of well-characterized Thaumarchaeota. Geochemistry across the dataset was varied, but statistical analyses suggested that greater input of deeply sourced fluids was correlated with community structure. Those with lesser input contained genera typical of surficial waters, while some of the springs with greater input may contain putatively chemolithotrophic communities. The results reported here expand our understanding of microbial diversity of continental geothermal systems and suggest that these communities are influenced by the geochemical and hydrologic characteristics arising from deeply sourced (mantle-derived) fluid mixing. The springs and communities we report here provide evidence for opportunities to understand new dimensions of continental geobiological processes where warm, highly reduced fluids are mixing with more oxidized surficial waters.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Springs/chemistry
- Hot Springs/microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- United States
Collapse
Affiliation(s)
- D R Colman
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | |
Collapse
|
27
|
Species matter: the role of competition in the assembly of congeneric bacteria. ISME JOURNAL 2013; 8:531-540. [PMID: 24132075 DOI: 10.1038/ismej.2013.180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/16/2013] [Accepted: 09/14/2013] [Indexed: 01/12/2023]
Abstract
Interspecific competition is an important driver of community assembly in plants and animals, but phylogenetic evidence for interspecific competition in bacterial communities has been elusive. This could indicate that other processes such as habitat filtering or neutral processes are more important in bacterial community assembly. Alternatively, this could be a consequence of the lack of a consistent and meaningful species definition in bacteria. We hypothesize that competition in bacterial community assembly has gone undetected at least partly because overly broad measures of bacterial diversity units were used in previous studies. First, we tested our hypothesis in a simulation where we showed that how species are defined can dramatically affect whether phylogenetic overdispersion (a signal consistent with competitive exclusion) will be detected. Second, we demonstrated that using finer-scale Operational Taxonomic Units (OTUs) (with more stringent 16S rRNA sequence identity cutoffs or based on fast-evolving protein coding genes) in natural populations revealed previously undetected overdispersion. Finally, we argue that bacterial ecotypes, diversity units incorporating ecological and evolutionary theory, are superior to OTUs for the purpose of studying community assembly.
Collapse
|
28
|
Klatt CG, Liu Z, Ludwig M, Kühl M, Jensen SI, Bryant DA, Ward DM. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. THE ISME JOURNAL 2013; 7:1775-89. [PMID: 23575369 PMCID: PMC3749495 DOI: 10.1038/ismej.2013.52] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Abstract
Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to Synechococcus spp. strains A and B'. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both Roseiflexus spp. and Chloroflexus spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night, Chloroflexus spp. and Roseiflexus spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.
Collapse
Affiliation(s)
- Christian G Klatt
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgra¨nd, Umea°, Va¨sterbotten SE-90183, Sweden.
| | | | | | | | | | | | | |
Collapse
|
29
|
Whole-transcriptome shotgun sequencing (RNA-seq) screen reveals upregulation of cellobiose and motility operons of Lactobacillus ruminis L5 during growth on tetrasaccharides derived from barley β-glucan. Appl Environ Microbiol 2013; 79:5661-9. [PMID: 23851085 DOI: 10.1128/aem.01887-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lactobacillus ruminis is an inhabitant of human bowels and bovine rumens. None of 10 isolates (three from bovine rumen, seven from human feces) of L. ruminis that were tested could utilize barley β-glucan for growth. Seven of the strains of L. ruminis were, however, able to utilize tetrasaccharides (3-O-β-cellotriosyl-d-glucose [LDP4] or 4-O-β-laminaribiosyl-d-cellobiose [CDP4]) present in β-glucan hydrolysates for growth. The tetrasaccharides were generated by the use of lichenase or cellulase, respectively. To learn more about the utilization of tetrasaccharides by L. ruminis, whole-transcriptome shotgun sequencing (RNA-seq) was tested as a transcriptional screen to detect altered gene expression when an autochthonous human strain (L5) was grown in medium containing CDP4. RNA-seq results were confirmed and extended by reverse transcription-quantitative PCR assays of selected genes in two upregulated operons when cells were grown as batch cultures in medium containing either CDP4 or LDP4. The cellobiose utilization operon had increased transcription, particularly in early growth phase, whereas the chemotaxis/motility operon was upregulated in late growth phase. Phenotypic changes were seen in relation to upregulation of chemotaxis/flagellar operons: flagella were rarely seen by electron microscopy on glucose-grown cells but cells cultured in tetrasaccharide medium were commonly flagellated. Chemotactic movement toward tetrasaccharides was demonstrated in capillary cultures. L. ruminis utilized 3-O-β-cellotriosyl-d-glucose released by β-glucan hydrolysis due to bowel commensal Coprococcus sp., indicating that cross feeding of tetrasaccharide between bacteria could occur. Therefore, the RNA-seq screen and subsequent experiments had utility in revealing foraging attributes of gut commensal Lactobacillus ruminis.
