1
|
West AC, Harpur CM, Le Page MA, Lam M, Hodges C, Ely LK, Gearing AJ, Tate MD. Harnessing Endogenous Peptide Compounds as Potential Therapeutics for Severe Influenza. J Infect Dis 2024; 230:e384-e394. [PMID: 38060822 PMCID: PMC11326819 DOI: 10.1093/infdis/jiad566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/05/2023] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT8881 is a synthetic 16-amino acid cyclic peptide form of a naturally occurring C-terminal fragment of human growth hormone with therapeutic efficacy against influenza. Shorter linear peptides are typically easier to manufacture and formulate for delivery than larger cyclic peptides. A 6-amino acid linear peptide fragment of LAT8881, LAT9997, was investigated as a potential influenza therapy. METHODS LAT9997 was evaluated for its potential to limit disease in a preclinical mouse model of severe influenza infection. RESULTS Intranasal treatment of mice with either LAT8881 or LAT9997 from day 1 following influenza infection significantly improved survival outcomes. Initiating LAT9997 treatment at the onset of severe disease also significantly improved disease severity. Greater disease resistance in LAT9997-treated mice correlated with reduced lung immunopathology, damage markers, vascular leak, and epithelial cell death. Treatment reduced viral loads, cytokines, and neutrophil infiltration in the airways yet maintained protective alveolar macrophages in a dose-dependent manner. Sequential trimming of N- and C-terminal amino acids from LAT9997 revealed a structure-activity relationship. CONCLUSIONS These findings provide preclinical evidence that therapeutic LAT9997 treatment limits viral burden and characteristic features of severe influenza, including hyperinflammation and lung damage. SUMMARY Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT9997 is a linear peptide fragment derived from human growth hormone. This study provides preclinical evidence that therapeutic LAT9997 treatment limits viral burden, hyperinflammation, and lung damage.
Collapse
Affiliation(s)
- Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | | | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| |
Collapse
|
2
|
Harpur CM, West AC, Le Page MA, Lam M, Hodges C, Oseghale O, Gearing AJ, Tate MD. Naturally derived cytokine peptides limit virus replication and severe disease during influenza A virus infection. Clin Transl Immunology 2023; 12:e1443. [PMID: 36969366 PMCID: PMC10034483 DOI: 10.1002/cti2.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Objectives Novel host‐targeted therapeutics could treat severe influenza A virus (IAV) infections, with reduced risk of drug resistance. LAT8881 is a synthetic form of the naturally occurring C‐terminal fragment of human growth hormone. Acting independently of the growth hormone receptor, it can reduce inflammation‐induced damage and promote tissue repair in an animal model of osteoarthritis. LAT8881 has been assessed in clinical trials for the treatment of obesity and neuropathy and has an excellent safety profile. We investigated the potential for LAT8881, its metabolite LAT9991F and LAT7771 derived from prolactin, a growth hormone structural homologue, to treat severe IAV infection. Methods LAT8881, LAT9991F and LAT7771 were evaluated for their effects on cell viability and IAV replication in vitro, as well as their potential to limit disease in a preclinical mouse model of severe IAV infection. Results In vitro LAT8881 treatment enhanced cell viability, particularly in the presence of cytotoxic stress, which was countered by siRNA inhibition of host lanthionine synthetase C‐like proteins. Daily intranasal treatment of mice with LAT8881 or LAT9991F, but not LAT7771, from day 1 postinfection significantly improved influenza disease resistance, which was associated with reduced infectious viral loads, reduced pro‐inflammatory cytokines and increased abundance of protective alveolar macrophages. LAT8881 treatment in combination with the antiviral oseltamivir phosphate led to more pronounced reduction in markers of disease severity than treatment with either compound alone. Conclusion These studies provide the first evidence identifying LAT8881 and LAT9991F as novel host‐protective therapies that improve survival, limit viral replication, reduce local inflammation and curtail tissue damage during severe IAV infection. Evaluation of LAT8881 and LAT9991F in other infectious and inflammatory conditions of the airways is warranted.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Alison C West
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Maggie Lam
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Osezua Oseghale
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
3
|
Niu JL, Zhang J, Wei LQ, Zhang WJ, Nie CX. Effect of Fermented Cottonseed Meal on the Lipid-Related Indices and Serum Metabolic Profiles in Broiler Chickens. Animals (Basel) 2019; 9:E930. [PMID: 31703286 PMCID: PMC6912724 DOI: 10.3390/ani9110930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023] Open
Abstract
This study aimed to investigate the changes of lipid-related gene and serum metabolites in broiler chickens fed with fermented cottonseed meal (FCSM) diet, through quantitative real-time PCR and metabolomics analysis. Totally, 180 1-day-old Cobb broilers were randomly assigned to two groups with six replicates of 15 birds in each. The two diets consisted of a control diet supplemented with 0% FCSM (CON group) and an experimental diet with 6% FCSM (fermented by Candida tropicalis) replacing the soybean meal (FCSM group). The results showed that both abdominal fat content and subcutaneous fat thickness significantly reduced (p < 0.05) in response to dietary FCSM supplementation at the age of 21 d. Serum concentrations of glucose, triglyceride, and low-density lipoprotein cholesterol decreased (p < 0.05) in FCSM fed broilers compared with CON fed broilers, while the levels of epinephrine and growth hormone in serum, liver and abdominal fat tissue were higher (p < 0.05) in FCSM than in CON fed broilers. The activity of hormone-sensitive esterase and lipoprotein lipase (LPL) in the liver and abdominal fat were higher (p < 0.05) in FCSM than CON group. Additionally, compared with the CON group (p < 0.05), the expression of peroxisome proliferator-activated receptor alpha and LPL genes were upregulated in the livers of FCSM group broilers. Gene expressions of hormone-sensitive lipase and LPL in the abdominal fat tissue were also upregulated (p < 0.05) with the broilers fed with FCSM diets. A total of 20 significantly different metabolites were obtained in the serum of different dietary FCSM supplemented fed broilers. The mainly altered pathways were clustered into organic acid metabolism, fatty acid metabolism, and amino acid metabolism. These results not only provide a better understanding of broilers' lipid metabolism with FCSM but also can be helpful in further improvement of the broilers' healthy production and utilization of FCSM.
