1
|
Sharma A, Balde A, Nazeer RA. A review on animal venom-based matrix metalloproteinase modulators and their therapeutic implications. Int Immunopharmacol 2025; 157:114703. [PMID: 40300352 DOI: 10.1016/j.intimp.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/03/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Matrix Metalloproteinases (MMPs) belong to a family of proteolytic enzymes that degrade extracellular matrix components, such as collagen, elastin, laminin, and fibronectin. They also play a part in tissue remodeling by cleaving and rejoining the tissue proteins. Cancer, neurodegenerative disorders, cardiovascular diseases, arthritis, and chronic inflammatory conditions are just some of the diseases that can start or get worse when different MMPs are not working properly. Venomous Animals such as honeybees, toads, snakes, spiders, scorpions, jellyfish, and sea anemones contain venom-secreting glands, which help them defend against predators and immobilize their prey. The molecules that come from animal venom are a complicated mix of bioactive molecules, such as peptides, enzymes, proteins, and small organic compounds that do a number of biological things. Venom-derived molecules have been found to modulate MMP. These venoms and their components target specific signaling pathways, modifying MMP expression levels to either induce inflammation or exhibit anti-inflammatory effects. In this review, we study and explore different MMPs, such as MMP1, MMP2, MMP3, MMP7, MMP8, and MMP9, and their roles in the progression of certain diseases. We also look at different types of molecules derived from marine and land animal venom that are used as MMP modulators. We look at how they work by targeting specific signaling pathways to change MMPs and how they might be used as a medicine to stop diseases by decreasing MMPs.
Collapse
Affiliation(s)
- Ansumaan Sharma
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Pinto BF, Lopes PH, Trufen CEM, Ching Ching AT, Junqueira de Azevedo IDLM, Nishiyama-Jr MY, de Souza MM, Pohl PC, Tambourgi DV. Differential Cellular Responses to Class I and II Sphingomyelinase D: Unraveling the Mechanisms of Loxosceles Venom-Induced Dermonecrosis and Potential Therapeutic Targets. Int J Mol Sci 2025; 26:3012. [PMID: 40243660 PMCID: PMC11988295 DOI: 10.3390/ijms26073012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Dermonecrosis resulting from Loxosceles spider envenomation, primarily driven by the enzyme sphingomyelinase D (SMase D), is characterized by severe inflammation and nonhealing wounds. SMases can be classified as Class I or II based on their structural characteristics. Class I exhibits greater dermonecrotic activity than Class II; however, the intracellular mechanisms responsible for this difference remain poorly understood. The differential transcriptomics analysis of human keratinocytes treated with each toxin revealed that Class I primarily activates pathways associated with proteolytic activity and apoptosis. In contrast, Class II uniquely upregulates key genes, including PIM-1, MCL-1, PAI-1, p21, and c-FOS, which support cell survival and inhibit apoptosis. These pathways also facilitate tissue repair and keratinocyte proliferation during wound healing, particularly through signaling mechanisms involving Substance P and VEGF-A. RT-qPCR confirmed these findings, with protein level evaluations indicating the sustained upregulation of VEGF-A exclusively in keratinocytes treated with Class II. We identified Substance P and VEGF-A as potential therapeutic targets for managing cutaneous loxoscelism, providing valuable insights into the cellular mechanisms underlying the distinct toxic effects of the two SMase D isoforms. By elucidating these pathways, this study enhances our understanding of loxoscelism's pathophysiology and highlights strategies for therapeutic intervention in dermonecrotic injuries caused by spider venom.
Collapse
Affiliation(s)
- Bruna Fernandes Pinto
- Immunochemistry Laboratory, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil; (B.F.P.)
| | - Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil; (B.F.P.)
- PREVOR, Rue des Chasseurs-Ardennais 3, 4031 Liège, Belgium
| | | | - Ana Tung Ching Ching
- Immunochemistry Laboratory, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil; (B.F.P.)
| | | | - Milton Yutaka Nishiyama-Jr
- Laboratory of Applied Toxinology, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil
| | - Marcelo Medina de Souza
- Centre of Excellence in New Target Discovery, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil
| | - Paula C. Pohl
- Immunochemistry Laboratory, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil; (B.F.P.)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Avenue Vital Brasil, 1500, Butantã, São Paulo 05503-900, Brazil; (B.F.P.)
| |
Collapse
|
3
|
Wille ACM, Machado MI, Souza SH, da Justa HC, de Fraga-Ferreira ME, Mello EDS, Gremski LH, Veiga SS. Brown Spider Venom Phospholipases D: From Potent Molecules Involved in Pathogenesis of Brown Spider Bites to Molecular Tools for Studying Ectosomes, Ectocytosis, and Its Applications. Toxins (Basel) 2025; 17:70. [PMID: 39998087 PMCID: PMC11860474 DOI: 10.3390/toxins17020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Accidents caused by Loxosceles spiders, commonly known as brown spiders, are frequent in warm and temperate regions worldwide, with a higher prevalence in South America and the southern United States. In the venoms of species clinically associated with accidents, phospholipases D (PLDs) are the most expressed toxins. This classification is based on the toxins' ability to cleave various phospholipids, with a preference for sphingomyelin. Studies using purified PLDs have demonstrated that these enzymes cleave phospholipids from cells, producing derivatives that can activate leukocytes. A dysregulated inflammatory response is the primary effect following envenomation, leading to dermonecrosis, which is histopathologically characterized by aseptic coagulative necrosis-a key feature of envenomation. Although advances in understanding the structure-function relationship of enzymes have been achieved through molecular biology, heterologous expression, site-directed mutations, crystallography, and bioinformatic analyses-describing PLDs in the venoms of various species and highlighting the conservation of amino acid residues involved in catalysis, substrate binding, and magnesium stabilization-little is known about the cellular biology of these PLDs. Studies have shown that the treatment of various cells with recombinant PLDs stimulates the formation of ectosomes and ectocytosis, events that initiate a cascade of intracellular signaling in PLD-binding cells and lead to the release of extracellular microvesicles. These microvesicles may act as signalosomes for other target cells, thereby triggering an inflammatory response and dermonecrosis. In this review, we will discuss the biochemical properties of PLDs, the target cells that bind to them, and the ectocytosis-dependent pathophysiology of envenoming.