Collapse
|
30
|
Klatt CG, Inskeep WP, Herrgard MJ, Jay ZJ, Rusch DB, Tringe SG, Niki Parenteau M, Ward DM, Boomer SM, Bryant DA, Miller SR. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front Microbiol 2013; 4:106. [PMID: 23761787 PMCID: PMC3669762 DOI: 10.3389/fmicb.2013.00106] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/13/2013] [Indexed: 11/13/2022] Open
Abstract
Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average ∼53 Mbp/site) were subjected to multiple taxonomic, phylogenetic, and functional analyses. All methods, including G + C content distribution, MEGAN analyses, and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such as photosynthesis, carbon fixation, sulfur oxidation, and fermentation.
Collapse
Affiliation(s)
- Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State University , Bozeman, MT , USA ; Thermal Biology Institute, Montana State University , Bozeman, MT , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. J Bacteriol 2013; 195:3309-19. [PMID: 23687278 DOI: 10.1128/jb.00207-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus OS-B', a thermophilic unicellular cyanobacterium, recently isolated from the microbial mats in Octopus Spring (Yellowstone National Park), induces a suite of genes, including phosphatases and transporters, in response to phosphorus (P) starvation. Here we describe two different approaches to examine the ability of Synechococcus OS-B' to synthesize and break down polyphosphate (poly P), a key storage compound in many prokaryotes. First, we developed a transformation protocol to create mutants in the polyphosphate kinase (ppk), the major enzyme responsible for the synthesis of poly P. The ppk mutant exhibited a pleiotropic phenotype with defects in poly P accumulation, aberrant levels of Pho regulon transcripts, growth defects, and changes in cell size and exopolysaccharide levels, among others. Second, we measured transcripts of ppk and ppx (encoding the polyphosphatase) directly from mat samples and found that the levels varied dramatically over a diel cycle. We also used Western blot analysis to quantify levels of PPK and PPX and found that these enzymes differentially accumulated during the diel cycle. Levels of polyphosphate kinase peaked at night, while polyphosphatase levels were highest during the early morning hours. We hypothesize that the opposing activities of these two enzymes allow cells to store and utilize poly P to optimize growth over a diel cycle.
Collapse
|
32
|
López-López O, Cerdán ME, González-Siso MI. Hot spring metagenomics. Life (Basel) 2013; 3:308-20. [PMID: 25369743 PMCID: PMC4187134 DOI: 10.3390/life3020308] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/14/2022] Open
Abstract
Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats.
Collapse
Affiliation(s)
- Olalla López-López
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| | - María Esperanza Cerdán
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| | - María Isabel González-Siso
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
33
|
Koeppel AF, Wu M. Surprisingly extensive mixed phylogenetic and ecological signals among bacterial Operational Taxonomic Units. Nucleic Acids Res 2013; 41:5175-88. [PMID: 23571758 PMCID: PMC3664822 DOI: 10.1093/nar/gkt241] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lack of a consensus bacterial species concept greatly hampers our ability to understand and organize bacterial diversity. Operational taxonomic units (OTUs), which are clustered on the basis of DNA sequence identity alone, are the most commonly used microbial diversity unit. Although it is understood that OTUs can be phylogenetically incoherent, the degree and the extent of the phylogenetic inconsistency have not been explicitly studied. Here, we tested the phylogenetic signal of OTUs in a broad range of bacterial genera from various phyla. Strikingly, we found that very few OTUs were monophyletic, and many showed evidence of multiple independent origins. Using previously established bacterial habitats as benchmarks, we showed that OTUs frequently spanned multiple ecological habitats. We demonstrated that ecological heterogeneity within OTUs is caused by their phylogenetic inconsistency, and not merely due to 'lumping' of taxa resulting from using relaxed identity cut-offs. We argue that ecotypes, as described by the Stable Ecotype Model, are phylogenetically and ecologically more consistent than OTUs and therefore could serve as an alternative unit for bacterial diversity studies. In addition, we introduce QuickES, a new wrapper program for the Ecotype Simulation algorithm, which is capable of demarcating ecotypes in data sets with tens of thousands of sequences.