Collapse
Affiliation(s)
- Jun-Li Niu
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
| | - Jun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Lian-Qing Wei
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
| | - Wen-Ju Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
| | - Cun-Xi Nie
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
4
|
Loyd C, Liu Y, Kim T, Holleman C, Galloway J, Bethea M, Ediger BN, Swain TA, Tang Y, Stoffers DA, Rowe GC, Young M, Steele C, Habegger KM, Hunter CS. LDB1 Regulates Energy Homeostasis During Diet-Induced Obesity. Endocrinology 2017; 158:1289-1297. [PMID: 28009534 PMCID: PMC5460834 DOI: 10.1210/en.2016-1791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022]
Abstract
The broadly expressed transcriptional coregulator LDB1 is essential for β-cell development and glucose homeostasis. However, it is unclear whether LDB1 has metabolic roles beyond the β-cell, especially under metabolic stress. Global Ldb1 deletion results in early embryonic lethality; thus, we used global heterozygous Ldb1+/- and inducible β-cell-specific Ldb1-deficient (Ldb1Δβ-cell) mice. We assessed glucose and insulin tolerance, body composition, feeding, and energy expenditure during high-fat diet exposure. Brown adipose tissue (BAT) biology was evaluated by thermogenic gene expression and LDB1 chromatin immunoprecipitation analysis. We found that partial loss of Ldb1 does not impair the maintenance of glucose homeostasis; rather, we observed improved insulin sensitivity in these mice. Partial loss of Ldb1 also uncovered defects in energy expenditure in lean and diet-induced obese (DIO) mice. This decreased energy expenditure during DIO was associated with significantly altered BAT gene expression, specifically Cidea, Elovl3, Cox7a1, and Dio2. Remarkably, the observed changes in energy balance during DIO were absent in Ldb1Δβ-cell mice, despite a similar reduction in plasma insulin, suggesting a role for LDB1 in BAT. Indeed, LDB1 is expressed in brown adipocytes and occupies a regulatory domain of Elovl3, a gene crucial to normal BAT function. We conclude that LDB1 regulates energy homeostasis, in part through transcriptional modulation of critical regulators in BAT function.
Collapse
Affiliation(s)
- Christine Loyd
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Teayoun Kim
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Cassie Holleman
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Jamie Galloway
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Benjamin N. Ediger
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Yawen Tang
- Department of Medicine, Division of Cardiovascular Disease, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Glenn C. Rowe
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
- Department of Medicine, Division of Cardiovascular Disease, and
| | - Martin Young
- Department of Medicine, Division of Cardiovascular Disease, and
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kirk M. Habegger
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| | - Chad S. Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism
| |
Collapse
|
5
|
Cox HD, Smeal SJ, Hughes CM, Cox JE, Eichner D. Detection andin vitrometabolism of AOD9604. Drug Test Anal 2014; 7:31-8. [DOI: 10.1002/dta.1715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Holly D. Cox
- Sports Medicine Research and Testing Laboratory; Salt Lake City UT 84108 USA
| | - Stacy J. Smeal
- Sports Medicine Research and Testing Laboratory; Salt Lake City UT 84108 USA
| | - Cole M. Hughes
- Sports Medicine Research and Testing Laboratory; Salt Lake City UT 84108 USA
| | - James E. Cox
- Department of Biochemistry and the Metabolmics Core Research Facility; University of Utah School of Medicine; Salt Lake City UT 84112 USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory; Salt Lake City UT 84108 USA
| |
Collapse
|
6
|
Vanhee C, Moens G, Deconinck E, De Beer JO. Identification and characterization of peptide drugs in unknown pharmaceutical preparations seized by the Belgian authorities: case report on AOD9604. Drug Test Anal 2014; 6:964-8. [DOI: 10.1002/dta.1687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Celine Vanhee
