1
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
2
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, Valle C, Bluett RJ, Erreger K, Wortwein G, Reyes JG, Graham D, Stanwood GD, Hackett TA, Patel S, Fink-Jensen A, Torres GE, Galli A. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry 2016; 6:e809. [PMID: 27187231 PMCID: PMC5070047 DOI: 10.1038/tp.2016.86] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA.
Collapse
Affiliation(s)
- I A Reddy
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J A Pino
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - P Weikop
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - N Osses
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - G Sørensen
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - T Bering
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - C Valle
- Departamento de Ciencias Básicas, Universidad de Viña del Mar, Viña del Mar, Chile
| | - R J Bluett
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - K Erreger
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G Wortwein
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - J G Reyes
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - D Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University, Tallahassee, FL, USA
| | - G D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University, Tallahassee, FL, USA
| | - T A Hackett
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Patel
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Fink-Jensen
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, University Hospital Copenhagen, Copenhagen, Denmark
| | - G E Torres
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - A Galli
- Neuroscience Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Sun AG, Lin AQ, Huang SY, Huo D, Cong CH. Identification of potential drugs for Parkinson's disease based on a sub-pathway method. Int J Neurosci 2015; 126:318-25. [DOI: 10.3109/00207454.2014.986673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Roberts-Crowley ML, Rittenhouse AR. Characterization of ST14A Cells for Studying Modulation of Voltage-Gated Calcium Channels. PLoS One 2015; 10:e0132469. [PMID: 26147123 PMCID: PMC4492559 DOI: 10.1371/journal.pone.0132469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
In medium spiny neurons (MSNs) of the striatum, dopamine D2 receptors (D2Rs) specifically inhibit the Cav1.3 subtype of L-type Ca2+ channels (LTCs). MSNs are heterogeneous in their expression of dopamine receptors making the study of D2R pathways difficult in primary neurons. Here, we employed the ST14A cell line, derived from embryonic striatum and characterized to have properties of MSNs, to study Cav1.3 current and its modulation by neurotransmitters. Round, undifferentiated ST14A cells exhibited little to no endogenous Ca2+ current while differentiated ST14A cells expressed endogenous Ca2+ current. Transfection with LTC subunits produced functional Cav1.3 current from round cells, providing a homogeneous model system compared to native MSNs for studying D2R pathways. However, neither endogenous nor recombinant Cav1.3 current was modulated by the D2R agonist quinpirole. We confirmed D2R expression in ST14A cells and also detected D1Rs, D4Rs, D5Rs, Gq, calcineurin and phospholipase A2 using RT-PCR and/or Western blot analysis. Phospholipase C β-1 (PLCβ-1) expression was not detected by Western blot analysis which may account for the lack of LTC modulation by D2Rs. These findings raise caution about the assumption that the presence of G-protein coupled receptors in cell lines indicates the presence of complete signaling cascades. However, exogenous arachidonic acid inhibited recombinant Cav1.3 current indicating that channels expressed in ST14A cells are capable of modulation since they respond to a known signaling molecule downstream of D2Rs. Thus, ST14A cells provide a MSN-like cell line for studying channel modulation and signaling pathways that do not involve activation of PLCβ-1.
Collapse
Affiliation(s)
- Mandy L. Roberts-Crowley
- Department of Physiology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ann R. Rittenhouse
- Department of Physiology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
McNamara RK, Lotrich FE. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev Neurother 2013; 12:1143-61. [PMID: 23039393 DOI: 10.1586/ern.12.98] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
7
|
Mood stabilizer lithium inhibits amphetamine-increased 4-hydroxynonenal-protein adducts in rat frontal cortex. Int J Neuropsychopharmacol 2012; 15:1275-85. [PMID: 21939588 DOI: 10.1017/s1461145711001416] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent studies indicate that bipolar disorder is associated with mitochondrial dysfunction and oxidative stress. Previous studies in our laboratory have shown that the mood stabilizer lithium inhibits oxidative stress. The α,β-unsaturated aldehyde 4-hydroxy-2-nonenal (4-HNE), a major product of lipid peroxidation, is able to exert cytotoxicity and disturb cellular function by forming protein adducts. The purpose of this study is to determine whether chronic lithium treatment prevents 4-HNE-protein adduction in an amphetamine-induced hyperactive mania-like model. We found that repeated amphetamine stimulation significantly induced hyperactive behaviour, decreased activities of mitochondrial complexes I and III, and increased 4-HNE-protein adducts in rat frontal cortex, and that chronic lithium treatment inhibited both amphetamine-induced hyperactivity and 4-HNE-protein adduction. Monoamine neurotransmitters are involved in the aetiology and pathology of bipolar disorder and other psychiatric diseases, and also contribute significantly to amphetamine-induced behavioural effects. Vesicular monoamine transporter 2 (VMAT2) is critical in packaging monoamine neurotransmitters. We found that 4-HNE can form protein adducts with VMAT2. Repeated amphetamine stimulation significantly increased 4-HNE-VMAT2 adducts, while chronic lithium treatment reduced amphetamine-increased 4-HNE-VMAT2 adducts in rat frontal cortex. Our findings suggest that chronic lithium treatment may inhibit amphetamine-induced hyperactive mania-like behaviour by preventing 4-HNE-VMAT2 adduction. This finding also indicates that prevention of 4-HNE-VMAT2 adduction may contribute in part to the pharmacological action of lithium for the treatment of bipolar disorder.
