1
|
Här K, Lysenko NN, Dimitrova D, Schlüter T, Zavaritskaya O, Kamkin AG, Mladenov M, Grisk O, Köhler R, Gagov H, Schubert R. Kv2.1 Channels Prevent Vasomotion and Safeguard Myogenic Reactivity in Rat Small Superior Cerebellar Arteries. Cells 2023; 12:1989. [PMID: 37566068 PMCID: PMC10416909 DOI: 10.3390/cells12151989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Vascular smooth muscle voltage-gated potassium (Kv) channels have been proposed to contribute to myogenic autoregulation. Surprisingly, in initial experiments, we observed that the Kv2 channel inhibitor stromatoxin induced vasomotion without affecting myogenic tone. Thus, we tested the hypothesis that Kv2 channels contribute to myogenic autoregulation by fine-tuning the myogenic response. Expression of Kv2 channel mRNA was determined using real-time PCR and 'multiplex' single-cell RT-PCR. Potassium currents were measured using the patch-clamp technique. Contractile responses of intact arteries were studied using isobaric myography. Expression of Kv2.1 but not Kv2.2 channels was detected in intact rat superior cerebellar arteries and in single smooth muscle cells. Stromatoxin, a high-affinity inhibitor of Kv2 channels, reduced smooth muscle Kv currents by 61% at saturating concentrations (EC50 36 nmol/L). Further, stromatoxin (10-100 nmol/L) induced pronounced vasomotion in 48% of the vessels studied. In vessels not exhibiting vasomotion, stromatoxin did not affect myogenic reactivity. Notably, in vessels exhibiting stromatoxin-induced vasomotion, pressure increases evoked two effects: First, they facilitated the occurrence of random vasodilations and/or vasoconstrictions, disturbing the myogenic response (24% of the vessels). Second, they modified the vasomotion by decreasing its amplitude and increasing its frequency, thereby destabilizing myogenic tone (76% of the vessels). Our study demonstrates that (i) Kv2.1 channels are the predominantly expressed Kv channels in smooth muscle cells of rat superior cerebellar arteries, and (ii) Kv2.1 channels provide a novel type of negative feedback mechanism in myogenic autoregulation by preventing vasomotion and thereby safeguarding the myogenic response.
Collapse
Affiliation(s)
- Kristina Här
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Natalia N. Lysenko
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Torsten Schlüter
- Institute of Physiology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Olga Zavaritskaya
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andrej G. Kamkin
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mitko Mladenov
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, 1000 Skopje, North Macedonia
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Ralf Köhler
- ARAID-IACS, UIT University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
2
|
De Silva TM, Sobey CG. Cerebral Vascular Biology in Health and Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Lidington D, Wan H, Bolz SS. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front Neurol 2021; 12:688362. [PMID: 34367053 PMCID: PMC8342764 DOI: 10.3389/fneur.2021.688362] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “cerebral autoregulation.” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Hugelshofer M, Buzzi RM, Schaer CA, Richter H, Akeret K, Anagnostakou V, Mahmoudi L, Vaccani R, Vallelian F, Deuel JW, Kronen PW, Kulcsar Z, Regli L, Baek JH, Pires IS, Palmer AF, Dennler M, Humar R, Buehler PW, Kircher PR, Keller E, Schaer DJ. Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. J Clin Invest 2020; 129:5219-5235. [PMID: 31454333 DOI: 10.1172/jci130630] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH), defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity, and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO signaling. We identified 2 pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.