- Division of Food, Medicines and Consumer safety, Medicinal Products Section; Scientific Institute of Public Health (WIV-ISP); J. Wytsmansstraat14 B-1050 Brussels Belgium
| | - Goedele Moens
- Division of Food, Medicines and Consumer safety, Medicinal Products Section; Scientific Institute of Public Health (WIV-ISP); J. Wytsmansstraat14 B-1050 Brussels Belgium
| | - Eric Deconinck
- Division of Food, Medicines and Consumer safety, Medicinal Products Section; Scientific Institute of Public Health (WIV-ISP); J. Wytsmansstraat14 B-1050 Brussels Belgium
| | - Jacques O. De Beer
- Division of Food, Medicines and Consumer safety, Medicinal Products Section; Scientific Institute of Public Health (WIV-ISP); J. Wytsmansstraat14 B-1050 Brussels Belgium
| |
Collapse
|
7
|
Ngo S, Steyn F, McCombe P. Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci 2014; 340:5-12. [DOI: 10.1016/j.jns.2014.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
8
|
Wang F, Wu M, Liu W, Shen Q, Sun H, Chen S. Expression, purification, and lipolytic activity of recombinant human serum albumin fusion proteins with one domain of human growth hormone inPichia pastoris. Biotechnol Appl Biochem 2013; 60:405-11. [DOI: 10.1002/bab.1108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 01/27/2023]
Affiliation(s)
| | - Min Wu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Wenhui Liu
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Qi Shen
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Hongying Sun
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| | - Shuqing Chen
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; People's Republic of China
| |
Collapse
|
9
|
Park JA, Tirupathi Pichiah P, Yu JJ, Oh SH, Daily J, Cha YS. Anti-obesity effect of kimchi fermented with Weissella koreensis
OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J Appl Microbiol 2012; 113:1507-16. [DOI: 10.1111/jam.12017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/08/2012] [Accepted: 09/09/2012] [Indexed: 12/01/2022]
Affiliation(s)
- J.-A. Park
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju Korea
| | - P.B. Tirupathi Pichiah
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju Korea
| | - J.-J. Yu
- Department of Food Science and Biotechnology; Woosuk University; Jeonju Korea
| | - S.-H. Oh
- Department of Food Science and Biotechnology; Woosuk University; Jeonju Korea
| | - J.W. Daily
- Department of Research and Development; Daily Manufacturing, Inc.; Rockwell NC, USA
| | - Y.-S. Cha
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju Korea
- Jeonju Makgeolli Research Center; Chonbuk National University; Jeonju Korea
| |
Collapse
|
10
|
Abstract
The obesity epidemic calls for complementary treatment possibilities in addition to lifestyle changes. One of the important regulators of lipid homeostasis is growth hormone (GH). Clinical trials have tested if GH can reduce obesity in humans. The mechanisms underlying the response to GH administration have also been investigated in animal models of human obesity. A literature search yielded 19 randomized placebo-controlled clinical studies and several animal studies investigating chronic GH treatment of obesity. Significant effects were found in some of the larger trials. One clinical trial showed significantly increased weight loss due to GH treatment, and in seven trials, a significant reduction of fat mass was found. The improvements observed were modest, but even minor improvements have been shown to be beneficial, especially if the reduction in fat mass includes visceral adipose tissue, as was reported in three of six trials. In principle, animal data support the clinical observations although the reduction of fat mass was more dramatic than observed in humans. The mechanisms resulting in lipid mobilization most likely include adipose tissue lipo-protein lipase (LPL) inhibition and antagonization of the anti-lipolytic activity of insulin. By feeding a restricted amount of a high fat diet to GH exposed rats hyper-insulinemia was avoided, loss of body fat was accelerated and metabolic markers were improved. Provision of a diet suitable for the metabolic conditions during GH treatment shows promise for improving metabolic control and can perhaps increase the efficacy and/or widen the therapeutic window of GH.
