1
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Rodriguez AK, Krug PJ. Ecological speciation by sympatric host shifts in a clade of herbivorous sea slugs, with introgression and localized mitochondrial capture between species. Mol Phylogenet Evol 2022; 174:107523. [PMID: 35589054 DOI: 10.1016/j.ympev.2022.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Host shifting in insect-plant systems was historically important to the development of ecological speciation theory, yet surprisingly few studies have examined whether host shifting drives diversification of marine herbivores. When small-bodied consumers feed and also mate on a preferred host, disruptive selection can split a population into host races despite gene flow. Support for host shifts is notably lacking for invertebrates associated with macroalgae, where the scale of dispersal by planktonic larvae often far exceeds the grain of host patchiness, and adults are typically less specialized than terrestrial herbivores. Here, we present a candidate example of ecological speciation in a clade of sea slugs that primarily consume green algae in the genus Caulerpa, including highly invasive species. Ancestral character state reconstructions supported 'sea grapes' (C. racemosa, C. lentillifera) as the ancestral host for a tropical radiation of 12 Elysia spp., with one shift onto alternative Caulerpa spp. in the Indo-Pacific. A Caribbean radiation of three species included symaptric host shifts to Rhipocephalus brevicaulis in the ancestor of E. pratensis Ortea & Espinosa, 1996, and to C. prolifera in E. hamanni Krug, Vendetti & Valdes 2016, plus a niche expansion to a range of Caulerpa spp. in E. subornata Verrill, 1901. All three species are broadly sympatric across the Caribbean but are host-partitioned at a fine grain, and distinct by morphology and at nuclear loci. However, non-recombining mtDNA revealed a history of gene flow between E. pratensis and E. subornata: COI haplotypes from E. subornata were 10.4% divergent from E. pratensis haplotypes from four sites, but closely related to all E. pratensis haplotypes sampled from six Bahamian islands, indicating historical introgression and localized "mitochondrial capture." Disruptive selective likely fueled divergence and adaptation to distinct host environments, indicating ecological speciation may be an under-appreciated driver of diversification for marine herbivores as well as epibionts and other resource specialists.
Collapse
Affiliation(s)
- Albert K Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A.
| |
Collapse
|
3
|
Immonen E, Berger D, Sayadi A, Liljestrand‐Rönn J, Arnqvist G. An experimental test of temperature-dependent selection on mitochondrial haplotypes in Callosobruchus maculatus seed beetles. Ecol Evol 2020; 10:11387-11398. [PMID: 33144972 PMCID: PMC7593184 DOI: 10.1002/ece3.6775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) consists of few but vital maternally inherited genes that interact closely with nuclear genes to produce cellular energy. How important mtDNA polymorphism is for adaptation is still unclear. The assumption in population genetic studies is often that segregating mtDNA variation is selectively neutral. This contrasts with empirical observations of mtDNA haplotypes affecting fitness-related traits and thermal sensitivity, and latitudinal clines in mtDNA haplotype frequencies. Here, we experimentally test whether ambient temperature affects selection on mtDNA variation, and whether such thermal effects are influenced by intergenomic epistasis due to interactions between mitochondrial and nuclear genes, using replicated experimental evolution in Callosobruchus maculatus seed beetle populations seeded with a mixture of different mtDNA haplotypes. We also test for sex-specific consequences of mtDNA evolution on reproductive success, given that mtDNA mutations can have sexually antagonistic fitness effects. Our results demonstrate natural selection on mtDNA haplotypes, with some support for thermal environment influencing mtDNA evolution through mitonuclear epistasis. The changes in male and female reproductive fitness were both aligned with changes in mtDNA haplotype frequencies, suggesting that natural selection on mtDNA is sexually concordant in stressful thermal environments. We discuss the implications of our findings for the evolution of mtDNA.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Evolution/Evolutionary BiologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| | | | - Göran Arnqvist
- Department of Ecology and Evolution/Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci Rep 2020; 10:9081. [PMID: 32493917 PMCID: PMC7270097 DOI: 10.1038/s41598-020-65905-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Abstract
Oceans are vast, dynamic, and complex ecosystems characterized by fluctuations in environmental parameters like sea surface temperature (SST), salinity, oxygen availability, and productivity. Environmental variability acts as the driver of organismal evolution and speciation as organisms strive to cope with the challenges. We investigated the evolutionary consequences of heterogeneous environmental conditions on the mitogenome of a widely distributed small pelagic fish of Indian ocean, Indian oil sardine, Sardinella longiceps. Sardines were collected from different eco-regions of the Indian Ocean and selection patterns analyzed in coding and non-coding regions. Signals of diversifying selection were observed in key functional regions involved in OXPHOS indicating OXPHOS gene regulation as the critical factor to meet enhanced energetic demands. A characteristic control region with 38–40 bp tandem repeat units under strong selective pressure as evidenced by sequence conservation and low free energy values was also observed. These changes were prevalent in fishes from the South Eastern Arabian Sea (SEAS) followed by the Northern Arabian Sea (NAS) and rare in Bay of Bengal (BoB) populations. Fishes belonging to SEAS exhibited accelerated substitution rate mainly due to the selective pressures to survive in a highly variable oceanic environment characterized by seasonal hypoxia, variable SST, and food availability.
