1
|
Kargarpour Z, Cicko S, Köhler TC, Zech A, Stoshikj S, Bal C, Renner A, Idzko M, El-Gazzar A. Blocking P2Y2 purinergic receptor prevents the development of lipopolysaccharide-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1310098. [PMID: 38179047 PMCID: PMC10765495 DOI: 10.3389/fimmu.2023.1310098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality resulting from a direct or indirect injury of the lung. It is characterized by a rapid alveolar injury, lung inflammation with neutrophil accumulation, elevated permeability of the microvascular-barrier leading to an aggregation of protein-rich fluid in the lungs, followed by impaired oxygenation in the arteries and eventual respiratory failure. Very recently, we have shown an involvement of the Gq-coupled P2Y2 purinergic receptor (P2RY2) in allergic airway inflammation (AAI). In the current study, we aimed to elucidate the contribution of the P2RY2 in lipopolysaccharide (LPS)-induced ARDS mouse model. We found that the expression of P2ry2 in neutrophils, macrophages and lung tissue from animals with LPS-induced ARDS was strongly upregulated at mRNA level. In addition, ATP-neutralization by apyrase in vivo markedly attenuated inflammation and blocking of P2RY2 by non-selective antagonist suramin partially decreased inflammation. This was indicated by a reduction in the number of neutrophils, concentration of proinflammatory cytokines in the BALF, microvascular plasma leakage and reduced features of inflammation in histological analysis of the lung. P2RY2 blocking has also attenuated polymorphonuclear neutrophil (PMN) migration into the interstitium of the lungs in ARDS mouse model. Consistently, treatment of P2ry2 deficient mice with LPS lead to an amelioration of the inflammatory response showed by reduced number of neutrophils and concentrations of proinflammatory cytokines. In attempts to identify the cell type specific role of P2RY2, a series of experiments with conditional P2ry2 knockout animals were performed. We observed that P2ry2 expression in neutrophils, but not in the airway epithelial cells or CD4+ cells, was associated with the inflammatory features caused by ARDS. Altogether, our findings imply for the first time that increased endogenous ATP concentration via activation of P2RY2 is related to the pathogenesis of LPS-induced lung inflammation and may represent a potential therapeutic target for the treatment of ARDS and predictably assess new treatments in ARDS.
Collapse
Affiliation(s)
- Zahra Kargarpour
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Sanja Cicko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas C. Köhler
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Slagjana Stoshikj
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Christina Bal
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Andreas Renner
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ahmed El-Gazzar
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Wang Z, Chen G. Immune regulation in neurovascular units after traumatic brain injury. Neurobiol Dis 2023; 179:106060. [PMID: 36871640 DOI: 10.1016/j.nbd.2023.106060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Survivors may experience movement disorders, memory loss, and cognitive deficits. However, there is a lack of understanding of the pathophysiology of TBI-mediated neuroinflammation and neurodegeneration. The immune regulation process of TBI involves changes in the peripheral and central nervous system (CNS) immunity, and intracranial blood vessels are essential communication centers. The neurovascular unit (NVU) is responsible for coupling blood flow with brain activity, and comprises endothelial cells, pericytes, astrocyte end-feet, and vast regulatory nerve terminals. A stable NVU is the basis for normal brain function. The concept of the NVU emphasizes that cell-cell interactions between different types of cells are essential for maintaining brain homeostasis. Previous studies have explored the effects of immune system changes after TBI. The NVU can help us further understand the immune regulation process. Herein, we enumerate the paradoxes of primary immune activation and chronic immunosuppression. We describe the changes in immune cells, cytokines/chemokines, and neuroinflammation after TBI. The post-immunomodulatory changes in NVU components are discussed, and research exploring immune changes in the NVU pattern is also described. Finally, we summarize immune regulation therapies and drugs after TBI. Therapies and drugs that focus on immune regulation have shown great potential for neuroprotection. These findings will help us further understand the pathological processes after TBI.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province 215006, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province 215006, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
3
|
Stovbun SV, Kalinina TS, Zlenko DV, Kiselev AV, Litvin AA, Bukhvostov AA, Usachev SV, Kuznetsov DA. Antiviral potential of plant polysaccharide nanoparticles actuating non-specific immunity. Int J Biol Macromol 2021; 182:743-749. [PMID: 33831450 PMCID: PMC8020621 DOI: 10.1016/j.ijbiomac.2021.03.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The development of high-end targeted drugs and vaccines against modern pandemic infections, such as COVID-19, can take a too long time that lets the epidemic spin up and harms society. However, the countermeasures must be applied against the infection in this period until the targeted drugs became available. In this regard, the non-specific, broad-spectrum anti-viral means could be considered as a compromise allowing overcoming the period of trial. One way to enhance the ability to resist the infection is to activate the nonspecific immunity using a suitable driving-up agent, such as plant polysaccharides, particularly our drug Panavir isolated from the potato shoots. Earlier, we have shown the noticeable anti-viral and anti-bacterial activity of Panavir. Here we demonstrate the pro-inflammation activity of Panavir, which four-to-eight times intensified the ATP and MIF secretion by HL-60 cells. This effect was mediated by the active phagocytosis of the Panavir particles by the cells. We hypothesized the physiological basis of the Panavir proinflammatory activity is mediated by the indol-containing compounds (auxins) present in Panavir and acting as a plant analog of serotonin.