Collapse
Affiliation(s)
- Alexander F Koeppel
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
34
|
Taib N, Mangot JF, Domaizon I, Bronner G, Debroas D. Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS One 2013; 8:e58950. [PMID: 23516585 PMCID: PMC3597552 DOI: 10.1371/journal.pone.0058950] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/11/2013] [Indexed: 12/23/2022] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies spur progress in determining the microbial diversity in various ecosystems by highlighting, for example, the rare biosphere. Currently, high-throughput pyrotag sequencing of PCR-amplified SSU rRNA gene regions is mainly used to characterize bacterial and archaeal communities, and rarely to characterize protist communities. In addition, although taxonomic assessment through phylogeny is considered as the most robust approach, similarity and probabilistic approaches remain the most commonly used for taxonomic affiliation. In a first part of this work, a tree-based method was compared with different approaches of taxonomic affiliation (BLAST and RDP) of 18S rRNA gene sequences and was shown to be the most accurate for near full-length sequences and for 400 bp amplicons, with the exception of amplicons covering the V5-V6 region. Secondly, the applicability of this method was tested by running a full scale test using an original pyrosequencing dataset of 18S rRNA genes of small lacustrine protists (0.2-5 µm) from eight freshwater ecosystems. Our results revealed that i) fewer than 5% of the operational taxonomic units (OTUs) identified through clustering and phylogenetic affiliation had been previously detected in lakes, based on comparison to sequence in public databases; ii) the sequencing depth provided by the NGS coupled with a phylogenetic approach allowed to shed light on clades of freshwater protists rarely or never detected with classical molecular ecology approaches; and iii) phylogenetic methods are more robust in describing the structuring of under-studied or highly divergent populations. More precisely, new putative clades belonging to Mamiellophyceae, Foraminifera, Dictyochophyceae and Euglenida were detected. Beyond the study of protists, these results illustrate that the tree-based approach for NGS based diversity characterization allows an in-depth description of microbial communities including taxonomic profiling, community structuring and the description of clades of any microorganisms (protists, Bacteria and Archaea).
Collapse
Affiliation(s)
- Najwa Taib
- Clermont Université, Université Blaise-Pascal, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubiere, France
| | - Jean-François Mangot
- Clermont Université, Université Blaise-Pascal, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubiere, France
- INRA, UMR 42 CARRTEL, Thonon les Bains, France
- Université de Savoie, UMR 42 CARRTEL, Le Bourget du Lac, France
| | - Isabelle Domaizon
- INRA, UMR 42 CARRTEL, Thonon les Bains, France
- Université de Savoie, UMR 42 CARRTEL, Le Bourget du Lac, France
| | - Gisèle Bronner
- Clermont Université, Université Blaise-Pascal, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubiere, France
| | - Didier Debroas
- Clermont Université, Université Blaise-Pascal, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubiere, France
| |
Collapse
|
35
|
Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, Cohan FM. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME JOURNAL 2013; 7:1080-91. [PMID: 23364353 DOI: 10.1038/ismej.2013.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microbiologists are challenged to explain the origins of enormous numbers of bacterial species worldwide. Contributing to this extreme diversity may be a simpler process of speciation in bacteria than in animals and plants, requiring neither sexual nor geographical isolation between nascent species. Here, we propose and test a novel hypothesis for the extreme diversity of bacterial species-that splitting of one population into multiple ecologically distinct populations (cladogenesis) may be as frequent as adaptive improvements within a single population's lineage (anagenesis). We employed a set of experimental microcosms to address the relative rates of adaptive cladogenesis and anagenesis among the descendants of a Bacillus subtilis clone, in the absence of competing species. Analysis of the evolutionary trajectories of genetic markers indicated that in at least 7 of 10 replicate microcosm communities, the original population founded one or more new, ecologically distinct populations (ecotypes) before a single anagenetic event occurred within the original population. We were able to support this inference by identifying putative ecotypes formed in these communities through differences in genetic marker association, colony morphology and microhabitat association; we then confirmed the ecological distinctness of these putative ecotypes in competition experiments. Adaptive mutations leading to new ecotypes appeared to be about as common as those improving fitness within an existing ecotype. These results suggest near parity of anagenesis and cladogenesis rates in natural populations that are depauperate of bacterial diversity.
