1
|
Lalanza JF, Oyem JC, Huijgens PT, McCutcheon JE, Heijkoop R, Snoeren EMS. Behavioral and neural alterations of the ventral tegmental area by exposure to junk food in rats. Appetite 2025; 214:108146. [PMID: 40414303 DOI: 10.1016/j.appet.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
The brain reward system is essential for regulating appetitive and consummatory behaviors in response to various incentive stimuli. Junk food, characterized by its high palatability, is particularly associated with the potential for excessive consumption. While prior studies indicate that excessive junk food intake can impact reward circuitry, the precise mechanisms underlying these effects remain elusive. Furthermore, it is unclear whether the functionality of this neural system is similarly altered in response to other natural rewards. In this study, we used fiber photometry combined with a behavioral reward test to investigate the effects of six weeks of excessive cafeteria (CAF) diet consumption on ventral tegmental area (VTA) neural activity and behavioral responses to food and sexual rewards in female rats. Our findings demonstrate that prolonged exposure to a CAF diet reduced the exploration and consumption of food rewards. These behavioral changes were accompanied by attenuated neural activity in the VTA. Similarly, reductions in VTA activity were observed in response to a sexual partner, although no significant behavioral differences were detected during sexual interactions. Moreover, a two-week reversal diet of standard chow proved insufficient to restore VTA neural activity in CAF-exposed animals, which continued to exhibit decreased VTA responses to both food rewards and sexual partners. Our results suggest that prolonged junk food exposure induces desensitization of the VTA, resulting in reduced responsiveness to natural rewards.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - John C Oyem
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - Patty T Huijgens
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - James E McCutcheon
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - Roy Heijkoop
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway.
| |
Collapse
|
2
|
Shrivastava K, Athreya V, Lu Y, Luis-Islas J, Han A, Kowalski TF, Rossi MA. Energy state guides reward seeking via an extended amygdala to lateral hypothalamus pathway. Nat Commun 2025; 16:4474. [PMID: 40368884 PMCID: PMC12078644 DOI: 10.1038/s41467-025-59686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Impaired regulation of food intake underlies numerous health problems, including obesity and type 2 diabetes, yet how brain systems controlling reward seeking become dysregulated to promote overeating is unknown. Glutamatergic neurons of the lateral hypothalamic area (LHA) are thought to act as a brake on feeding, which is dysregulated during diet-induced obesity. These neurons receive input from the extended amygdala, including the bed nucleus of the stria terminalis (BNST). However, the circuit mechanisms underlying the ability of this pathway to control feeding behavior and how they contribute to dysregulated eating are unclear. Here, we discover that BNST projections to LHA (BNST→LHA) promote reward seeking in an energy state-dependent manner by combining optogenetics, in vivo multiphoton calcium imaging, and electrophysiology in mice. Synaptic strength and neuronal function within the BNST→LHA pathway are dynamically regulated according to energy state to guide reward seeking. These findings suggest that hormonal factors modulate the function of the BNST→LHA pathway to align food seeking with current energy needs.
Collapse
Affiliation(s)
- Kuldeep Shrivastava
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Vikshar Athreya
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Yi Lu
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Jorge Luis-Islas
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ashley Han
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Tess F Kowalski
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Mark A Rossi
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Brain Health Institute, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Kendig MD, Corbit LH. Cue-potentiated feeding in rodents: Implications for weight regulation in obesogenic environments. Neurobiol Learn Mem 2024; 215:107984. [PMID: 39265925 DOI: 10.1016/j.nlm.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Cue-potentiated feeding (CPF) describes instances where food intake is increased by exposure to conditioned cues associated with food, often in the absence of hunger. CPF effects have been reported in a range of experimental protocols developed by researchers working across diverse fields spanning behavioural neuroscience, social psychology and ecology. Here we review the evolution of research on cue-potentiated feeding in animal models to identify important behavioural parameters and key neural circuits and pharmacological systems underlying the effect. Overall, evidence indicates that social, discrete and contextual stimuli can be used to elicit CPF effects across multiple species, though effects are often subtle and sensitive to procedural variables. While regular exposure to food cues is thought to be a key risk factor for overeating in so-called 'obesogenic' environments, further work is needed to identify whether CPF promotes positive energy balance and weight gain over the longer term. We suggest several methodological and conceptual areas for inquiry to elucidate the contribution of CPF to the regulation of food choice and energy intake.
Collapse
Affiliation(s)
- Michael D Kendig
- School of Life Sciences, University of Technology Sydney, Australia.
| | - Laura H Corbit
- Department of Psychology and Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
4
|
Steiner AM, Roscoe RF, Booze RM, Mactutus CF. Motivational dysregulation with melanocortin 4 receptor haploinsufficiency. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:237-250. [PMID: 39741559 PMCID: PMC11683877 DOI: 10.1515/nipt-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity, by any standard, is a global health crisis. Both genetic and dietary contributions to the development and maintenance of obesity were integral factors of our experimental design. As mutations of the melanocortin 4 receptors (MC4R) are the leading monogenetic cause of obesity, MC4R haploinsufficient rats were fed a range of dietary fat (0-12 %) in a longitudinal design. Physiological and motivational assessments were performed using a locomotor task, a 5-choice sucrose preference task, an operant task with fixed and progressive ratios, as well as a distraction operant task. Dendritic spine morphology of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), cells with ample D1 and D2 receptors, was also assessed. The percentage of lipid deposits in the liver of each rat was also analyzed using the Area Fraction Fractionator probe for stereological measurements. MC4R haploinsufficiency resulted in a phenotypic resemblance for adult-onset obesity that was exacerbated by the consumption of a high-fat diet. Results from the operant tasks indicate that motivational deficits due to MC4R haploinsufficiency were apparent prior to the onset of obesity and exacerbated by dietary fat consumption after obesity was well established. Moreover, MSN morphology shifted to longer spines with smaller head diameters for the MC4R+/- animals under the high-fat diet, suggesting a potential mechanism for the dysregulation of motivation to work for food. Increasing our knowledge of the neural circuitry/mechanisms responsible for the rewarding properties of food has significant implications for understanding energy balance and the development of obesity.
Collapse
Affiliation(s)
- Alex M. Steiner
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Robert F. Roscoe
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M. Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Charles F. Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
5
|
Desmercieres S, Lardeux V, Longueville JE, Dugast E, Thiriet N, Solinas M. Effects of Highly Palatable Diet on motivation for food and resistance to punishment in rats: Role of sex and age of exposure. Appetite 2024; 198:107340. [PMID: 38582135 DOI: 10.1016/j.appet.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Exposure to highly palatable food is believed to induce behavioral and neurobiological changes that may produce addiction-like behavior and increase the risks of obesity and overweight. Studies in rodents have led to conflicting results suggesting that several factors such as sex and age of exposure contribute to the development of maladaptive behaviors towards food. In addition, it is not clear whether effects of exposure to highly palatable diets (HPD) persist after their discontinuation, which would indicate long-term risks to develop addiction-like behavior. In this study, we investigated the persistent effects of an intermittent 8-week exposure to HPD in male and female rats as a function of age of exposure (adult and adolescent). We found that intermittent exposure to HPD did not alter body weight, but it affected consumption of standard food during the time of exposure in all groups. In addition, in adults, HPD produced a decrease in the initial baseline responding in FR1 schedules, an effect that persisted for 4 weeks in males but not in female rats. However, we found that exposure to HPD did not affect resistance to punishment measured by progressive shock strength break points or motivation for food as measured by progressive-ratio break points regardless of sex or age of exposure. Altogether, these results do not provide support for the hypothesis that intermittent exposure to HPD produce persistent increases in the vulnerability to develop addiction-like behaviors towards palatable food.
Collapse
Affiliation(s)
- Stevenson Desmercieres
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Jean-Emmanuel Longueville
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
6
|
Heijkoop R, Lalanza JF, Solanas M, Álvarez-Monell A, Subias-Gusils A, Escorihuela RM, Snoeren EMS. Changes in reward-induced neural activity upon Cafeteria Diet consumption. Physiol Behav 2024; 276:114478. [PMID: 38307359 DOI: 10.1016/j.physbeh.2024.114478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Excessive consumption of highly palatable foods rich in sugar and fat, often referred to as "junk" or "fast" foods, plays a central role in the development of obesity. The highly palatable characteristics of these foods activate hedonic and motivational mechanisms to promote food-seeking behavior and overeating, which is largely regulated by the brain reward system. Excessive junk food consumption can alter the functioning of this reward system, but exact mechanisms of these changes are still largely unknown. This study investigated whether long-term junk food consumption, in the form of Cafeteria (CAF) diet, can alter the reward system in adult, female Long-Evans rats, and whether different regimes of CAF diet influence the extent of these changes. To this end, rats were exposed to a 6-week diet with either standard chow, or ad libitum daily access to CAF diet, 30 % restricted but daily access to CAF diet, or one-day-a-week (intermittent) ad libitum access to CAF diet, after which c-Fos expression in the Nucleus Accumbens (NAc), Prefrontal Cortex (PFC), and Ventral Tegmental Area (VTA) following consumption of a CAF reward of choice was examined. We found that all CAF diet regimes decreased c-Fos expression in the NAc-shell when presented with a CAF reward, while no changes in c-Fos expression upon the different diet regimes were found in the PFC, and possibly the VTA. Our data suggests that long-term junk food exposure can affect the brain reward system, resulting in an attenuated activity of the NAc-shell.
Collapse
Affiliation(s)
- R Heijkoop
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - J F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Norway
| | - M Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Spain
| | - R M Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Spain
| | - E M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Norway.
| |
Collapse
|
7
|
la Fleur SE. Stress, rhythm, choice and the munchies - tribute to Mary F. Dallman. Stress 2023; 26:2265162. [PMID: 37768282 DOI: 10.1080/10253890.2023.2265162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
In December 2021, we lost a pioneer in the field of stress research who inspired generations of scientists. Mary Dallman was an expert on the hypothalamic-pituitary-adrenal (HPA) axis, its interactions with a wide variety of other physiological systems and the impact of chronic changes of HPA function on energy metabolism and adiposity. She was not only an excellent scientist, she was a great role model and mentor for young scientists, especially women. She encouraged and supported many of her trainees even long after they left the lab. Her outside-the-box thinking, the fun and crazy discussions we had in the lab proved to be a beautiful basis for my own future research.