Collapse
Affiliation(s)
- Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Raphael M Buzzi
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Henning Richter
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Vania Anagnostakou
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Leila Mahmoudi
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Raphael Vaccani
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Peter W Kronen
- Veterinary Anaesthesia Services - International, Winterthur, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jin Hyen Baek
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthias Dennler
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Paul W Buehler
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick R Kircher
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurointensive Care Unit, University Hospital of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Johansson SE, Abdolalizadeh B, Sheykhzade M, Edvinsson L, Sams A. Vascular pathology of large cerebral arteries in experimental subarachnoid hemorrhage: Vasoconstriction, functional CGRP depletion and maintained CGRP sensitivity. Eur J Pharmacol 2019; 846:109-118. [PMID: 30653947 DOI: 10.1016/j.ejphar.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Subarachnoid hemorrhage (SAH) is associated with increased cerebral artery sensitivity to vasoconstrictors and release of the perivascular sensory vasodilator CGRP. In the current study the constrictive phenotype and the vasodilatory effects of exogenous and endogenous perivascular CGRP were characterized in detail applying myograph technology to cerebral artery segments isolated from experimental SAH and sham-operated rats. Following experimental SAH, cerebral arteries exhibited increased vasoconstriction to endothelin-1, 5-hydroxytryptamine and U46419. In addition, depolarization-induced vasoconstriction (60 mM potassium) was significantly increased, supporting a general SAH-associated vasoconstrictive phenotype. Using exogenous CGRP, we demonstrated that sensitivity of the arteries to CGRP-induced vasodilation was unchanged after SAH. However, vasodilation in response to capsaicin (100 nM), a sensory nerve activator used to release perivascular CGRP, was significantly reduced by SAH (P = 0.0079). Because CGRP-mediated dilation is an important counterbalance to increased arterial contractility, a reduction in CGRP release after SAH would exacerbate the vasospasms that occur after SAH. A similar finding was obtained with artery culture (24 h), an in vitro model of SAH-induced vascular dysfunction. The arterial segments maintained sensitivity to exogenous CGRP but showed reduced capsaicin-induced vasodilation. To test whether a metabolically stable CGRP analogue could be used to supplement the loss of perivascular CGRP release in SAH, SAX was systemically administered in our in vivo SAH model. SAX treatment, however, induced CGRP-desensitization and did not prevent the development of vasoconstriction in cerebral arteries after SAH.
Collapse
Affiliation(s)
- Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Bahareh Abdolalizadeh
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Oe, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600 Glostrup, Denmark.
| |
Collapse
|
6
|
Guo ZN, Jin H, Sun H, Zhao Y, Liu J, Ma H, Sun X, Yang Y. Antioxidant Melatonin: Potential Functions in Improving Cerebral Autoregulation After Subarachnoid Hemorrhage. Front Physiol 2018; 9:1146. [PMID: 30174621 PMCID: PMC6108098 DOI: 10.3389/fphys.2018.01146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and morbidity. Impaired cerebral autoregulation following SAH has been reported owing to effects on sympathetic control, endothelial function, myogenic response, and cerebral metabolism. Impaired cerebral autoregulation is associated with early brain injury, cerebral vasospasm/delayed cerebral ischemia, and SAH prognosis. However, few drugs have been reported to improve cerebral autoregulation after SAH. Melatonin is a powerful antioxidant that is effective (easily crosses the blood brain barrier) and safe (tolerated in large doses without toxicity). Theoretically, melatonin may impact the control mechanisms of cerebral autoregulation via antioxidative effects, protection of endothelial cell integrity, suppression of sympathetic nerve activity, increase in nitric oxide bioavailability, mediation of the myogenic response, and amelioration of hypoxemia. Furthermore, melatonin may have a comprehensive effect on cerebral autoregulation. This review discusses the potential effects of melatonin on cerebral autoregulation following SAH, in terms of the association between pharmacological activities and the mechanisms of cerebral autoregulation.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Huijie Sun
- Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Yingkai Zhao
- Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Lidington D, Kroetsch JT, Bolz SS. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage. J Cereb Blood Flow Metab 2018; 38:17-37. [PMID: 29135346 PMCID: PMC5757446 DOI: 10.1177/0271678x17742548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating cerebral event that kills or debilitates the majority of those afflicted. The blood that spills into the subarachnoid space stimulates profound cerebral artery vasoconstriction and consequently, cerebral ischemia. Thus, once the initial bleeding in SAH is appropriately managed, the clinical focus shifts to maintaining/improving cerebral perfusion. However, current therapeutic interventions largely fail to improve clinical outcome, because they do not effectively restore normal cerebral artery function. This review discusses emerging evidence that perturbed cerebrovascular "myogenic reactivity," a crucial microvascular process that potently dictates cerebral perfusion, is the critical element underlying cerebral ischemia in SAH. In fact, the myogenic mechanism could be the reason why many therapeutic interventions, including "Triple H" therapy, fail to deliver benefit to patients. Understanding the molecular basis for myogenic reactivity changes in SAH holds the key to develop more effective therapeutic interventions; indeed, promising recent advancements fuel optimism that vascular dysfunction in SAH can be corrected to improve outcome.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Jeffrey T Kroetsch
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Etminan N, Macdonald R. Management of aneurysmal subarachnoid hemorrhage. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:195-228. [DOI: 10.1016/b978-0-444-63600-3.00012-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
|
10
|
Lee S, Yang Y, Tanner MA, Li M, Hill MA. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation. Microcirculation 2015; 22:109-121. [PMID: 25476662 DOI: 10.1111/micc.12183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. METHODS AND RESULTS PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. CONCLUSIONS This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction.
