1
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
2
|
Lovas A, Szilágyi B, Bosnyák E, Ács P, Oláh A, Komka Z, Tóth M, Merkely B, Németh E, Gilányi B, Krepuska M, Sőti C, Sótonyi P. Reaction Kinetics Modeling of eHsp70 Induced by Norepinephrine in Response to Exercise Stress. Int J Sports Med 2020; 42:506-512. [PMID: 33291181 DOI: 10.1055/a-1224-3792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exercise elicits a systemic adaptation reaction, involving both neuroendocrine and cellular/paracrine stress responses, exemplified by the sympathoadrenergic activity and the release of cellular Hsp70 into the circulation. Regular sports training is known to result in increased fitness. In this study, we characterized the plasma norepinephrine and Hsp70 levels and modeled their relationship in response to exercise stress by bicycle ergometer in 12 trained judoka athletes and in 10 healthy controls. Resting norepinephrine was similar in both groups, whereas Hsp70 was significantly higher in controls compared to athletes. Intense exercise load induced both norepinephrine and Hsp70 elevation. However, both norepinephrine and Hsp70 were significantly lower in athletes compared to the control group. A reaction kinetic model was developed that provided a quantitative description of norepinephrine-facilitated extracellular Hsp70 release, congruent with the experimental data. Our study indicates that exercise-induced norepinephrine and extracellular Hsp70 may be coordinated responses to physiological stress, which are robustly affected by regular sports activity.
Collapse
Affiliation(s)
- Attila Lovas
- Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Brigitta Szilágyi
- Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Bosnyák
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Pongrácz Ács
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - András Oláh
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Zsolt Komka
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary.,Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest
| | - Miklós Tóth
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Béla Merkely
- Department of Cardiology, Heart and Vascular Center, FIFA Medical Centre of Excellence, Semmelweis University Budapest, Hungary
| | - Endre Németh
- Department of Combat Sports, University of Physical Education, Budapest, Hungary
| | - Beatrix Gilányi
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Miklós Krepuska
- Department of Vascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest
| | - Csaba Sőti
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
4
|
Nedergaard J, Wang Y, Cannon B. Cell proliferation and apoptosis inhibition: essential processes for recruitment of the full thermogenic capacity of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:51-58. [PMID: 29908367 DOI: 10.1016/j.bbalip.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
In mice living under normal animal house conditions, the brown adipocytes in classical brown adipose tissue depots are already essentially fully differentiated: UCP1 mRNA and UCP1 protein levels are practically saturated. This means that any further recruitment - in response to cold exposure or any other browning agent - does not result in significant augmentation of these parameters. This may easily be construed to indicate that classical brown adipose tissue cannot be further recruited. However, this is far from the case: the capacity for further recruitment instead lies in the ability of the tissue to increase the number of brown-fat cells, a remarkable and highly controlled physiological recruitment process. We have compiled here the available data concerning the unique ability of norepinephrine to increase cell proliferation and inhibit apoptosis in brown adipocytes. Adrenergically stimulated cell proliferation is fully mediated via β1-adrenoceptors and occurs through activation of stem cells in the tissue; intracellular mediation of the signal involves cAMP and protein kinase A activation, but activation of Erk1/2 is not part of the pathway. Apoptosis inhibition in brown adipocytes is induced by both β- and α1-adrenergic receptors and here the intracellular pathway includes Erk1/2 activation. This unique ability of norepinephrine to increase cell number in an apparently mitogenically dormant tissue provides possibilities to augment the metabolic capacity of brown adipose tissue, also for therapeutic purposes.
Collapse
Affiliation(s)
- Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Yanling Wang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Abstract
The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues versus classical brown tissue to a higher degree than does cold acclimation. Thus, to restrict investigations to examine adipose tissue depots where only a limited part of the adaptation process occurs (i.e. the brite/beige tissues) and to use initial conditions different from the thermoneutrality normally experienced by adult humans may seriously hamper the identification of therapeutically valid browning agents. The data presented here have therefore important implications for the analysis of the potential of browning agents and the nature of human brown adipose tissue.