Collapse
Affiliation(s)
- Susanne E la Fleur
- Dept Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Endocrinology Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Slomp M, Koekkoek LL, Mutersbaugh M, Linville I, Luquet SH, la Fleur SE. Free-choice high-fat diet consumption reduces lateral hypothalamic GABAergic activity, without disturbing neural response to sucrose drinking in mice. Front Neurosci 2023; 17:1219569. [PMID: 37600007 PMCID: PMC10434857 DOI: 10.3389/fnins.2023.1219569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Nutrition can influence the brain and affect its regulation of food intake, especially that of high-palatable foods. We hypothesize that fat and sugar have interacting effects on the brain, and the lateral hypothalamus (LH) is a prime candidate to be involved in this interaction. The LH is a heterogeneous area, crucial for regulating consummatory behaviors, and integrating homeostatic and hedonic needs. GABAergic LH neurons stimulate feeding when activated, and are responsive to consummatory behavior while encoding sucrose palatability. Previously, we have shown that glutamatergic LH neurons reduce their activity in response to sugar drinking and that this response is disturbed by a free-choice high-fat diet (fcHFD). Whether GABAergic LH neurons, and their response to sugar, is affected by a fcHFD is yet unknown. Using head-fixed two-photon microscopy, we analyzed activity changes in LHVgat neuronal activity in chow or fcHFD-fed mice in response to water or sucrose drinking. A fcHFD decreased overall LHVgat neuronal activity, without disrupting the sucrose-induced increase. When focusing on the response per unique neuron, a vast majority of neurons respond inconsistently over time. Thus, a fcHFD dampens overall LH GABAergic activity, while it does not disturb the response to sucrose. The inconsistent responding over time suggests that it is not one specific subpopulation of LH GABAergic neurons that is driving these behaviors, but rather a result of the integrative properties of a complex neural network. Further research should focus on determining how this dampening of LH GABAergic activity contributes to hyperphagia and the development of obesity.
Collapse
Affiliation(s)
- Margo Slomp
- Endocrinology Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
| | - Laura L. Koekkoek
- Endocrinology Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
| | - Michael Mutersbaugh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ian Linville
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Serge H. Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Susanne E. la Fleur
- Endocrinology Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
9
|
Römer SS, Bliokas V, Teo JT, Thomas SJ. Food addiction, hormones and blood biomarkers in humans: A systematic literature review. Appetite 2023; 183:106475. [PMID: 36716820 DOI: 10.1016/j.appet.2023.106475] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Food addiction may play a role in rising obesity rates in connection with obesogenic environments and processed food availability, however the concept of food addiction remains controversial. While animal studies show evidence for addictive processes in relation to processed foods, most human studies are psychologically focussed and there is a need to better understand evidence for biological mechanisms of food addiction in humans. Several key hormones are implicated in models of food addiction, due to their key roles in feeding, energy metabolism, stress and addictive behaviours. This systematic literature review examines evidence for relationships between food addiction, hormones and other blood biomarkers. METHODS A series of literature searches was performed in Scopus, PsychInfo, MedLine, ProQuest, CINAHL and Web of Science. A total of 3111 articles were found, of which 1045 were duplicates. Articles were included if they contained a psychometric measurement of food addiction, such as the Yale Food Addiction Scale, as well as addressed the association between FA and hormones or blood biomarkers in humans. Articles were assessed for eligibility by two independent reviewers. RESULTS Sixteen studies were identified that examined relationships between food addiction and blood biomarkers, published between 2015 and 2021. Significant findings were reported for leptin, ghrelin, cortisol, insulin and glucose, oxytocin, cholesterol, plasma dopamine, thyroid stimulating hormone (TSH), haemoglobin A1c (HbA1c), triglyceride (TG), amylin, tumour necrosis factor alpha (TNF- α) and cholecystokinin (CCK). Methodological issues included small sample sizes and variation in obesity status, sex and mental health-related comorbidities. Due to methodological limitations, definite connections between FA, hormones and other blood biomarkers cannot yet be determined. CONCLUSION This systematic review identified preliminary evidence linking FA symptoms to hormones and other blood biomarkers related to feeding, addiction, and stress. However, due to the small number of studies and methodological limitations, further research is needed to evaluate biopsychosocial models of FA and to resolve controversies.
Collapse
Affiliation(s)
- Stephanie Sophie Römer
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia.
| | - Vida Bliokas
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2522, Australia.
| | - Jillian Terese Teo
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia.
| | - Susan J Thomas
- Illawarra Health and Medical Research Institute, University of Wollongong, 2522, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Australia.
| |
Collapse
|
10
|
Matikainen-Ankney BA, Legaria AA, Pan Y, Vachez YM, Murphy CA, Schaefer RF, McGrath QJ, Wang JG, Bluitt MN, Ankney KC, Norris AJ, Creed MC, Kravitz AV. Nucleus Accumbens D 1 Receptor-Expressing Spiny Projection Neurons Control Food Motivation and Obesity. Biol Psychiatry 2023; 93:512-523. [PMID: 36494220 DOI: 10.1016/j.biopsych.2022.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.
Collapse
Affiliation(s)
| | - Alex A Legaria
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Yiyan Pan
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Yvan M Vachez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlin A Murphy
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robert F Schaefer
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Quinlan J McGrath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Justin G Wang
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Maya N Bluitt
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin C Ankney
- Department of Economics, Georgetown University, Washington, DC
| | - Aaron J Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Meaghan C Creed
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
11
|
Zepeda-Ruiz WA, Paez HAA, Cerbon M, Velazquez Martinez DN. Exposure to a hypercaloric diet produces long lasting changes in motivation. Behav Processes 2022; 202:104737. [PMID: 36038025 DOI: 10.1016/j.beproc.2022.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Changes in motivation have been observed following induction of diet-induced obesity. However, to date, results have been contradictory, some authors reporting an increase in motivation to obtain palatable food, but others observing a decrease. Observed differences might be associated with the length of both the evaluation period and exposure to the diet. Therefore, the aim of this study was to evaluate changes in motivation during 20 weeks of exposure to a hypercaloric diet. Performance of the subjects in a progressive ratio schedule was evaluated before and during the exposure to a high-fat, high-sugar choice diet (HFHSc). A decrease in motivation was observed after 2 weeks of diet exposure, low levels of motivation remained throughout 20 weeks. A comparable decrease in motivation took longer (3 weeks) to develop using chow diet in the control group. Overall, our results suggest that, when changes in motivation are being evaluated, long periods of diet exposure made no further contribution, once motivation decreased, it remained low up to 18 weeks. Exposure to a HFHSc diet is a useful animal model of obesity, since it replicates some pathophysiological and psychological features of human obesity such as an increase in fasting glucose levels, body weight and the weight of adipose tissue.
Collapse
Affiliation(s)
- Wendy Andrea Zepeda-Ruiz
- Departamento de Psicofisiología, Facultad de Psicología; Universidad Nacional Autónoma de México. Ciudad de México, México, 04510
| | - Héctor Alan Abonza Paez
- Departamento de Psicofisiología, Facultad de Psicología; Universidad Nacional Autónoma de México. Ciudad de México, México, 04510
| | - Marco Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química; Universidad Nacional Autónoma de México. Ciudad de México, México, 04510
| | - David N Velazquez Martinez
- Departamento de Psicofisiología, Facultad de Psicología; Universidad Nacional Autónoma de México. Ciudad de México, México, 04510.
| |
Collapse
|
12
|
Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. Int J Mol Sci 2022; 23:ijms23147952. [PMID: 35887310 PMCID: PMC9317076 DOI: 10.3390/ijms23147952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Affective and substance-use disorders are associated with overweight and obesity-related complications, which are often due to the overconsumption of palatable food. Both high-fat diets (HFDs) and psychostimulant drugs modulate the neuro-circuitry regulating emotional processing and metabolic functions. However, it is not known how they interact at the behavioural level, and whether they lead to overlapping changes in neurobiological endpoints. In this literature review, we describe the impact of HFDs on emotionality, cognition, and reward-related behaviour in rodents. We also outline the effects of HFD on brain metabolism and plasticity involving mitochondria. Moreover, the possible overlap of the neurobiological mechanisms produced by HFDs and psychostimulants is discussed. Our in-depth analysis of published results revealed that HFDs have a clear impact on behaviour and underlying brain processes, which are largely dependent on the developmental period. However, apart from the studies investigating maternal exposure to HFDs, most of the published results involve only male rodents. Future research should also examine the biological impact of HFDs in female rodents. Further knowledge about the molecular mechanisms linking stress and obesity is a crucial requirement of translational research and using rodent models can significantly advance the important search for risk-related biomarkers and the development of clinical intervention strategies.
Collapse
|
13
|
Myers KP, Majewski M, Schaefer D, Tierney A. Chronic experience with unpredictable food availability promotes food reward, overeating, and weight gain in a novel animal model of food insecurity. Appetite 2022; 176:106120. [PMID: 35671918 DOI: 10.1016/j.appet.2022.106120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/08/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Ubiquitous, easy access to food is thought to promote obesity in the modern environment. However, people coping with food insecurity have limited, unpredictable food access and are also prone to obesity. Causal factors linking food insecurity and obesity are not understood. In this study we describe an animal model to investigate biopsychological impacts of the chronic unpredictability inherent in food insecurity. Female rats were maintained on a 'secure' schedule of highly predictable 4x/day feedings of uniform size, or an 'insecure' schedule delivering the same total food over time but frequently unpredictable regarding how much, if any, food would arrive at each scheduled feeding. Subgroups of secure and insecure rats were fed ordinary chow or high-fat/high-sugar (HFHS) chow to identify separate and combined effects of insecurity and diet quality. Insecure chow-fed rats, relative to secure chow-fed rats, were hyperactive and consumed more when provided a palatable liquid diet. Insecure HFHS-fed rats additionally had higher progressive ratio breakpoints for sucrose, increased meal size, and subsequently gained more weight during 8 days of ad libitum HFHS access. Insecurity appeared to maintain a heightened attraction to palatable food that habituated in rats with secure HFHS access. In a second experiment, rats fed ordinary chow on the insecure schedule subsequently gained more weight when provided ad libitum chow, showing that prior insecurity per se promoted short-term weight gain in the absence of HFHS food. We propose this to be a potentially useful animal model for mechanistic research on biopsychological impacts of insecurity, demonstrating that chronic food uncertainty is a factor promoting obesity.