Collapse
Affiliation(s)
- Sewon Lee
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Miles A Tanner
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Min Li
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211.,Department of Medical Pharmacology & Physiology, University of Missouri-Columbia, MO 65211
| |
Collapse
|
11
|
Gürer B, Turkoglu E, Kertmen H, Karavelioglu E, Arikok AT, Sekerci Z. Attenuation of cerebral vasospasm and secondary injury by testosterone following experimental subarachnoid hemorrhage in rabbit. Acta Neurochir (Wien) 2014; 156:2111-20; discussion 2120. [PMID: 25194970 DOI: 10.1007/s00701-014-2211-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/19/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The vasodilatator effects of testosterone have been widely studied and demonstrated. Based on previous studies of these vasodilatatory activities, we hypothesized that testosterone might have potential effects on subarachnoid hemorrhage-induced cerebral vasospasm. METHODS Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits in each group: group 1 (control); group 2 (subarachnoid hemorrhage); group 3 (subarachnoid hemorrhage + vehicle); and group 4 (subarachnoid hemorrhage + testosterone). Testosterone (15 mg/kg, intraperitoneally) was administered 5 min after the intracisternal blood injection and continued for 72 h once per day in the same dose for group 4. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, and hippocampal degeneration scores were evaluated in all groups. RESULTS Intraperitoneal administration of testosterone was found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Testosterone treatment was determined to be effective at increasing the luminal area and reducing the wall thickness of the basilar artery. CONCLUSIONS Our findings show that testosterone has some preventive effects on SAH-induced vasospasm and secondary neuronal injury in rabbits. We propose that the vasodilatatory activity of testosterone is due to its effects on inhibiting calcium channels, activating potassium channels, augmenting nitric oxide synthesis, and inhibiting oxidant stress and inflammation.
Collapse
|
12
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
13
|
Ostrowski RP, Zhang JH. Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res 2013; 2:316-27. [PMID: 23060945 DOI: 10.1007/s12975-011-0069-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may "precondition" the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA 92350, USA
| | | |
Collapse
|
14
|
Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm. J Cardiovasc Pharmacol 2013; 61:51-62. [PMID: 23107868 DOI: 10.1097/fjc.0b013e3182771708] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cerebral vasospasm after subarachnoid hemorrhage (SAH) is characterized by prolonged severe constriction of the basilar artery, which often leads to ischemic brain damage. Locally elevated concentrations of spasmogenic substances induce persistent depolarization of myocytes in the basilar artery, leading to continuous influx of calcium (Ca) through voltage-sensitive Ca channels and myocyte contraction. Potassium (K) channel openers may have therapeutic utility to oppose membrane depolarization, dilate the arteries, and reduce ischemia. Here, we examined the involvement of vascular Kv7 K channels in the pathogenesis of cerebral vasospasm and tested whether Kv7 channel openers are effective therapeutic agents in a rat model of SAH. Patch-clamp experiments revealed that 3 different spasmogens (serotonin, endothelin, and vasopressin) suppressed Kv7 currents and depolarized freshly isolated rat basilar artery myocytes. These effects were significantly reduced in the presence of a Kv7 channel opener, retigabine. Retigabine (10 μM) also significantly blocked L-type Ca channels, reducing peak inward currents by >50%. In the presence of a selective Kv7 channel blocker, XE991, the spasmogens did not produce additive constriction responses measured using pressure myography. Kv7 channel openers (retigabine or celecoxib) significantly attenuated basilar artery spasm in rats with experimentally induced SAH. In conclusion, we identify Kv7 channels as common targets of vasoconstrictor spasmogens and as candidates for therapeutic intervention for cerebral vasospasm.
Collapse
|
15
|
Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 2013; 70:126-38. [PMID: 23376354 PMCID: PMC3607210 DOI: 10.1016/j.phrs.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 02/07/2023]
Abstract
Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca(2+) and K(+) channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca(2+) and K(+) channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca(2+) (CaV1.2) channels, the voltage-gated K(+) (KV) channels, and the large-conductance Ca(2+)-activated K(+) (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels.
Collapse
Affiliation(s)
- Biny K Joseph
- Venenum Biodesign, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | | | | | | |
Collapse
|
16
|
Kamp MA, Dibué M, Schneider T, Steiger HJ, Hänggi D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res Treat 2012; 2012:382146. [PMID: 23251831 PMCID: PMC3518967 DOI: 10.1155/2012/382146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022] Open
Abstract
Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.