Collapse
Affiliation(s)
- Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil;
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Mariana Izabele Machado
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Samira Hajjar Souza
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Maria Eduarda de Fraga-Ferreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Eloise de Souza Mello
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| |
Collapse
|
4
|
Pinto BF, Lopes PH, Trufen CEM, Ching ATC, De Azevedo IDLMJ, Nishiyama MY, Pohl PC, Tambourgi DV. Role of ErbB and IL-1 signaling pathways in the dermonecrotic lesion induced by Loxosceles sphingomyelinases D. Arch Toxicol 2023; 97:3285-3301. [PMID: 37707622 DOI: 10.1007/s00204-023-03602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Collapse
|
5
|
Salabi F, Jafari H. Differential venom gland gene expression analysis of juvenile and adult scorpions Androctonus crassicauda. BMC Genomics 2022; 23:636. [PMID: 36076177 PMCID: PMC9454214 DOI: 10.1186/s12864-022-08866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Androctonus crassicauda, belonging to the genus Androctonus of the family Buthidae, is the most venomous scorpion in Middle East countries. However, the venom gland transcriptome profile of A. crassicauda scorpion has not yet been studied. In this study, we elucidated and compared the venom gland gene expression profiles of adult and juvenile male scorpion A. crassicauda using high-throughput transcriptome sequencing. This is the first report of transcriptional analysis of the venom glands of scorpions in different growth stages, with insights into the identification of the key genes during venom gland development. RESULTS A total of 209,951 mRNA transcripts were identified from total RNA-seq data, of which 963 transcripts were differentially expressed (DE) in adult and juvenile scorpions (p < 0.01). Overall, we identified 558 up-regulated and 405 down-regulated transcripts in the adult compared to the juvenile scorpions, of which 397 and 269 unique unigenes were annotated, respectively. GO and KEGG enrichment analyses indicated that the metabolic, thermogenesis, cytoskeleton, estrogen signaling, GnRH signaling, growth hormone signaling, and melanogenesis pathways were affected by two different growth conditions and the results suggested that the DE genes related to those pathways are important genes associated with scorpion venom gland development, in which they may be important in future studies, including Chs, Elovl, MYH, RDX, ACTN, VCL, PIP5K, PP1C, FGFR, GNAS, EGFR, CREB, CoA, PLCB, CALM, CACNA, PKA and CAMK genes. CONCLUSIONS These findings broadened our knowledge of the differences between adult and juvenile scorpion venom and opened new perspectives on the application of comparative transcriptome analysis to identify the special key genes.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran.
| | - Hedieh Jafari
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran
| |
Collapse
|
6
|
Khelfi A, Oussedik-Oumehdi H, Laraba-Djebari F. Therapeutic Outcome of Anti-inflammatory and Antioxidative Medicines on the Dermonecrotic Activity of Cerastes cerastes Venom. Inflammation 2022; 45:1700-1719. [DOI: 10.1007/s10753-022-01654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022]
|
7
|
Hallak A, Mohanakrishnan BPE, Dharmarpandi J, Ivyanskiy I, Patel S, Naguib T. Hold the Chemo! Leukostasis, a Presentation of Brown Recluse Spider Bite: A Case Report. J Investig Med High Impact Case Rep 2021; 9:23247096211039949. [PMID: 34404267 PMCID: PMC8377316 DOI: 10.1177/23247096211039949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brown recluse spiders, also known as Loxosceles reclusa, are endemic to the Southwest and Central Midwestern United States. A bite from this spider can cause a range of clinical manifestations, anywhere from a painless papular lesion to life-threatening reactions. We report a possible spider bite presenting as leukostasis initially suspected to be acute leukemia. A 22-year-old female patient presented to the emergency department with confusion and right upper arm pain, redness, and swelling after a suspected spider bite. Initial labs showed WBC count of 103.5x10e3/µL, hemoglobin of 3.3 g/dL, positive Direct Coombs’ test, creatinine of 1.8 mg/dL, transaminitis, and lactic acid of 20 mmol/L. Acute leukemia with leukostasis was suspected. She was started emergently on hydroxyurea in conjunction with prophylaxis for tumor lysis syndrome. However, peripheral smear showed left-shifted granulocytosis with lymphocytosis, monocytosis, and no blast cells or evidence of myelodysplasia. Bone marrow aspirate showed mildly hypercellular marrow with myeloid hyperplasia and no myelodysplasia. Flow cytometry analysis confirmed a left-shifted myeloid maturation pattern with 0.3% myeloblasts. BCR-ABL1 and JAK2 testing was negative. Hence, she had no evidence of leukemia but rather had leukostasis from a spider bite. Hydroxyurea was stopped and follow-up labs normalized. Sphingomyelinase D in the brown recluse spider venom is unique to Loxosceles and Sicarius and may be responsible for the unique clinical presentation of loxoscelism. The presentation of hyperleukocytosis complicated by shock with an unclear history poses a diagnostic challenge. In diagnostic uncertainty, consider delaying chemotherapy until a diagnosis can be confirmed to avoid potential harm.
Collapse
Affiliation(s)
- Ahmad Hallak
- Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | | | - Ilya Ivyanskiy
- Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Tarek Naguib
- Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
8
|
Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP, Miles JJ. Immunological Responses to Envenomation. Front Immunol 2021; 12:661082. [PMID: 34040609 PMCID: PMC8141633 DOI: 10.3389/fimmu.2021.661082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Venoms are complex mixtures of toxic compounds delivered by bite or sting. In humans, the consequences of envenomation range from self-limiting to lethal. Critical host defence against envenomation comprises innate and adaptive immune strategies targeted towards venom detection, neutralisation, detoxification, and symptom resolution. In some instances, venoms mediate immune dysregulation that contributes to symptom severity. This review details the involvement of immune cell subtypes and mediators, particularly of the dermis, in host resistance and venom-induced immunopathology. We further discuss established venom-associated immunopathology, including allergy and systemic inflammation, and investigate Irukandji syndrome as a potential systemic inflammatory response. Finally, this review characterises venom-derived compounds as a source of immune modulating drugs for treatment of disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
| | - Jamie Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
- QIMR Berghofer Medical Research Institute, The University of Queensland, Herston, QLD, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - John J. Miles
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
9
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family. Toxins (Basel) 2021; 13:256. [PMID: 33916208 PMCID: PMC8066738 DOI: 10.3390/toxins13040256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms' composition may play a role in the toxic potential of venoms from Sicarius species.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
- Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| |
Collapse
|
10
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Searching for the toxic potential of Loxosceles amazonica and Loxosceles willianilsoni spiders' venoms. Toxicon 2020; 191:1-8. [PMID: 33347860 DOI: 10.1016/j.toxicon.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
The Loxosceles genus belongs to the Sicariidae family and it comprises species whose venom can cause accidents with potentially fatal consequences. We have previously shown that SMase D is the enzyme responsible for the main pathological effects of Loxosceles venom. Despite the severity of accidents with Loxosceles, few species are considered to be of medical importance. Little is known about the venom of non-synanthropic species that live in natural environments. To contribute to a better understanding about the venom's toxicity of Loxosceles genus, the aim of this study was to (i) characterize the toxic properties of Loxosceles amazonica from two different localities and a recent described cave species Loxosceles willianilsoni and (ii) compare these venoms with that from Loxosceles laeta, which is among the most toxic ones. We show here that both L. amazonica venoms (from the two studied locations) and L. willianilsoni presented SMase D activity similar to that exhibited by L. laeta venom. Although L. amazonica and L. willianilsoni venoms were able to induce complement dependent human erythrocytes lysis, they were not able to induce cell death of human keratinocytes, as promoted by L. laeta venom, in the concentrations tested. These results indicate that other species of Loxosceles, in addition to those classified as medically important, have toxic potential to cause accidents in humans, despite interspecific variations that denote possible less toxicity.