Collapse
|
6
|
Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci Rep 2018; 8:9500. [PMID: 29934612 PMCID: PMC6015072 DOI: 10.1038/s41598-018-27805-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are essential organelles, found within eukaryotic cells, which contain their own DNA. Mitochondrial DNA (mtDNA) has traditionally been used in population genetic and biogeographic studies as a maternally-inherited and evolutionary-neutral genetic marker. However, it is now clear that polymorphisms within the mtDNA sequence are routinely non-neutral, and furthermore several studies have suggested that such mtDNA polymorphisms are also sensitive to thermal selection. These observations led to the formulation of the “mitochondrial climatic adaptation” hypothesis, for which all published evidence to date is correlational. Here, we use laboratory-based experimental evolution in the fruit fly, Drosophila melanogaster, to test whether thermal selection can shift population frequencies of two mtDNA haplogroups whose natural frequencies exhibit clinal associations with latitude along the Australian east-coast. We present experimental evidence that the thermal regime in which the laboratory populations were maintained drove changes in haplogroup frequencies across generations. Our results strengthen the emerging view that intra-specific mtDNA variants are sensitive to selection, and suggest spatial distributions of mtDNA variants in natural populations of metazoans might reflect adaptation to climatic environments rather than within-population coalescence and diffusion of selectively-neutral haplotypes across populations.
Collapse
|
7
|
Bonnet T, Leblois R, Rousset F, Crochet PA. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 2017; 71:2140-2158. [DOI: 10.1111/evo.13296] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Timothée Bonnet
- Department of Evolutionary Biology and Environmental Studies (IEU); University of Zurich; Zurich Switzerland
- Research School of Biology; The Australian National University; Canberra Australia
| | - Raphaël Leblois
- Institut National de la Recherche Agronomique, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); Campus International de Baillarguet; Montferrier-sur-Lez France
- Institut de Biologie Computationnelle; Université de Montpellier; 860 rue St Priest 34095 Montpellier Cedex 5 34095 Montpellier France
| | - François Rousset
- Institut de Biologie Computationnelle; Université de Montpellier; 860 rue St Priest 34095 Montpellier Cedex 5 34095 Montpellier France
- Institut des Sciences de l'Évolution (UM2-CNRS); Université Montpellier 2; Montpellier France
| | - Pierre-André Crochet
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende 34293 Montpellier cedex 5 France
| |
Collapse
|
8
|
Láruson ÁJ. Rates and relations of mitochondrial genome evolution across the Echinoidea, with special focus on the superfamily Odontophora. Ecol Evol 2017; 7:4543-4551. [PMID: 28690785 PMCID: PMC5496550 DOI: 10.1002/ece3.3042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 11/11/2022] Open
Abstract
In order to better characterize the placement of genus Tripneustes, as a representative of the Toxopneustidae family within the broader sea urchin mitochondrial (MT) phylogeny, the complete MT genome of Tripneustes gratilla was generated and compared with all published echinoid MT genomes currently available on NCBI GenBank. The MT genome phylogeny supports the existence of the superfamily Odontophora (consisting of the families Strongylocentrotidae, Echinometridae, and Toxopneustidae). A relaxed molecular‐clock time calibration suggests a split between the three key Odontophore MT lineages occurred during the late Eocene/Oligocene. Major global oceanographic changes have been inferred during this time frame, potentially driving species diversification through environmental selection pressures. To test for signatures of selection acting on the mitochondria, the historical rate of gene evolution of individual MT genes was assessed through a branch‐site comparison of nonsynonymous to synonymous substitution ratios (ω). Models of positive selection and neutral evolution, as compared via a likelihood ratio test, show no evidence of strong historical positive selection on mitochondrial genes at the genesis of the Odontophora. However, while pairwise ω comparison revealed signatures of strong negative selection, relatively elevated ω values were observed within the Strongylocentrotus genus.