Collapse
Affiliation(s)
- Marcel A. Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
| | - Maxine Dibué
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Mani BK, Brueggemann LI, Cribbs LL, Byron KL. Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. Br J Pharmacol 2011; 164:237-49. [PMID: 21323904 PMCID: PMC3174403 DOI: 10.1111/j.1476-5381.2011.01273.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/03/2010] [Accepted: 01/12/2011] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Cerebral vasospasm is the persistent constriction of large conduit arteries in the base of the brain. This pathologically sustained contraction of the arterial myocytes has been attributed to locally elevated concentrations of vasoconstrictor agonists (spasmogens). We assessed the presence and function of KCNQ (K(v) 7) potassium channels in rat basilar artery myocytes, and determined the efficacy of K(v) 7 channel activators in relieving spasmogen-induced basilar artery constriction. EXPERIMENTAL APPROACH Expression and function of K(v) 7 channels in freshly isolated basilar artery myocytes were evaluated by reverse transcriptase polymerase chain reaction and whole-cell electrophysiological techniques. Functional responses to K(v) 7 channel modulators were studied in intact artery segments using pressure myography. KEY RESULTS All five mammalian KCNQ subtypes (KCNQ1-5) were detected in the myocytes. K(v) currents were attributed to K(v) 7 channel activity based on their voltage dependence of activation (V(0.5) ∼-34 mV), lack of inactivation, enhancement by flupirtine (a selective K(v) 7 channel activator) and inhibition by 10,10-bis(pyridin-4-ylmethyl)anthracen-9-one (XE991; a selective K(v) 7 channel blocker). XE991 depolarized the myocytes and constricted intact basilar arteries. Celecoxib, a clinically used anti-inflammatory drug, not only enhanced K(v) 7 currents but also inhibited voltage-sensitive Ca(2+) currents. In arteries pre-constricted with spasmogens, both celecoxib and flupirtine were more effective in dilating artery segments than was nimodipine, a selective L-type Ca(2+) channel blocker. CONCLUSIONS AND IMPLICATIONS K(v) 7 channels are important determinants of basilar artery contractile status. Targeting the K(v) 7 channels using flupirtine or celecoxib could provide a novel strategy to relieve basilar artery constriction in patients with cerebral vasospasm. LINKED ARTICLES To view two letters to the Editor regarding this article visit http://dx.doi.org/10.1111/j.1476-5381.2011.01454.x and http://dx.doi.org/10.1111/j.1476-5381.2011.01457.x.
Collapse
Affiliation(s)
- Bharath K Mani
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|
18
|
Qi M, Hang C, Zhu L, Shi J. Involvement of endothelial-derived relaxing factors in the regulation of cerebral blood flow. Neurol Sci 2011; 32:551-7. [PMID: 21584736 DOI: 10.1007/s10072-011-0622-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/05/2011] [Indexed: 11/30/2022]
Abstract
Despite numerous researches and advances in the present times, delayed cerebral vasospasm remains a severe complication leading to a high mortality and morbidity in patients with subarachnoid hemorrhage (SAH). Since the discovery of endothelium-derived relaxing factor (EDRF) in 1980, its role in delayed cerebral vasospasm after SAH has been widely investigated as well as in regulation of basic cerebral blood flow, pathophysiology of vasoconstriction and application on prevention and treatment of cerebral vasospasm. Among all the EDRFs, nitric oxide has caught the most attention, and the other substances which display similar properties with characteristics of EDRF such as carbon monoxide (CO), hydrogen sulfide (H(2)S), hydrogen peroxide (H(2)O(2)), potassium ion (K(+)) and methane (CH(4)) have also evoked great interest in the research field. This review provides an overview of recent advances in investigations on the involvement of EDRFs in the regulation of cerebral blood flow, especially in cerebral vasospasm after SAH. Possible therapeutic measures and potential clinical implications for cerebral vasospasm are also summarized.