Collapse
|
6
|
Joshi JC, Ray A, Gulati K. Effects of morphine on stress induced anxiety in rats: Role of nitric oxide and Hsp70. Physiol Behav 2015; 139:393-6. [DOI: 10.1016/j.physbeh.2014.11.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
7
|
Abstract
Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Saverio Cinti
- Faculty of Medicine, Univ. of Ancona (Politecnica delle Marche Via Tronto 10a, 60020 Ancona, Italy.
| |
Collapse
|
8
|
Abstract
The characteristic structural organization of mitochondria is the product of synthesis of macromolecules within the mitochondria together with the import of proteins and lipids synthesized outside the organelle. Synthetic and import processes are required for mitochondrial proliferation and might also facilitate the growth of pre-existing mitochondria. Recent evidence indicates that these events are regulated in a complex way by several agonists and environmental conditions, through activation of specific signaling pathways and transcription factors. A newly discovered role of this organelle in retrograde intracellular signaling back to the nucleus has also emerged. This is likely to have far-reaching implications in development, aging, disease and environmental adaptation. Generation of nitric oxide (NO) appears to be an important player in these processes, possibly acting as a unifying molecular switch to trigger the whole mitochondrial biogenesis process. High levels of NO acutely inhibit cell respiration by binding to cytochrome c oxidase. Conversely, chronic, smaller increases in NO levels stimulate mitochondrial biogenesis in diverse cell types. NO-induced mitochondrial biogenesis seems to be linked to proliferation and differentiation of normal and tumor cells, as well as in aging.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, Milan University, via Vanvitelli 32, 20129 Milan, Italy.
| | | |
Collapse
|
9
|
Abstract
The function of brown adipose tissue is to transfer energy from food into heat; physiologically, both the heat produced and the resulting decrease in metabolic efficiency can be of significance. Both the acute activity of the tissue, i.e., the heat production, and the recruitment process in the tissue (that results in a higher thermogenic capacity) are under the control of norepinephrine released from sympathetic nerves. In thermoregulatory thermogenesis, brown adipose tissue is essential for classical nonshivering thermogenesis (this phenomenon does not exist in the absence of functional brown adipose tissue), as well as for the cold acclimation-recruited norepinephrine-induced thermogenesis. Heat production from brown adipose tissue is activated whenever the organism is in need of extra heat, e.g., postnatally, during entry into a febrile state, and during arousal from hibernation, and the rate of thermogenesis is centrally controlled via a pathway initiated in the hypothalamus. Feeding as such also results in activation of brown adipose tissue; a series of diets, apparently all characterized by being low in protein, result in a leptin-dependent recruitment of the tissue; this metaboloregulatory thermogenesis is also under hypothalamic control. When the tissue is active, high amounts of lipids and glucose are combusted in the tissue. The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Collapse
Affiliation(s)
- Barbara Cannon
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
10
|
Chan CY, Huang SW, Wang TF, Lu RH, Lee FY, Chang FY, Chu CJ, Chen YC, Chan CC, Huang HC, Lee SD. Lack of detrimental effects of nitric oxide inhibition in bile duct-ligated rats with hepatic encephalopathy. Eur J Clin Invest 2004; 34:122-8. [PMID: 14764075 DOI: 10.1111/j.1365-2362.2004.01295.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The pathogenetic mechanisms of hepatic encephalopathy (HE) are not fully understood. Vasodilatation induced by nitric oxide (NO) may be involved in the development of HE. There is no comprehensive data concerning the effects of NO inhibition on HE in chronic liver disease. METHODS Male Sprague-Dawley rats weighing 240-270 g at the time of surgery were selected for experiments. Secondary biliary cirrhosis was induced by bile duct ligation (BDL). Counts of movements were compared between BDL rats and rats receiving a sham operation. In another series of experiments, BDL rats received either Nomega-nitro-L-arginine methyl ester (L-NAME, 25 mg kg-1 day-1 in tap water) or tap water (control) from the 36th to 42nd days after BDL. Besides motor activities, plasma levels of tumour necrosis factor (TNF)-alpha and nitrate/nitrite, liver biochemistry tests and haemodynamics were determined after treatment. RESULTS Compared with the sham-operated rats, the total, ambulatory and vertical movements were significantly decreased in the BDL rats (P </= 0.001). The L-NAME group had a significantly higher mean arterial pressure than that of the control group (119.0 +/- 2.5 mmHg vs. 97.3 +/- 2.8 mmHg, P = 0.002). However, the counts of motor activities, plasma levels of TNF-alpha and nitrate/nitrite, and serum biochemistry tests were not significantly different between the L-NAME and control groups. CONCLUSIONS Bile duct ligation may induce HE evidenced by a decrease in motor activities. However, chronic L-NAME administration did not have significantly detrimental or therapeutic effects on the severity of encephalopathy in BDL rats.