Collapse
Affiliation(s)
- Áki Jarl Láruson
- Department of Biology University of Hawai'i at Mānoa Honolulu HI USA
| |
Collapse
|
9
|
Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster. Mol Biol Evol 2017. [DOI: 10.1093/molbev/msx184] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Testing for the Occurrence of Selective Episodes During the Divergence of Otophysan Fishes: Insights from Mitogenomics. J Mol Evol 2017; 84:162-173. [PMID: 28378191 DOI: 10.1007/s00239-017-9790-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 10/19/2022]
Abstract
How natural selection shapes biodiversity constitutes a topic of renewed interest during the last few decades. The division Otophysi comprises approximately two-thirds of freshwater fish diversity and probably underwent an extensive adaptive radiation derived from a single invasion of the supercontinent Pangaea, giving place to the evolution of the main five Otophysan lineages during a short period of time. Little is known about the factors involved in the processes that lead to lineage diversification among this group of fishes and identifying directional selection acting over protein-coding genes could offer clues about the processes acting on species diversification. The main objective of this study was to explore the otophysan mitochondrial genome evolution, in order to account for the possible signatures of selective events in this lineage, and to explore for the functional connotations of these molecular substitutions. Mainly, three different approaches were used: the "ω-based" BS-REL and MEME methods, implemented in the DATAMONKEY web server, and analysis of selection on amino acid properties, implemented in the software TreeSAAP. We found evidence of selective episodes along several branches of the evolutionary history of othophysan fishes. Analyses carried out using the BS-REL algorithm suggest episodic diversifying selection at basal branches of the otophysan lineage, which was also supported by analyses implemented in MEME and TreeSAAP. These results suggest that throughout the Siluriformes radiation, an important number of adaptive changes occurred in their mitochondrial genome. The metabolic consequences and ecological correlates of these molecular substitutions should be addressed in future studies.
Collapse
|
11
|
Wolff JN, Tompkins DM, Gemmell NJ, Dowling DK. Mitonuclear interactions, mtDNA-mediated thermal plasticity, and implications for the Trojan Female Technique for pest control. Sci Rep 2016; 6:30016. [PMID: 27443488 PMCID: PMC4956753 DOI: 10.1038/srep30016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
Pest species pose major challenges to global economies, ecosystems, and health. Unfortunately, most conventional approaches to pest control remain costly, and temporary in effect. As such, a heritable variant of the Sterile Insect Technique (SIT) was proposed, based on the introduction of mitochondrial DNA mutations into pest populations, which impair male fertility but have no effects on females. Evidence for this "Trojan Female Technique" (TFT) was recently provided, in the form of a mutation in the mitochondrial cytochrome b gene (mt:Cyt-b) of Drosophila melanogaster which reduces male fertility across diverse nuclear backgrounds. However, recent studies have shown that the magnitude of mitochondrial genetic effects on the phenotype can vary greatly across environments, with mtDNA polymorphisms commonly entwined in genotype-by-environment (G × E) interactions. Here we test whether the male-sterilizing effects previously associated with the mt:Cyt-b mutation are consistent across three thermal and three nuclear genomic contexts. The effects of this mutation were indeed moderated by the nuclear background and thermal environment, but crucially the fertility of males carrying the mutation was invariably reduced relative to controls. This mutation thus constitutes a promising candidate for the further development of the TFT.