Collapse
|
11
|
Qin Y, Tian YP. Exploring the molecular mechanisms underlying the potentiation of exogenous growth hormone on alcohol-induced fatty liver diseases in mice. J Transl Med 2010; 8:120. [PMID: 21087523 PMCID: PMC2994817 DOI: 10.1186/1479-5876-8-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/19/2010] [Indexed: 12/17/2022] Open
Abstract
Background Growth hormone (GH) is an essential regulator of intrahepatic lipid metabolism by activating multiple complex hepatic signaling cascades. Here, we examined whether chronic exogenous GH administration (via gene therapy) could ameliorate liver steatosis in animal models of alcoholic fatty liver disease (AFLD) and explored the underlying molecular mechanisms. Methods Male C57BL/6J mice were fed either an alcohol or a control liquid diet with or without GH therapy for 6 weeks. Biochemical parameters, liver histology, oxidative stress markers, and serum high molecular weight (HMW) adiponectin were measured. Quantitative real-time PCR and western blotting were also conducted to determine the underlying molecular mechanism. Results Serum HMW adiponectin levels were significantly higher in the GH1-treated control group than in the control group (3.98 ± 0.71 μg/mL vs. 3.07 ± 0.55 μg/mL; P < 0.001). GH1 therapy reversed HMW adiponectin levels to the normal levels in the alcohol-fed group. Alcohol feeding significantly reduced hepatic adipoR2 mRNA expression compared with that in the control group (0.71 ± 0.17 vs. 1.03 ± 0.19; P < 0.001), which was reversed by GH therapy. GH1 therapy also significantly increased the relative mRNA (1.98 ± 0.15 vs. 0.98 ± 0.15) and protein levels of SIRT1 (2.18 ± 0.37 vs. 0.99 ± 0.17) in the alcohol-fed group compared with those in the control group (both, P < 0.001). The alcohol diet decreased the phosphorylated and total protein levels of hepatic AMP-activated kinase-α (AMPKα) (phosphorylated protein: 0.40 ± 0.14 vs. 1.00 ± 0.12; total protein: 0.32 ± 0.12 vs. 1.00 ± 0.14; both, P < 0.001) and peroxisome proliferator activated receptor-α (PPARα) (phosphorylated protein: 0.30 ± 0.09 vs. 1.00 ± 0.09; total protein: 0.27 ± 0.10 vs. 1.00 ± 0.13; both, P < 0.001), which were restored by GH1 therapy. GH therapy also decreased the severity of fatty liver in alcohol-fed mice. Conclusions GH therapy had positive effects on AFLD and may offer a promising approach to prevent or treat AFLD. These beneficial effects of GH on AFLD were achieved through the activation of the hepatic adiponectin-SIRT1-AMPK and PPARα-AMPK signaling systems.
Collapse
Affiliation(s)
- Ying Qin
- Department of Clinical Biochemistry, Chinese People's Liberation Army General Hospital, 28 Fu-Xing Road, Beijing 100853, PR China.
| | | |
Collapse
|
12
|
Sachithanandan N, Fam BC, Fynch S, Dzamko N, Watt MJ, Wormald S, Honeyman J, Galic S, Proietto J, Andrikopoulos S, Hevener AL, Kay TWH, Steinberg GR. Liver-specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic insulin sensitivity and lipogenesis resulting in fatty liver and obesity. Hepatology 2010; 52:1632-42. [PMID: 20799351 DOI: 10.1002/hep.23861] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Obesity is associated with chronic inflammation and contributes to the development of insulin resistance and nonalcoholic fatty liver disease. The suppressor of cytokine signaling-3 (SOCS3) protein is increased in inflammation and is thought to contribute to the pathogenesis of insulin resistance by inhibiting insulin and leptin signaling. Therefore, we studied the metabolic effects of liver-specific SOCS3 deletion in vivo. We fed wild-type (WT) and liver-specific SOCS3 knockout (SOCS3 LKO) mice either a control diet or a high-fat diet (HFD) for 6 weeks and examined their metabolic phenotype. We isolated hepatocytes from WT and SOCS3 LKO mice and examined the effects of tumor necrosis factor α and insulin on Akt phosphorylation and fatty acid metabolism and lipogenic gene expression. Hepatocytes from control-fed SOCS3 LKO mice were protected from developing tumor necrosis factor α-induced insulin resistance but also had increased lipogenesis and expression of sterol response element-binding protein-1c target genes. Lean SOCS3 LKO mice fed a control diet had enhanced hepatic insulin sensitivity; however, when fed an HFD, SOCS3 LKO mice had increased liver fat, inflammation, and whole-body insulin resistance. SOCS3 LKO mice fed an HFD also had elevated hypothalamic SOCS3 and fatty acid synthase expression and developed greater obesity due to increased food intake and reduced energy expenditure. CONCLUSION Deletion of SOCS3 in the liver increases liver insulin sensitivity in mice fed a control diet but paradoxically promotes lipogenesis, leading to the development of nonalcoholic fatty liver disease, inflammation, and obesity.