Collapse
Affiliation(s)
- C-Y Chan
- Taipei Veterans General Hospital, Armed Forces Sungshan Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sapozhnikov AM, Tarasenko TN, Ponomarev AD, Gusarova GA, Murashko DA, Petrov RV. The adrenalin-mediated activation of expression of the 70-kDa heat-shock protein in the population of thymocytes. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2003; 392:388-90. [PMID: 14650865 DOI: 10.1023/a:1026111418257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A M Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117871 Russia
| | | | | | | | | | | |
Collapse
|
12
|
Dobashi K, Asayama K, Shirahata A. Differential effects of cyclic AMP on induction of nitric oxide synthase in 3T3-L1 cells and brown adipocytes. Free Radic Biol Med 2003; 35:94-101. [PMID: 12826259 DOI: 10.1016/s0891-5849(03)00272-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine whether cyclic AMP (cAMP) pathways alter the nitric oxide (NO) production mediated by inducible NO synthase (iNOS) in adipocytes. The treatment of 3T3-L1 cells, a model of white adipocytes, with the combination of lipopolysaccharide (L), tumor necrosis factor-alpha (T), and interferon-gamma (I) synergistically induced iNOS, leading to the production of NO. Enhancers of intracellular cAMP (dibutyryl cAMP, forskolin, and IBMX) inhibited the NO production elicited by LTI, whereas H89, a specific inhibitor of PKA, stimulated the NO production in 3T3-L1 cells. In rat brown adipocyte cell line, the combined treatment with LT synergistically elicited the NO production, and the cAMP analogues further enhanced it. Forskolin inhibited the NO production in 3T3-L1 cells, but enhanced it in brown adipocytes, in a dose-dependent manner. The changes in NO production paralleled the change in iNOS mRNA and protein level in both cell types. The activation of NF-kappaB by LTI/LT was blocked in 3T3-L1 cells, but enhanced in brown adipocytes, by the co-treatment with cAMP analogues. The protein level of 1-kappaBalpha, a NF-kappaB stabilizer, changed reciprocally to that of NF-kappaB activity in each cell type. These results suggest that cAMP regulates iNOS expression in adipocytes through modulating NF-kappaB activity. The differential regulation of iNOS in 3T3-L1 cells from that in the brown adipocytes indicates that intracellular signal pathways activated by cAMP are different between the cell types.
Collapse
Affiliation(s)
- Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
13
|
Abstract
The presence of activated oncogenes and/or inactivated tumor suppressor genes may result in constitutive activation of multiple transcription factors. This may be especially true in the early stages of tumor development. At advanced stages, however, uncontrolled tumor growth and the consequent development of a stress microenvironment, such as hypoxia, acidosis, and free radical overproduction, may further alter the activity of these transcription factors. Abnormal activation of and interplay between these factors lead to aberrant expression of multiple metastasis-related proteins and confer a tremendous survival and growth advantage to emerging metastatic variants. Understanding the expression and regulation of these molecules may shed more light on the biology of cancer metastasis as well as suggest new preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Keping Xie
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
14
|
Heneka MT, Gavrilyuk V, Landreth GE, O'Banion MK, Weinberg G, Feinstein DL. Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression. J Neurochem 2003; 85:387-98. [PMID: 12675915 DOI: 10.1046/j.1471-4159.2003.01694.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The inflammatory responses in many cell types are reduced by noradrenaline (NA) binding to beta-adrenergic receptors. We previously demonstrated that cortical inflammatory responses to aggregated amyloid beta (Abeta) are increased if NA levels were first depleted by lesioning locus ceruleus (LC) noradrenergic neurons, which replicates the loss of LC occurring in Alzheimer's disease. To examine the molecular basis for increased responses, we used the selective neurotoxin DSP4 to lesion the LC, and then examined levels of putative anti-inflammatory molecules. Inflammatory responses were achieved by injection of aggregated Abeta1-42 peptide and IL-1beta into frontal cortex, which induced neuronal inducible nitric oxide synthase (iNOS) and microglial IL-1beta expression. DSP4-treatment reduced basal levels of nuclear factor kappa B (NF-kappaB) inhibitory IkappaB proteins, and of heat shock protein (HSP)70. Inflammatory responses were prevented by co-injection (ibuprofen or ciglitzaone) or oral administration (pioglitazone) of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. Treatment with PPARgamma agonists restored IkappaBalpha, IkappaBbeta, and HSP70 levels to values equal or above those observed in control animals, and reduced activation of cortical NF-kappaB. These results suggest that noradrenergic depletion reduces levels of anti-inflammatory molecules which normally limit cortical responses to Abeta, and that PPARgamma agonists can reverse that effect. These findings suggest one mechanism by which PPARgamma agonists could provide benefit in neurological diseases having an inflammatory component.