Collapse
Affiliation(s)
- Sergey V Stovbun
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana S Kalinina
- Federal State Budgetary Institution, Research Zakusov Institute of Pharmacology, Moscow, Russia
| | - Dmitry V Zlenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia; A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia.
| | - Aleksei V Kiselev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Litvin
- Federal Research and Clinical Center of Physical-Chemical Medicine FMBA, Russia
| | | | - Sergey V Usachev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Kuznetsov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; N.I. Pirogov Russian, National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Nie W, Lan T, Yuan X, Luo M, Shen G, Yu J, Wei X. Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation. Cell Biol Toxicol 2021; 38:591-609. [PMID: 34170461 DOI: 10.1007/s10565-021-09620-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.
Collapse
Affiliation(s)
- Wen Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayun Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
5
|
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD, da Costa P, Borba L, da Cruz IBM, Morsch VM, Schetinger MRC. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 2021; 277:119421. [PMID: 33785337 DOI: 10.1016/j.lfs.2021.119421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1β and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Margarete Dulce Bagatini
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Pauline da Costa
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Loren Borba
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020; 7:506. [PMID: 32984382 PMCID: PMC7485330 DOI: 10.3389/fmed.2020.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggered by metabolic imbalance, also called metainflammation, is low-grade inflammation caused by the components involved in metabolic syndrome (MetS), including central obesity and impaired glucose tolerance. This phenomenon is mainly due to excess nutrients and energy, and it contributes to the pathogenesis of osteoarthritis (OA). OA is characterized by the progressive degeneration of articular cartilage, which suffers erosion and progressively becomes thinner. Purinergic signaling is involved in several physiological and pathological processes, such as cell proliferation in development and tissue regeneration, neurotransmission and inflammation. Adenosine and ATP receptors, and other members of the signaling pathway, such as AMP-activated protein kinase (AMPK), are involved in obesity, type 2 diabetes (T2D) and OA progression. In this review, we focus on purinergic regulation in osteoarthritic cartilage and how different components of MetS, such as obesity and T2D, modulate the purinergic system in OA. In that regard, we describe the critical role in this disease of receptors, such as adenosine A2A receptor (A2AR) and ATP P2X7 receptor. Finally, we also assess how nucleotides regulate the inflammasome in OA.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Juan Pablo Medina
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
7
|
Qian LW, Evani SJ, Chen P, Brandenburg KS, Weaver AJ, Fourcaudot AB, Abercrombie JJ, Sebastian EA, Leung KP. Cerium Nitrate Treatment Provides Eschar Stabilization through Reduction in Bioburden, DAMPs, and Inflammatory Cytokines in a Rat Scald Burn Model. J Burn Care Res 2020; 41:576-584. [PMID: 31808807 PMCID: PMC7195553 DOI: 10.1093/jbcr/irz199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we used a clinically relevant rat scald burn model to determine the treatment effects of cerium nitrate (CN) for stabilizing burn eschars through reduction of damage-associated molecular patterns (DAMPs), inflammatory cytokines, and bioburden. Forty-two male Sprague-Dawley rats were anesthetized before undergoing a scald burn at 99°C for 6 seconds to create a 10% full-thickness burn. The test groups included sham burn, burn with water bathing, and burn with CN bathing. End point parameters included circulating DAMPs, proinflammatory cytokines, tissue myeloperoxidase activity, and quantification of resident flora in burn skin. The high mobility group protein box 1 was found to be elevated in burn animals at postoperative days (POD) 1 and 7. CN significantly alleviated the increase (P < .05 at POD 1 and P < .01 at POD 7). CN also lessened the heightened levels of hyaluronan in burn animals (P < .05 at POD 7). Additionally, CN significantly reduced the burn-induced increases in interleukin-1β, growth-regulated oncogene/keratinocyte chemoattractant, and macrophage inflammatory protein-1α in burn wounds. The anti-inflammatory effect of CN was also demonstrated in its ability to mitigate the upregulated circulatory xanthine oxidase/dehydrogenase and increased tissue neutrophil infiltration in burn animals. Last, CN suppressed postburn proliferation of resident skin microbes, resulting in a significant 2-log reduction by POD 7. In conclusion, these results suggest that CN attenuates the burn-induced DAMPs, tissue inflammatory responses, and regrowth of resident skin flora, all of which collectively could improve the quality of burn eschar when applied at the point of injury in prolonged field care situations.