Collapse
Affiliation(s)
- Kevin P Myers
- Department of Psychology and Neuroscience Program, Bucknell University, USA.
| | - Marta Majewski
- Department of Psychology and Neuroscience Program, Bucknell University, USA
| | - Dominique Schaefer
- Department of Psychology and Neuroscience Program, Bucknell University, USA
| | - Alexis Tierney
- Department of Psychology and Neuroscience Program, Bucknell University, USA
| |
Collapse
|
14
|
Fam J, Clemens KJ, Westbrook RF, Morris MJ, Kendig MD. Chronic exposure to cafeteria-style diet in rats alters sweet taste preference and reduces motivation for, but not 'liking' of sucrose. Appetite 2022; 168:105742. [PMID: 34634373 DOI: 10.1016/j.appet.2021.105742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
Obesity is associated with changes to taste perception and brain reward circuitry. It is important to understand how these effects alter the preference for palatable foods and drinks, given that these are widely consumed, and leading risk factors for obesity. This study examined the effects of diet-induced obesity on sweet taste preference by analysing the microstructure of licking for sugar solutions and assessing pERK expression in the nucleus accumbens shell and insula. Adult male Sprague-Dawley rats were fed standard chow (Control; n = 16) or a varied, palatable cafeteria diet (Caf; n = 16) for 12 weeks. Two-choice preference tests between 2%, 8% and 32% sucrose solutions were conducted at baseline and in weeks 11-12 of the diet. Rats in the Caf group trebled energy intake and doubled weight gain relative to controls. In tests held under water restriction after 11 weeks of diet, the Control group reliably preferred higher sucrose concentrations (i.e., 32% > 8% > 2%). Relative to controls, the Caf group showed a stronger preference for 32% vs. 2% sucrose, lower preference for 32% vs. 8% sucrose, and were indifferent to 8% vs. 2% sucrose. Testing without water restriction increased preference for higher sucrose concentrations in both groups. Chronic Caf diet increased the latency to lick, decreased total licks and reduced alternations between spouts, but did not alter lick cluster size, a measure of hedonic appraisal, on any test. Following a final exposure to a novel sucrose concentration, neuronal activity (pERK) in the insula and nucleus accumbens shell was significantly reduced in the Caf group. Results indicate that differences in 'liking' do not underlie obesity-induced changes to sweet taste preference.
Collapse
Affiliation(s)
- Justine Fam
- School of Psychology, UNSW Sydney, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
15
|
|
16
|
López-Ferreras L, Longo F, Richard JE, Eerola K, Shevchouk OT, Tuzinovic M, Skibicka KP. Key role for hypothalamic interleukin-6 in food-motivated behavior and body weight regulation. Psychoneuroendocrinology 2021; 131:105284. [PMID: 34090139 DOI: 10.1016/j.psyneuen.2021.105284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
The pro-inflammatory role of interleukin-6 (IL-6) is well-characterized. Blockade of IL-6, by Tocilizumab, is used in patients with rheumatoid arthritis and those diagnosed with cytokine storm. However, brain-produced IL-6 has recently emerged as a critical mediator of gut/adipose communication with the brain. Central nervous system (CNS) IL-6 is engaged by peripheral and central signals regulating energy homeostasis. IL-6 is critical for mediating hypophagia and weight loss effects of a GLP-1 analog, exendin-4, a clinically utilized drug. However, neuroanatomical substrates and behavioral mechanisms of brain IL-6 energy balance control remain poorly understood. We propose that the lateral hypothalamus (LH) is an IL-6-harboring brain region, key to food intake and food reward control. Microinjections of IL-6 into the LH reduced chow and palatable food intake in male rats. In contrast, female rats responded with reduced motivated behavior for sucrose, measured by the progressive ratio operant conditioning test, a behavioral mechanism previously not linked to IL-6. To test whether IL-6, produced in the LH, is necessary for ingestive and motivated behaviors, and body weight homeostasis, virogenetic knockdown by infusion of AAV-siRNA-IL6 into the LH was utilized. Attenuation of LH IL-6 resulted in a potent increase in sucrose-motivated behavior, without any effect on ingestive behavior or body weight in female rats. In contrast, the treatment did not affect any parameters measured (chow intake, sucrose-motivated behavior, locomotion, and body weight) in chow-fed males. However, when challenged with a high-fat/high-sugar diet, the male LH IL-6 knockdown rats displayed rapid weight gain and hyperphagia. Together, our data suggest that LH-produced IL-6 is necessary and sufficient for ingestive behavior and weight homeostasis in male rats. In females, IL-6 in the LH plays a critical role in food-motivated, but not ingestive behavior control or weight regulation. Thus, collectively these data support the idea that brain-produced IL-6 engages the hypothalamus to control feeding behavior.
Collapse
Affiliation(s)
| | - Francesco Longo
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Jennifer E Richard
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Kim Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Research Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Olesya T Shevchouk
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
17
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
18
|
Espitia-Bautista E, Escobar C. Fat rather than sugar diet leads to binge-type eating, anticipation, effort behavior and activation of the corticolimbic system. Nutr Neurosci 2021; 24:508-519. [PMID: 31419190 DOI: 10.1080/1028415x.2019.1651104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives: One factor contributing to the development of obesity is overeating palatable food. The palatability of food is driven by specific energy yielding combinations and flavor profiles that may contribute to its overconsumption. In rodents, restricted access to palatable food (PF) is a strong stimulus to trigger binge-type eating behavior (BTE), food anticipatory activity (FAA), effort behaviors and withdrawal symptoms. This is accompanied by plastic changes in corticolimbic areas associated with motivation and reward responses. Palatable food contains mainly a mixture of fat and sugar, thus, the contribution of each macronutrient for the behavioral and neuronal changes is unclear.Methods: In this study, Wistar rats were exposed to restricted access to 50% fat rich diet (FRD) or 50% sugar rich diet (SRD) in order to compare the intensity of BTE, FAA, effort behaviors and withdrawal responses.Results: In corticolimbic areas, c-Fos activation and ΔFosB accumulation were evaluated. After an acute exposition, rats ate more SRD than FRD, but FDR stimulated higher c-Fos. After chronic administration, the FDR group exhibited higher levels of BTE and FAA; this was associated with higher c-Fos and accumulation of ΔFosB in the corticolimbic system. Similar effects in the FRD group were observed after one week of withdrawal.Discussion: Present data indicate that the fat rich diet is a stronger stimulus than the sugar rich diet for the development of wanting behavior for reward and the underlying plastic changes in the corticolimbic system. The differential effects may be due to the differing caloric density of the diets.
Collapse
Affiliation(s)
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, UNAM, Ciudad de México, México
| |
Collapse
|
19
|
Roelofs TJM, Luijendijk MCM, van der Toorn A, Camps G, Smeets PAM, Dijkhuizen RM, Adan RAH. Good taste or gut feeling? A new method in rats shows oro-sensory stimulation and gastric distention generate distinct and overlapping brain activation patterns. Int J Eat Disord 2021; 54:1116-1126. [PMID: 32671875 PMCID: PMC8359261 DOI: 10.1002/eat.23354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Satiation is influenced by a variety of signals including gastric distention and oro-sensory stimulation. Here we developed a high-field (9.4 T) functional magnetic resonance imaging (fMRI) protocol to test how oro-sensory stimulation and gastric distention, as induced with a block-design paradigm, affect brain activation under different states of energy balance in rats. Repeated tasting of sucrose induced positive and negative fMRI responses in the ventral tegmental area and septum, respectively, and gradual neural activation in the anterior insula and the brain stem nucleus of the solitary tract (NTS), as revealed using a two-level generalized linear model-based analysis. These unique findings align with comparable human experiments, and are now for the first time identified in rats, thereby allowing for comparison between species. Gastric distention induced more extensive brain activation, involving the insular cortex and NTS. Our findings are largely in line with human studies that have shown that the NTS is involved in processing both visceral information and taste, and anterior insula in processing sweet taste oro-sensory signals. Gastric distention and sucrose tasting induced responses in mesolimbic areas, to our knowledge not previously detected in humans, which may reflect the rewarding effects of a full stomach and sweet taste, thereby giving more insight into the processing of sensory signals leading to satiation. The similarities of these data to human neuroimaging data demonstrate the translational value of the approach and offer a new avenue to deepen our understanding of the process of satiation in healthy people and those with eating disorders.
Collapse
Affiliation(s)
- Theresia J. M. Roelofs
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Mieneke C. M. Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Guido Camps
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenThe Netherlands
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenThe Netherlands,Image Sciences Institute, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Roger A. H. Adan
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgSweden
| |
Collapse
|
20
|
Bourdy R, Hertz A, Filliol D, Andry V, Goumon Y, Mendoza J, Olmstead MC, Befort K. The endocannabinoid system is modulated in reward and homeostatic brain regions following diet-induced obesity in rats: a cluster analysis approach. Eur J Nutr 2021; 60:4621-4633. [PMID: 34165614 PMCID: PMC8222960 DOI: 10.1007/s00394-021-02613-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Objectives Increased availability of high-calorie palatable food in most countries has resulted in overconsumption of these foods, suggesting that excessive eating is driven by pleasure, rather than metabolic need. The behavior contributes to the rise in eating disorders, obesity, and associated pathologies like diabetes, cardiac disease, and cancers. The mesocorticolimbic dopamine and homeostatic circuits are interconnected and play a central role in palatable food intake. The endocannabinoid system is expressed in these circuits and represents a potent regulator of feeding, but the impact of an obesogenic diet on its expression is not fully known. Methods Food intake and body weight were recorded in male Wistar rats over a 6-week free-choice regimen of high fat and sugar; transcriptional regulations of the endocannabinoid system were examined post-mortem in brain reward regions (prefrontal cortex, nucleus accumbens, ventral tegmental area, and arcuate nucleus). K-means cluster analysis was used to classify animals based on individual sensitivity to obesity and palatable food intake. Endocannabinoid levels were quantified in the prefrontal cortex and nucleus accumbens. Gene expression in dopamine and homeostatic systems, including ghrelin and leptin receptors, and classical homeostatic peptides, were also investigated. Results The free-choice high-fat -and sugar diet induced hyperphagia and obesity in rats. Cluster analysis revealed that the propensity to develop obesity and excessive palatable food intake was differently associated with dopamine and endocannabinoid system gene expression in reward and homeostatic brain regions. CB2 receptor mRNA was increased in the nucleus accumbens of high sugar consumers, whereas CB1 receptor mRNA was decreased in obesity prone rats. Conclusions Transcriptional data are consistent with observations of altered dopamine function in rodents that have access to an obesogenic diet and point to cannabinoid receptors as GPCR targets involved in neuroplasticity mechanisms associated with maladaptive intake of palatable food. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02613-0.