Collapse
Affiliation(s)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
11
|
Arán-Sekul T, Perčić-Sarmiento I, Valencia V, Olivero N, Rojas JM, Araya JE, Taucare-Ríos A, Catalán A. Toxicological Characterization and Phospholipase D Activity of the Venom of the Spider Sicarius thomisoides. Toxins (Basel) 2020; 12:E702. [PMID: 33171968 PMCID: PMC7694614 DOI: 10.3390/toxins12110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Envenomation by Loxosceles spiders (Sicariidae family) has been thoroughly documented. However, little is known about the potential toxicity of members from the Sicarius genus. Only the venom of the Brazilian Sicarius ornatus spider has been toxicologically characterized. In Chile, the Sicarius thomisoides species is widely distributed in desert and semidesert environments, and it is not considered a dangerous spider for humans. This study aimed to characterize the potential toxicity of the Chilean S. thomisoides spider. To do so, specimens of S. thomisoides were captured in the Atacama Desert, the venom was extracted, and the protein concentration was determined. Additionally, the venoms were analyzed by electrophoresis and Western blotting using anti-recombinant L. laeta PLD1 serum. Phospholipase D enzymatic activity was assessed, and the hemolytic and cytotoxic effects were evaluated and compared with those of the L. laeta venom. The S. thomisoides venom was able to hydrolyze sphingomyelin as well as induce complement-dependent hemolysis and the loss of viability of skin fibroblasts with a dermonecrotic effect of the venom in rabbits. The venom of S. thomisoides showed intraspecific variations, with a similar protein pattern as that of L. laeta venom at 32-35 kDa, recognized by serum anti-LlPLD1. In this context, we can conclude that the venom of Sicarius thomisoides is similar to Loxosceles laeta in many aspects, and the dermonecrotic toxin present in their venom could cause severe harm to humans; thus, precautions are necessary to avoid exposure to their bite.
Collapse
Affiliation(s)
- Tomás Arán-Sekul
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Ivanka Perčić-Sarmiento
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Verónica Valencia
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Nelly Olivero
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - José M. Rojas
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Jorge E. Araya
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Andrés Taucare-Ríos
- Facultad de Ciencias, Universidad Arturo Prat, Iquique 1110939, Chile;
- Centro de Investigación en Medio Ambiente (CENIMA), Universidad Arturo Prat, Iquique 1110939, Chile
| | - Alejandro Catalán
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| |
Collapse
|
12
|
Ben Yekhlef R, Felicori L, Santos LH, F. B. Oliveira C, Fadhloun R, Torabi E, Shahbazzadeh D, Pooshang Bagheri K, Salgado Ferreira R, Borchani L. Antigenic and Substrate Preference Differences between Scorpion and Spider Dermonecrotic Toxins, a Comparative Investigation. Toxins (Basel) 2020; 12:E631. [PMID: 33019554 PMCID: PMC7601583 DOI: 10.3390/toxins12100631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
The Hemiscorpius lepturus scorpion and brown spider Loxosceles intermedia represent a public health problem in Asia and America, respectively. Although distinct, these organisms contain similar toxins responsible for the principal clinical signs of envenomation. To better understand the properties of these toxins, we designed a study to compare recombinant Heminecrolysin (rHNC) and rLiD1, the major phospholipase D toxins of scorpion and spider venom, respectively. Using a competitive ELISA and a hemolytic inhibition test, we come to spot a cross reaction between scorpion and spider venoms along with an epitopic similarity between rHNC and rLiD1 associated with neutralizing antibodies. Results show that the ability of the rHNC to hydrolyze lysophosphatidylcholine (LPC) is equivalent to that of rLiD1 to hydrolyze sphingomyelin and vice-versa. rHNC exclusively catalyze transphosphatidylation of LPC producing cyclic phosphatidic acid (cPA). The in-silico analysis of hydrogen bonds between LPC and toxins provides a possible explanation for the higher transphosphatidylase activity of rHNC. Interestingly, for the first time, we reveal that lysophosphatidic acid (LPA) can be a substrate for both enzymes using cellular and enzymatic assays. The finding of the usage of LPA as a substrate as well as the formation of cPA as an end product could shed more light on the molecular basis of Hemiscorpius lepturus envenomation as well as on loxoscelism.
Collapse
Affiliation(s)
- Ramla Ben Yekhlef
- Laboratoire des Venins et Biomolécules Thérapeutiques LR16IPT08, Université de Tunis El Manar, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (R.B.Y.); (R.F.)
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Lucianna Helene Santos
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Camila F. B. Oliveira
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Raoudha Fadhloun
- Laboratoire des Venins et Biomolécules Thérapeutiques LR16IPT08, Université de Tunis El Manar, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (R.B.Y.); (R.F.)
| | - Elham Torabi
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (E.T.); (D.S.); (K.P.B.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (E.T.); (D.S.); (K.P.B.)
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (E.T.); (D.S.); (K.P.B.)