Collapse
Affiliation(s)
- Li-Wu Qian
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Shankar J Evani
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Ping Chen
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Kenneth S Brandenburg
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Alan J Weaver
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Andrea B Fourcaudot
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Johnathan J Abercrombie
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Eliza A Sebastian
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX
| |
Collapse
|
8
|
Abstract
Cellular metabolism is at the foundation of all biological activities. The catabolic processes that support cellular bioenergetics and survival have been well studied. By contrast, how cells alter their metabolism to support anabolic biomass accumulation is less well understood. During the commitment to cell proliferation, extensive metabolic rewiring must occur in order for cells to acquire sufficient nutrients such as glucose, amino acids, lipids and nucleotides, which are necessary to support cell growth and to deal with the redox challenges that arise from the increased metabolic activity associated with anabolic processes. Defining the mechanisms of this metabolic adaptation for cell growth and proliferation is now a major focus of research. Understanding the principles that guide anabolic metabolism may ultimately enhance ways to treat diseases that involve deregulated cell growth and proliferation, such as cancer.
Collapse
|
9
|
Wu Chuang A, Kepp O, Kroemer G, Bezu L. Endoplasmic reticulum stress in the cellular release of damage-associated molecular patterns. BIOLOGY OF THE ENDOPLASMIC RETICULUM 2020; 350:1-28. [DOI: 10.1016/bs.ircmb.2019.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Negri I, Diaz Villamil E, De Roeck L, Communi D, Horckmans M. P2Y 2 Nucleotide Receptor Is a Regulator of the Formation of Cardiac Adipose Tissue and Its Fat-Associated Lymphoid Clusters. Stem Cells Dev 2019; 29:100-109. [PMID: 31829837 DOI: 10.1089/scd.2019.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The formation of pericardial adipose tissue (PAT) and its regulatory function in cardiac inflammation are not well understood. We investigated the potential role of the ubiquitous ATP/UTP nucleotide receptor P2Y2 in the PAT by using P2Y2-null mice. We observed that P2Y2-null mice displayed a lower mass of PAT and a reduced density of its fat-associated lymphoid clusters (FALCs) and, more particularly, B cells. Loss of P2Y2 receptor in pericardial preadipocytes decreased their adipogenic differentiation and maturation abilities in vitro. Gene profiling identified P2Y2 target genes in PAT linked to immunomodulation. These data led to the identification of an increase of M2c anti-inflammatory macrophages correlated with increased apoptosis of B lymphocytes in P2Y2-null pericardial fat. In addition, follicular helper T cells, which contribute to B cell expansion in germinal centers, were dramatically decreased. The effect of P2Y2 loss was also investigated after ischemia-mediated expansion of FALCs in a model of myocardial infarct. Loss of P2Y2 led to reduced expansion of B and neutrophil populations in these clusters, whereas density of M2c anti-inflammatory macrophages was increased. Our study defines the P2Y2 nucleotide receptor as a regulator of the formation and inflammatory status of pericardial fat. The P2Y2 receptor could represent a therapeutic target in the regulation of PAT function before and during cardiac ischemia.