Collapse
|
8
|
Ramadan E, Chang L, Chen M, Ma K, Hall FS, Uhl GR, Rapoport SI, Basselin M. Knocking out the dopamine reuptake transporter (DAT) does not change the baseline brain arachidonic acid signal in the mouse. Int J Neurosci 2012; 122:373-80. [PMID: 22376027 PMCID: PMC3464054 DOI: 10.3109/00207454.2012.665972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Dopamine transporter (DAT) homozygous knockout (DAT(-/-)) mice have a 10-fold higher extracellular (DA) concentration in the caudate-putamen and nucleus accumbens than do wildtype (DAT(+/+)) mice, but show reduced presynaptic DA synthesis and fewer postsynaptic D(2) receptors. One aspect of neurotransmission involves DA binding to postsynaptic D(2)-like receptors coupled to cytosolic phospholipase A(2) (cPLA(2)), which releases the second messenger, arachidonic acid (AA), from synaptic membrane phospholipid. We hypothesized that tonic overactivation of D(2)-like receptors in DAT(-/-) mice due to the excess DA would not increase brain AA signaling, because of compensatory downregulation of postsynaptic DA signaling mechanisms. METHODS [1-(14)C]AA was infused intravenously for 3 min in unanesthetized DAT(+/+), heterozygous (DAT(+/-)), and DAT(-/-) mice. AA incorporation coefficients k* and rates J(in), markers of AA metabolism and signaling, were imaged in 83 brain regions using quantitative autoradiography; brain cPLA(2)-IV activity also was measured. RESULTS Neither k* nor J(in) for AA in any brain region, or brain cPLA(2)-IV activity, differed significantly among DAT(-/-), DAT(+/-), and DAT(+/+) mice. CONCLUSIONS These results differ from reported increases in k* and J(in) for AA, and in brain cPLA(2) expression, in serotonin reuptake transporter (5-HTT) knockout mice, and suggest that postsynaptic dopaminergic neurotransmission mechanisms involving AA are downregulated despite elevated DA in DAT(-/-) mice.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
We developed a novel method to study dopaminergic neurotransmission using positron emission tomography (PET) with [1-(11)C]arachidonic acid ([1-(11)C]AA). Previous preclinical studies have shown the utility of [1-(11)C]AA as a marker of signal transduction coupled to cytosolic phospholipase A(2) (cPLA(2)). Using [1-(11)C]AA and [(15)O]water PET, we measured regional incorporation coefficients K(*) for AA and regional cerebral blood flow (rCBF), respectively, in healthy male volunteers given the D(1)/D(2) agonist (10 or 20 μg/kg subcutaneous) apomorphine. We confirmed a robust central dopaminergic response to apomorphine by observing significant increases in the serum concentration of growth hormone. We observed significant increases, as well as decreases in K(*) and increases in rCBF in response to apomorphine. These changes remained significant after covarying for handedness and apomorphine dosage. The magnitude of increases in K(*) was lower than those in our previous animal experiments, likely reflecting the smaller dose of apomorphine used in the current human study. Changes in K(*) may reflect neuronal signaling downstream of activated D(2)-like receptors coupled to cPLA(2). Changes in rCBF are consistent with previous studies showing net functional effects of D(1)/D(2) activation. [1-(11)C]AA PET may be useful for studying disturbances of dopaminergic neurotransmission in conditions such as Parkinson's disease and schizophrenia.