Collapse
Affiliation(s)
- Nirupa Sachithanandan
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chronic increase of circulating galanin levels induces obesity and marked alterations in lipid metabolism similar to metabolic syndrome. Int J Obes (Lond) 2010; 33:1381-9. [PMID: 19773738 DOI: 10.1038/ijo.2009.187] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Galanin (GAL) has a role in the regulation of food intake by way of acting on the central nervous system in rodents. High serum GAL levels have been observed in obese human subjects, suggesting that peripheral GAL has a role in the regulation of energy balance and that elevated circulating GAL levels contribute to the development of obesity and obesity-associated metabolic impairments. Currently, it is not known how chronically increased levels of circulating GAL affect energy balance. The purpose of this study is to clarify the importance of chronically increased levels of circulating GAL on energy balance in a transgenic mouse model. RESEARCH DESIGN AND METHODS Male wild-type and homozygous galanin transgenic (GAL-Tg) mice were used to study the peripheral effects of a 10-fold increase in circulating GAL on food intake, body weight, lipid metabolism, hepatic steatosis, glucose homeostasis and energy expenditure. RESULTS In the absence of an orexigenic effect, GAL-Tg mice had increased body weight, visceral adiposity, total serum cholesterol, total serum triglycerides and hyperinsulinemia, as well as impaired glucose tolerance. Compared with wild-type mice, the obese phenotype observed in the GAL-Tg mice was attributed to decreased oxygen consumption and carbon dioxide production, and this effect was independent of any changes in food intake or horizontal activity. In this obese model, GAL contributed to the development of fatty liver disease, which was associated with impaired glucose tolerance, as well as a reduction in heat production and metabolic rate. CONCLUSIONS Chronically elevated GAL may regulate body weight, metabolic rate, and lipid and carbohydrate metabolism through a mechanism that is independent of feeding regulation. The obese phenotype in the GAL-Tg mice is related to the reduced energy expenditure and insulin resistance. These findings support the hypothesis that increased circulating GAL levels contribute to the development of metabolic syndrome.
Collapse
|
14
|
Qin Y, Tian YP. Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats. Lipids Health Dis 2010; 9:78. [PMID: 20653983 PMCID: PMC2918616 DOI: 10.1186/1476-511x-9-78] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/26/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), which is characterized by hepatic steatosis, can be reversed by early treatment. Several case reports have indicated that the administration of recombinant growth hormone (GH) could improve fatty liver in GH-deficient patients. Here, we investigated whether chronic exogenous GH levels could improve hepatic steatosis induced by a high-fat diet in rats, and explored the underlying mechanisms. RESULTS High-fat diet-fed rats developed abdominal obesity, fatty liver and insulin resistance. Chronic exogenous GH improved fatty liver, by reversing dyslipidaemia, fat accumulation and insulin resistance. Exogenous GH also reduced serum tumour necrosis factor-alpha (TNF-alpha) levels, and ameliorated hepatic lipid peroxidation and oxidative stress. Hepatic fat deposition was also reduced by exogenous GH levels, as was the expression of adipocyte-derived adipokines (adiponectin, leptin and resistin), which might improve lipid metabolism and hepatic steatosis. Exogenous GH seems to improve fatty liver by reducing fat weight, improving insulin sensitivity and correcting oxidative stress, which may be achieved through phosphorylation or dephosphorylation of a group of signal transducers and activators of hepatic signal transduction pathways. CONCLUSIONS Chronic exogenous GH has positive effects on fatty liver and may be a potential clinical application in the prevention or reversal of fatty liver. However, chronic secretion of exogenous GH, even at a low level, may increase serum glucose and insulin levels in rats fed a standard diet, and thus increase the risk of insulin resistance.
Collapse
Affiliation(s)
- Ying Qin
- Department of Clinical Biochemistry, Chinese People's Liberation Army General Hospital, 28 Fu-Xing Road, Beijing, China
| | - Ya-ping Tian
- Department of Clinical Biochemistry, Chinese People's Liberation Army General Hospital, 28 Fu-Xing Road, Beijing, China
| |
Collapse
|
15
|
Rasmussen MH. Obesity, growth hormone and weight loss. Mol Cell Endocrinol 2010; 316:147-53. [PMID: 19723558 DOI: 10.1016/j.mce.2009.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 07/30/2009] [Accepted: 08/25/2009] [Indexed: 11/29/2022]
Abstract
Growth hormone (GH) is the most important hormonal regulator of postnatal longitudinal growth in man. In adults GH is no longer needed for longitudinal growth. Adults with growth hormone deficiency (GHD) are characterised by perturbations in body composition, lipid metabolism, cardiovascular risk profile and bone mineral density. It is well established that adult GHD usually is accompanied by an increase in fat accumulation and GH replacement in adult patients with GHD results in reduction of fat mass and abdominal fat mass in particular. It is also recognized that obesity and abdominal obesity in particular results in a secondary reduction in GH secretion and subnormal insulin-like growth factor-I (IGF-I) levels. The recovery of the GH IGF-I axis after weight loss suggest an acquired defect, however, the pathophysiologic role of GH in obesity is yet to be fully understood. In clinical studies examining the efficacy of GH in obese subjects very little or no effect are observed with respect to weight loss, whereas GH seems to reduce total and abdominal fat mass in obese subjects. The observed reductions in abdominal fat mass are modest and similar to what can be achieved by diet or exercise interventions.