Collapse
|
36
|
Michaud AB, Šabacká M, Priscu JC. Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiol Ecol 2012; 82:268-78. [PMID: 23074986 DOI: 10.1111/j.1574-6941.2012.01297.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 01/12/2023] Open
Abstract
Life in the Taylor Valley, Antarctica, is dominated by microorganisms, with cyanobacteria being key primary producers in the region. Despite their abundance and ecological importance, the factors controlling biogeography, diversity, dispersal of cyanobacteria in Taylor Valley and other polar environments are poorly understood. Owing to persistent high winds, we hypothesize that the cyanobacterial diversity across this polar landscape is influenced by aeolian processes. Using molecular and pigment analysis, we describe the cyanobacterial diversity present in several prominent habitats across the Taylor Valley. Our data show that the diversity of cyanobacteria increases from the upper portion of the valley towards the McMurdo Sound. This trend is likely due to the net transport of organisms in a down-valley direction, consistent with the prevailing orientation of high-energy, episodic föhn winds. Genomic analysis of cyanobacteria present in aeolian material also suggests that wind mixes the cyanobacterial phylotypes among the landscape units. Our 16S rRNA gene sequence data revealed that (1) many of the cyanobacterial phylotypes present in our study site are common in polar or alpine environments, (2) many operational taxonomic units (OTUs) (22) were endemic to Antarctica and (3) four OTUs were potentially endemic to the McMurdo Dry Valleys.
Collapse
Affiliation(s)
- Alexander B Michaud
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
37
|
Klales A, Duncan J, Nett EJ, Kane SA. Biophysical model of prokaryotic diversity in geothermal hot springs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021911. [PMID: 22463248 DOI: 10.1103/physreve.85.021911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 05/31/2023]
Abstract
Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms.
Collapse
Affiliation(s)
- Anna Klales
- Physics Department, Haverford College, Haverford, Pennsylvania 19041, USA
| | | | | | | |
Collapse
|
38
|
Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA. Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol 2011; 14:177-90. [DOI: 10.1111/j.1462-2920.2011.02592.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Abstract
The species is a fundamental unit of biological organization, but its relevance for Bacteria and Archaea is still hotly debated. Even more controversial is whether the deeper branches of the ribosomal RNA-derived phylogenetic tree, such as the phyla, have ecological importance. Here, we discuss the ecological coherence of high bacterial taxa in the light of genome analyses and present examples of niche differentiation between deeply diverging groups in terrestrial and aquatic systems. The ecological relevance of high bacterial taxa has implications for bacterial taxonomy, evolution and ecology.
Collapse
|
40
|
Melendrez MC, Lange RK, Cohan FM, Ward DM. Influence of molecular resolution on sequence-based discovery of ecological diversity among Synechococcus populations in an alkaline siliceous hot spring microbial mat. Appl Environ Microbiol 2011; 77:1359-67. [PMID: 21169433 PMCID: PMC3067246 DOI: 10.1128/aem.02032-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 12/11/2010] [Indexed: 11/20/2022] Open
Abstract
Previous research has shown that sequences of 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions may not have enough genetic resolution to define all ecologically distinct Synechococcus populations (ecotypes) inhabiting alkaline, siliceous hot spring microbial mats. To achieve higher molecular resolution, we studied sequence variation in three protein-encoding loci sampled by PCR from 60°C and 65°C sites in the Mushroom Spring mat (Yellowstone National Park, WY). Sequences were analyzed using the ecotype simulation (ES) and AdaptML algorithms to identify putative ecotypes. Between 4 and 14 times more putative ecotypes were predicted from variation in protein-encoding locus sequences than from variation in 16S rRNA and 16S-23S rRNA internal transcribed spacer sequences. The number of putative ecotypes predicted depended on the number of sequences sampled and the molecular resolution of the locus. Chao estimates of diversity indicated that few rare ecotypes were missed. Many ecotypes hypothesized by sequence analyses were different in their habitat specificities, suggesting different adaptations to temperature or other parameters that vary along the flow channel.