Collapse
Affiliation(s)
- Jonci N. Wolff
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | | | - Neil J. Gemmell
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| |
Collapse
|
12
|
Ma H, O'Farrell PH. Selfish drive can trump function when animal mitochondrial genomes compete. Nat Genet 2016; 48:798-802. [PMID: 27270106 PMCID: PMC4925267 DOI: 10.1038/ng.3587] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.
Collapse
Affiliation(s)
- Hansong Ma
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Wolff JN, Ladoukakis ED, Enríquez JA, Dowling DK. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130443. [PMID: 24864313 PMCID: PMC4032519 DOI: 10.1098/rstb.2013.0443] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fundamental biological processes hinge on coordinated interactions between genes spanning two obligate genomes--mitochondrial and nuclear. These interactions are key to complex life, and allelic variation that accumulates and persists at the loci embroiled in such intergenomic interactions should therefore be subjected to intense selection to maintain integrity of the mitochondrial electron transport system. Here, we compile evidence that suggests that mitochondrial-nuclear (mitonuclear) allelic interactions are evolutionarily significant modulators of the expression of key health-related and life-history phenotypes, across several biological scales--within species (intra- and interpopulational) and between species. We then introduce a new frontier for the study of mitonuclear interactions--those that occur within individuals, and are fuelled by the mtDNA heteroplasmy and the existence of nuclear-encoded mitochondrial gene duplicates and isoforms. Empirical evidence supports the idea of high-resolution tissue- and environment-specific modulation of intraindividual mitonuclear interactions. Predicting the penetrance, severity and expression patterns of mtDNA-induced mitochondrial diseases remains a conundrum. We contend that a deeper understanding of the dynamics and ramifications of mitonuclear interactions, across all biological levels, will provide key insights that tangibly advance our understanding, not only of core evolutionary processes, but also of the complex genetics underlying human mitochondrial disease.
Collapse
Affiliation(s)
- Jonci N Wolff
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia Evolution and Ecology Research Centre, University of New South Wales, Sydney 2052, New South Wales, Australia School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | | | - José A Enríquez
- Regenerative Cardiology Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain Departamento de Bioquímica, Universidad de Zaragoza, Zaragoza, Spain
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
14
|
Assis J, Serrão EA, Claro B, Perrin C, Pearson GA. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol Ecol 2014; 23:2797-810. [PMID: 24766057 DOI: 10.1111/mec.12772] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
The climate-driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long-term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool.
Collapse
Affiliation(s)
- J Assis
- CCMAR, CIMAR-Laboratório Associado, University of Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | | | | | | | | |
Collapse
|
15
|
Boratyński Z, Melo-Ferreira J, Alves PC, Berto S, Koskela E, Pentikäinen OT, Tarroso P, Ylilauri M, Mappes T. Molecular and ecological signs of mitochondrial adaptation: consequences for introgression? Heredity (Edinb) 2014; 113:277-86. [PMID: 24690754 DOI: 10.1038/hdy.2014.28] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 02/01/2023] Open
Abstract
The evolution of the mitochondrial genome and its potential adaptive impact still generates vital debates. Even if mitochondria have a crucial functional role, as they are the main cellular energy suppliers, mitochondrial DNA (mtDNA) introgression is common in nature, introducing variation in populations upon which selection may act. Here we evaluated whether the evolution of mtDNA in a rodent species affected by mtDNA introgression is explained by neutral expectations alone. Variation in one mitochondrial and six nuclear markers in Myodes glareolus voles was examined, including populations that show mtDNA introgression from its close relative, Myodes rutilus. In addition, we modelled protein structures of the mtDNA marker (cytochrome b) and estimated the environmental envelopes of mitotypes. We found that massive mtDNA introgression occurred without any trace of introgression in the analysed nuclear genes. The results show that the native glareolus mtDNA evolved under past positive selection, suggesting that mtDNA in this system has selective relevance. The environmental models indicate that the rutilus mitotype inhabits colder and drier habitats than the glareolus one that can result from local adaptation or from the geographic context of introgression. Finally, homology models of the cytochrome b protein revealed a substitution in rutilus mtDNA in the vicinity of the catalytic fraction, suggesting that differences between mitotypes may result in functional changes. These results suggest that the evolution of mtDNA in Myodes may have functional, ecological and adaptive significance. This work opens perspective onto future experimental tests of the role of natural selection in mtDNA introgression in this system.