Collapse
Affiliation(s)
- Meng Qi
- Department of Neurosurgery, Jinling Hospital, Nanjing University Medical School, Nanjing, 210002, Jiangsu, China.
| | | | | | | |
Collapse
|
19
|
Nystoriak MA, O'Connor KP, Sonkusare SK, Brayden JE, Nelson MT, Wellman GC. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol Heart Circ Physiol 2011; 300:H803-12. [PMID: 21148767 PMCID: PMC3064296 DOI: 10.1152/ajpheart.00760.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/03/2010] [Indexed: 11/22/2022]
Abstract
Intracerebral (parenchymal) arterioles are morphologically and physiologically unique compared with pial arteries and arterioles. The ability of subarachnoid hemorrhage (SAH) to induce vasospasm in large-diameter pial arteries has been extensively studied, although the contribution of this phenomenon to patient outcome is controversial. Currently, little is known regarding the impact of SAH on parenchymal arterioles, which are critical for regulation of local and global cerebral blood flow. Here diameter, smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)), and membrane potential measurements were used to assess the function of intact brain parenchymal arterioles isolated from unoperated (control), sham-operated, and SAH model rats. At low intravascular pressure (5 mmHg), membrane potential and [Ca(2+)](i) were not different in arterioles from control, sham-operated, and SAH animals. However, raising intravascular pressure caused significantly greater membrane potential depolarization, elevation in [Ca(2+)](i), and constriction in SAH arterioles. This SAH-induced increase in [Ca(2+)](i) and tone occurred in the absence of the vascular endothelium and was abolished by the L-type voltage-dependent calcium channel (VDCC) inhibitor nimodipine. Arteriolar [Ca(2+)](i) and tone were not different between groups when smooth muscle membrane potential was adjusted to the same value. Protein and mRNA levels of the L-type VDCC Ca(V)1.2 were similar in parenchymal arterioles isolated from control and SAH animals, suggesting that SAH did not cause VDCC upregulation. We conclude that enhanced parenchymal arteriolar tone after SAH is driven by smooth muscle membrane potential depolarization, leading to increased L-type VDCC-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology, University of Vermont, College of Medicine, Burlington, Vermont 05405-0068, USA
| | | | | | | | | | | |
Collapse
|
20
|
Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone. J Cereb Blood Flow Metab 2011; 31:3-16. [PMID: 20736958 PMCID: PMC3049462 DOI: 10.1038/jcbfm.2010.143] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular Ca(2+) release events ('Ca(2+) sparks') and transient activation of large-conductance Ca(2+)-activated potassium (BK) channels represent an important vasodilator pathway in the cerebral vasculature. Considering the frequent occurrence of cerebral artery constriction after subarachnoid hemorrhage (SAH), our objective was to determine whether Ca(2+) spark and BK channel activity were reduced in cerebral artery myocytes from SAH model rabbits. Using laser scanning confocal microscopy, we observed ∼50% reduction in Ca(2+) spark activity, reflecting a decrease in the number of functional Ca(2+) spark discharge sites. Patch-clamp electrophysiology showed a similar reduction in Ca(2+) spark-induced transient BK currents, without change in BK channel density or single-channel properties. Consistent with a reduction in active Ca(2+) spark sites, quantitative real-time PCR and western blotting revealed decreased expression of ryanodine receptor type 2 (RyR-2) and increased expression of the RyR-2-stabilizing protein, FKBP12.6, in the cerebral arteries from SAH animals. Furthermore, inhibitors of Ca(2+) sparks (ryanodine) or BK channels (paxilline) constricted arteries from control, but not from SAH animals. This study shows that SAH-induced decreased subcellular Ca(2+) signaling events disable BK channel activity, leading to cerebral artery constriction. This phenomenon may contribute to decreased cerebral blood flow and poor outcome after aneurysmal SAH.