Collapse
Affiliation(s)
- Melanie C Melendrez
- Land Resources and Environmental Science, Montana State University, Bozeman, Montana, USA.
| | | | | | | |
Collapse
|
41
|
Microbial Diversity in Modern Stromatolites. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2011. [DOI: 10.1007/978-94-007-0397-1_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Jensen SI, Steunou AS, Bhaya D, Kühl M, Grossman AR. In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. ISME JOURNAL 2010; 5:317-28. [PMID: 20740024 DOI: 10.1038/ismej.2010.131] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relative abundance of transcripts encoding proteins involved in inorganic carbon concentrating mechanisms (CCM), detoxification of reactive oxygen species (ROS) and photosynthesis in the thermophilic cyanobacterium Synechococcus OS-B' was measured in hot spring microbial mats over two diel cycles, and was coupled with in situ determinations of incoming irradiance and microenvironmental dynamics of O(2) and pH. Fluctuations in pH and O(2) in the mats were largely driven by the diel cycle of solar irradiance, with a pH variation from ∼7.0 to ∼9.5, and O(2) levels ranging from anoxia to supersaturation during night and day, respectively. Levels of various transcripts from mat cyanobacteria revealed several patterns that correlated with incident irradiance, O(2) and pH within the mat matrix. Transcript abundances for most genes increased during the morning dark-light transition. Some transcripts remained at a near constant level throughout the light period, whereas others showed an additional increase in abundance as the mat underwent transition from low-to-high light (potentially reflecting changes in O(2) concentration and pH), followed by either a decreased abundance in the early afternoon, or a gradual decline during the early afternoon and into the evening. One specific transcipt, psbA1, was the lowest during mid-day under high irradiance and increased when the light levels declined. We discuss these complex in situ transcriptional patterns with respect to environmental and endogenous cues that might impact and regulate transcription over the diel cycle.
Collapse
Affiliation(s)
- Sheila I Jensen
- Department of Biology, Marine Biological Laboratory, University of Copenhagen, Helsingør, Denmark.
| | | | | | | | | |
Collapse
|
43
|
van der Meer MTJ, Klatt CG, Wood J, Bryant DA, Bateson MM, Lammerts L, Schouten S, Sinninghe Damsté JS, Madigan MT, Ward DM. Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 2010; 192:3033-42. [PMID: 20363941 PMCID: PMC2901690 DOI: 10.1128/jb.01610-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/19/2010] [Indexed: 11/20/2022] Open
Abstract
Roseiflexus sp. strains were cultivated from a microbial mat of an alkaline siliceous hot spring in Yellowstone National Park. These strains are closely related to predominant filamentous anoxygenic phototrophs found in the mat, as judged by the similarity of small-subunit rRNA, lipid distributions, and genomic and metagenomic sequences. Like a Japanese isolate, R. castenholzii, the Yellowstone isolates contain bacteriochlorophyll a, but not bacteriochlorophyll c or chlorosomes, and grow photoheterotrophically or chemoheterotrophically under dark aerobic conditions. The genome of one isolate, Roseiflexus sp. strain RS1, contains genes necessary to support these metabolisms. This genome also contains genes encoding the 3-hydroxypropionate pathway for CO(2) fixation and a hydrogenase, which might enable photoautotrophic metabolism, even though neither isolate could be grown photoautotrophically with H(2) or H(2)S as a possible electron donor. The isolates exhibit temperature, pH, and sulfide preferences typical of their habitat. Lipids produced by these isolates matched much better with mat lipids than do lipids produced by R. castenholzii or Chloroflexus isolates.