Collapse
Affiliation(s)
- Irene Negri
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Esteban Diaz Villamil
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Lucas De Roeck
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Didier Communi
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
11
|
Vemulapalli H, Albayati S, Patwa VC, Tilley DG, Tsygankov AY, Liverani E. ADP exerts P2Y 12 -dependent and P2Y 12 -independent effects on primary human T cell responses to stimulation. J Cell Commun Signal 2019; 14:111-126. [PMID: 31808055 DOI: 10.1007/s12079-019-00540-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
Purinergic signaling plays a complex role in inflammation. Nucleotides released by T lymphocytes, endothelial cells, and platelets during inflammation induce cellular responses by binding to receptors that regulate intracellular signaling pathways. Previous studies have found that purinergic signaling can have both proinflammatory and anti-inflammatory effects, but the roles of specific pathways in specific cell types are poorly understood. We investigated the role of the P2Y12 signaling pathway in the activation of T lymphocytes in vitro. We isolated peripheral blood mononuclear cells (PBMCs) from healthy donors and pretreated them with ADP (a P2Y12 agonist), AR-C69931MX (a P2Y12 antagonist), or both. We then stimulated PBMC using phytohemagglutinin (PHA) or anti-CD3/CD28 antibodies. We found that ADP affects T cell responses in term of cell activity and receptor expression through both P2Y12-dependent and P2Y12-independent pathways and other responses (cytokine secretion) primarily through P2Y12 -independent pathways. The ADP-mediated effect changed over time and was stimulus-specific.
Collapse
Affiliation(s)
- Harika Vemulapalli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Samara Albayati
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA
| | - Viren C Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA.,Department of Microbiology and Immunology, Temple University School of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, 3420 North Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
12
|
de Marchi FO, Cruz FF, Menezes FP, Kist LW, Bogo MR, Morrone FB. P2X7R and PANX-1 channel relevance in a zebrafish larvae copper-induced inflammation model. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:62-70. [PMID: 31136852 DOI: 10.1016/j.cbpc.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Copper is a metal that participates in several essential reactions in living organisms, and it has been used as an inflammatory inducing agent in zebrafish larvae. In this study, we evaluated the effect P2X7 receptor and/or pannexin channel 1 (PANX-1) blockage in this inflammation model. To perform the experiments, 7 dpf larvae were exposed to 10 μM of copper and treated with 100 μM probenecid, PANX-1 inhibitor, and/or 300 nM A740003, a P2X7R selective antagonist. Larvae survival was assessed up to 24 h after treatments. The evaluation of larvae behavior was evaluated after acute (4 h) and chronic (24 h) exposure. The parameters of locomotor activity measured were: mobile time, average speed, distance and turn angle. We analyzed the gene expression of the P2X7 receptor, PANX1a and PANX1b channels and interleukins IL-10 and IL-1b after 24 h of treatment. Treatments did not decrease larval survival in the time interval studied. Changes in larvae locomotion were observed after the longest time of exposure to copper and the treatment with probenecid was able to reverse part of the effects caused by copper. No significant difference was observed in the oxidative stress assays and probenecid and copper treatment decrease partially PANX1a gene expression groups. The data presented herein shows the relevance of the blockage of P2X7-PANX-1 in copper-induced inflammation.
Collapse
Affiliation(s)
- F O de Marchi
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil
| | - F F Cruz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil
| | - F P Menezes
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil
| | - L W Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil
| | - M R Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil
| | - F B Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Brazil.