Collapse
|
10
|
Godoy T, Riva A, Ekström J. Atypical antipsychotics--effects of amisulpride on salivary secretion and on clozapine-induced sialorrhea. Oral Dis 2012; 18:680-91. [PMID: 22458406 DOI: 10.1111/j.1601-0825.2012.01926.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Amisulpride is suggested for treatment of clozapine-induced sialorrhea. However, objective measurements of its effectiveness are lacking and, preclinically, amisulpride has no effect. We currently hypothesise that amisulpride acts by reducing the nervous- rather than the clozapine-driven salivary secretion. MATERIAL AND METHODS Effects of intravenous amisulpride (as well as of clozapine and raclopride, a dopamine D2/D3 antagonist) were investigated in rats, including those subjected to chronic preganglionic parasympathetic denervation (submandibular glands) or combined postganglionic parasympathetic and sympathetic denervation (parotid glands). In duct-cannulated glands, secretion was evoked reflexly, at low and maximum flow rates, and by electrical stimulation of the parasympathetic and sympathetic innervations, and administration of autonomimetics (including substance P). RESULTS Unlike clozapine, amisulpride had no effect on the reflexly evoked secretion at maximum rate. With respect to reflex secretion at low rate and to the secretion evoked by muscarinic, α-adrenergic, β-adrenergic and substance P receptors, amisulpride (in contrast to raclopride) dose dependently potentiated the responses. Amisulpride had no effect on gland blood flow. CONCLUSIONS No support for any inhibitory influence of amisulpride was found. Conversely, amisulpride universally enhanced secretion, suggesting that amisulpride is a potential drug for dry-mouth treatment. The mechanism behind the potentiation is currently unknown.
Collapse
Affiliation(s)
- T Godoy
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | | | | |
Collapse
|
11
|
Ramadan E, Basselin M, Taha AY, Cheon Y, Chang L, Chen M, Rapoport SI. Chronic valproate treatment blocks D2-like receptor-mediated brain signaling via arachidonic acid in rats. Neuropharmacology 2011; 61:1256-64. [PMID: 21839100 PMCID: PMC3190603 DOI: 10.1016/j.neuropharm.2011.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/12/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D(2)-like (D(2), D(3), and D(4)) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce D(2)-like-mediated signaling via AA. METHODS An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, J(in), markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-(14)C]AA infusion. Whole brain concentrations of prostaglandin (PG)E(2) and thromboxane (TX)B(2) also were measured. RESULTS Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE(2) in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE(2) and TXB(2), and blocked the quinpirole-induced increments in k* and PGE(2). CONCLUSION These results further provide evidence that mood stabilizers downregulate brain dopaminergic D(2)-like receptor signaling involving AA.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lee HJ, Bazinet RP, Rapoport SI, Bhattacharjee AK. Brain arachidonic acid cascade enzymes are upregulated in a rat model of unilateral Parkinson disease. Neurochem Res 2009; 35:613-9. [PMID: 19997776 DOI: 10.1007/s11064-009-0106-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Arachidonic acid (AA) signaling is upregulated in the caudate-putamen and frontal cortex of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, a model for asymmetrical Parkinson disease. AA signaling can be coupled to D(2)-like receptor initiated AA hydrolysis from phospholipids by cytosolic phospholipase A(2) (cPLA(2)) and subsequent metabolism by cyclooxygenase (COX)-2. In unilaterally 6-OHDA- and sham-lesioned rats, we measured brain expression of cPLA(2), other PLA(2) enzymes, and COX-2. Activity and protein levels of cPLA(2) were significantly higher as was COX-2-protein in caudate-putamen, frontal cortex and remaining brain on the lesioned compared to intact side of the 6-OHDA lesioned rats, and compared to sham brain. Secretory sPLA(2) and Ca(2+)-independent iPLA(2) expression did not differ between sides or groups. Thus, the tonically increased ipsilateral AA signal in the lesioned rat corresponds to upregulated cPLA(2) and COX-2 expression within the AA metabolic cascade, which may contribute to symptoms and pathology in Parkinson disease.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Rosa AO, Rapoport SI. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:697-705. [PMID: 19327408 PMCID: PMC2735787 DOI: 10.1016/j.bbalip.2009.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/01/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) and Ca(2+)-independent phospholipase A(2) (iPLA(2)), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca(2+), even though iPLA(2) has been thought to be Ca(2+)-independent. The source of Ca(2+) for activation of cPLA(2) is largely extracellular, whereas Ca(2+) released from the endoplasmic reticulum can activate iPLA(2) by a number of mechanisms. This review focuses on the role of Ca(2+) in modulating cPLA(2) and iPLA(2) activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca(2+) signal.