Collapse
Affiliation(s)
- Z Boratyński
- 1] Centre of Excellence in Evolutionary Research, Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland [2] CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Associate Laboratory, Universidade do Porto, Vairão, Portugal
| | - J Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Associate Laboratory, Universidade do Porto, Vairão, Portugal
| | - P C Alves
- 1] CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Associate Laboratory, Universidade do Porto, Vairão, Portugal [2] Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal [3] Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - S Berto
- 1] Centre of Excellence in Evolutionary Research, Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland [2] 'TFome and Trancriptome Evolution', Universität Leipzig, Leipzig, Germany
| | - E Koskela
- Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - O T Pentikäinen
- Computational Bioscience Laboratory, Division of Cell and Molecular Biology, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - P Tarroso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Associate Laboratory, Universidade do Porto, Vairão, Portugal
| | - M Ylilauri
- Computational Bioscience Laboratory, Division of Cell and Molecular Biology, Department of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - T Mappes
- Centre of Excellence in Evolutionary Research, Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
16
|
Affiliation(s)
- J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Nicolas Pichaud
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales 2052 Australia
- Laboratoire de Biologie Intégrative; Département de Biologie, Chimie et Géographie; Université du Québec à Rimouski; Rimouski Quebec Canada
| |
Collapse
|
17
|
Dowling DK. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. Biochim Biophys Acta Gen Subj 2013; 1840:1393-403. [PMID: 24246955 DOI: 10.1016/j.bbagen.2013.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. SCOPE OF REVIEW I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. MAJOR CONCLUSIONS Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. GENERAL SIGNIFICANCE Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton 3800, VIC Australia
| |
Collapse
|
18
|
Teacher AGF, André C, Merilä J, Wheat CW. Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evol Biol 2012; 12:248. [PMID: 23259908 PMCID: PMC3545857 DOI: 10.1186/1471-2148-12-248] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine fish, such as the Atlantic herring (Clupea harengus), often show a low degree of differentiation over large geographical regions. Despite strong environmental gradients (salinity and temperature) in the Baltic Sea, population genetic studies have shown little genetic differentiation among herring in this area, but some evidence for environmentally-induced selection has been uncovered. The mitochondrial genome is a likely target for selection in this system due to its functional role in metabolism. RESULTS We sequenced whole mitochondrial genomes for herring from throughout the Baltic region (n=98) in order to investigate evidence for geographical structuring, selection, and associations between genetic and environmental variation. Three well-supported clades that predate the formation of the Baltic Sea were identified, but geographic structuring of this variation was weak (ΦST = 0.036). There was evidence for significant positive selection, particularly in the ND2, ND4 and ND5 genes, and amino acids under significant selection in these genes explained some of the clade formation. Despite uncovering evidence for selection, correlations between genetic diversity or differentiation with environmental factors (temperature, salinity, latitude) were weak. CONCLUSIONS The results indicate that most of the current mtDNA diversity in herring predates the formation of the Baltic Sea, and that little structuring has evolved since. Thus, fisheries management units in this region cannot be determined on the basis of mtDNA variability. Preliminary evidence for selection underlying clade formation indicates that the NADH complex may be useful for examining adaptation and population structuring at a broader geographical scale.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Analysis of Variance
- Animals
- Bayes Theorem
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/classification
- DNA, Mitochondrial/genetics
- Ecosystem
- Evolution, Molecular
- Fishes/classification
- Fishes/genetics
- Genes, Mitochondrial/genetics
- Genetic Variation
- Genetics, Population
- Genome, Mitochondrial/genetics
- Geography
- Molecular Sequence Data
- Oceans and Seas
- Phylogeny
- Salinity
- Selection, Genetic
- Sequence Analysis, DNA
- Species Specificity
- Temperature
Collapse
Affiliation(s)
- Amber GF Teacher
- Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Treliever Road, Penryn, Cornwall, TR10 9EZ, UK
- Current address: Centre for Ecology and Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Treliever Road, Penryn, Cornwall, TR10 9EZ, UK
| | - Carl André
- Department of Marine Ecology – Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Christopher W Wheat
- Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| |
Collapse
|
19
|
Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity (Edinb) 2012; 110:57-62. [PMID: 23010820 DOI: 10.1038/hdy.2012.60] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS-PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.