| |
Collapse
|
13
|
Li S, Chen X, Wang N, Li J, Feng Y, Sun J. Identification and characterization of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) involved in regulating extracellular ATP-mediated innate immune responses in Japanese flounder (Paralichthys olivaceus). Mol Immunol 2019; 112:10-21. [PMID: 31075558 DOI: 10.1016/j.molimm.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine triphosphate (eATP), released following inflammatory stimulation or infection, is a potent signaling molecule in activating innate immune responses in fish. However, the regulation of eATP-mediated innate immunity in fish remains unknown. Ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) is a critical molecular switch for controlling the ATP levels in the extracellular space. CD39 plays a key role in regulating eATP-activated innate immune responses through the phosphohydrolysis of pro-inflammatory eATP to inactive AMP. Here, we identified and characterized a CD39 homolog (namely, poCD39) in the Japanese flounder Paralichthys olivaceus and analyzed its regulatory role in eATP-mediated innate immunity. Real-time quantitative PCR analysis revealed that poCD39 is ubiquitously present in all tested normal tissues with dominant expression in enriched Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments demonstrated that poCD39 expression was upregulated by inflammatory stimulation and Edwardsiella tarda infection. Biochemical and immunofluorescence analysis revealed that poCD39 is a functional glycosylated membrane protein for the hydrolysis of eATP. Inhibition of poCD939 activity with the ecto-NTPDase inhibitor ARL 67156 resulted in increased IL-1beta gene expression and ROS production in Japanese flounder HKMs. In contrast, overexpression of poCD39 in Japanese flounder FG-9307 cells reduced eATP-induced pro-inflammatory cytokine IL-1beta gene expression. Finally, poCD39 expression was significantly induced by eATP stimulation in the HKMs, suggesting that eATP may provide a feedback mechanism for transcriptional regulation of fish CD39. Taken together, we identified and characterized a functional fish CD39 protein involved in regulating eATP-mediated innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
14
|
Shi H, Hua X, Kong D, Stein D, Hua F. Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology 2018; 145:259-267. [PMID: 30075158 DOI: 10.1016/j.neuropharm.2018.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying secondary brain damage following traumatic brain injury (TBI) remain unclear. A great many studies have demonstrated that inflammatory cascades contribute to brain damage through the activation of immune/inflammatory responses, including the increased release of cytokines and chemokines, and the recruitment of leukocytes. The cells and tissues damaged by primary mechanical injury release a number of endogenous factors acting as damage-associated molecular patterns (DAMPs), which initiate and perpetuate noninfectious inflammatory responses through transduction signaling pathways. Toll-like receptors (TLRs) are a transmembrane receptor family that can recognize the specific DAMPs released from damaged cells and recruit a set of adaptors leading to the activation of downstream kinases and nuclear factors which regulate the expression of inflammatory genes. The activation of inflammatory responses mediated by TLR signaling is closely associated with brain tissue damage and neurological dysfunction following TBI. TLRs and their downstream protein kinases may be potential targets for the treatment of TBI. Modulation of TLR-mediated signaling may attenuate brain damage and improve TBI outcome. In this review, we briefly discuss the role of TLR-mediated signaling in TBI and the new treatments targeting TLR signaling. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Hongjuan Shi
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xiaodong Hua
- Augusta University/University of Georgia Medical Partnership, Athens, GA, 30606, USA; Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Delian Kong
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Donald Stein
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, 30032, USA
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Key Laboratory of Anesthesiology of Jiangsu Province, Xuzhou, 221002, China.
| |
Collapse
|
15
|
Ecto-enzymes activities in splenic lymphocytes of mice experimentally infected by Trypanosoma cruzi and treated with specific avian immunoglobulins: an attempt to improve the immune response. Mol Cell Biochem 2018; 448:9-15. [PMID: 29435869 DOI: 10.1007/s11010-018-3308-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the therapeutic efficacy of specific avian polyclonal antibodies (IgY) against Trypanosoma cruzi and their interaction with ecto-enzymes of the purinergic system (NTPDase and adenosine deaminase (ADA) activities) in splenic lymphocytes. For this, mice were divided into six groups: three non-infected (A, B, and C) and three infected (D, E, and F). The groups A and D were composed by negative and positive controls, respectively; while the groups B and E were treated prophylactically with IgY (50 mg/kg), and the groups C and F were treated therapeutically with IgY (50 mg/kg). Treatment with IgY reduced parasitemia on day 6 post-infection (PI) compared to the infected control group, but it was similar on day 8 PI. Moreover, infected and treated animals (the groups E and F) did not show neither amastigotes in the cardiac tissue nor cardiac lesions when compared to the positive control group (the group D). The E-NTPDase (ATP and ADP as substrate) and ADA activities in splenic lymphocytes increased significantly in the positive control group (the group D) compared to the negative control group (the group A). The therapeutic treatment of IgY (the group F) was able to prevent the increase of E-NTPDase and E-ADA activities compared to the positive control group (the group D), but this finding was not observed in animals that received the prophylactic treatment (the group E). The therapeutic treatment of IgY may be considered an interesting approach to improve the immune response of mice experimentally infected by T. cruzi.