Collapse
Affiliation(s)
- Angelo O Rosa
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Bhattacharjee AK, Chang L, Chen M, White L, Bell JM, Bazinet RP, Rapoport SI. Chronic d-amphetamine depresses an imaging marker of arachidonic acid metabolism in rat brain. Int J Neuropsychopharmacol 2008; 11:957-69. [PMID: 18570702 PMCID: PMC2676692 DOI: 10.1017/s1461145708008833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute d-amphetamine (d-Amph) administration to rats leads to the release of arachidonic acid (AA, 20:4n-6) as a second messenger following indirect agonism at dopamine D2-like receptors in the brain. We hypothesized that chronically administered d-Amph in rats also would alter brain AA metabolism and signalling. To test this, adult male rats were injected i.p. daily for 2 wk with saline or 2.5 mg/kg d-Amph. After a 1-d washout, the unanaesthetized rats were injected acutely with i.v. saline, 1 mg/kg quinpirole (a D2-like receptor agonist) or 5.0 mg/kg SKF-38393 (a D1-like receptor agonist), followed by i.v. [1-14C]AA. The AA incorporation coefficient k* (brain radioactivity/integrated plasma radioactivity), a marker of AA signalling and metabolism, was quantified using autoradiography in each of 62 brain regions. Compared with chronic saline, chronic d-Amph widely decreased baseline values of k* in brain regions having D2-like receptors. On the other hand, chronic amphetamine did not alter the k* responses to quinpirole seen in chronic saline-treated rats. SKF-38393 had minimal effects on k* in both chronic saline-treated and amphetamine-treated rats, consistent with D1-like receptors not being coupled to AA signalling. The ability of chronic d-Amph after 1-d washout to down-regulate baseline values of k* probably reflects neuroplastic changes in brain AA signalling, and may correspond to depressive behaviours noted following withdrawal from chronic amphetamine in humans and in rats.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacokinetics
- Autoradiography
- Biomarkers/analysis
- Biomarkers/metabolism
- Brain Chemistry/drug effects
- Central Nervous System Stimulants/administration & dosage
- Central Nervous System Stimulants/pharmacology
- Depression, Chemical
- Dextroamphetamine/administration & dosage
- Dextroamphetamine/pharmacology
- Dopamine Agonists/pharmacology
- Fatty Acids, Nonesterified/blood
- Half-Life
- Image Processing, Computer-Assisted
- Injections, Intraperitoneal
- Male
- Quinpirole/pharmacology
- Rats
- Rats, Inbred F344
- Receptors, Dopamine D2/agonists
- Receptors, Phospholipase A2/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Abesh K Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
McNamara RK, Sullivan J, Richtand NM, Jandacek R, Rider T, Tso P, Campbell N, Lipton J. Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult DBA/2J mice: Relationship with ventral striatum dopamine concentrations. Synapse 2008; 62:725-35. [DOI: 10.1002/syn.20542] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Basselin M, Chang L, Chen M, Bell JM, Rapoport SI. Chronic carbamazepine administration attenuates dopamine D2-like receptor-initiated signaling via arachidonic acid in rat brain. Neurochem Res 2008; 33:1373-83. [PMID: 18302021 PMCID: PMC5240792 DOI: 10.1007/s11064-008-9595-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/10/2008] [Indexed: 12/25/2022]
Abstract
Observations that dopaminergic antagonists are beneficial in bipolar disorder and that dopaminergic agonists can produce mania suggest that bipolar disorder involves excessive dopaminergic transmission. Thus, mood stabilizers used to treat the disease might act in part by downregulating dopaminergic transmission. In agreement, we reported that dopamine D2-like receptor mediated signaling involving arachidonic acid (AA, 20:4n-6) was downregulated in rats chronically treated with lithium. To see whether chronic carbamazepine, another mood stabilizer, did this as well, we injected i.p. saline or the D2-like receptor agonist, quinpirole (1 mg/kg), into unanesthetized rats that had been pretreated for 30 days with i.p. carbamazepine (25 mg/kg/day) or vehicle, and used quantitative autoradiography to measure regional brain incorporation coefficients (k*) for AA, markers of signaling. We also measured brain prostaglandin E2 (PGE2), an AA metabolite. In vehicle-treated rats, quinpirole compared with saline significantly increased k* for AA in 35 of 82 brain regions examined, as well as brain PGE2 concentration. Affected regions belong to dopaminergic circuits and have high D2-like receptor densities. Chronic carbamazepine pretreatment prevented the quinpirole-induced increments in k* and in PGE2. These findings are consistent with the hypothesis that effective mood stabilizers generally downregulate brain AA signaling via D2-like receptors, and that this signaling is upregulated in bipolar disorder.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