Collapse
Affiliation(s)
- Romain Bourdy
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), UMR7364, Université́ de Strasbourg, CNRS, 12 rue Goethe, 67000, Strasbourg, France
| | - Alexandra Hertz
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), UMR7364, Université́ de Strasbourg, CNRS, 12 rue Goethe, 67000, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), UMR7364, Université́ de Strasbourg, CNRS, 12 rue Goethe, 67000, Strasbourg, France
| | - Virginie Andry
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Jorge Mendoza
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), UMR7364, Université́ de Strasbourg, CNRS, 12 rue Goethe, 67000, Strasbourg, France.
| |
Collapse
|
21
|
Rodríguez-Rivera C, Pérez-Ortiz JM, Pook E, Conjaerts N, Alguacil LF, González-Martín C. Clusterin overexpression as a potential neuroprotective response to the pathological effects of high fat dieting on the brain reward system. Food Chem Toxicol 2021; 152:112186. [PMID: 33838178 DOI: 10.1016/j.fct.2021.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/23/2022]
Abstract
High-fat diets (HFDs) can lead to pathological changes in the brain underlying several behavioral disturbances (e.g., reward deficiency). To further increase our knowledge of these associations, we studied the sucrose reward and the brain expression of clusterin, a protein that is overexpressed after several kind of brain damaging conditions. C57BL/6J male mice were differentially fed on an HFD or standard chow for 41 days and underwent 11 sucrose place conditioning sessions followed by 4 extinction sessions to monitor the effects of HFD on sucrose reward by means of free choice tests. We quantified clusterin expression by immunochemistry in the nucleus accumbens, dorsal striatum and cingulate cortex. HFD tended to provoke a transient potentiation in the acquisition of sucrose-conditioned place preference, but this effect was followed by a much more consistent reduction in sucrose preference, which spontaneously disappeared after 31 days of an HFD with no need for extinction learning. The HFD mice showed higher clusterin expression in the nucleus accumbens but not in the other brain areas studied. The results confirm that HFDs strongly influence the rewarding properties of palatable foods and suggest a direct connection with neurotoxic alterations in the brain reward system tagged by clusterin overexpression.
Collapse
Affiliation(s)
- Carmen Rodríguez-Rivera
- Facultad de Farmacia and Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - José Manuel Pérez-Ortiz
- Unidad de Investigación Traslacional, Hospital General Universitario de Ciudad Real, Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Elizabeth Pook
- Facultad de Farmacia and Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Nina Conjaerts
- Facultad de Farmacia and Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Luis F Alguacil
- Facultad de Farmacia and Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| | - Carmen González-Martín
- Facultad de Farmacia and Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| |
Collapse
|
22
|
Garman TS, Setlow B, Orsini CA. Effects of a high-fat diet on impulsive choice in rats. Physiol Behav 2021; 229:113260. [PMID: 33227243 DOI: 10.1016/j.physbeh.2020.113260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Obesity and binge eating disorder are associated with high levels of impulsivity, but the causal role of eating and palatable food in these associations is unclear. Studies in rodents show that a high-fat diet can increase one aspect of impulsivity (impulsive action); it is less clear, however, whether a dissociable aspect of impulsivity (impulsive choice) is similarly affected. Hence, the aim of this study was to ascertain whether chronic exposure to a high-fat diet would alter impulsive choice. METHODS Male rats were maintained on either a high-fat or control chow diet for two weeks ad libitum. They then underwent equi-caloric food restriction for the duration of the experiment, with each group maintained on their respective diet. To measure impulsive choice, rats were trained on a delay discounting task (DDT) in which they made discrete choices between a lever that delivered a small food reward immediately and a lever that delivered a large food reward accompanied by systematically increasing delays. Upon reaching stable performance on the DDT, rats were given acute systemic injections of amphetamine prior to testing in the DDT to determine whether increased monoamine transmission affected impulsive choice differently in the two diet groups. Lastly, subjects were tested on a progressive ratio schedule of reinforcement to assess motivation for a sucrose reward. RESULTS There was no significant effect of the high-fat diet on impulsive choice. Further, amphetamine decreased choice of the large, delayed reward (increased impulsive choice) to the same extent in both groups. Exposure to the high-fat diet did, however, increase motivation to obtain a sucrose reward. CONCLUSIONS These experiments reveal that, under conditions that do not promote weight gain, a chronic high-fat diet does not affect impulsive choice in a delay discounting task. The data are surprising in light of findings showing that this same diet alters impulsive action, and highlight the necessity of further research to elucidate relationships between palatable food consumption and impulsivity.
Collapse
Affiliation(s)
| | - Barry Setlow
- Department of Neuroscience; Department of Psychiatry; McKnight Brain Institute; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Caitlin A Orsini
- Department of Psychiatry; McKnight Brain Institute; Department of Psychology, Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
23
|
Espitia-Bautista E, Escobar C. Addiction-like response in brain and behavior in a rat experimental model of night-eating syndrome. Appetite 2021; 161:105112. [PMID: 33453338 DOI: 10.1016/j.appet.2021.105112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
STUDY OBJECTIVES Individuals ailing from night eating syndrome (NES) consume more than 25% of their daily food intake during the normal sleep time, delaying their sleep or waking up in the middle of the night to eat. This study explored two experimental conditions resembling NES in Wistar rats by offering palatable food during the sleep phase, alone or combined with sleep delay. Also we explored their impact on addiction-like changes in the brain and behavior. METHODS Experiment 1 explored the brain response after a first NES-like event; experiment 2 and 3 explored addiction-like behaviors c-Fos and FosB/ΔFosB in corticolimbic regions after 4 weeks exposition to NES-like conditions and after one week of withdrawal, respectively. For all 3 experiments 6 experimental groups were used: 1. Control; 2. Restricted access (1 h) to high-sugar diet (HSD) or to 3. high-fat diet (HFD); 4., Sleep delay for 4 h (SD) (from ZT0-ZT4, rats using slow rotating wheels); 5. SD + HSD; 6. SD + HFD. RESULTS A first event of eating a palatable diet with or without SD was sufficient to stimulate c-Fos and ΔFosB. Along 4 weeks of exposure to the palatable diets rats exhibited escalation and binge eating, which was highest for the HFD. At this stage, SD did not influence behavioral changes nor the neuronal response. After one-week in withdrawal, rats exhibited craving and effort to obtain their palatable diet. The brains of rats previously exposed to sleep delay maintained high levels of FosB/ΔFosB in the accumbens shell and high c-Fos activation in the insular cortex. CONCLUSIONS In our experimental models of NES-like a HFD in the sleep phase and SD are risk factors to develop binge eating and addiction-like behaviors.
Collapse
Affiliation(s)
- Estefania Espitia-Bautista
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Carolina Escobar
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, 04510, México City, Mexico.
| |
Collapse
|
24
|
de Vrind VAJ, van ‘t Sant LJ, Rozeboom A, Luijendijk-Berg MCM, Omrani A, Adan RAH. Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding. Front Endocrinol (Lausanne) 2021; 12:680494. [PMID: 34276560 PMCID: PMC8281287 DOI: 10.3389/fendo.2021.680494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is an anorexigenic hormone, important in the regulation of body weight. Leptin plays a role in food reward, feeding, locomotion and anxiety. Leptin receptors (LepR) are expressed in many brain areas, including the midbrain. In most studies that target the midbrain, either all LepR neurons of the midbrain or those of the ventral tegmental area (VTA) were targeted, but the role of substantia nigra (SN) LepR neurons has not been investigated. These studies have reported contradicting results regarding motivational behavior for food reward, feeding and locomotion. Since not all midbrain LepR mediated behaviors can be explained by LepR neurons in the VTA alone, we hypothesized that SN LepR neurons may provide further insight. We first characterized SN LepR and VTA LepR expression, which revealed LepR expression mainly on DA neurons. To further understand the role of midbrain LepR neurons in body weight regulation, we chemogenetically activated VTA LepR or SN LepR neurons in LepR-cre mice and tested for motivational behavior, feeding and locomotion. Activation of VTA LepR neurons in food restricted mice decreased motivation for food reward (p=0.032) and food intake (p=0.020), but not locomotion. In contrast, activation of SN LepR neurons in food restricted mice decreased locomotion (p=0.025), but not motivation for food reward or food intake. Our results provide evidence that VTA LepR and SN LepR neurons serve different functions, i.e. activation of VTA LepR neurons modulated motivation for food reward and feeding, while SN LepR neurons modulated locomotor activity.
Collapse
Affiliation(s)
- Véronne A. J. de Vrind
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Lisanne J. van ‘t Sant
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Annemieke Rozeboom
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Mieneke C. M. Luijendijk-Berg
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Azar Omrani
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Roger A. H. Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Roger A. H. Adan,
| |
Collapse
|
25
|
de Git KCG, Hazelhoff EM, Nota MHC, Schele E, Luijendijk MCM, Dickson SL, van der Plasse G, Adan RAH. Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. J Physiol 2020; 599:709-724. [PMID: 33296086 PMCID: PMC7839680 DOI: 10.1113/jp276513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The zona incerta (ZI) and ventral tegmental area (VTA) are brain areas that are both implicated in feeding behaviour. The ZI projects to the VTA, although it has not yet been investigated whether this projection regulates feeding. We experimentally (in)activated the ZI to VTA projection by using dual viral vector technology, and studied the effects on feeding microstructure, the willingness to work for food, general activity and body temperature. Activity of the ZI to VTA projection promotes feeding by facilitating action initiation towards food, as reflected in meal frequency and the willingness to work for food reward, without affecting general activity or directly modulating body temperature. We show for the first time that activity of the ZI to VTA projection promotes feeding, which improves the understanding of the neurobiology of feeding behaviour and body weight regulation. ABSTRACT Both the zona incerta (ZI) and the ventral tegmental area (VTA) have been implicated in feeding behaviour. The ZI provides prominent input to the VTA, although it has not yet been investigated whether this projection regulates feeding. Therefore, we investigated the role of ZI to VTA projection neurons in the regulation of several aspects of feeding behaviour. We determined the effects of (in)activation of ZI to VTA projection neurons on feeding microstructure, food-motivated behaviour under a progressive ratio schedule of reinforcement, locomotor activity and core body temperature. To activate or inactivate ZI neurons projecting to the VTA, we used a combination of canine adenovirus-2 in the VTA, as well as Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) or tetanus toxin (TetTox) light chain in the ZI. TetTox-mediated inactivation of ZI to VTA projection neurons reduced food-motivated behaviour and feeding by reducing meal frequency. Conversely, DREADD-mediated chemogenetic activation of ZI to VTA projection neurons promoted food-motivated behaviour and feeding. (In)activation of ZI to VTA projection neurons did not affect locomotor activity or directly regulate core body temperature. Taken together, ZI neurons projecting to the VTA exert bidirectional control overfeeding behaviour. More specifically, activity of ZI to VTA projection neurons facilitate action initiation towards feeding, as reflected in both food-motivated behaviour and meal initiation, without affecting general activity.
Collapse
Affiliation(s)
- Kathy C G de Git
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Esther M Hazelhoff
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Minke H C Nota
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Erik Schele
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Göteborg, 41390, Sweden
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzanne L Dickson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Göteborg, 41390, Sweden
| | - Geoffrey van der Plasse
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Göteborg, 41390, Sweden
| |
Collapse
|
26
|
Behavioral Disassociation of Perceived Sweet Taste Intensity and Hedonically Positive Palatability. eNeuro 2020; 7:ENEURO.0268-20.2020. [PMID: 33077494 PMCID: PMC7598907 DOI: 10.1523/eneuro.0268-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023] Open
Abstract
The intensity of sucrose (its perceived concentration) and its palatability (positive hedonic valence associated with ingestion) are two taste attributes that increase its attractiveness and overconsumption. Although both sensory attributes covary, in that increases in sucrose concentration leads to similar increases in its palatability, this covariation does not imply that they are part of the same process or whether they represent separate processes. Both these possibilities are considered in the literature. For this reason, we tested whether sucrose’s perceived intensity could be separated from its hedonically positive palatability. To address this issue, rats were trained in a sucrose intensity task to report the perceived intensity of a range of sucrose concentrations before and after its palatability was changed using a conditioned taste aversion (CTA) protocol. We found that the subjects’ performance remained essentially unchanged, although its palatability was changed from hedonically positive to negative. Overall, these data demonstrate that sucrose’s perceived intensity and its positive palatability can be dissociated, meaning that changes of one taste attribute render the other mostly unaffected. Thus, the intensity attribute is sufficient to inform the perceptual judgments of sucrose’s concentrations.