Collapse
|
16
|
Brüser A, Zimmermann A, Crews BC, Sliwoski G, Meiler J, König GM, Kostenis E, Lede V, Marnett LJ, Schöneberg T. Prostaglandin E 2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y 6. Sci Rep 2017; 7:2380. [PMID: 28539604 PMCID: PMC5443783 DOI: 10.1038/s41598-017-02414-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/10/2017] [Indexed: 11/10/2022] Open
Abstract
Cyclooxygenase-2 catalyses the biosynthesis of prostaglandins from arachidonic acid but also the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. Previous studies identified PG-Gs as signalling molecules involved in inflammation. Thus, the glyceryl ester of prostaglandin E2, PGE2-G, mobilizes Ca2+ and activates protein kinase C and ERK, suggesting the involvement of a G protein-coupled receptor (GPCR). To identify the endogenous receptor for PGE2-G, we performed a subtractive screening approach where mRNA from PGE2-G response-positive and -negative cell lines was subjected to transcriptome-wide RNA sequencing analysis. We found several GPCRs that are only expressed in the PGE2-G responder cell lines. Using a set of functional readouts in heterologous and endogenous expression systems, we identified the UDP receptor P2Y6 as the specific target of PGE2-G. We show that PGE2-G and UDP are both agonists at P2Y6, but they activate the receptor with extremely different EC50 values of ~1 pM and ~50 nM, respectively. The identification of the PGE2-G/P2Y6 pair uncovers the signalling mode of PG-Gs as previously under-appreciated products of cyclooxygenase-2.
Collapse
Affiliation(s)
- Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany.
| | - Anne Zimmermann
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Brenda C Crews
- Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Gregory Sliwoski
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232-8725, USA
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Lawrence J Marnett
- Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
17
|
Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, Hoda MN, Dhandapani KM. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2614-2626. [PMID: 28533056 DOI: 10.1016/j.bbadis.2017.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term morbidity worldwide. Despite decades of pre-clinical investigation, therapeutic strategies focused on acute neuroprotection failed to improve TBI outcomes. This lack of translational success has necessitated a reassessment of the optimal targets for intervention, including a heightened focus on secondary injury mechanisms. Chronic immune activation correlates with progressive neurodegeneration for decades after TBI; however, significant challenges remain in functionally and mechanistically defining immune activation after TBI. In this review, we explore the burgeoning evidence implicating the acute release of damage associated molecular patterns (DAMPs), such as adenosine 5'-triphosphate (ATP), high mobility group box protein 1 (HMGB1), S100 proteins, and hyaluronic acid in the initiation of progressive neurological injury, including white matter loss after TBI. The role that pattern recognition receptors, including toll-like receptor and purinergic receptors, play in progressive neurological injury after TBI is detailed. Finally, we provide support for the notion that resident and infiltrating macrophages are critical cellular targets linking acute DAMP release with adaptive immune responses and chronic injury after TBI. The therapeutic potential of targeting DAMPs and barriers to clinical translational, in the context of TBI patient management, are discussed.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - Nancy M Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
18
|
Zhao R, Liang D, Sun D. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU). PLoS One 2016; 11:e0155953. [PMID: 27196432 PMCID: PMC4873015 DOI: 10.1371/journal.pone.0155953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ronglan Zhao
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States of America
- Department of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in the University of Shandong, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Dongchun Liang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States of America
- * E-mail:
| |
Collapse
|
19
|
Assessment of Radiation Induced Therapeutic Effect and Cytotoxicity in Cancer Patients Based on Transcriptomic Profiling. Int J Mol Sci 2016; 17:250. [PMID: 26907258 PMCID: PMC4783980 DOI: 10.3390/ijms17020250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 12/11/2022] Open
Abstract
Toxicity induced by radiation therapy is a curse for cancer patients undergoing treatment. It is imperative to understand and define an ideal condition where the positive effects notably outweigh the negative. We used a microarray meta-analysis approach to measure global gene-expression before and after radiation exposure. Bioinformatic tools were used for pathways, network, gene ontology and toxicity related studies. We found 429 differentially expressed genes at fold change >2 and p-value <0.05. The most significantly upregulated genes were synuclein alpha (SNCA), carbonic anhydrase I (CA1), X-linked Kx blood group (XK), glycophorin A and B (GYPA and GYPB), and hemogen (HEMGN), while downregulated ones were membrane-spanning 4-domains, subfamily A member 1 (MS4A1), immunoglobulin heavy constant mu (IGHM), chemokine (C-C motif) receptor 7 (CCR7), BTB and CNC homology 1 transcription factor 2 (BACH2), and B-cell CLL/lymphoma 11B (BCL11B). Pathway analysis revealed calcium-induced T lymphocyte apoptosis and the role of nuclear factor of activated T-cells (NFAT) in regulation of the immune response as the most inhibited pathways, while apoptosis signaling was significantly activated. Most of the normal biofunctions were significantly decreased while cell death and survival process were activated. Gene ontology enrichment analysis revealed the immune system process as the most overrepresented group under the biological process category. Toxicity function analysis identified liver, kidney and heart to be the most affected organs during and after radiation therapy. The identified biomarkers and alterations in molecular pathways induced by radiation therapy should be further investigated to reduce the cytotoxicity and development of fatigue.