17
|
Rao RE, Wojnicki FHE, Coupland J, Ghosh S, Corwin RLW. Baclofen, raclopride, and naltrexone differentially reduce solid fat emulsion intake under limited access conditions. Pharmacol Biochem Behav 2008; 89:581-90. [PMID: 18353432 PMCID: PMC2669792 DOI: 10.1016/j.pbb.2008.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 01/02/2008] [Accepted: 02/11/2008] [Indexed: 01/07/2023]
Abstract
Previous work in rats has demonstrated that an Intermittent (Monday, Wednesday, Friday) schedule of access promotes binge-type consumption of 100% vegetable shortening during a 1-h period of availability. The present study used novel shortening-derived stable solid emulsions of various fat concentrations. These emulsions were the consistency of pudding and did not demonstrate oil and water phase separation previously reported with oil-based liquid emulsions. Male Sprague-Dawley rats were grouped according to schedule of access (Daily or Intermittent) to one of three concentrations (18%, 32%, 56%) of solid fat emulsion. There were no significant Intermittent vs. Daily differences in amount consumed, due to high intakes in all groups. This indicated the acceptability of the emulsions. Baclofen (GABA(B) agonist) and raclopride (D2-like antagonist) both significantly reduced emulsion intake in all Daily groups, but only in the 56% fat Intermittent group. Naltrexone (opioid antagonist), in contrast, significantly reduced 32% and 56% fat emulsion intake in the Intermittent, as well as the Daily groups. These results indicate that the fat intake-reducing effects of GABA(B) activation and D(2) blockade depend upon fat concentration and schedule of fat access, while the fat intake-reducing effects of opioid blockade depend upon fat concentration but not schedule of access.
Collapse
Affiliation(s)
- R E Rao
- The Pennsylvania State University, Nutritional Sciences Department, University Park, PA 16801, United States
| | | | | | | | | |
Collapse
|
18
|
Imaging apomorphine stimulation of brain arachidonic acid signaling via D2-like receptors in unanesthetized rats. Psychopharmacology (Berl) 2008; 197:557-66. [PMID: 18274730 DOI: 10.1007/s00213-008-1073-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE AND OBJECTIVE Because of the important role of dopamine in neurotransmission, it would be useful to be able to image brain dopamine receptor-mediated signal transduction in animals and humans. Administering the D1-D2 receptor agonist apomorphine may allow us to do this, as the D2-like receptor is reported to be coupled to cytosolic phospholipase A2 activation and arachidonic acid (AA) release from membrane phospholipid. METHODS Unanesthetized adult rats were given intraperitoneally apomorphine (0.5 mg/kg) or saline, with or without pretreatment with 6 mg/kg intravenous raclopride, a D2/D3 receptor antagonist. [1-14C]AA was injected intravenously, then AA incorporation coefficients k*--brain radioactivity divided by integrated plasma radioactivity--markers of AA signaling, were measured using quantitative autoradiography in 62 brain regions. RESULTS Apomorphine significantly elevated k* in 26 brain regions, including the frontal cortex, motor and somatosensory cortex, caudate-putamen, thalamic nuclei, and nucleus accumbens. Raclopride alone did not change baseline values of k*, but raclopride pretreatment prevented the apomorphine-induced increments in k*. CONCLUSIONS A mixed D1-D2 receptor agonist, apomorphine, increased the AA signal by activating only D2-like receptors in brain circuits containing regions with high D2-like receptor densities. Thus, apomorphine might be used with positron emission tomography to image brain D2-like receptor-mediated AA signaling in humans in health and disease.