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Lamia Borchani
- Laboratoire des Venins et Biomolécules Thérapeutiques LR16IPT08, Université de Tunis El Manar, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (R.B.Y.); (R.F.)
| |
Collapse
|
13
|
Acidic Phospholipase A2-Peptide Derivative Modulates Oxidative Status and Microstructural Reorganization of Scar Tissue after Cutaneous Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8273986. [PMID: 32733589 PMCID: PMC7369679 DOI: 10.1155/2020/8273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
From in vitro and in vivo models, the proliferative and healing potential of an acidic phospholipase A2 (LAPLA2) from Lachesis muta venom was investigated. The LAPLA2 proliferative activity was evaluated on fibroblasts and keratinocytes cultured, and the antioxidant and regenerative potential of LAPLA2 was analyzed in a murine model. The animal study consisted of four groups: C (negative control): 0.9% NaCl; SS (positive control): 1% silver sulfadiazine; L1 group: 0.5% LAPLA2; and L2 group: 0.25% LAPLA2. Wounds were topically treated daily for 12 days, and scar tissue samples were collected every 4 days. In vitro, LAPLA2 stimulated marked time-dependent cell proliferation. In vivo, it increased the antioxidant activity of superoxide dismutase (SOD) and catalase (CAT) and decreased malondialdehyde (MDA) and carbonyl protein (CP) levels in scar tissue treated with LAPLA2 at 0.5%. This peptide was effective in stimulating cellular proliferation, neoangiogenesis, type I and III collagen deposition, and maturation in a time-dependent-way, reducing the time required for wound closure. Our results indicated that LAPLA2 presented a remarkable potential in improving the oxidative status and microstructural reorganization of the scar tissue by stimulation of cellularity, angiogenesis, colagenogenesis, and wound contraction, suggesting that the peptide could be a potential candidate for a new healing drug.
Collapse
|
14
|
Cytotoxic and genotoxic effects on human keratinocytes triggered by sphingomyelinase D from Loxosceles venom. Arch Toxicol 2020; 94:3563-3577. [DOI: 10.1007/s00204-020-02830-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
15
|
Wan B, Yang L, Zhang J, Qiu L, Fang Q, Yao H, Poirié M, Gatti JL, Ye G. The Venom of the Ectoparasitoid Wasp Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae) Induces Apoptosis of Drosophila melanogaster Hemocytes. INSECTS 2020; 11:E363. [PMID: 32545289 PMCID: PMC7349765 DOI: 10.3390/insects11060363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
The pupal ectoparasitoid Pachycrepoideus vindemiae injects venom into its fly hosts prior to oviposition. We have shown that this venom causes immune suppression in Drosophila melanogaster pupa but the mechanism involved remained unclear. Here, we show using transgenic D. melanogaster with fluorescent hemocytes that the in vivo number of plasmatocytes and lamellocytes decreases after envenomation while it has a limited effect on crystal cells. After in vitro incubation with venom, the cytoskeleton of plasmatocytes underwent rearrangement with actin aggregation around the internal vacuoles, which increased with incubation time and venom concentration. The venom also decreased the lamellocytes adhesion capacity and induced nucleus fragmentation. Electron microscopy observation revealed that the shape of the nucleus and mitochondria became irregular after in vivo incubation with venom and confirmed the increased vacuolization with the formation of autophagosomes-like structures. Almost all venom-treated hemocytes became positive for TUNEL assays, indicating massive induced apoptosis. In support, the caspase inhibitor Z-VAD-FMK attenuated the venom-induced morphological changes suggesting an involvement of caspases. Our data indicate that P. vindemiae venom inhibits D. melanogaster host immunity by inducing strong apoptosis in hemocytes. These assays will help identify the individual venom component(s) responsible and the precise mechanism(s)/pathway(s) involved.
Collapse
Affiliation(s)
- Bin Wan
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Jiao Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Liming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| | - Marylène Poirié
- Institut Sophia Agrobiotec h (ISA), Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, 06903 Sophia Antipolis, France; (M.P.); (J.-L.G.)
| | - Jean-Luc Gatti
- Institut Sophia Agrobiotec h (ISA), Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, 06903 Sophia Antipolis, France; (M.P.); (J.-L.G.)
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (B.W.); (L.Y.); (J.Z.); (L.Q.); (Q.F.); (H.Y.)
| |
Collapse
|
16
|
Lopes PH, van den Berg CW, Tambourgi DV. Sphingomyelinases D From Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Front Pharmacol 2020; 11:636. [PMID: 32477123 PMCID: PMC7237637 DOI: 10.3389/fphar.2020.00636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.
Collapse
Affiliation(s)
| | - Carmen W. van den Berg
- Centre for Medical Education, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
17
|
Lopes PH, Squaiella-Baptistão CC, Marques MOT, Tambourgi DV. Clinical aspects, diagnosis and management of Loxosceles spider envenomation: literature and case review. Arch Toxicol 2020; 94:1461-1477. [PMID: 32232511 DOI: 10.1007/s00204-020-02719-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 01/10/2023]
Abstract
The genus Loxosceles comprises 140 species widely distributed around the world. These spiders are nocturnal, sedentary and remarkably nonaggressive, although they cause accidents in humans with wide degrees of severity, generating signs and symptoms that define the clinical condition known as loxoscelism. Its local signs and symptoms were first reported in 1872, and over the years, a large medical literature has been accumulated; unfortunately, it is not always trustworthy. Assessing the reliability of such information, we reviewed 120 case reports of loxoscelism published in 84 articles over the past 20 years. This search allowed us to gather information on the clinical aspects, diagnosis and treatment of loxoscelism, showing that the severity of these accidents has multiple degrees and that it is influenced by many factors. Thus, coupled with epidemiological and species occurrence information, this study can be a useful tool for the clinical practice of loxoscelism. It may support and provide a multidisciplinary view that should be taken into consideration when establishing the therapeutic approach in cases of Loxosceles envenomation.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil
| | | | | | - Denise V Tambourgi
- Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
18
|
Deng Z, Wang Y, Shi W, Zhou L, Xu S, Li J, Zhang Y. Haplopelma hainanum venom induces inflammatory skin lesions. PeerJ 2020; 8:e8264. [PMID: 31942253 PMCID: PMC6956770 DOI: 10.7717/peerj.8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
The Haplopelma hainanum is a species of theraphosid spider from China. Its large size and charming appearance make this species a popular pet. According to a previous study, theraphosid spider bites can induce pain, erythema, and edema in humans and can present more severely in domestic animals. The pathological consequences of envenomation by H. hainanum remain unclear. In this study, we investigated the effects and mechanisms of H. hainanum envenomation in mice. We showed that the venom induced slight swelling, intense inflammatory response, and increased the microvascular density in mice skin. Moreover, we found that 50 µg/ml of the spider’s venom induced IL-1β expression in both HaCaT cells and fibroblast cells, but repressed CXCL10 expression in fibroblasts. The venom significantly induced cell senescence and repressed cell proliferation and migration in both HaCaT cells and fibroblast cells. Finally, we examined the expression of Nav channel in HaCaT and fibroblast cells and found that H. hainanum venom effectively inhibited Na+ currents in HaCaT cells. Our study calls for further investigation of the pathological consequences and potential mechanisms of H. hainanum envenomation. This information might assist in the development of suitable therapy.