Collapse
|
20
|
Brisevac D, Adzic M, Laketa D, Parabucki A, Milosevic M, Lavrnja I, Bjelobaba I, Sévigny J, Kipp M, Nedeljkovic N. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5'-Nucleotidase by Rat Cortical Astrocytes In Vitro. J Mol Neurosci 2015; 57:452-62. [PMID: 26080748 DOI: 10.1007/s12031-015-0601-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1-3 (NTPDase1-3), ecto-nucleotide pyrophosphatase/phospodiesterases 1-3 (NPP1-3), and ecto-5'-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1-3, NPP1-3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis.
Collapse
Affiliation(s)
- Dusica Brisevac
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia
| | - Marija Adzic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia.,Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia
| | - Ana Parabucki
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Milena Milosevic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia.,Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec Université Laval, Québec, QC, G1V 4G2, Canada
| | - Markus Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia.
| |
Collapse
|
21
|
Decrease of serum adenine nucleotide hydrolysis in an irritant contact dermatitis mice model: potential P2X7R involvement. Mol Cell Biochem 2015; 404:221-8. [PMID: 25772484 DOI: 10.1007/s11010-015-2381-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) has significant effects on a variety of pathological conditions and it is the main physiological agonist of P2X7 purinergic receptor (P2X7R). It is known that ATP acting via purinergic receptors plays a relevant role on skin inflammation, and P2X7R is required to neutrophil recruitment in a mice model of irritant contact dermatitis (ICD).The present study investigated the effects of chemical irritant croton oil (CrO) upon ATP, ADP, and AMP hydrolysis in mice blood serum, and the potential involvement of P2X7R. The topical application CrO induced a decrease on soluble ATP/ADPase activities (~50 %), and the treatment with the selective P2X7R antagonist, A438079, reversed these effects to control level. Furthermore, we showed that CrO decreased cellular viability (52.6 % ± 3.9) in relation to the control and caused necrosis in keratinocytes (PI positive cells). The necrosis induced by CrO was prevented by the pre-treatment with the selective P2X7R antagonist A438079. The results presented herein suggest that CrO exerts an inhibitory effect on the activity of ATPDase in mouse serum, reinforcing the idea that ICD has a pathogenic mechanism dependent of CD39. Furthermore, it is tempting to suggest that P2X7R may act as a controller of the extracellular levels of ATP.
Collapse
|
22
|
Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis. Biochem J 2014; 463:429-37. [PMID: 25301072 DOI: 10.1042/bj20140666] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ATP, the universal energy currency of all organisms, is released into the extracellular matrix and serves as a signal among cells, where it is referred to as an extracellular ATP. Although a signalling role for extracellular ATP has been well studied in mammals over the last 40 years, investigations of such a role in plants are at an early stage. Recently, the first plant receptor for extracellular ATP, DOes not Respond to Nucleotides (DORN1), was identified in Arabidopsis thaliana by mutant screening. DORN1 encodes a legume-type lectin receptor kinase that is structurally distinct from the mammalian extracellular ATP receptors. In the present review, we highlight the genetic and biochemical evidence for the role of DORN1 in extracellular ATP signalling, placing this within the wider context of extracellular ATP signalling during plant stress responses.
Collapse
|
23
|
Powering the immune system: mitochondria in immune function and deficiency. J Immunol Res 2014; 2014:164309. [PMID: 25309931 PMCID: PMC4189529 DOI: 10.1155/2014/164309] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings.