Collapse
|
27
|
Behavioral Disassociation of Perceived Sweet Taste Intensity and Hedonically Positive Palatability. eNeuro 2020. [PMID: 33077494 DOI: 10.1523/eneuro.0268‐20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intensity of sucrose (its perceived concentration) and its palatability (positive hedonic valence associated with ingestion) are two taste attributes that increase its attractiveness and overconsumption. Although both sensory attributes covary, in that increases in sucrose concentration leads to similar increases in its palatability, this covariation does not imply that they are part of the same process or whether they represent separate processes. Both these possibilities are considered in the literature. For this reason, we tested whether sucrose's perceived intensity could be separated from its hedonically positive palatability. To address this issue, rats were trained in a sucrose intensity task to report the perceived intensity of a range of sucrose concentrations before and after its palatability was changed using a conditioned taste aversion (CTA) protocol. We found that the subjects' performance remained essentially unchanged, although its palatability was changed from hedonically positive to negative. Overall, these data demonstrate that sucrose's perceived intensity and its positive palatability can be dissociated, meaning that changes of one taste attribute render the other mostly unaffected. Thus, the intensity attribute is sufficient to inform the perceptual judgments of sucrose's concentrations.
Collapse
|
28
|
Godfrey N, Borgland SL. Sex differences in the effect of acute fasting on excitatory and inhibitory synapses onto ventral tegmental area dopamine neurons. J Physiol 2020; 598:5523-5539. [PMID: 32886798 DOI: 10.1113/jp280412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Fasting can increase motivation for food and can energize reward-seeking. Ventral tegmental area (VTA) dopamine neurons respond to motivationally relevant information and fasting can influence mesolimbic dopamine concentration. An acute overnight fast differentially alters food approach behaviours and excitatory synaptic transmission onto VTA dopamine neurons of male or female mice. While inhibitory synapses onto VTA dopamine neurons are not altered by fasting in male or female mice, male mice had strengthened excitatory synapses whereas female mice had increased endocannabinoid-mediated short-term plasticity at excitatory synapses. These results help us understand how fasting differentially influences excitatory synaptic transmission onto dopamine neurons and may inform different strategies for fasting-induced food seeking by male and female mice. ABSTRACT Dopamine neurons in the ventral tegmental area (VTA) are important for energizing goal-directed behaviour towards food and are sensitive to changes in metabolic states. Fasting increases the incentive motivation for food and the mobilization of energy stores and has sex-dependent effects. However, it is unknown how acute fasting alters excitatory or inhibitory synaptic transmission onto VTA dopamine neurons. An acute 16 h overnight fast induced increased food-seeking behaviour that was more predominant in male mice. Fasting increased miniature excitatory postsynaptic current frequency and amplitude in male, but not female, mice. This effect was not due to altered release probability as there was no change in the paired pulse ratio, nor was it due to an altered postsynaptic response as there was no change in the AMPA receptor/NMDA receptor ratio or response to glutamate uncaging. However, this effect was consistent with an increase in the number of release sites. In addition, depolarization-induced suppression of excitation, a measure of short-term endocannabinoid-mediated plasticity, was enhanced in female but not male fasted mice. There were no fasting-induced changes at inhibitory synapses onto dopamine neurons of male or female mice. Taken together, these results demonstrate that fasting influences excitatory synapses differentially in male and female mice, but preserves inhibitory synapses onto dopamine neurons, indicating that the mesolimbic circuits of male and female mice respond differently to acute energy deprivation.
Collapse
Affiliation(s)
- Nathan Godfrey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Gumbs MCR, Eggels L, Vuuregge AH, Unmehopa UA, Mul JD, la Fleur SE. Effects of Neuropeptide Y administration into the lateral hypothalamus on intake of free-choice high-fat high-sucrose diet components of the male Wistar rat. Nutr Neurosci 2020; 25:621-630. [PMID: 32654659 DOI: 10.1080/1028415x.2020.1788774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Neuropeptide Y (NPY) signaling in the brain plays an important role in energy regulation, and is altered during diet-induced obesity. Yet, NPY function during the consumption of specific diet components remains to be fully determined. We have previously demonstrated that consumption of a saturated fat component (free-choice high-fat; fcHF), a sucrose solution (high-sugar; fcHS), or both (fcHFHS) combined with a standard diet (chow and water) has diverse effects on Npy expression in the arcuate nucleus and the sensitivity to intraventricular NPY administration. Arcuate NPY neurons project to the lateral hypothalamus (LHA), and NPY administration in the LHA potently promotes chow intake in rats on a standard diet. However, it is currently unclear if short-term consumption of a palatable free-choice diet alters NPY function in the LHA. Therefore, we assessed the effects of intra-LHA NPY administration on intake in rats following one-week consumption of a fcHF, fcHS, or fcHFHS diet.Methods: Male Wistar rats consumed a fcHF, fcHS, fcHFHS, or control (CHOW) diet for one week before NPY (0.3 μg / 0.3 μL) or phosphate-buffered saline (0.3 μL) was administered into the LHA. Intake was measured 2h later. fcHFHS-fed rats were divided into high-fat (fcHFHS-hf) and low-fat (fcHFHS-lf) groups based on differences in basal fat intake.Results: Intra-LHA NPY administration increased chow intake in fcHFHS- (irrespective of basal fat intake), fcHF- and CHOW-fed rats. Intra-LHA NPY infusion increased fat intake in fcHF-, fcHFHS-hf, but not fcHFHS-lf, rats. Intra-LHA NPY infusion did not increase caloric intake in fcHS-fed rats.Discussion: Our data demonstrate that the effects of intra-LHA NPY on caloric intake differ depending on the consumption of a fat or sugar component, or both, in a free-choice diet. Our data also indicate that baseline preference for the fat diet component modulates the effects of intra-LHA NPY in fcHFHS-fed rats.
Collapse
Affiliation(s)
- Myrtille C R Gumbs
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward group, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward group, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Anna H Vuuregge
- Metabolism and Reward group, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Unga A Unmehopa
- Metabolism and Reward group, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Joram D Mul
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward group, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward group, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
30
|
Koch CE, Begemann K, Kiehn JT, Griewahn L, Mauer J, M E Hess, Moser A, Schmid SM, Brüning JC, Oster H. Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nat Commun 2020; 11:3071. [PMID: 32555162 PMCID: PMC7299974 DOI: 10.1038/s41467-020-16882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Unlimited access to calorie-dense, palatable food is a hallmark of Western societies and substantially contributes to the worldwide rise of metabolic disorders. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, further augmenting metabolic disruption. We developed a paradigm to reveal differential timing in the regulation of food intake behavior in mice. While homeostatic intake peaks in the active phase, conditioned place preference and choice experiments show an increased sensitivity to overeating on palatable food during the rest phase. This hedonic appetite rhythm is driven by endogenous circadian clocks in dopaminergic neurons of the ventral tegmental area (VTA). Mice with disrupted clock function in the VTA lose their hedonic overconsumption rhythms without affecting homeostatic intake. These findings assign a functional role of VTA clocks in modulating palatable feeding behaviors and identify a potential therapeutic route to counteract hyperphagy in an obesogenic environment. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, which further augments metabolic dysfunction. Here, the authors find that in mice, circadian clocks in dopaminergic neurons in the ventral tegmental area drive hedonic appetite rhythms.
Collapse
Affiliation(s)
- C E Koch
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - K Begemann
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J T Kiehn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - L Griewahn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J Mauer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - M E Hess
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - A Moser
- Department of Neurology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - S M Schmid
- Institute of Endocrinology and Diabetes, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.,Deutsches Zentrum für Diabetesforschung e. V. (DZD), Neuherberg, Deutschland
| | - J C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - H Oster
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
31
|
Inbar D, Gendelis S, Mesner S, Menahem S, Kupchik YM. Chronic calorie-dense diet drives differences in motivated food seeking between obesity-prone and resistant mice. Addict Biol 2020; 25:e12753. [PMID: 31012232 DOI: 10.1111/adb.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Obesity results from overconsumption of energy, partly because of the inability to refrain from highly palatable rewarding foods. Even though palatable food is available to everyone, only a fraction of the population develops obesity. We previously showed that following chronic exposure to highly palatable food animals that gained the most weight also showed addictive-like motivation to seek for palatable food. An important question remains-is this extreme, addictive-like, motivation to consume palatable food the cause or the consequence of diet-induced obesity? Here, we show that obesity-prone (OP) mice exhibit higher motivation for palatable food consumption compared with obesity-resistant mice even before developing obesity, but that the full manifestation of this high motivation to eat is expressed only after chronic exposure to high-fat-high-sugar (HFHS) diet. HFHS diet also impairs performance in the operant food-seeking task selectively in OP mice, an impairment that persists even after 2 weeks of abstinence from HFHS food. Overall, our data suggest that while some aspects of food motivation are high in OP mice already before developing obesity, the chronic exposure to HFHS food accentuates it and drives the development of obesity.