Collapse
|
21
|
Koide M, Nystoriak MA, Brayden JE, Wellman GC. Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:145-50. [PMID: 21116930 PMCID: PMC3057755 DOI: 10.1007/978-3-7091-0353-1_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
BACKGROUND Ca2+ signaling mechanisms are crucial for proper regulation of vascular smooth muscle contractility and vessel diameter. In cerebral artery myocytes, a rise in global cytosolic Ca2+ concentration ([Ca2+]i) causes contraction while an increase in local Ca2+ release events from the sarcoplasmic reticulum (Ca2+ sparks) leads to increased activity of large-conductance Ca2+-activated (BK) K+ channels, hyperpolarization and relaxation. Here, we examined the impact of SAH on Ca2+ spark activity and [Ca2+]i in cerebral artery myocytes following SAH. METHODS A rabbit double injection SAH model was used in this study. Five days after the initial intracisternal injection of whole blood, small diameter cerebral arteries were dissected from the brain for study. For simultaneous measurement of arterial wall [Ca2+]i and diameter, vessels were cannulated and loaded with the ratiometric Ca2+ indicator fura-2. For measurement of Ca2+ sparks, individual myocytes were enzymatically isolated from cerebral arteries and loaded with the Ca2+ indicator fluo-4. Sparks were visualized using laser scanning confocal microscopy. RESULTS Arterial wall [Ca2+]i was significantly elevated and greater levels of myogenic tone developed in arteries isolated from SAH animals compared with arteries isolated from healthy animals. The L-type voltage-dependent Ca2+ channel (VDCC) blocker nifedipine attenuated increases in [Ca2+]i and tone in both groups suggesting increased VDCC activity following SAH. Membrane potential measurement using intracellular microelectrodes revealed significant depolarization of vascular smooth muscle following SAH. Further, myocytes from SAH animals exhibited significantly reduced Ca2+ spark frequency (~50%). CONCLUSIONS Our findings suggest decreased Ca2+ spark frequency leads to reduced BK channel activity in cerebral artery myocytes following SAH. This results in membrane potential depolarization, increased VDCC activity, elevated [Ca2+]i and decreased vessel diameter. We propose this mechanism of enhanced cerebral artery myocyte contractility may contribute to decreased cerebral blood flow and development of neurological deficits in SAH patients.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| | | | | | | |
Collapse
|
22
|
Nikitina E, Kawashima A, Takahashi M, Zhang ZD, Shang X, Ai J, Macdonald RL. Alteration in voltage-dependent calcium channels in dog basilar artery after subarachnoid hemorrhage. J Neurosurg 2010; 113:870-80. [DOI: 10.3171/2010.2.jns091038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The L-type Ca++ channel antagonists like nimodipine have limited efficacy against vasospasm after subarachnoid hemorrhage (SAH). The authors tested the hypothesis that this is because SAH alters these channels, rendering them less responsible for contraction.
Methods
Basilar artery smooth muscle cells were isolated 4, 7, and 21 days after SAH in dogs, and Ca++ channel currents were recorded in 10-mmol/L barium. Proteins for α1 subunits of L-type Ca++ channels were measured by immunoblotting and isometric tension recordings done on rings of the basilar artery.
Results
High voltage–activated (HVA) Ca++ channel currents were significantly decreased and low voltage–activated (LVA) currents increased during vasospasm 4, 7, and 21 days after SAH (p < 0.05). Vasospasm was associated with a significant decrease in the number of cells with negligible LVA current while the number of cells in which the LVA current formed greater than 50% of the maximal current increased (p < 0.01). Window currents through LVA and HVA channels were significantly reduced. All changes correlated with the severity of vasospasm. There was an increase in protein for Cav3.1 and Cav3.3 α1 subunits that comprise T-type Ca++ channels, a decrease in L-type (Cav1.2 and Cav1.3) and an increase in R-type (Cav2.3) Ca++ channel α1 subunits. Functionally, however, isometric tension studies showed vasospastic arteries still relaxed with nimodipine.
Conclusions
Voltage-dependent Ca++ channels are altered in cerebral arteries after SAH. While decreased L-type channels may account for the lack of efficacy of nimodipine clinically, there may be other reasons such as inadequate dose, effect of nimodipine on other cellular targets, and mechanisms of vasospasm other than smooth muscle contraction mediated by activation of L-type Ca++ channels.