Collapse
|
19
|
Bhattacharjee AK, Meister LM, Chang L, Bazinet RP, White L, Rapoport SI. In vivo imaging of disturbed pre- and post-synaptic dopaminergic signaling via arachidonic acid in a rat model of Parkinson's disease. Neuroimage 2007; 37:1112-21. [PMID: 17681816 PMCID: PMC2040339 DOI: 10.1016/j.neuroimage.2007.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Parkinson's disease involves loss of dopamine (DA)-producing neurons in the substantia nigra, associated with fewer pre-synaptic DA transporters (DATs) but more post-synaptic dopaminergic D2 receptors in terminal areas of these neurons. HYPOTHESIS Arachidonic acid (AA) signaling via post-synaptic D2 receptors coupled to cytosolic phospholipase A2 (cPLA2) will be reduced in terminal areas ipsilateral to a chronic unilateral substantia nigra lesion in rats given D-amphetamine, which reverses the direction of the DAT, but will be increased in rats given quinpirole, a D2-receptor agonist. METHODS D-amphetamine (5.0 mg/kg i.p.), quinpirole (1.0 mg/kg i.v.), or saline was administered to unanesthetized rats having a chronic unilateral lesion of the substantia nigra. AA incorporation coefficients, k* (radioactivity/integrated plasma radioactivity), markers of AA signaling, were measured using quantitative autoradiography in 62 bilateral brain regions following intravenous [1-(14)C]AA. RESULTS In rats given saline (baseline), k* was elevated in 13 regions in the lesioned compared with intact hemisphere. Quinpirole increased k* in frontal cortical and basal ganglia regions bilaterally, more so in the lesioned than intact hemisphere. D-amphetamine increased k* bilaterally but less so in the lesioned hemisphere. CONCLUSIONS Increased baseline elevations of k* and increased responsiveness to quinpirole in the lesioned hemisphere are consistent with their higher D2-receptor and cPLA2 activity levels, whereas reduced responsiveness to D-amphetamine is consistent with dropout of pre-synaptic elements containing the DAT. In vivo imaging of AA signaling using dopaminergic drugs can identify pre- and post-synaptic DA changes in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Abesh Kumar Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP. Chronic lamotrigine does not alter the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat: implications for the treatment of bipolar disorder. Psychopharmacology (Berl) 2007; 193:467-74. [PMID: 17487474 DOI: 10.1007/s00213-007-0803-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 04/11/2007] [Indexed: 12/27/2022]
Abstract
RATIONALE Drugs that are effective in treating the manic phase of bipolar disorder (lithium, carbamazepine, and valproate) upon chronic administration to rats decrease the turnover of arachidonic acid in their brain phospholipids. Lamotrigine may not be effective in the manic phase, but is effective in delaying the depressive phase and for treating rapid cycling bipolar disorder. Thus, lamotrigine provides a pharmacological tool to differentiate if downregulation of arachidonic acid turnover is specific to drugs effective in the manic phase of bipolar disorder. MATERIALS AND METHODS To test this hypothesis, rats were administered lamotrigine (10 mg kg(-1) day(-1)) or vehicle intragastrically once daily for 42 days. In the unanesthetized rat, [1-(14)C]arachidonic acid was infused intravenously and arterial blood plasma was sampled until the animal was killed at 5 min, and its microwaved brain was subjected to chemical and radiotracer analysis. RESULTS Using equations from our fatty acid model, we found that chronic lamotrigine compared with vehicle did not alter the net incorporation rate of plasma arachidonic acid into brain phospholipids, nor did it alter the turnover of arachidonic acid within brain phospholipids. CONCLUSION Chronic lamotrigine, which is effective in the depressive phase or rapid cycling bipolar disorder does not alter brain arachidonic acid turnover in the unanesthetized rat. These results are consistent with the hypothesis that drugs effective in treating the manic phase of bipolar disorder decrease brain arachidonic acid turnover.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
21
|
Bazinet RP, Bhattacharjee AK, Lee HJ. Haloperidol targets brain arachidonic acid signaling. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:314-5; author reply 316. [PMID: 16797815 DOI: 10.1016/j.pnpbp.2006.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 03/23/2006] [Indexed: 01/20/2023]
|