Collapse
Affiliation(s)
- Dorrit Inbar
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel‐Canada (IMRIC)The Hebrew University of Jerusalem Israel
| | - Shani Gendelis
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel‐Canada (IMRIC)The Hebrew University of Jerusalem Israel
| | - Shanee Mesner
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel‐Canada (IMRIC)The Hebrew University of Jerusalem Israel
| | - Shira Menahem
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel‐Canada (IMRIC)The Hebrew University of Jerusalem Israel
| | - Yonatan M. Kupchik
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel‐Canada (IMRIC)The Hebrew University of Jerusalem Israel
| |
Collapse
|
32
|
Belhadj S, Dal S, Khaskhoussi F, Maillard-Pedracini E, Hentati O, Sigrist S. Anorexic and metabolic effect of jojoba: potential treatment against metabolic syndrome and hepatic complications. Nutr Metab (Lond) 2020; 17:24. [PMID: 32256672 PMCID: PMC7106724 DOI: 10.1186/s12986-020-00441-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Evaluation of the action of various traditional plants to treat metabolic syndrome are strongly studied. In our study, we investigated the effect of the Tunisian jojoba seed on a metabolic syndrome induced in rat by the High Fat diet and High Fructose (HFHF) and its renal and hepatic complications. Methods The rats were fed with HFHF or Normal Diet (ND) for a period of 8 weeks. After that, a switch from HFHF to ND or Normal Diet Jojoba (NDJ),(jojoba diet approach) or High Fat and High Fructose and Jojoba diet (HFHFJ) (nutraceutical approach) has been done. Metabolic disorder was evaluated by measuring the fasting body weight, glycemia and C-peptide and leptin. Oxidative stress parameters like ThioBarbituric Acid Reactive Substances (TBARS) and Total Antioxidant Capacity (TAOC) were analyzed in the plasma and renal and hepatic function were determined by the measure of creatinine and alanine transferase (ALT) respectively. Histological analysis was performed on the liver, kidney and pancreas. Results HFHF diet exhibited characteristics of metabolic syndrome presented by insulin resistance, hyperinsulinemia, hyperleptinemia, fat mass with hepatic steatosis and renal disorder. HFHF diet was associated with oxidative stress (OS) presented by an increase in TBARS and a decrease in TAOC. Adding jojoba seeds to HFHF rat group diet induced a decrease in body weight, fat mass (58 and 41%), insulin resistance (59 and 56%), oxidative stress (60 and 41%), liver steatosis (from a score = 3 to a score = 0) and renal complications (25 and 42%). This effect was emphasized with diet approach. Conclusion The results demonstrated the beneficial effect of jojoba against metabolic syndrome and oxidative stress, suggesting that jojoba could be used in the prevention and treatment of metabolic syndrome. Graphical abstract ![]()
Collapse
Affiliation(s)
- Sahla Belhadj
- 1UMR DIATHEC, EA 7294, Federation of Traditional Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Stephanie Dal
- 1UMR DIATHEC, EA 7294, Federation of Traditional Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | | | - Elisa Maillard-Pedracini
- 1UMR DIATHEC, EA 7294, Federation of Traditional Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Olfa Hentati
- 3Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4, BP 1175, 3038 Sfax, Tunisia.,4Laboratoire Génie Environnement et Ecotechnologie, Ecole Nationale d'Ingénieurs de Sfax (LGEET LR16ES19-ENIS), Université de Sfax, Route de Soukra, Km 4, BP 1173, 3038 Sfax, Tunisia
| | - Séverine Sigrist
- 1UMR DIATHEC, EA 7294, Federation of Traditional Medicine of Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Gumbs MCR, Eggels L, Kool T, Unmehopa UA, van den Heuvel JK, Lamuadni K, Mul JD, la Fleur SE. Neuropeptide Y Signaling in the Lateral Hypothalamus Modulates Diet Component Selection and is Dysregulated in a Model of Diet-Induced Obesity. Neuroscience 2019; 447:28-40. [PMID: 31887359 DOI: 10.1016/j.neuroscience.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023]
Abstract
The preclinical multicomponent free-choice high-fat high-sucrose (fcHFHS) diet has strong validity to model diet-induced obesity (DIO) and associated maladaptive molecular changes in the central nervous system. fcHFHS-induced obese rats demonstrate increased sensitivity to intracerebroventricular infusion of the orexigenic Neuropeptide Y (NPY). The brain region-specific effects of NPY signaling on fcHFHS diet component selection are not completely understood. For example, fcHFHS-fed rats have increased intake of chow and fat following intracerebroventricular NPY infusion, whereas NPY administration in the nucleus accumbens, a key hub of the reward circuitry, specifically increases fat intake. Here, we investigated whether NPY infusion in the lateral hypothalamic area (LHA), which is crucially involved in the regulation of intake, regulates fcHFHS component selection, and if LHA NPY receptor subtypes 1 or 5 (NPYR1/5) are involved. Male Wistar rats were fed a chow or fcHFHS diet for at least seven days, and received intra-LHA vehicle or NPY infusions in a cross-over design. Diet component intake was measured two hours later. Separate experimental designs were used to test the efficacy of NPY1R- or NPY5R antagonism to prevent the orexigenic effects of intra-LHA NPY. Intra-LHA NPY increased caloric intake in chow- and fcHFHS-fed rats. This effect was mediated specifically by chow intake in fcHFHS-fed rats. The orexigenic effects of intra-LHA NPY were prevented by NPY1R and NPY5R antagonism in chow-fed rats, but only by NPY5R antagonism in fcHFHS-fed rats. Thus, NPY signaling has brain region-specific effects on fcHFHS component selection and LHA NPYR sensitivity is dysregulated during consumption of a fcHFHS diet.
Collapse
Affiliation(s)
- M C R Gumbs
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - L Eggels
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - T Kool
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - U A Unmehopa
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - J K van den Heuvel
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - K Lamuadni
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - J D Mul
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - S E la Fleur
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Brutman JN, Sirohi S, Davis JF. Examining the Impact of Estrogen on Binge Feeding, Food-Motivated Behavior, and Body Weight in Female Rats. Obesity (Silver Spring) 2019; 27:1617-1626. [PMID: 31411378 DOI: 10.1002/oby.22582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Binge-eating disorder is associated with diminished self-control, emotional distress, and obesity. In this context, women are nearly twice as likely to develop binge-eating disorder and depression relative to men. Here, the physiological, psychological, and endocrine parameters were characterized in female rats subjected to a binge-eating protocol. METHODS Nonrestricted female Long Evans rats (n = 8/group) received 2-hour restricted access to a high-fat diet (HFD) (4.54 kcal/g) every day or every third day. The progression of estrous cycling, the functional relevance of estrogen signaling for binge feeding, and binge-induced changes in food motivation were measured. RESULTS Female rats developed a binge pattern of feeding that included alternation between caloric overconsumption and compensatory voluntary restriction without impacting estrous cycling. Notably, rats that received daily HFD exposure progressively decreased binge meals. Estrogen replacement in normal cycling or ovariectomized rats mimicked the reduction in body weight in female rats that received daily HFD access. Operant responding was unaffected by binge feeding; however, estrogen augmented operant performance in HFD-exposed rats. CONCLUSIONS Collectively, these data suggest that estrogen protects against binge-induced increases in body weight gain without affecting food motivation in female rats.
Collapse
Affiliation(s)
- Julianna N Brutman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Sunil Sirohi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| |
Collapse
|
35
|
Wald HS, Grill HJ. Individual Differences in Behavioral Responses to Palatable Food or to Cholecystokinin Predict Subsequent Diet-Induced Obesity. Obesity (Silver Spring) 2019; 27:943-949. [PMID: 30998842 PMCID: PMC6533155 DOI: 10.1002/oby.22459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study investigated whether individual differences in behavioral responses to palatable food and to the satiation signal cholecystokinin (CCK) in outbred chow-maintained Sprague-Dawley rats enabled prediction of individual differences in weight gained after subsequent high-fat/high-sugar diet (HFHSD) maintenance. METHODS Meal size, meal number, and early dark cycle intake during initial HFHSD exposure were measured, as were early dark cycle sucrose solution and chow intake, chow meal size and meal number, the intake-suppressive effects of 0.5-µg/kg CCK injection, and CCK-induced c-Fos activation in the nucleus tractus solitarius. Subsequently, rats were maintained on an HFHSD for 5 weeks, and weight gain was determined. RESULTS Rats that took larger and less frequent meals on the first day of HFHSD exposure, whose early dark cycle intake (HFHSD and sucrose) was larger during initial HFHSD exposure, gained more weight after HFHSD maintenance. Rats with lesser sucrose intake suppression in response to CCK gained more weight after HFHSD maintenance and displayed reduced CCK-induced c-Fos activation in the nucleus tractus solitarius. CONCLUSIONS Together, these data identify individual differences in behavioral responses to palatable food and to CCK as novel predictors of diet-induced obesity.
Collapse
Affiliation(s)
- Hallie S Wald
- Graduate Group in Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harvey J Grill
- Graduate Group in Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Group in Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Slomp M, Belegri E, Blancas‐Velazquez AS, Diepenbroek C, Eggels L, Gumbs MC, Joshi A, Koekkoek LL, Lamuadni K, Ugur M, Unmehopa UA, la Fleur SE, Mul JD. Stressing the importance of choice: Validity of a preclinical free-choice high-caloric diet paradigm to model behavioural, physiological and molecular adaptations during human diet-induced obesity and metabolic dysfunction. J Neuroendocrinol 2019; 31:e12718. [PMID: 30958590 PMCID: PMC6593820 DOI: 10.1111/jne.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.
Collapse
Affiliation(s)
- Margo Slomp
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Evita Belegri
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Aurea S. Blancas‐Velazquez
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Myrtille C.R. Gumbs
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Anil Joshi
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Khalid Lamuadni
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Muzeyyen Ugur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Joram D. Mul
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
37
|
Peris‐Sampedro F, Mounib M, Schéle E, Edvardsson CE, Stoltenborg I, Adan RAH, Dickson SL. Impact of Free-Choice Diets High in Fat and Different Sugars on Metabolic Outcome and Anxiety-Like Behavior in Rats. Obesity (Silver Spring) 2019; 27:409-419. [PMID: 30699240 PMCID: PMC6590171 DOI: 10.1002/oby.22381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Rats were exposed to free-choice diets (fat plus one of two different sugar solutions, glucose or sucrose), and the metabolic consequences and impact on locomotor activity and anxiety-like behavior were explored. METHODS For 3 weeks, 7-week-old male rats were offered either chow only or free-choice high-fat diets differing in their added sugar: no sugar, sucrose, or glucose. In a second experiment, after 2 weeks on the diets, rats were switched from high sucrose to high glucose for two additional weeks. Metabolic end points included body weight, food intake, food choice, glycemic control, metabolic hormones, fat pad weight, brown adipose tissue weight, and gene expression. Behavioral analysis included locomotor and anxiety-like activity in the open field and elevated plus maze. RESULTS Both sugar diets enhanced adiposity and induced hyperphagia, favoring unhealthier dietary selection above that of the control diets (chow or free-choice high-fat with no sugar). Despite isocaloric intake in the sugar-containing diets, offering glucose instead of sucrose was associated with improved insulin sensitivity. The sugar-containing diets reduced activity (but with movements of increased velocity) and induced an anxiety-like phenotype. CONCLUSIONS Although free-choice diets negatively impacted on metabolism and anxiety-like behavior, replacing sucrose with glucose improved insulin sensitivity and may therefore be better for health.