Collapse
Affiliation(s)
- Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Lopes PH, Murakami MT, Portaro FCV, Mesquita Pasqualoto KF, van den Berg C, Tambourgi DV. Targeting Loxosceles spider Sphingomyelinase D with small-molecule inhibitors as a potential therapeutic approach for loxoscelism. J Enzyme Inhib Med Chem 2019; 34:310-321. [PMID: 30734604 PMCID: PMC6327989 DOI: 10.1080/14756366.2018.1546698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Loxosceles spiders’ venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D. Compounds 5 and 6 acted as SMases D uncompetitive inhibitors with Ki values of 0.49 µM and 0.59 µM, respectively. Compound 1 is a mixed type inhibitor, and presented a Ki value of 0.54 µM. In addition, the three compounds inhibited the binding of SMases D to human erythrocytes and the removal of glycophorin C from the cell surface, which are important events in the complement-dependent haemolysis induced by Loxosceles venom. Moreover, compounds 5 and 6 reduced the binding of SMases to human keratinocytes membrane and the venom induced cell death. Importantly, compounds 5 and 6 also controlled the development of the necrotic lesion in an in vivo model of loxoscelism. Together, our findings indicate that the novel SMase D inhibitors presented here are able to suppress both local and systemic reactions induced by Loxosceles venoms. Since the number of Loxosceles envenomation accidents is currently growing worldwide, our results indicate that both inhibitors are promising scaffolds for the rational design of new drugs targeting SMases D from these spiders.
Collapse
Affiliation(s)
| | - Mário T Murakami
- b Biosciences National Laboratory , National Centre for Research in Energy and Materials , Campinas , SP , Brazil
| | | | - Kerly Fernanda Mesquita Pasqualoto
- c Alchemy - Innovation, Research & Development Ltda., Center of Innovation, Entrepreneurship and Technology (CIETEC) , University of São Paulo , SP , Brazil
| | - Carmen van den Berg
- d Centre for Medical Education , Cardiff University, School of Medicine , Cardiff , United Kingdom
| | - Denise V Tambourgi
- a Immunochemistry Laboratory , Butantan Institute , São Paulo , SP , Brazil
| |
Collapse
|
20
|
Stransky S, Costal-Oliveira F, Lopes-de-Souza L, Guerra-Duarte C, Chávez-Olórtegui C, Braga VMM. In vitro assessment of cytotoxic activities of Lachesis muta muta snake venom. PLoS Negl Trop Dis 2018; 12:e0006427. [PMID: 29659601 PMCID: PMC5919693 DOI: 10.1371/journal.pntd.0006427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Envenomation by the bushmaster snake Lachesis muta muta is considered severe, characterized by local effects including necrosis, the main cause of permanent disability. However, cellular mechanisms related to cell death and tissue destruction, triggered by snake venoms, are poorly explored. The purpose of this study was to investigate the cytotoxic effect caused by L. m. muta venom in normal human keratinocytes and to identify the cellular processes involved in in cellulo envenomation. In order to investigate venom effect on different cell types, Alamar Blue assay was performed to quantify levels of cellular metabolism as a readout of cell viability. Apoptosis, necrosis and changes in mitochondrial membrane potential were evaluated by flow cytometry, while induction of autophagy was assessed by expression of GFP-LC3 and analyzed using fluorescence microscopy. The cytotoxic potential of the venom is shown by reduced cell viability in a concentration-dependent manner. It was also observed the sequential appearance of cells undergoing autophagy (by 6 hours), apoptosis and necrosis (12 and 24 hours). Morphologically, incubation with L. m. muta venom led to a significant cellular retraction and formation of cellular aggregates. These results indicate that L. m. muta venom is cytotoxic to normal human keratinocytes and other cell lines, and this toxicity involves the integration of distinct modes of cell death. Autophagy as a cell death mechanism, in addition to apoptosis and necrosis, can help to unravel cellular pathways and mechanisms triggered by the venom. Understanding the mechanisms that underlie cellular damage and tissue destruction will be useful in the development of alternative therapies against snakebites.
Collapse
Affiliation(s)
- Stephanie Stransky
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (CCO); (VMMB)
| | - Vania Maria Martin Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (CCO); (VMMB)
| |
Collapse
|
21
|
Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom. Toxins (Basel) 2017; 9:toxins9030090. [PMID: 28257106 PMCID: PMC5371845 DOI: 10.3390/toxins9030090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP). Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.
Collapse
|
22
|
Liu YH, Lin YS, Huang YW, Fang SU, Lin SY, Hou WC. Protective Effects of Minor Components of Curcuminoids on Hydrogen Peroxide-Treated Human HaCaT Keratinocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3598-3608. [PMID: 27094403 DOI: 10.1021/acs.jafc.6b01196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrogen peroxide, one of the reactive oxygen species (ROS), can cause intracellular oxidative stress associated with skin aging and/or photoaging. Curcumin, a polyphenol in turmeric, has been reported to exhibit biological activity. In this study, five naturally occurring curcuminoids [curcumin, demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), monohydroxy-DMC, and monohydroxy-BDMC] were used to investigate their protective roles against hydrogen peroxide-induced oxidative stress in the immortalized human keratinocyte cell lines (HaCaT cells). These five curcuminoids at 10 μM, but not at 5 μM, were shown to exhibit cytotoxicities toward HaCaT keratinocytes. Therefore, a 5 μM concentration of the five curcuminoids was selected for further investigations. Cells were pretreated with or without curcuminoids for 2.5 h before 24-h hydrogen peroxide (150 μM) treatments. Pretreatments with the minor components monohydroxy-DMC or monohydroxy-BDMC, but not curcumin, DMC, and BDMC, showed protective activity, elevating cell viability compared to cells with direct hydrogen peroxide treatments. Pretreatments with monohydroxy-DMC and monohydroxy-BDMC showed the best protective effects, reducing apoptotic cell populations and intracellular ROS, as demonstrated by flow cytometry, as well as reducing the changes of the mitochondrial membrane potential compared to cells with direct hydrogen peroxide treatments. The pretreatments with monohydroxy-DMC and monohydroxy-BDMC reduced c-jun and c-fos mRNA expression and p53 tumor suppressor protein expression and increased HO-1 protein expression and glutathione peroxidase (GPx) activity, respectively, compared to cells with direct hydrogen peroxide treatments. The five curcuminoids exhibited similar hydrogen peroxide-scavenging activity in vitro. It was proposed that monohydroxy-DMC and monohydroxy-BDMC could induce antioxidant defense systems better than curcumin, DMC, or BDMC could against hydrogen peroxide-induced oxidative stress and apoptosis of HaCaT keratinocytes and that they may have potential as ingredients in antiaging cosmetics for skin care.