Collapse
Affiliation(s)
- Marcel T. J. van der Meer
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Christian G. Klatt
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Jason Wood
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Donald A. Bryant
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Mary M. Bateson
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Laurens Lammerts
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Jaap S. Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - Michael T. Madigan
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| | - David M. Ward
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, Netherlands, Montana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana 59717, Southern Illinois University, Department of Microbiology, Carbondale, Illinois 62901, The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802
| |
Collapse
|
44
|
Biofilms 2009: new perspectives at the heart of surface-associated microbial communities. J Bacteriol 2010; 192:2941-9. [PMID: 20382760 DOI: 10.1128/jb.00332-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Warren AS, Archuleta J, Feng WC, Setubal JC. Missing genes in the annotation of prokaryotic genomes. BMC Bioinformatics 2010; 11:131. [PMID: 20230630 PMCID: PMC3098052 DOI: 10.1186/1471-2105-11-131] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 03/15/2010] [Indexed: 12/04/2022] Open
Abstract
Background Protein-coding gene detection in prokaryotic genomes is considered a much simpler problem than in intron-containing eukaryotic genomes. However there have been reports that prokaryotic gene finder programs have problems with small genes (either over-predicting or under-predicting). Therefore the question arises as to whether current genome annotations have systematically missing, small genes. Results We have developed a high-performance computing methodology to investigate this problem. In this methodology we compare all ORFs larger than or equal to 33 aa from all fully-sequenced prokaryotic replicons. Based on that comparison, and using conservative criteria requiring a minimum taxonomic diversity between conserved ORFs in different genomes, we have discovered 1,153 candidate genes that are missing from current genome annotations. These missing genes are similar only to each other and do not have any strong similarity to gene sequences in public databases, with the implication that these ORFs belong to missing gene families. We also uncovered 38,895 intergenic ORFs, readily identified as putative genes by similarity to currently annotated genes (we call these absent annotations). The vast majority of the missing genes found are small (less than 100 aa). A comparison of select examples with GeneMark, EasyGene and Glimmer predictions yields evidence that some of these genes are escaping detection by these programs. Conclusions Prokaryotic gene finders and prokaryotic genome annotations require improvement for accurate prediction of small genes. The number of missing gene families found is likely a lower bound on the actual number, due to the conservative criteria used to determine whether an ORF corresponds to a real gene.
Collapse
Affiliation(s)
- Andrew S Warren
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
46
|
Connor N, Sikorski J, Rooney AP, Kopac S, Koeppel AF, Burger A, Cole SG, Perry EB, Krizanc D, Field NC, Slaton M, Cohan FM. Ecology of speciation in the genus Bacillus. Appl Environ Microbiol 2010; 76:1349-58. [PMID: 20048064 PMCID: PMC2832372 DOI: 10.1128/aem.01988-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/23/2009] [Indexed: 01/14/2023] Open
Abstract
Microbial ecologists and systematists are challenged to discover the early ecological changes that drive the splitting of one bacterial population into two ecologically distinct populations. We have aimed to identify newly divergent lineages ("ecotypes") bearing the dynamic properties attributed to species, with the rationale that discovering their ecological differences would reveal the ecological dimensions of speciation. To this end, we have sampled bacteria from the Bacillus subtilis-Bacillus licheniformis clade from sites differing in solar exposure and soil texture within a Death Valley canyon. Within this clade, we hypothesized ecotype demarcations based on DNA sequence diversity, through analysis of the clade's evolutionary history by Ecotype Simulation (ES) and AdaptML. Ecotypes so demarcated were found to be significantly different in their associations with solar exposure and soil texture, suggesting that these and covarying environmental parameters are among the dimensions of ecological divergence for newly divergent Bacillus ecotypes. Fatty acid composition appeared to contribute to ecotype differences in temperature adaptation, since those ecotypes with more warm-adapting fatty acids were isolated more frequently from sites with greater solar exposure. The recognized species and subspecies of the B. subtilis-B. licheniformis clade were found to be nearly identical to the ecotypes demarcated by ES, with a few exceptions where a recognized taxon is split at most into three putative ecotypes. Nevertheless, the taxa recognized do not appear to encompass the full ecological diversity of the B. subtilis-B. licheniformis clade: ES and AdaptML identified several newly discovered clades as ecotypes that are distinct from any recognized taxon.
Collapse
Affiliation(s)
- Nora Connor
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Johannes Sikorski
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Alejandro P. Rooney
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Sarah Kopac
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Alexander F. Koeppel
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Andrew Burger
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Scott G. Cole
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Elizabeth B. Perry
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Danny Krizanc
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Nicholas C. Field
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Michèle Slaton
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| | - Frederick M. Cohan
- Department of Biology, Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7 B, D-38124 Braunschweig, Germany, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604, Death Valley National Park, Death Valley, California 92328
| |
Collapse
|
47
|
Taffs R, Aston JE, Brileya K, Jay Z, Klatt CG, McGlynn S, Mallette N, Montross S, Gerlach R, Inskeep WP, Ward DM, Carlson RP. In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. BMC SYSTEMS BIOLOGY 2009; 3:114. [PMID: 20003240 PMCID: PMC2799449 DOI: 10.1186/1752-0509-3-114] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 12/10/2009] [Indexed: 11/14/2022]
Abstract
BACKGROUND Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. RESULTS The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. CONCLUSION The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an unacceptable computational burden, the nested analysis approach permits greater scalability at the cost of more user intervention through multiple rounds of pathway analysis.