Collapse
Affiliation(s)
- Elena Nikitina
- 1Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, Illinois; and
| | - Ayako Kawashima
- 2Division of Neurosurgery, Keenan Research Centre and the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Masataka Takahashi
- 1Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, Illinois; and
| | - Zhen-Du Zhang
- 1Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, Illinois; and
| | - Xueyuan Shang
- 2Division of Neurosurgery, Keenan Research Centre and the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Jinglu Ai
- 2Division of Neurosurgery, Keenan Research Centre and the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - R. Loch Macdonald
- 2Division of Neurosurgery, Keenan Research Centre and the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
23
|
Zhong XZ, Abd-Elrahman KS, Liao CH, El-Yazbi AF, Walsh EJ, Walsh MP, Cole WC. Stromatoxin-sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter. J Physiol 2010; 588:4519-37. [PMID: 20876197 DOI: 10.1113/jphysiol.2010.196618] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cerebral vascular smooth muscle contractility plays a crucial role in controlling arterial diameter and, thereby, blood flow regulation in the brain. A number of K(+) channels have been suggested to contribute to the regulation of diameter by controlling smooth muscle membrane potential (E(m)) and Ca(2+) influx. Previous studies indicate that stromatoxin (ScTx1)-sensitive, Kv2-containing channels contribute to the control of cerebral arterial diameter at 80 mmHg, but their precise role and molecular composition were not determined. Here, we tested if Kv2 subunits associate with 'silent' subunits from the Kv5, Kv6, Kv8 or Kv9 subfamilies to form heterotetrameric channels that contribute to control of diameter of rat middle cerebral arteries (RMCAs) over a range of intraluminal pressure from 10 to 100 mmHg. The predominant mRNAs expressed by RMCAs encode Kv2.1 and Kv9.3 subunits. Co-localization of Kv2.1 and Kv9.3 proteins at the plasma membrane of dissociated single RMCA myocytes was detected by proximity ligation assay. ScTx1-sensitive native current of RMCA myocytes and Kv2.1/Kv9.3 currents exhibited functional identity based on the similarity of their deactivation kinetics and voltage dependence of activation that were distinct from those of homomultimeric Kv2.1 channels. ScTx1 treatment enhanced the myogenic response of pressurized RMCAs between 40 and 100 mmHg, but this toxin also caused constriction between 10 and 40 mmHg that was not previously observed following inhibition of large conductance Ca(2+)-activated K(+) (BK(Ca)) and Kv1 channels. Taken together, this study defines the molecular basis of Kv2-containing channels and contributes to our understanding of the functional significance of their expression in cerebral vasculature. Specifically, our findings provide the first evidence of heteromultimeric Kv2.1/Kv9.3 channel expression in RMCA myocytes and their distinct contribution to control of cerebral arterial diameter over a wider range of E(m) and transmural pressure than Kv1 or BK(Ca) channels owing to their negative range of voltage-dependent activation.
Collapse
Affiliation(s)
- Xi Zoë Zhong
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhong XZ, Harhun MI, Olesen SP, Ohya S, Moffatt JD, Cole WC, Greenwood IA. Participation of KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter. J Physiol 2010; 588:3277-93. [PMID: 20624791 PMCID: PMC2976022 DOI: 10.1113/jphysiol.2010.192823] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/09/2010] [Indexed: 01/11/2023] Open
Abstract
KCNQ gene expression was previously shown in various rodent blood vessels, where the products of KCNQ4 and KCNQ5, Kv7.4 and Kv7.5 potassium channel subunits, respectively, have an influence on vascular reactivity. The aim of this study was to determine if small cerebral resistance arteries of the rat express KCNQ genes and whether Kv7 channels participate in the regulation of myogenic control of diameter. Quantitative reverse transcription polymerase chain reaction (QPCR) was undertaken using RNA isolated from rat middle cerebral arteries (RMCAs) and immunocytochemistry was performed using Kv7 subunit-specific antibodies and freshly isolated RMCA myocytes. KCNQ4 message was more abundant than KCNQ5 = KCNQ1, but KCNQ2 and KCNQ3 message levels were negligible. Kv7.1, Kv7.4 and Kv7.5 immunoreactivity was present at the sarcolemma of freshly isolated RMCA myocytes. Linopirdine (1 microm) partially depressed, whereas the Kv7 activator S-1 (3 and/or 20 microm) enhanced whole-cell Kv7.4 (in HEK 293 cells), as well as native RMCA myocyte Kv current amplitude. The effects of S-1 were voltage-dependent, with progressive loss of stimulation at potentials of >15 mV. At the concentrations employed linopirdine and S-1 did not alter currents due to recombinant Kv1.2/Kv1.5 or Kv2.1/Kv9.3 channels (in HEK 293 cells) that are also expressed by RMCA myocytes. In contrast, another widely used Kv7 blocker, XE991 (10 microm), significantly attenuated native Kv current and also reduced Kv1.2/Kv1.5 and Kv2.1/Kv9.3 currents. Pressurized arterial myography was performed using RMCAs exposed to intravascular pressures of 10-100 mmHg. Linopirdine (1 microm) enhanced the myogenic response at 20 mmHg, whereas the activation of Kv7 channels with S-1 (20 microm) inhibited myogenic constriction at >20 mmHg and reversed the increased myogenic response produced by suppression of Kv2-containing channels with 30 nm stromatoxin (ScTx1). These data reveal a novel contribution of KCNQ gene products to the regulation of myogenic control of cerebral arterial diameter and suggest that Kv7 channel activating drugs may be appropriate candidates for the development of an effective therapy to ameliorate cerebral vasospasm.