Collapse
Affiliation(s)
- Yuh-Hwa Liu
- Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital , Taipei 111, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Corrêa MA, Okamoto CK, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Sphingomyelinase D from Loxosceles laeta Venom Induces the Expression of MMP7 in Human Keratinocytes: Contribution to Dermonecrosis. PLoS One 2016; 11:e0153090. [PMID: 27078876 PMCID: PMC4831769 DOI: 10.1371/journal.pone.0153090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism.
Collapse
Affiliation(s)
- Mara A. Corrêa
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
24
|
Dantas AE, Horta CCR, Martins TMM, do Carmo AO, Mendes BBRDO, Goes AM, Kalapothakis E, Gomes DA. Whole venom of Loxosceles similis activates caspases-3, -6, -7, and -9 in human primary skin fibroblasts. Toxicon 2014; 84:56-64. [PMID: 24726468 DOI: 10.1016/j.toxicon.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 12/31/2022]
Abstract
Spiders of the Loxosceles genus represent a risk to human health due to the systemic and necrotic effects of their bites. The main symptoms of these bites vary from dermonecrosis, observed in the majority of cases, to occasional systemic hemolysis and coagulopathy. Although the systemic effects are well characterized, the mechanisms of cell death triggered by the venom of these spiders are poorly characterized. In this study, we investigated the cell death mechanisms induced by the whole venom of the spider Loxosceles similis in human skin fibroblasts. Our results show that the venom initiates an apoptotic process and a caspase cascade involving the initiator caspase-9 and the effector caspases-3, -6, and -7.
Collapse
Affiliation(s)
- Arthur Estanislau Dantas
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; Programa de Pós-Graduação em Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Thais M M Martins
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; Programa de Pós-graduação em Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Alfredo M Goes
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson A Gomes
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Zobel-Thropp PA, Correa SM, Garb JE, Binford GJ. Spit and venom from scytodes spiders: a diverse and distinct cocktail. J Proteome Res 2013; 13:817-35. [PMID: 24303891 DOI: 10.1021/pr400875s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spiders from the family Scytodidae have a unique prey capturing technique: they spit a zig-zagged silken glue to tether prey to a surface. Effectiveness of this sticky mixture is based on a combination of contraction and adhesion, trapping prey until the spider immobilizes it by envenomation and then feeds. We identify components expressed in Scytodes thoracica venom glands using combined transcriptomic and proteomic analyses. These include homologues of toxic proteins astacin metalloproteases and potentially toxic proteins including venom allergen, longistatin, and translationally controlled tumor protein (TCTP). We classify 19 distinct groups of candidate peptide toxins; 13 of these were detected in the venom, making up 35% of the proteome. Six have significant similarity to toxins from spider species spanning mygalomorph and nonhaplogyne araneomorph lineages, suggesting their expression in venom is phylogenetically widespread. Twelve peptide toxin groups have homologues in venom gland transcriptomes of other haplogynes. Of the transcripts, approximately 50% encode glycine-rich peptides that may contribute to sticky fibers in Scytodes spit. Fifty-one percent of the identified venom proteome is a family of proteins that is homologous to sequences from Drosophila sp. and Latrodectus hesperus with uncharacterized function. Characterization of these components holds promise for discovering new functional activity.
Collapse
Affiliation(s)
- Pamela A Zobel-Thropp
- Department of Biology, Lewis & Clark College , Portland, Oregon 97219, United States
| | | | | | | |
Collapse
|
26
|
Lopes PH, Bertani R, Gonçalves-de-Andrade RM, Nagahama RH, van den Berg CW, Tambourgi DV. Venom of the Brazilian spider Sicarius ornatus (Araneae, Sicariidae) contains active sphingomyelinase D: potential for toxicity after envenomation. PLoS Negl Trop Dis 2013; 7:e2394. [PMID: 23991242 PMCID: PMC3749972 DOI: 10.1371/journal.pntd.0002394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration. Sicarius and Loxosceles spider venoms share a common characteristic, i.e., the presence of Sphingomyelinases D (SMase D). We have previously shown that Loxosceles SMase D is the enzyme responsible for the main pathological effects of the venom. Recently, it was demonstrated that Sicarius species from Africa, like Loxosceles spiders from the Americas, present high venom SMase D activity. However, despite the presence of SMase D like proteins in venoms of several New World Sicarius species, they had reduced or no detectable SMase D activity. In order to contribute to a better understanding about the toxicity of New World Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from the Brazilian Sicarius ornatus spider and compare these with venoms from Loxosceles species of medical importance in Brazil. METHODOLOGY/PRINCIPAL FINDINGS SDS-PAGE analysis showed variations in the composition of Loxosceles spp. and Sicarius ornatus venoms. Differences in the electrophoretic profiles of male and female venoms were also observed, indicating a possible intraspecific variation in the composition of the venom of Sicarius spider. The major component in all tested venoms had a Mr of 32-35 kDa, which was recognized by antiserum raised against Loxosceles SMases D. Moreover, male and female Sicarius ornatus spiders' venoms were able to hydrolyze sphingomyelin, thus showing an enzymatic activity similar to that determined for Loxosceles venoms. Sicarius ornatus venoms, as well as Loxosceles venoms, were able to render erythrocytes susceptible to lysis by autologous serum and to induce a significant loss of human keratinocyte cell viability; the female Sicarius ornatus venom was more efficient than male. CONCLUSION We show here, for the first time, that the Brazilian Sicarius ornatus spider contains active Sphingomyelinase D and is able to cause haemolysis and keratinocyte cell death similar to the South American Loxosceles species, harmful effects that are associated with the presence of active SMases D. These results may suggest that envenomation by this Sicarius spider has the potential to cause similar pathological events as that caused by Loxosceles envenomation. Our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms composition may play a role in the toxic potential of the New World Sicarius venoms species.