Collapse
|
20
|
Ambrose L, Riginos C, Cooper RD, Leow KS, Ong W, Beebe NW. Population structure, mitochondrial polyphyly and the repeated loss of human biting ability in anopheline mosquitoes from the southwest Pacific. Mol Ecol 2012; 21:4327-43. [PMID: 22747666 PMCID: PMC3470930 DOI: 10.1111/j.1365-294x.2012.05690.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 11/30/2022]
Abstract
Australia and New Guinea contain high levels of endemism and biodiversity, yet there have been few evaluations of population-level genetic diversity in fauna occurring throughout the Australo-Papuan region. Using extensive geographical sampling, we examined and compared the phylogenetic relationships, phylogeography and population structure of Anopheles farauti, An. hinesorum and An. irenicus throughout their ranges in the southwest Pacific using mitochondrial (mtDNA COI) and nuclear (ribosomal protein S9 and ribosomal DNA ITS2) loci. Phylogenetic analyses suggest that the ability to utilize humans as hosts has been lost repeatedly, coincident with independent colonizations of the Solomon Islands. As some of the species under investigation transmit malaria in the region, this is a medically important finding. Maximum likelihood and Bayesian phylogenetic analyses of nuclear loci also showed that the three species are monophyletic. However, putative introgression of An. hinesorum mtDNA onto a nuclear background of An. farauti was evident in populations from Queensland, Torres Strait and southern New Guinea. Haplotype networks and pairwise F(ST) values show that there is significant genetic structure within New Guinea and Australia in both An. farauti and An. hinesorum, consistent with a long-term history of low gene flow among populations.
Collapse
Affiliation(s)
- L Ambrose
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Qld. 4072, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Boratyński Z, Alves PC, Berto S, Koskela E, Mappes T, Melo-Ferreira J. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics? BMC Evol Biol 2011; 11:355. [PMID: 22151479 PMCID: PMC3260118 DOI: 10.1186/1471-2148-11-355] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 12/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Introgression of mitochondrial DNA (mtDNA) is among the most frequently described cases of reticulate evolution. The tendency of mtDNA to cross interspecific barriers is somewhat counter-intuitive considering the key function of enzymes that it encodes in the oxidative-phosphorylation process, which could give rise to hybrid dysfunction. How mtDNA reticulation affects the evolution of metabolic functions is, however, uncertain. Here we investigated how morpho-physiological traits vary in natural populations of a common rodent (the bank vole, Myodes glareolus) and whether this variation could be associated with mtDNA introgression. First, we confirmed that M. glareolus harbour mtDNA introgressed from M. rutilus by analyzing mtDNA (cytochrome b, 954 bp) and nuclear DNA (four markers; 2333 bp in total) sequence variation and reconstructing loci phylogenies among six natural populations in Finland. We then studied geographic variation in body size and basal metabolic rate (BMR) among the populations of M. glareolus and tested its relationship with mtDNA type. RESULTS Myodes glareolus and its arctic neighbour, M. rutilus, are reciprocally monophyletic at the analyzed nuclear DNA loci. In contrast, the two northernmost populations of M. glareolus have a fixed mitotype that is shared with M. rutilus, likely due to introgressive hybridization. The analyses of phenotypic traits revealed that the body mass and whole-body, but not mass corrected, BMR are significantly reduced in M. glareolus females from northern Finland that also have the introgressed mitotype. Restricting the analysis to the single population where the mitotypes coexist, the association of mtDNA type with whole-body BMR remained but those with mass corrected BMR and body mass did not. Mitochondrial sequence variation in the introgressed haplotypes is compatible with demographic growth of the populations, but may also be a result of positive selection. CONCLUSION Our results show that the phenotypic traits vary markedly along the north-south axis of populations of M. glareolus. This variation may be related to adaptation to local environments and coincides with the gradient of genome reticulation between M. glareolus and M. rutilus, which was assessed by mtDNA introgression. Introgression of mtDNA may have affected morpho-physiological traits but do not show strong effects on either body mass or basal metabolic rate alone. We discuss the causes and biological meaning of our results and the means to clarify these questions in future research.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
22
|
Tuda M. Evolutionary diversification of bruchine beetles: climate-dependent traits and development associated with pest status. BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:415-422. [PMID: 21241536 DOI: 10.1017/s0007485310000660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of insect species infest human households and stored foods and products, leading to their designation as pests. Until recently, little was known about the factors driving the evolution of pests that feed on stored dry foods. Here, I review the effects of changes in climate and species interactions on the evolution and ecology of beetles that feed on dried seeds/grains. My review focuses on evidence that the host utilization by part of the species in the subfamily Bruchinae (Chrysomelidae) is a preadaptation for utilizing stored dry seeds and grains, thus leading to their status as a pest. These and other stored product pest beetles retain a higher percentage of water in their body, relative to the water content of their diet, than beetles that feed on fresh crops. I review the studies that have documented adaptation, acclimation and polyphenetic response to high temperatures and desiccation and/or made direct comparisons between these traits between developmental stages, populations and among higher taxonomic groups. Finally, I review evidence for the effects of environmental change on insect host-parasitoid and competitor assemblages.