Collapse
Affiliation(s)
- Michael Højby Rasmussen
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Longo KA, Berryman DE, Kelder B, Charoenthongtrakul S, Distefano PS, Geddes BJ, Kopchick JJ. Daily energy balance in growth hormone receptor/binding protein (GHR -/-) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency. Growth Horm IGF Res 2010; 20:73-79. [PMID: 19747867 PMCID: PMC2814926 DOI: 10.1016/j.ghir.2009.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/02/2009] [Accepted: 08/11/2009] [Indexed: 01/18/2023]
Abstract
The goal of this study was to examine factors that contribute to energy balance in female GHR -/- mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (M(b)) changes and physical activity in 17month-old female GHR -/- mice and their age-matched wild type littermates. The GHR -/- mice were smaller, consumed more food per unit M(b), had greater EE per unit M(b) and had an increase in 24-h EE/M(b) that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR -/- mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, M(b) and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for M(b) and LMA, the GHR -/- mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR -/- mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR -/- mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final 3h of the dark phase. Therefore, we conclude that GHR -/- mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable M(b). Relative to wild type mice, the GHR -/- mice consumed more calories per unit M(b), which offset the disproportionate increase in their daily energy expenditure. While GHR -/- mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA.
Collapse
Affiliation(s)
- Kenneth A Longo
- Elixir Pharmaceuticals, Inc., 12 Emily St., Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kubota Y, Unoki H, Bujo H, Rikihisa N, Udagawa A, Yoshimoto S, Ichinose M, Saito Y. Low-dose GH supplementation reduces the TLR2 and TNF-α expressions in visceral fat. Biochem Biophys Res Commun 2008; 368:81-7. [DOI: 10.1016/j.bbrc.2008.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 01/09/2008] [Indexed: 01/08/2023]
|
18
|
Fam BC, Morris MJ, Hansen MJ, Kebede M, Andrikopoulos S, Proietto J, Thorburn AW. Modulation of central leptin sensitivity and energy balance in a rat model of diet-induced obesity. Diabetes Obes Metab 2007; 9:840-52. [PMID: 17924866 DOI: 10.1111/j.1463-1326.2006.00653.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM The aim of this study was to further explore the time-dependent changes in leptin sensitivity using a rat model of dietary fat-induced obesity and to investigate the potential mechanisms governing these changes. METHODS We used male, adult Sprague-Dawley rats that were fed either a standard laboratory chow diet (3% fat) or a high-saturated fat (HF) diet (60% fat) for 2 or 5 weeks. Energy balance (body weight, energy intake and energy expenditure); sensitivity to central leptin and central alpha-melanin stimulating hormone (alpha-MSH) administration and expression levels of hypothalamic ObRb, signal transducers and activators of transcription factor (STAT)-3 phosphorylation, suppressor of cytokine signalling-3 (SOCS-3), proopiomelanocortin (POMC) processing hormones (prohormone convertase-1 and prohormone convertase-2) and neuropeptide Y (NPY) were measured. RESULTS After 2 weeks of feeding HF diet, there was an increase in total energy intake (TEI) but a reduction in food intake as measured by the mass of food ingested. Body weight at this time was not significantly different between the two diet groups; however, white adipose tissue (WAT) weight was significantly greater in the HF-fed rats than in the chow-fed rats. In addition, spontaneous physical activity levels were increased, but no changes were observed in resting energy expenditure. Furthermore, chow-fed lean rats responded to central leptin administration by reducing the energy intake by approximately 67 kJ compared with saline treatment (p < 0.05), while the HF-fed diet-induced obese (DIO) rats responded by reducing their energy intake by approximately 197 kJ compared with saline treatment (p < 0.05). After 5 weeks of feeding HF diet, TEI remained significantly higher, body weight was significantly increased by 5% in the HF-fed rats and WAT weight was significantly heavier in HF-fed rats than in the chow-fed lean rats. After leptin treatment, the chow-fed lean rats reduced their energy intake by approximately 97 kJ (p < 0.05); yet, leptin had no significant effect in the HF-fed DIO rats. ObRb protein expression, STAT-3 phosphorylation levels, content and messenger RNA (mRNA) expression of NPY, SOCS-3 mRNA and protein expression and energy intake response to central alpha-MSH administration were not altered after HF diet feeding. CONCLUSION These results suggest that early in the course of HF diet-induced weight gain, there was a period of central leptin hypersensitivity, and as the obesity progresses, central leptin insensitivity develops. This insensitivity does not appear to be explained by a downregulation of ObRb protein levels, reduced leptin signalling, an increase in either SOCS-3 or NPY expression or reduced function of the melanocortin system. The effect of an HF diet on other actions of leptin such as its effect on the endocannabinoid system should be investigated.