Collapse
Affiliation(s)
- Fiona Peris‐Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Myriam Mounib
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Christian E. Edvardsson
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Roger A. H. Adan
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Brain Center Rudolf Magnus, Department of Translational NeuroscienceUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Suzanne L. Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
38
|
Ahmed H, Hannan JL, Apolzan JW, Osikoya O, Cushen SC, Romero SA, Goulopoulou S. A free-choice high-fat, high-sucrose diet induces hyperphagia, obesity, and cardiovascular dysfunction in female cycling and pregnant rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R472-R485. [PMID: 30758976 DOI: 10.1152/ajpregu.00391.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The main objective of these studies was to characterize metabolic, body composition, and cardiovascular responses to a free-choice high-fat, high-sucrose diet in female cycling and pregnant rats. In the nonpregnant state, female Sprague-Dawley rats offered a 3-wk free-choice high-fat, high-sucrose diet had greater energy intake, adiposity, serum leptin, and triglyceride concentrations compared with rats fed with standard chow and developed glucose intolerance. In addition, choice-diet-fed rats had larger cardiac ventricular weights, smaller kidney and pancreas weights, and higher blood pressure than chow-fed rats, but they did not exhibit resistance artery endothelial dysfunction. When the free-choice diet continued throughout pregnancy, rats remained hyperphagic, hyperleptinemic, and obese. Choice pregnant rats exhibited uterine artery endothelial dysfunction and had smaller fetuses compared with chow pregnant rats. Pregnancy normalized mean arterial blood pressure and pancreas weights in choice rats. These studies are the first to provide a comprehensive evaluation of free-choice high-fat, high-sucrose diet on metabolic and cardiovascular functions in female rats, extending the previous studies in males to female cycling and pregnant rodents. Free-choice diet may provide a new model of preconceptual maternal obesity to study the role of increased energy intake, individual food components, and preexisting maternal obesity on maternal and offspring physiological responses during pregnancy and after birth.
Collapse
Affiliation(s)
- Hijab Ahmed
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine , Greenville, North Carolina
| | - John W Apolzan
- Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, Louisiana
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
39
|
López-Ferreras L, Eerola K, Mishra D, Shevchouk OT, Richard JE, Nilsson FH, Hayes MR, Skibicka KP. GLP-1 modulates the supramammillary nucleus-lateral hypothalamic neurocircuit to control ingestive and motivated behavior in a sex divergent manner. Mol Metab 2019; 20:178-193. [PMID: 30528281 PMCID: PMC6358540 DOI: 10.1016/j.molmet.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE The supramammillary nucleus (SuM) is nestled between the lateral hypothalamus (LH) and the ventral tegmental area (VTA). This neuroanatomical position is consistent with a potential role of this nucleus to regulate ingestive and motivated behavior. Here neuroanatomical, molecular, and behavior approaches are utilized to determine whether SuM contributes to ingestive and food-motivated behavior control. METHODS Through the application of anterograde and retrograde neural tract tracing with novel designer viral vectors, the current findings show that SuM neurons densely innervate the LH in a sex dimorphic fashion. Glucagon-like peptide-1 (GLP-1) is a clinically targeted neuro-intestinal hormone with a well-established role in regulating energy balance and reward behaviors. Here we determine that GLP-1 receptors (GLP-1R) are expressed throughout the SuM of both sexes, and also directly on SuM LH-projecting neurons and investigate the role of SuM GLP-1R in the regulation of ingestive and motivated behavior in male and female rats. RESULTS SuM microinjections of the GLP-1 analogue, exendin-4, reduced ad libitum intake of chow, fat, or sugar solution in both male and female rats, while food-motivated behaviors, measured using the sucrose motivated operant conditioning test, was only reduced in male rats. These data contrasted with the results obtained from a neighboring structure well known for its role in motivation and reward, the VTA, where females displayed a more potent response to GLP-1R activation by exendin-4. In order to determine the physiological role of SuM GLP-1R signaling regulation of energy balance, we utilized an adeno-associated viral vector to site-specifically deliver shRNA for the GLP-1R to the SuM. Surprisingly, and in contrast to previous results for the two SuM neighboring sites, LH and VTA, SuM GLP-1R knockdown increased food seeking and adiposity in obese male rats without altering food intake, body weight or food motivation in lean or obese, female or male rats. CONCLUSION Taken together, these results indicate that SuM potently contributes to ingestive and motivated behavior control; an effect contingent on sex, diet/homeostatic energy balance state and behavior of interest. These data also extend the map of brain sites directly responsive to GLP-1 agonists, and highlight key differences in the role that GLP-1R play in interconnected and neighboring nuclei.
Collapse
Affiliation(s)
- Lorena López-Ferreras
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Kim Eerola
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Devesh Mishra
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jennifer E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Fredrik H Nilsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
40
|
Ducrocq F, Hyde A, Fanet H, Oummadi A, Walle R, De Smedt-Peyrusse V, Layé S, Ferreira G, Trifilieff P, Vancassel S. Decrease in Operant Responding Under Obesogenic Diet Exposure is not Related to Deficits in Incentive or Hedonic Processes. Obesity (Silver Spring) 2019; 27:255-263. [PMID: 30597761 DOI: 10.1002/oby.22358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.
Collapse
Affiliation(s)
- Fabien Ducrocq
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Alexia Hyde
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Hortense Fanet
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Asma Oummadi
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Roman Walle
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Véronique De Smedt-Peyrusse
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Pierre Trifilieff
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sylvie Vancassel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| |
Collapse
|
41
|
Butler MJ, Eckel LA. Eating as a motivated behavior: modulatory effect of high fat diets on energy homeostasis, reward processing and neuroinflammation. Integr Zool 2019; 13:673-686. [PMID: 29851251 DOI: 10.1111/1749-4877.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eating is a basic motivated behavior that provides fuel for the body and supports brain function. To ensure survival, the brain's feeding circuits are tuned to monitor peripheral energy balance and promote food-seeking behavior when energy stores are low. The brain's bias toward a positive energy state, which is necessary to ensure adequate nutrition during times of food scarcity, is evolutionarily conserved across mammalian species and is likely to drive overeating in the presence of a palatable, energy-dense diet. Animal models of diet-induced overeating have played a vital role in investigating how the drive to consume palatable food may override the homeostatic processes that serve to maintain energy balance. These animal models have provided valuable insights into the neurobiological mechanisms underlying homeostatic and non-homeostatic eating, motivation and food reward, and the development of obesity and related comorbidities. Here, we provide a brief review of this literature and discuss how diet-induced inflammation in the central nervous system impacts the neural control of food intake and regulation of body weight. The connection between diet and the immune system provides an exciting new direction for the study of ingestive behavior and the pathophysiology of obesity.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
42
|
Enhanced amphetamine-induced motor impulsivity and mild attentional impairment in the leptin-deficient rat model of obesity. Physiol Behav 2018; 192:134-144. [DOI: 10.1016/j.physbeh.2018.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
|
43
|
López-Ferreras L, Richard JE, Noble EE, Eerola K, Anderberg RH, Olandersson K, Taing L, Kanoski SE, Hayes MR, Skibicka KP. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol Psychiatry 2018; 23:1157-1168. [PMID: 28894301 PMCID: PMC5984105 DOI: 10.1038/mp.2017.187] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022]
Abstract
Increased motivation for highly rewarding food is a major contributing factor to obesity. Most of the literature focuses on the mesolimbic nuclei as the core of reward behavior regulation. However, the lateral hypothalamus (LH) is also a key reward-control locus in the brain. Here we hypothesize that manipulating glucagon-like peptide-1 receptor (GLP-1R) activity selectively in the LH can profoundly affect food reward behavior, ultimately leading to obesity. Progressive ratio operant responding for sucrose was examined in male and female rats, following GLP-1R activation and pharmacological or genetic GLP-1R blockade in the LH. Ingestive behavior and metabolic parameters, as well as molecular and efferent targets, of the LH GLP-1R activation were also evaluated. Food motivation was reduced by activation of LH GLP-1R. Conversely, acute pharmacological blockade of LH GLP-1R increased food motivation but only in male rats. GLP-1R activation also induced a robust reduction in food intake and body weight. Chronic knockdown of LH GLP-1R induced by intraparenchymal delivery of an adeno-associated virus-short hairpin RNA construct was sufficient to markedly and persistently elevate ingestive behavior and body weight and ultimately resulted in a doubling of fat mass in males and females. Interestingly, increased food reinforcement was again found only in males. Our data identify the LH GLP-1R as an indispensable element of normal food reinforcement, food intake and body weight regulation. These findings also show, for we believe the first time, that brain GLP-1R manipulation can result in a robust and chronic body weight gain. The broader implications of these findings are that the LH differs between females and males in its ability to control motivated and ingestive behaviors.
Collapse
Affiliation(s)
- L López-Ferreras
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - J E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - E E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - K Eerola
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - R H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - K Olandersson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - L Taing
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - M R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden,Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, Gothenburg SE-405 30, Sweden. E-mail:
| |
Collapse
|
44
|
Kosheleff AR, Araki J, Hsueh J, Le A, Quizon K, Ostlund SB, Maidment NT, Murphy NP. Pattern of access determines influence of junk food diet on cue sensitivity and palatability. Appetite 2018; 123:135-145. [PMID: 29248689 PMCID: PMC5817006 DOI: 10.1016/j.appet.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Abstract
AIMS Like drug addiction, cues associated with palatable foods can trigger food-seeking, even when sated. However, whether susceptibility to the motivating influence of food-related cues is a predisposing factor in overeating or a consequence of poor diet is difficult to determine in humans. Using a rodent model, we explored whether a highly palatable 'junk food' diet impacts responses to reward-paired cues in a Pavlovian-to-instrumental transfer test, using sweetened condensed milk (SCM) as the reward. The hedonic impact of SCM consumption was also assessed by analyzing licking microstructure. METHODS To probe the effects of pattern and duration of junk food exposure, we provided rats with either regular chow ad libitum (controls) or chow plus access to junk food for either 2 or 24 h per day for 1, 3, or 6 weeks. We also examined how individual susceptibility to weight gain related to these measures. RESULTS Rats provided 24 h access to the junk food diet were insensitive to the motivational effects of a SCM-paired cue when tested sated even though their hedonic experience upon reward consumption was similar to controls. In contrast, rats provided restricted, 2 h access to junk food exhibited a cue generalization phenotype under sated conditions, lever-pressing with increased vigor in response to both a SCM-paired cue, and a cue not previously paired with reward. Hedonic response was also significantly higher in these animals relative to controls. CONCLUSIONS These data demonstrate that the pattern of junk food exposure differentially alters the hedonic impact of palatable foods and susceptibility to the motivating influence of cues in the environment to promote food-seeking actions when sated, which may be consequential for understanding overeating and obesity.