Collapse
Affiliation(s)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | | - Roberto H. Nagahama
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
27
|
The pathological effects of Heminecrolysin, a dermonecrotic toxin from Hemiscorpius lepturus scorpion venom are mediated through its lysophospholipase D activity. Toxicon 2013; 68:30-9. [DOI: 10.1016/j.toxicon.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/23/2012] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
|
28
|
Nowatzki J, Sene RV, Paludo KS, Rizzo LE, Souza-Fonseca-Guimarães F, Veiga SS, Nader HB, Franco CRC, Trindade ES. Brown spider (Loxosceles intermedia) venom triggers endothelial cells death by anoikis. Toxicon 2012; 60:396-405. [DOI: 10.1016/j.toxicon.2012.04.333] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 01/23/2023]
|
29
|
van den Berg CW, Gonçalves-de-Andrade RM, Okamoto CK, Tambourgi DV. C5a receptor is cleaved by metalloproteases induced by sphingomyelinase D from Loxosceles spider venom. Immunobiology 2012; 217:935-41. [DOI: 10.1016/j.imbio.2012.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 11/28/2022]
|
30
|
Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. Toxicon 2012; 60:265-71. [PMID: 22561243 DOI: 10.1016/j.toxicon.2012.04.350] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 02/06/2023]
Abstract
Spider venoms have evolved over hundreds of millions of years with a primary role of immobilizing prey. Sphingomyelinase D (SMase D) and homologs in the SicTox gene family are the most abundantly expressed toxic protein in venoms of Loxosceles and Sicarius spiders (Sicariidae). While SMase D is well known to cause dermonecrotic lesions in mammals, little work has investigated the bioactivity of this enzyme in its presumed natural role of immobilizing insect prey. We expressed and purified recombinant SMase D from Loxosceles arizonica (Laz-SMase D) and compared its enzymatic and insecticidal activity to that of crude venom. SMase D enzymatic activities of purified protein and crude venom from the same species were indistinguishable. In addition, SMase D and crude venom have comparable and high potency in immobilization assays on crickets. These data indicate that SMase D is a potent insecticidal toxin, the role for which it presumably evolved.
Collapse
|
31
|
Malaque CMS, Santoro ML, Cardoso JLC, Conde MR, Novaes CTG, Risk JY, França FOS, de Medeiros CR, Fan HW. Clinical picture and laboratorial evaluation in human loxoscelism. Toxicon 2011; 58:664-71. [PMID: 21986355 DOI: 10.1016/j.toxicon.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/02/2011] [Accepted: 09/21/2011] [Indexed: 11/26/2022]
Abstract
Loxosceles spiders are found globally, especially in South and North America. In Brazil, approximately 10,000 cases of Loxosceles spp. spider bites are reported annually. Herein we analyzed 81 patients diagnosed as either cutaneous or cutaneous-hemolytic loxoscelism, in a geographical area where most accidents are caused by Loxosceles gaucho, and we report their clinical and laboratory data obtained during week 1 and 2 after the bite. Massive hemolysis was noticed in only 2 cases, but high serum bilirubin and LDH levels, suggestive of hemolysis, were noticed in 25 cases on admission. Anemia was not frequent (14.7%), and reticulocytosis was particularly noticed during week 2 (in 56% of patients). High D-dimer levels were suggestive of endothelial cell activation and intravascular thrombin generation, but thrombocytopenia was noticed in only 17.6% of patients in week 1. Acute kidney injury (AKI) only occurred in patients with massive hemolysis. The definitive diagnosis of overt disseminated intravascular coagulation (DIC) could not be established on admission. Fever was associated with the presence of hemolysis (p = 0.03). Altogether, these findings provide evidence that mild hemolysis is frequent in loxoscelism and suggest that AKI is uncommon, exclusively occurring in patients with massive hemolysis.
Collapse
|
32
|
Chaim OM, Trevisan-Silva D, Chaves-Moreira D, Wille ACM, Ferrer VP, Matsubara FH, Mangili OC, da Silveira RB, Gremski LH, Gremski W, Senff-Ribeiro A, Veiga SS. Brown spider (Loxosceles genus) venom toxins: tools for biological purposes. Toxins (Basel) 2011; 3:309-44. [PMID: 22069711 PMCID: PMC3202818 DOI: 10.3390/toxins3030309] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/26/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.
Collapse
Affiliation(s)
- Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Ana Carolina M. Wille
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, CEP 84030-900 Ponta Grossa, Paraná, Brazil;
| | - Valéria Pereira Ferrer
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | | | - Rafael Bertoni da Silveira
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, CEP 84030-900 Ponta Grossa, Paraná, Brazil;
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Waldemiro Gremski
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Catholic University of Paraná, Health and Biological Sciences Institute, CEP 80215-901 Curitiba, Paraná, Brazil;
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Author to whom correspondence should be addressed; ; Tel.: +55-41-33611776; Fax: +55-41-3266-2042
| |
Collapse
|
33
|
Tambourgi DV, Gonçalves-de-Andrade RM, van den Berg CW. Loxoscelism: From basic research to the proposal of new therapies. Toxicon 2010; 56:1113-9. [DOI: 10.1016/j.toxicon.2010.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
34
|
Pace LB, Vetter RS. Brown recluse spider (Loxosceles reclusa) envenomation in small animals. J Vet Emerg Crit Care (San Antonio) 2009; 19:329-36. [PMID: 25164631 DOI: 10.1111/j.1476-4431.2009.00440.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To provide a comprehensive review of relevant literature regarding the brown recluse spider (BRS) and to define those criteria that must be satisfied before making a diagnosis of brown recluse envenomation. ETIOLOGY The complex venom of the BRS contains sphingomyelinase D, which is capable of producing all the clinical signs in the human and some animal models. DIAGNOSIS There is no current commercially available test. In humans there are many proposed guidelines to achieve a definitive diagnosis; however, there are no established guidelines for veterinary patients. THERAPY Currently, no consensus exists for treatment of BRS envenomation other than supportive care, which includes rest, thorough cleaning of the site, ice, compression, and elevation. PROGNOSIS Prognosis varies based on severity of clinical signs and response to supportive care.