Collapse
Affiliation(s)
- Reed Taffs
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - John E Aston
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Kristen Brileya
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Zackary Jay
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Christian G Klatt
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Shawn McGlynn
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Natasha Mallette
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Scott Montross
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Robin Gerlach
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - William P Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - David M Ward
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Ross P Carlson
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
48
|
Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME JOURNAL 2009; 4:191-202. [PMID: 19890368 DOI: 10.1038/ismej.2009.113] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perennially cold habitats are diminishing as a result of climate change; however, little is known of the diversity or biogeography of microbes that thrive in such environments. Here we use targeted 16S rRNA gene surveys to evaluate the global affinities of cold-dwelling cyanobacteria from lake, stream and ice communities living at the northern limit of High Arctic Canada. Pigment signature analysis by HPLC confirmed the dominance of cyanobacteria in the phototrophic communities of these High Arctic microbial mats, with associated populations of chlorophytes and chromophytes. Microscopic analysis of the cyanobacteria revealed a diverse assemblage of morphospecies grouping into orders Oscillatoriales, Nostocales and Chroococcales. The 16S rRNA gene sequences from six clone libraries grouped into a total of 24 ribotypes, with a diversity in each mat ranging from five ribotypes in ice-based communities to 14 in land-based pond communities. However, no significant differences in composition were observed between these two microbial mat systems. Based on clone-library and phylogenetic analysis, several of the High Arctic ribotypes were found to be >99% similar to Antarctic and alpine sequences, including to taxa previously considered endemic to Antarctica. Among the latter, one High Arctic sequence was found 99.8% similar to Leptolyngbya antarctica sequenced from the Larsemann Hills, Antarctica. More than 68% of all identified ribotypes at each site matched only cyanobacterial sequences from perennially cold terrestrial ecosystems, and were <97.5% similar to sequences from warmer environments. These results imply the global distribution of low-temperature cyanobacterial ecotypes throughout the cold terrestrial biosphere.
Collapse
Affiliation(s)
- Anne D Jungblut
- Département de Biologie and Centre d'Etudes Nordiques, Université Laval, Quebec City, Quebec, Canada.
| | | | | |
Collapse
|
49
|
Abstract
The contribution of horizontal gene transfer to evolution has been controversial since it was suggested to be a force driving evolution in the microbial world. In this paper, I review the current standpoint on horizontal gene transfer in evolutionary thinking and discuss how important horizontal gene transfer is in evolution in the broad sense, and particularly in prokaryotic evolution. I review recent literature, asking, first, which processes are involved in the evolutionary success of transferred genes and, secondly, about the extent of horizontal gene transfer towards different evolutionary times. Moreover, I discuss the feasibility of reconstructing ancient phylogenetic relationships in the face of horizontal gene transfer. Finally, I discuss how horizontal gene transfer fits in the current neo-Darwinian evolutionary paradigm and conclude there is a need for a new evolutionary paradigm that includes horizontal gene transfer as well as other mechanisms in the explanation of evolution.
Collapse
Affiliation(s)
- Luis Boto
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional Ciencias Naturales, CSIC, C/José Gutierrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
50
|
Abstract
The notion that all prokaryotes belong to genomically and phenomically cohesive clusters that we might legitimately call "species" is a contentious one. At issue are (1) whether such clusters actually exist; (2) what species definition might most reliably identify them, if they do; and (3) what species concept -- by which is meant a genetic and ecological theory of speciation -- might best explain species existence and rationalize a species definition, if we could agree on one. We review existing theories and some relevant data. We conclude that microbiologists now understand in some detail the various genetic, population, and ecological processes that effect the evolution of prokaryotes. There will be on occasion circumstances under which these, working together, will form groups of related organisms sufficiently like each other that we might all agree to call them "species," but there is no reason that this must always be so. Thus, there is no principled way in which questions about prokaryotic species, such as how many there are, how large their populations are, or how globally they are distributed, can be answered. These questions can, however, be reformulated so that metagenomic methods and thinking will meaningfully address the biological patterns and processes whose understanding is our ultimate target.
Collapse
|