Collapse
Affiliation(s)
- Xi Zoë Zhong
- Ion Channels and Cell Signaling Centre, Division of Basic Medical Sciences, St George's University of London, London SW17 0RE, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Liva Cengiz Ş, Fatih Erdi M, Tosun M, Atalik E, Cihat Avunduk M, Cavide Sönmez F, Mehmetoglu İ, Baysefer A. Beneficial effects of levosimendan on cerebral vasospasm induced by subarachnoid haemorrhage: An experimental study. Brain Inj 2010; 24:877-85. [DOI: 10.3109/02699051003789260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Sabri M, Kawashima A, Ai J, Macdonald RL. Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 2008; 1238:163-71. [PMID: 18786513 PMCID: PMC2585051 DOI: 10.1016/j.brainres.2008.08.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 01/05/2023]
Abstract
Clinical evidence suggests that factors other than cerebral vasospasm, such as delayed neuronal and astrocytic cell death, may play a role in the poor prognosis of patients with subarachnoid hemorrhage (SAH). Here we examined this using immunohistochemistry and confocal microscopy in 3 different brain areas in a dog model of SAH. Using antibodies against neuronal marker neuronal nuclear protein (NeuN) and astrocyte marker glial fibrillary acidic protein (GFAP) in conjunction with apoptosis marker (cleaved caspase-3), we quantified neurons and astrocytes to monitor the degree of apoptosis in both groups. Experimental SAH group showed 44 +/- 1% caspase-3 positive neurons in comparison to the 2.0 +/- 0.1% in the control group (P < 0.001, 6 animals each group). For astrocytes, a total 25 +/- 1% were caspase-3 positive in day 7 SAH group, as compared to 0.40 +/- 0.01% for controls (P < 0.001). Regional analysis revealed that neuronal caspase-3 immunoreactivity in all 3 regions were significantly higher (P < 0.001) in SAH animals than that in the control animals. However, the analysis of total area, size and signal co-localization of GFAP with caspase-3 indicated that astrocytic reactivity and proliferation are seen primarily in the hippocampal area, with the least changes detectable in the brainstem. We conclude that in the dog model, there was a significant increase of neuronal and astrocytic cleaved caspase-3, possibly reflecting apoptosis, following SAH induction. These changes coupled with neurological deterioration seen in patients may present a possible reason for the poor outcome in SAH patients.
Collapse
Affiliation(s)
- Mohammed Sabri
- Division of Neurosurgery, St Michael's Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St Michael's, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, Yassari R, Houamed KM, Macdonald RL. Temporal profile of potassium channel dysfunction in cerebrovascular smooth muscle after experimental subarachnoid haemorrhage. Neurosci Lett 2008; 440:81-6. [PMID: 18547725 PMCID: PMC2518203 DOI: 10.1016/j.neulet.2008.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 04/26/2008] [Accepted: 05/07/2008] [Indexed: 11/15/2022]
Abstract
The pathogenesis of cerebral vasospasm after subarachnoid haemorrhage (SAH) involves sustained contraction of arterial smooth muscle cells that is maximal 6-8 days after SAH. We reported that function of voltage-gated K+ (KV) channels was significantly decreased during vasospasm 7 days after SAH in dogs. Since arterial constriction is regulated by membrane potential that in turn is determined predominately by K+ conductance, the compromised K+ channel dysfunction may cause vasospasm. Additional support for this hypothesis would be demonstration that K+ channel dysfunction is temporally coincident with vasospasm. To test this hypothesis, SAH was created using the double haemorrhage model in dogs and smooth muscle cells from the basilar artery, which develops vasospasm, were isolated 4 days (early vasospasm), 7 days (during vasospasm) and 21 days (after vasospasm) after SAH and studied using patch-clamp electrophysiology. We investigated the two main K+ channels (KV and large-conductance voltage/Ca2+-activated (KCa) channels). Electrophysiologic function of KCa channels was preserved at all times after SAH. In contrast, function of KV channels was significantly decreased at all times after SAH. The decrease in cell size and degree of KV channel dysfunction was maximal 7 days after SAH. The results suggest that KV channel dysfunction either only partially contributes to vasospasm after SAH or that compensatory mechanisms develop that lead to resolution of vasospasm before KV channels recover their function.
Collapse
Affiliation(s)
- Babak S. Jahromi
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - Yasuo Aihara
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - Jinglu Ai
- Division of Neurosurgery, St. Michael’s Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Zhen-Du Zhang
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - George Weyer
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - Elena Nikitina
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - Reza Yassari
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - Khaled M. Houamed
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, 60637, U.S.A
| | - R. Loch Macdonald
- Division of Neurosurgery, St. Michael’s Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|