Collapse
Affiliation(s)
- B C Fam
- Department of Medicine, Austin and Repatriation Medical Centre, University of Melbourne, Heidelberg, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Antiobesity drugs that target peripheral metabolism may avoid some of the problems that have been encountered with centrally acting anorectic drugs. Moreover, if they cause weight loss by increasing fat oxidation, they not only address a cause of obesity but also should promote loss of fat rather than lean tissue and improve insulin sensitivity. Weight loss may be slow but more sustained than with anorectic drugs, and thermogenesis may be insufficient to cause any discomfort. Some thermogenic approaches are the activation of adrenergic, thyroid hormone or growth hormone receptors and the inhibition of glucocorticoid receptors; the modulation of transcription factors [e.g. peroxisome proliferator-activated receptor delta (PPARdelta) activators] or enzymes [e.g. glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors] that promote mitochondrial biogenesis, and the modulation of transcription factors (PPAR alpha activators) or enzymes (AMP-activated protein kinase) that promote fatty acid oxidation. More surprisingly, studies on genetically modified animals and with enzyme inhibitors suggest that inhibitors of fatty acid synthesis [e.g. ATP citrate lyase, fatty acid synthase, acetyl-CoA carboxylase (ACC)], fatty acid interconversion [stearoyl-CoA desaturase (SCD)] and triglyceride synthesis (e.g. acyl-CoA : diacylglycerol acyltransferase) may all be thermogenic. Some targets have been validated only by deleting genes in the whole animal. In these cases, it is possible that deletion of the protein in the brain is responsible for the effect on adiposity, and therefore a centrally penetrant drug would be required. Moreover, whilst a genetically modified mouse may display resistance to obesity in response to a high fat diet, it requires a tool compound to demonstrate that a drug might actually cause weight loss. Even then, it is possible that differences between rodents and humans, such as the greater thermogenic capacity of rodents, may give a misleading impression of the potential of a drug.
Collapse
Affiliation(s)
- J C Clapham
- Department of Molecular Pharmacology, AstraZeneca R & D Mölndal, Mölndal, Sweden
| | | |
Collapse
|
20
|
Abstract
Obesity is a major public health concern and environmental factors are involved in its development. The hypothalamus is a primary site for the integration of signals for the regulation of energy homeostasis. Dysregulation of these pathways can lead to weight loss or gain. Some drugs in development can have favourable effects on body weight, acting on some of these pathways and leading to responses resulting in weight loss. Strategies for the management of weight reduction include exercise, diet, behavioural therapy, drug therapy and surgery. Investigational antiobesity medications can modulate energy homeostasis by stimulating catabolic or inhibiting anabolic pathways. Investigational drugs stimulating catabolic pathways consist of leptin, agonists of melanocortin receptor-4, 5-HT and dopamine; bupropion, growth hormone fragments, cholecystokinin subtype 1 receptor agonist, peptide YY3-36, oxyntomodulin, ciliary neurotrophic factor analogue, beta3-adrenergic receptor agonists, adiponectin derivatives and glucagon-like peptide-1. On the other hand, investigational drugs inhibiting anabolic pathways consist of the ghrelin receptor, neuropeptide Y receptor and melanin-concentrating hormone-1 antagonists; somatostatin analogues, peroxisome proliferator-activated receptor-gamma and -beta/delta antagonists, gastric emptying retardation agents, pancreatic lipase inhibitors, topiramate and cannabinoid-1 receptor antagonists. These differing approaches are reviewed and commented on in this article.
Collapse
MESH Headings
- Animals
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Body Weight
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Energy Metabolism
- Humans
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Leptin/genetics
- Leptin/pharmacology
- Leptin/therapeutic use
- Obesity/drug therapy
- Obesity/metabolism
- Peroxisome Proliferator-Activated Receptors/drug effects
- Peroxisome Proliferator-Activated Receptors/metabolism
- Randomized Controlled Trials as Topic
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/metabolism
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Serotonin 5-HT1 Receptor Agonists
- Serotonin 5-HT2 Receptor Agonists
- Serotonin Receptor Agonists/pharmacology
- Serotonin Receptor Agonists/therapeutic use
Collapse
Affiliation(s)
- Marcio C Mancini
- Sao Paulo University, Obesity & Metabolic Syndrome Group of the Endocrinology & Metabology Service, Faculty of Medicine, Hospital das Clínicas, Sao Paulo, Brazil.
| | | |
Collapse
|
21
|
Langin D. Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol 2006; 329:598-607; discussion 653-5. [PMID: 16860278 DOI: 10.1016/j.crvi.2005.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/18/2005] [Indexed: 11/25/2022]
Abstract
Adipose tissue lipolysis is the catabolic process leading to the breakdown of triglycerides stored in fat cells and the release of fatty acids and glycerol. Recent work has revealed that lipolysis is not a simple metabolic pathway stimulated by catecholamines and inhibited by insulin. New discoveries on the regulation of lipolysis by endocrine and paracrine factors and on the proteins involved in triglyceride hydrolysis have led to a reappraisal of the complexity of the various signal transduction pathways. The steps involved in the dysregulation of lipolysis observed in obesity have partly been identified.