Collapse
Affiliation(s)
- Alisa R Kosheleff
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, CA, USA.
| | - Jingwen Araki
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA
| | - Jennifer Hsueh
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA
| | - Andrew Le
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA
| | - Kevin Quizon
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA
| | - Sean B Ostlund
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA; Department of Anesthesiology and Perioperative Care, University of California, 3111 Gillespie Neuroscience Research Facility 837 Health Sciences Rd, Irvine, CA 92697, USA
| | - Nigel T Maidment
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA
| | - Niall P Murphy
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 675 Charles E Young Dr. South, MRL #2762, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Lee SJ, Jokiaho AJ, Sanchez-Watts G, Watts AG. Catecholaminergic projections into an interconnected forebrain network control the sensitivity of male rats to diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2018; 314:R811-R823. [PMID: 29384699 DOI: 10.1152/ajpregu.00423.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hindbrain catecholamine neurons convey gut-derived metabolic signals to an interconnected neuronal network in the hypothalamus and adjacent forebrain. These neurons are critical for short-term glycemic control, glucocorticoid and glucoprivic feeding responses, and glucagon-like peptide 1 (GLP-1) signaling. Here we investigate whether these pathways also contribute to long-term energy homeostasis by controlling obesogenic sensitivity to a high-fat/high-sucrose choice (HFSC) diet. We ablated hindbrain-originating catecholaminergic projections by injecting anti-dopamine-β-hydroxylase-conjugated saporin (DSAP) into the paraventricular nucleus of the hypothalamus (PVH) of male rats fed a chow diet for up to 12 wk or a HFSC diet for 8 wk. We measured the effects of DSAP lesions on food choices; visceral adiposity; plasma glucose, insulin, and leptin; and indicators of long-term ACTH and corticosterone secretion. We also determined lesion effects on the number of carbohydrate or fat calories required to increase visceral fat. Finally, we examined corticotropin-releasing hormone levels in the PVH and arcuate nucleus expression of neuropeptide Y ( Npy), agouti-related peptide ( Agrp), and proopiomelanocortin ( Pomc). DSAP-injected chow-fed rats slowly increase visceral adiposity but quickly develop mild insulin resistance and elevated blood glucose. DSAP-injected HFSC-fed rats, however, dramatically increase food intake, body weight, and visceral adiposity beyond the level in control HFSC-fed rats. These changes are concomitant with 1) a reduction in the number of carbohydrate calories required to generate visceral fat, 2) abnormal Npy, Agrp, and Pomc expression, and 3) aberrant control of insulin secretion and glucocorticoid negative feedback. Long-term metabolic adaptations to high-carbohydrate diets, therefore, require intact forebrain catecholamine projections. Without them, animals cannot alter forebrain mechanisms to restrain increased visceral adiposity.
Collapse
Affiliation(s)
- Shin J Lee
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Anne J Jokiaho
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| | - Graciela Sanchez-Watts
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| | - Alan G Watts
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland.,Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| |
Collapse
|
46
|
Boekhoudt L, Wijbrans EC, Man JHK, Luijendijk MCM, de Jong JW, van der Plasse G, Vanderschuren LJMJ, Adan RAH. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation. Eur Neuropsychopharmacol 2018; 28:171-184. [PMID: 29153928 DOI: 10.1016/j.euroneuro.2017.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/28/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023]
Abstract
Motivational deficits are a key symptom in multiple psychiatric disorders, including major depressive disorder, schizophrenia and addiction. A likely neural substrate for these motivational deficits is the brain dopamine (DA) system. In particular, DA signalling in the nucleus accumbens, which originates from DA neurons in the ventral tegmental area (VTA), has been identified as a crucial substrate for effort-related and activational aspects of motivation. Unravelling how VTA DA neuronal activity relates to motivational behaviours is required to understand how motivational deficits in psychiatry can be specifically targeted. In this study, we therefore used designer receptors exclusively activated by designer drugs (DREADD) in TH:Cre rats, in order to determine the effects of chemogenetic DA neuron activation on different aspects of motivational behaviour. We found that chemogenetic activation of DA neurons in the VTA, but not substantia nigra, significantly increased responding for sucrose under a progressive ratio schedule of reinforcement. More specifically, high effort exertion was characterized by increased initiations of reward-seeking actions. This effect was dependent on effort requirements and instrumental contingencies, but was not affected by sucrose pre-feeding. Together, these findings indicate that VTA DA neuronal activation drives motivational behaviour by facilitating action initiation. With this study, we show that enhancing excitability of VTA DA neurons is a viable strategy to improve motivational behaviour.
Collapse
Affiliation(s)
- Linde Boekhoudt
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands
| | - Ellen C Wijbrans
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands
| | - Jodie H K Man
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands
| | - Johannes W de Jong
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Geoffrey van der Plasse
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roger A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Centre Utrecht, Universiteitsweg 100, 3585 CG Utrecht, The Netherlands.
| |
Collapse
|
47
|
Eggink HM, Oosterman JE, de Goede P, de Vries EM, Foppen E, Koehorst M, Groen AK, Boelen A, Romijn JA, la Fleur SE, Soeters MR, Kalsbeek A. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Chronobiol Int 2017; 34:1339-1353. [PMID: 29028359 DOI: 10.1080/07420528.2017.1363226] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Desynchronization between the master clock in the brain, which is entrained by (day) light, and peripheral organ clocks, which are mainly entrained by food intake, may have negative effects on energy metabolism. Bile acid metabolism follows a clear day/night rhythm. We investigated whether in rats on a normal chow diet the daily rhythm of plasma bile acids and hepatic expression of bile acid metabolic genes is controlled by the light/dark cycle or the feeding/fasting rhythm. In addition, we investigated the effects of high caloric diets and time-restricted feeding on daily rhythms of plasma bile acids and hepatic genes involved in bile acid synthesis. In experiment 1 male Wistar rats were fed according to three different feeding paradigms: food was available ad libitum for 24 h (ad lib) or time-restricted for 10 h during the dark period (dark fed) or 10 h during the light period (light fed). To allow further metabolic phenotyping, we manipulated dietary macronutrient intake by providing rats with a chow diet, a free choice high-fat-high-sugar diet or a free choice high-fat (HF) diet. In experiment 2 rats were fed a normal chow diet, but food was either available in a 6-meals-a-day (6M) scheme or ad lib. During both experiments, we measured plasma bile acid levels and hepatic mRNA expression of genes involved in bile acid metabolism at eight different time points during 24 h. Time-restricted feeding enhanced the daily rhythm in plasma bile acid concentrations. Plasma bile acid concentrations are highest during fasting and dropped during the period of food intake with all diets. An HF-containing diet changed bile acid pool composition, but not the daily rhythmicity of plasma bile acid levels. Daily rhythms of hepatic Cyp7a1 and Cyp8b1 mRNA expression followed the hepatic molecular clock, whereas for Shp expression food intake was leading. Combining an HF diet with feeding in the light/inactive period annulled CYp7a1 and Cyp8b1 gene expression rhythms, whilst keeping that of Shp intact. In conclusion, plasma bile acids and key genes in bile acid biosynthesis are entrained by food intake as well as the hepatic molecular clock. Eating during the inactivity period induced changes in the plasma bile acid pool composition similar to those induced by HF feeding.
Collapse
Affiliation(s)
- Hannah M Eggink
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Johanneke E Oosterman
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Paul de Goede
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Emmely M de Vries
- c Department of Medicine , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Ewout Foppen
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Martijn Koehorst
- d Department of Laboratory Medicine , University of Groningen, University Medical Centre Groningen , Groningen , The Netherlands
| | - Albert K Groen
- d Department of Laboratory Medicine , University of Groningen, University Medical Centre Groningen , Groningen , The Netherlands.,e Department of Vascular Medicine, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Anita Boelen
- b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands
| | - Johannes A Romijn
- c Department of Medicine , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Susanne E la Fleur
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands.,b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands.,f Metabolism and Reward , Netherlands Institute for Neuroscience , Amsterdam , the Netherlands
| | - Maarten R Soeters
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands
| | - Andries Kalsbeek
- a Department Endocrinology and Metabolism , Academic Medical Centre, University of Amsterdam , Amsterdam , The Netherlands.,b Laboratory of Endocrinology, Deptartment Clinical Chemistry, Academic Medical Centre , University of Amsterdam , Amsterdam , The Netherlands.,g Hypothalamic Integration Mechanisms , Netherlands Institute for Neuroscience , Amsterdam , The Netherlands
| |
Collapse
|
48
|
Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats. PLoS One 2017; 12:e0185520. [PMID: 28968417 PMCID: PMC5624615 DOI: 10.1371/journal.pone.0185520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy. Materials and methods Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS) diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours. Results Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes. Conclusion We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.
Collapse
|
49
|
Blancas-Velazquez A, la Fleur SE, Mendoza J. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice. Appetite 2017; 117:263-269. [PMID: 28687372 DOI: 10.1016/j.appet.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian rhythmic activity. These brain oscillators are functionally coupled to coordinate the daily rhythm of food intake. In rats, a free choice high-fat high-sugar (fcHFHS) diet leads to a rapid increase of calorie intake and body weight gain. Interestingly, under a fcHFHS condition, rats ingest a similar amount of sugar during day time (rest phase) as during night time (active phase), but keep the rhythmic intake of regular chow-food. The out of phase between feeding patterns of regular (chow) and highly rewarding food (sugar) may involve alterations of brain circadian oscillators regulating feeding. Here, we report that the fcHFHS diet is a successful model to induce calorie intake, body weight gain and fat tissue accumulation in mice, extending its effectiveness as previously reported in rats. Moreover, we observed that whereas in the SCN the day-night difference in the PER2 clock protein expression was similar between chow-fed and fcHFHS-fed animals, in the LHb, this day-night difference was altered in fcHFHS-exposed animals compared to control chow mice. These findings confirm previous observations in rats showing disrupted daily patterns of feeding behavior under a fcHFHS diet exposure, and extend our insights on the effects of the diet on circadian gene expression in brain clocks.
Collapse
Affiliation(s)
- Aurea Blancas-Velazquez
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, France; Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, France.
| |
Collapse
|
50
|
de Goede P, Sen S, Oosterman JE, Foppen E, Jansen R, la Fleur SE, Challet E, Kalsbeek A. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks. Neurobiol Sleep Circadian Rhythms 2017; 4:24-33. [PMID: 31236504 PMCID: PMC6584485 DOI: 10.1016/j.nbscr.2017.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/01/2022] Open
Abstract
The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock) gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT), but hardly in other metabolic tissues such as skeletal muscle (SM) and brown adipose tissues (BAT). We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS) diet in combination with time restricted feeding (TRF) to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver. Both timing of feeding and diet composition affect clock genes in BAT and SM. Light phase time-restricted feeding abolishes SM clock gene rhythms. A fcHSHS diet strengthens rhythmic expression of several clock genes in BAT and SM. Metabolic genes PDK4 and UCP1/3 are affected by both timing of feeding and diet. Light phase time-restricted feeding causes desynchronization of BAT and SM clocks.
Collapse
Affiliation(s)
- Paul de Goede
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Satish Sen
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Johanneke E Oosterman
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Metabolism and Reward, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - Ewout Foppen
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| | - Etienne Challet
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
| |
Collapse
|