Collapse
|
15
|
Ren ZG, Pörzgen PP, Youn YH, Sieber-Blum M. Ubiquitous embryonic expression of the norepinephrine transporter. Dev Neurosci 2003; 25:1-13. [PMID: 12876425 DOI: 10.1159/000071462] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 10/24/2002] [Indexed: 11/19/2022] Open
Abstract
We report that the norepinephrine transporter (NET) is expressed in avian and mouse embryos by numerous tissues that are derived from all three germ layers. In the nervous system, NET is expressed in the neuroepithelium of the brain and the spinal cord (ventral horn and floor plate), forming mesencephalic nuclei, neural crest, dorsal root ganglion, sympathetic ganglion and spinal nerve. Nonneuronal embryonic NET-expressing structures include the olfactory epithelium, the notochord, the somitic dermamyotome and mesenchymal cells in the limb bud. NET is expressed prominently in the cardiovascular system, including endothelial cells of forming blood vessels, the walls of the aorta and veins, the epicardium, myocardium and a subset of blood cells. The gut, lung buds, and in particular the kidneys, are intensely NET immunoreactive. Since neurotransmitters are known to affect proliferation, survival and differentiation of many mesenchymal cell types, NET function may be a physiologically relevant regulatory element in embryonic development. A working model is proposed for neurotransmitter transporter function in the embryo as a system for the concentration and targeted delivery of neurotransmitter.
Collapse
Affiliation(s)
- Z G Ren
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
16
|
Gavrilyuk V, Dello Russo C, Heneka MT, Pelligrino D, Weinberg G, Feinstein DL. Norepinephrine increases I kappa B alpha expression in astrocytes. J Biol Chem 2002; 277:29662-8. [PMID: 12050158 DOI: 10.1074/jbc.m203256200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurotransmitter norepinephrine (NE) can inhibit inflammatory gene expression in glial cells; however, the mechanisms involved are not clear. In primary astrocytes, NE dose-dependently increased the expression of inhibitory I kappa B alpha protein accompanied by an increase in steady state levels of I kappa B alpha mRNA. Maximal increases were observed at 30-60 min for the mRNA and at 4 h for protein, and these effects were mediated by NE binding to beta-adrenergic receptors. NE activated a 1.3-kilobase I kappa B alpha promoter transfected into astrocytes or C6 glioma cells, and this activation was prevented by a beta-antagonist and by protein kinase A inhibitors but not by an NF kappa B inhibitor. NE increased I kappa B alpha protein in both the cytosolic and the nuclear fractions, suggesting an increase in nuclear uptake of I kappa B alpha. I kappa B alpha was detected in the frontal cortex of normal adult rats, and its levels were reduced if central NE levels were depleted by lesion of the locus ceruleus. The reduction of brain I kappa B alpha levels was paralleled by increased inflammatory responses to lipopolysaccharide. These results demonstrate that I kappa B alpha expression is regulated by NE at both transcriptional and post-transcriptional levels, which could contribute to the observed anti-inflammatory properties of NE in vitro and in vivo.
Collapse
Affiliation(s)
- Vitaliy Gavrilyuk
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|