Collapse
Affiliation(s)
- Dominique Langin
- Unité de recherches sur les obésités, INSERM UPS U586, institut Louis-Bugnard, université Paul-Sabatier, CHU Rangueil, BP 84225, 31432 Toulouse cedex 4, France.
| |
Collapse
|
22
|
Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 2006; 53:482-91. [PMID: 16644234 DOI: 10.1016/j.phrs.2006.03.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 02/08/2023]
Abstract
Adipose tissue lipolysis is the catabolic process leading to the breakdown of triglycerides stored in fat cells and release of fatty acids and glycerol. Recent work has revealed that lipolysis is not a simple metabolic pathway stimulated by catecholamines and inhibited by insulin. There have been new discoveries on the endocrine and paracrine regulation of lipolysis and on the molecular mechanisms of triglyceride hydrolysis. Catecholamines modulate lipolysis through lipolytic beta-adrenoceptor and antilipolytic alpha2-adrenoceptor. Recent studies have allowed a better understanding of the relative contribution of the two types of receptors and provided evidence for the in vivo involvement of alpha2-adrenoceptors in the physiological control of subcutaneous adipose tissue lipolysis. A puzzling observation is the characterization of a residual catecholamine-induced lipolysis in mice deficient in beta-adrenoceptors. A novel lipolytic system has been characterized in human fat cells. Natriuretic peptides stimulate lipolysis through a cGMP-dependent pathway. There are other lipolytic pathways active in human fat cells which importance is not fully understood. Forty years after the description of the antilipolytic effect of nicotinic acid, the receptors have been identified. Adrenomedullin which is produced by adipocytes exert an antilipolytic effect through an indirect mechanism involving nitric oxide. The molecular details of the lipolytic reaction are not fully understood. The role of the lipases has been re-evaluated with the cloning of adipose triglyceride lipase. Hormone-sensitive lipase appears as the major lipase for catecholamine and natriuretic peptide-stimulated lipolysis whereas adipose triglyceride lipase mediates the hydrolysis of triglycerides during basal lipolysis. Translocation of hormone-sensitive lipase bound to the adipocyte lipid binding protein to the lipid droplet seems to be an important step during lipolytic activation. Re-organization of the lipid droplet coating by perilipins facilitates the access of the enzyme. The role of other lipid-interacting proteins in lipolysis is still unclear. The proteins involved in the lipolytic process constitute drug targets for the treatment of obesity and the metabolic syndrome. The oldest example is nicotinic acid (niacin) used as a hypolipidaemic drug. A first approach consists in molecules stimulating lipolysis and oxidation of the released fatty acids to decrease fat stores. A second approach is a chronic inhibition of lipolysis to diminish plasma fatty acid level which is a central feature of the metabolic syndrome.
Collapse
Affiliation(s)
- Dominique Langin
- Obesity Research Unit Inserm UPS U586, Institut Louis Bugnard, Université Paul Sabatier, CHU Rangueil, Toulouse, France.
| |
Collapse
|
23
|
Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. ACTA ACUST UNITED AC 2004; 12:1197-211. [PMID: 15340100 DOI: 10.1038/oby.2004.151] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Public health efforts and current antiobesity agents have not controlled the increasing epidemic of obesity. Investigational antiobesity agents consist of 1) central nervous system agents that affect neurotransmitters or neural ion channels, including antidepressants (bupropion), selective serotonin 2c receptor agonists, antiseizure agents (topiramate, zonisamide), some dopamine antagonists, and cannabinoid-1 receptor antagonists (rimonabant); 2) leptin/insulin/central nervous system pathway agents, including leptin analogues, leptin transport and/or leptin receptor promoters, ciliary neurotrophic factor (Axokine), neuropeptide Y and agouti-related peptide antagonists, proopiomelanocortin and cocaine and amphetamine regulated transcript promoters, alpha-melanocyte-stimulating hormone analogues, melanocortin-4 receptor agonists, and agents that affect insulin metabolism/activity, which include protein-tyrosine phosphatase-1B inhibitors, peroxisome proliferator activated receptor-gamma receptor antagonists, short-acting bromocriptine (ergoset), somatostatin agonists (octreotide), and adiponectin; 3) gastrointestinal-neural pathway agents, including those that increase cholecystokinin activity, increase glucagon-like peptide-1 activity (extendin 4, liraglutide, dipeptidyl peptidase IV inhibitors), and increase protein YY3-36 activity and those that decrease ghrelin activity, as well as amylin analogues (pramlintide); 4) agents that may increase resting metabolic rate ("selective" beta-3 stimulators/agonist, uncoupling protein homologues, and thyroid receptor agonists); and 5) other more diverse agents, including melanin concentrating hormone antagonists, phytostanol analogues, functional oils, P57, amylase inhibitors, growth hormone fragments, synthetic analogues of dehydroepiandrosterone sulfate, antagonists of adipocyte 11B-hydroxysteroid dehydrogenase type 1 activity, corticotropin-releasing hormone agonists, inhibitors of fatty acid synthesis, carboxypeptidase inhibitors, indanones/indanols, aminosterols, and other gastrointestinal lipase inhibitors (ATL962). Finally, an emerging concept is that the development of antiobesity agents must not only reduce fat mass (adiposity) but must also correct fat dysfunction (adiposopathy).
Collapse
Affiliation(s)
- Harold E Bays
- FACP Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Ave., Louisville, KY 40213, USA.
| |
Collapse
|
24
|
Cheetham SC, Jackson HC, Vickers SP, Dickinson K, Jones RB, Heal DJ. Novel targets for the treatment of obesity: a review of progress. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddstr.2004.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|