Collapse
Affiliation(s)
- Lonny B Pace
- Central California Veterinary Specialty Center, Fresno, CA 93710the Department of Entomology, University of California, Riverside, CA 92521 and Biology Division, San Bernardino County Museum, Redlands, CA, 92373
| | | |
Collapse
|
35
|
de Santi Ferrara GI, Fernandes-Pedrosa MDF, Junqueira-de-Azevedo IDLM, Gonçalves-de-Andrade RM, Portaro FCV, Manzoni-de-Almeida D, Murakami MT, Arni RK, van den Berg CW, Ho PL, Tambourgi DV. SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis. Toxicon 2009; 53:743-53. [PMID: 19249326 DOI: 10.1016/j.toxicon.2009.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/07/2009] [Accepted: 02/11/2009] [Indexed: 11/25/2022]
Abstract
Sphingomyelinase D (SMase D) present in the venoms of Loxosceles spiders is the principal component responsible for local and systemic effects observed in the loxoscelism. By using "expressed sequencing tag", it was possible to identify, in a L. laeta venom gland library, clones containing inserts coding for proteins with similarity to SMase D. One of these clones was expressed and the recombinant protein compared with the previously characterized SMase I from L. laeta, in terms of their biological, biochemical and structural properties. The new recombinant protein, SMase II, possesses all the biological properties ascribed to the whole venom and SMase I. SMase II shares 40% and 77% sequence similarity with SMase I and Lb3, respectively; the latter, a SMase D isoform from L. boneti, catalytically inactive. Molecular modeling and molecular dynamics simulations were employed to understand the structural basis, especially the presence of an additional disulfide bridge, in an attempt to account for the observed differences in SMases D activity.
Collapse
|
36
|
Skin pathology induced by snake venom metalloproteinase: acute damage, revascularization, and re-epithelization in a mouse ear model. J Invest Dermatol 2008; 128:2421-8. [PMID: 18449209 DOI: 10.1038/jid.2008.118] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viperid snakebite envenomation induces blistering and dermonecrosis. The pathological alterations induced by a snake venom metalloproteinase in the skin were investigated in a mouse ear model. Metalloproteinase BaP1, from Bothrops asper, induced rapid edema, hemorrhage, and blistering; the latter two effects were abrogated by preincubation with the metalloproteinase inhibitor batimastat. Neutrophils did not play a role in the pathology, as depletion of these cells resulted in a similar histological picture. Blisters are likely to result from the direct proteolytic activity of BaP1 of proteins at the dermal-epidermal junction, probably at the lamina lucida, as revealed by immunostaining for type IV collagen and laminin. Widespread apoptosis of keratinocytes was detected by the TUNEL assay, whereas no apoptosis of capillary endothelial cells was observed. BaP1 induced a drastic reduction in the microvessel density, revealed by immunostaining for the endothelial marker vascular endothelial growth factor receptor-2. This was followed by a rapid angiogenic response, leading to a partial revascularization. Skin damage was followed by inflammation and granulation tissue formation. Then, a successful re-epithelization process occurred, and the skin of the ear regained its normal structure by 2 weeks. Venom metalloproteinase-induced skin damage reproduces the pathological changes described in snakebitten patients.
Collapse
|
37
|
van den Berg CW, Gonçalves-de-Andrade RM, Magnoli FC, Tambourgi DV. Loxosceles spider venom induces the release of thrombomodulin and endothelial protein C receptor: implications for the pathogenesis of intravascular coagulation as observed in loxoscelism. J Thromb Haemost 2007; 5:989-95. [PMID: 17229042 DOI: 10.1111/j.1538-7836.2007.02382.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The venom of the spider Loxosceles can cause both local and systemic effects including disseminated intravascular coagulation. AIM The aim of this study was to investigate the effects of the venom of Loxosceles intermedia (L. intermedia) and the purified Sphingomyelinase D (SMaseD) toxin upon the Protein C (PC) natural anticoagulant pathway. RESULTS Both the venom and e purified SMaseD reduced the cell surface expression of thrombomodulin (TM) and Endothelial PC Receptor on endothelial cells in culture. The reduction of cell surface expression was caused by cleavage from the cell surface mediated by activation of an endogenous metalloproteinase. Reduction of TM and Endothelial PC Receptor on the surface of these cells resulted in an impaired ability of the cells to assist in the thrombin-induced activation of PC. CONCLUSION This novel observation gives further insight into the mechanisms of the pathology induced by venom from Loxosceles spiders and may aid the development of a suitable therapy.
Collapse
Affiliation(s)
- C W van den Berg
- Department of Pharmacology, Therapeutics and Toxicology, Wales Heart Research Institute, Cardiff University, Wales College of Medicine, Cardiff, UK.
| | | | | | | |
Collapse
|
38
|
Paixão-Cavalcante D, van den Berg CW, Gonçalves-de-Andrade RM, Fernandes-Pedrosa MDF, Okamoto CK, Tambourgi DV. Tetracycline protects against dermonecrosis induced by Loxosceles spider venom. J Invest Dermatol 2007; 127:1410-8. [PMID: 17218940 DOI: 10.1038/sj.jid.5700688] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Envenomation by spiders belonging to the Loxosceles genus (brown spider) often results in local dermonecrotic lesions. We have previously shown that Loxosceles sphingomyelinase D (SMase D), the venom component responsible for all the pathological effects, induced the expression of matrix metalloproteinases (MMPs) in rabbits and in human keratinocytic cells. We also showed that the SMase D-induced apoptosis and MMP expression of keratinocytes was inhibited by tetracyclines. We have further investigated the ability of tetracyclines to inhibit or prevent the dermonecrotic lesion induced by Loxosceles venom in vivo and in vitro models. Primary cultures of rabbit fibroblasts incubated with increasing concentrations of venom or SMase D showed a decrease in cell viability, which was prevented by tetracyclines. In vivo experiments showed that topical treatments with tetracycline of rabbits, inoculated with crude Loxosceles intermedia venom or recombinant SMase D, significantly reduced the progression of the dermonecrotic lesion. Furthermore, tetracyclines also reduced the expression of MMP-2 and prevented the induction of MMP-9. Our results suggest that tetracycline may be an effective therapeutic agent for the treatment of cutaneous loxoscelism.
Collapse
|