Collapse
Affiliation(s)
- M Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
23
|
Rutledge LY, Patterson BR, White BN. Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes. BMC Evol Biol 2010; 10:215. [PMID: 20637067 PMCID: PMC2927920 DOI: 10.1186/1471-2148-10-215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 07/16/2010] [Indexed: 11/15/2022] Open
Abstract
Background Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR) to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon), that is more closely related to red wolves (C. rufus) and coyotes (C. latrans) than grey wolves (C. lupus). Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp) of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS) at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution. Results We found high concordance across analyses between the mtDNA regions studied. Both had a high percentage of variable sites (CR = 14.6%; ATP = 9.7%) and both phylogenies clustered eastern wolf haplotypes monophyletically within a North American evolved lineage apart from coyotes. Divergence estimates suggest the putative red wolf sequence is more closely related to coyotes (DxyCR = 0.01982 ± 0.00494 SD; DxyATP = 0.00332 ± 0.00097 SD) than the eastern wolf sequences (DxyCR = 0.03047 ± 0.00664 SD; DxyATP = 0.00931 ± 0.00205 SD). Neutrality tests on both genes were indicative of the population expansion of coyotes across eastern North America, and dN/dS ratios suggest a possible role for purifying selection in the evolution of North American lineages. dN/dS ratios were higher in European evolved lineages from northern climates compared to North American evolved lineages from temperate regions, but these differences were not statistically significant. Conclusions These results demonstrate high concordance between coding and non-coding regions of mtDNA, and provide further evidence that the eastern wolf possessed distinct mtDNA lineages prior to recent coyote introgression. Purifying selection may have influenced North American evolved Canis lineages, but detection of adaptive selection in response to climate is limited by the power of current statistical tests. Increased sampling and development of alternative analytical tools will be necessary to disentangle demographic history from processes of natural selection.
Collapse
Affiliation(s)
- Linda Y Rutledge
- Environmental and Life Sciences Graduate Program, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| | | | | |
Collapse
|
24
|
Chou JY, Leu JY. Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes. Bioessays 2010; 32:401-11. [DOI: 10.1002/bies.200900162] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Ballard JWO, Rand DM. The Population Biology of Mitochondrial DNA and Its Phylogenetic Implications. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.091704.175513] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. William O. Ballard
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia;
| | - David M. Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912;
| |
Collapse
|
26
|
Roze D, Rousset F, Michalakis Y. Germline bottlenecks, biparental inheritance and selection on mitochondrial variants: a two-level selection model. Genetics 2005; 170:1385-99. [PMID: 15911581 PMCID: PMC1451199 DOI: 10.1534/genetics.104.039495] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selection on mitochondrial mutations potentially occurs at different levels: at the mitochondria, cell, and organism levels. Several factors affect the strength of selection at these different levels; in particular, mitochondrial bottlenecks during germline development and reduced paternal transmission decrease the genetic variance within cells, while they increase the variance between cells and between organisms, thus decreasing the strength of selection within cells and increasing the strength of selection between cells and organisms. However, bottlenecks and paternal transmission also affect the effective mitochondrial population size, thus affecting genetic drift. In this article, we use a simple model of a unicellular life cycle to investigate the effects of bottlenecks and paternal transmission on the probability of fixation of mitochondrial mutants and their frequency at mutation-selection equilibrium. We find that bottlenecks and reduced paternal transmission decrease the mean frequency of alleles with sm>sc (approximately), where sm and sc are the strengths of selection for an allele within and between cells, respectively, and increase the frequency of alleles with sm<sc. Effects on fixation probabilities are different; for example, bottlenecks reduce the fixation probability of mutants with sm>0 (unless sm is very small relative to sc) and increase the fixation probability of mutants with sm<0.
Collapse
Affiliation(s)
- Denis Roze
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | |
Collapse
|
27
|
Fontanillas P, Dépraz A, Giorgi MS, Perrin N. Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula. Mol Ecol 2005; 14:661-70. [PMID: 15660955 DOI: 10.1111/j.1365-294x.2004.02414.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A selection gradient was recently suggested as one possible cause for a clinal distribution of mitochondrial DNA (mtDNA) haplotypes along an altitudinal transect in the greater white-toothed shrew, Crocidura russula (Ehinger et al. 2002). One mtDNA haplotype (H1) rare in lowland, became widespread when approaching the altitudinal margin of the distribution. As H1 differs from the main lowland haplotype by several nonsynonymous mutations (including on ATP6), and as mitochondria play a crucial role in metabolism and thermogenesis, distribution patterns might stem from differences in the thermogenic capacity of different mtDNA haplotypes. In order to test this hypothesis, we measured the nonshivering thermogenesis (NST) associated with different mtDNA haplotypes. Sixty-two shrews, half of which had the H1 haplotype, were acclimated in November at semioutdoor conditions and measured for NST throughout winter. Our results showed the crucial role of NST for winter survival in C. russula. The individuals that survived winter displayed a higher significant increase in NST during acclimation, associated with a significant gain in body mass, presumably from brown fat accumulation. The NST capacity (ratio of NST to basal metabolic rate) was exceptionally high for such a small species. NST was significantly affected by a gender x haplotype interaction after winter-acclimation: females bearing the H1 haplotype displayed a better thermogenesis at the onset of the breeding season, while the reverse was true for males. Altogether, our results suggest a sexually antagonistic cyto-nuclear selection on thermogenesis.
Collapse
Affiliation(s)
- Pierre Fontanillas
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
28
|
Hattori N, Kitagawa K, Takumi S, Nakamura C. Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids. Genetics 2002; 160:1619-30. [PMID: 11973315 PMCID: PMC1462052 DOI: 10.1093/genetics/160.4.1619] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A mitochondrial (mt) transcriptional unit, nad3-orf156, was studied in the nucleus-cytoplasm hybrids of wheat with D/D2 plasmons from Aegilops species and their parental lines. A comparative RFLP analysis and sequencing of the random PCR clones revealed the presence of seven sequence types and their polymorphic sites were mapped. All the hybrids possessed the paternal copies besides the maternal copies. More paternal copies were present in the D2 plasmon hybrids, whereas more maternal copies were present in the D plasmon hybrids. Two major copies were present with different stoichiometries in the maternal Aegilops parents. However, only a major D plasmon copy was detected in the hybrids, irrespective of their plasmon types. The hexaploid wheat parent (AABBDD genome) possessed the major D plasmon copy in approximately 5% stoichiometry, while no D plasmon-homologous copies were detected in the tetraploid wheat parent (AABB genome). The results suggest that the observed mtDNA heteroplasmy is due to paternal contribution of mtDNA. The different copy stoichiometry suggests differential amplification of the heteroplasmic copies among the hybrids and the parental lines. All editing sites and their editing frequencies were conserved among the lines, and only the maternal pattern of editing occurred in the hybrids.
Collapse
Affiliation(s)
- Nobuaki Hattori
- Laboratory of Plant Genetics, Department of Biological and Environmental Science, Faculty of Agriculture, and Division of Life Science, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- David M. Rand
- Department of Ecology and Evolutionary Biology, Brown University, 69 Brown Street, Providence, Box G-W, Rhode Island 02912; e-mail:
| |
Collapse
|