Collapse
|
24
|
IL-8 and global gene expression analysis define a key role of ATP in renal epithelial cell responses induced by uropathogenic bacteria. Purinergic Signal 2014; 10:499-508. [PMID: 24817659 DOI: 10.1007/s11302-014-9414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022] Open
Abstract
The recent recognition of receptor-mediated ATP signalling as a pathway of epithelial pro-inflammatory cytokine release challenges the ubiquitous role of the TLR4 pathway during urinary tract infection. The aim of this study was to compare cellular responses of renal epithelial cells infected with uropathogenic Escherichia coli (UPEC) strain IA2 to stimulation with ATP-γ-S. A498 cells were infected or stimulated in the presence or absence of apyrase, that degrades extracellular ATP, or after siRNA-mediated knockdown of ATP-responding P2Y2 receptors. Cellular IL-8 release and global gene expression were analysed. Both IA2 and A498 cells per se released ATP, which increased during infection. IA2 and ATP-γ-S caused a ∼5-fold increase in cellular release of IL-8 and stimulations performed in the presence of apyrase or after siRNA knockdown of P2Y2 receptors resulted in attenuation of IA2-mediated IL-8 release. Microarray results show that both IA2 and ATP-γ-S induced marked changes in gene expression of renal cells. Thirty-six genes were in common between both stimuli, and many of these are key genes belonging to classical response pathways of bacterial infection. Functional analysis shows that 88 biological function-annotated cellular pathways were identical between IA2 and ATP-γ-S stimuli. Results show that UPEC-induced release of IL-8 is dependent on P2Y2 signalling and that cellular responses elicited by UPEC and ATP-γ-S have many identical features. This indicates that renal epithelial responses elicited by bacteria could be mediated by bacteria- or host-derived ATP, thus defining a key role of ATP during infection.
Collapse
|
25
|
Jaso-Friedmann L, Leary JH, Camus AC, Evans DL. The teleost acute-phase inflammatory response and caspase activation by a novel alarmin-like ligand. J Leukoc Biol 2014; 95:785-796. [PMID: 24399841 DOI: 10.1189/jlb.0313171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022] Open
Abstract
This study tested the hypothesis that NCAMP-1 has alarmin-like properties and activates the caspase-1-binding site in cells of the teleost bone marrow (equivalent). In mammals, alarmins have been studied extensively; however, in teleosts, little is known about their identity and functions. Similar to alarmins, NCAMP-1 has a broad spectrum of bacteriolytic activity. NCAMP-1 is constitutively present in CF serum, and levels were increased following infection with Edwardsiella ictaluri Binding to AK cells was determined with rNCAMP-1 and an anti-His-tag antibody. In vitro treatment of AK (bone marrow equivalent) or spleen cells with rNCAMP-1 increased the IL-1β message three- to fivefold at 3 h, 6 h, and 9 h post-treatment. The association of NCAMP-1 with the activities of alarmin ATP and the acute inflammatory response was demonstrated by NCAMP-1-induced P2X7R pore opening and YO-PRO-1 cellular influx. The association of NCAMP-1 binding with inflammasome activation was demonstrated by NCAMP-1 activation of the caspase-1-binding site for tetrapeptide Z-YVAD-FMK. In competition assays, this tetrapeptide competitively inhibited subsequent binding by the pan-caspase substrate tripeptide FAM-VAD-FMK. Lymphocyte-like cells from the spleen were 16%+, and epithelial cells were also positive for NCAMP-1. IHC staining and confocal microscopy confirmed the cytosolic existence of NCAMP-1 in lymphoreticular tissue and IL-1β in AK cells. CF T cell lines G14D and 28S.3 expressed NCAMP-1 in the cytosol and in storage granules. These studies strongly suggested that NCAMP-1 is an alarmin-like ligand with similar but distinct activities to those of ATP and HMGB-1.
Collapse
Affiliation(s)
| | | | - A C Camus
- Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
26
|
Tonin AA, Da Silva AS, Ruchel JB, Rezer JF, Camillo G, Faccio L, França RT, Leal DB, Duarte MM, Vogel FF, de la Rue ML, Lopes ST. E-NTPDase and E-ADA activities in lymphocytes associated with the immune response of rats experimentally infected with Toxoplasma gondii. Exp Parasitol 2013; 135:325-30. [DOI: 10.1016/j.exppara.2013.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/20/2022]
|
27
|
Moll M, Kuemmerle-Deschner JB. Inflammasome and cytokine blocking strategies in autoinflammatory disorders. Clin Immunol 2013; 147:242-75. [DOI: 10.1016/j.clim.2013.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/07/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
|
28
|
Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 2012. [PMID: 23184935 DOI: 10.1074/jbc.m112.419788] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation and microenvironment play a crucial role in muscle regeneration. IL (interleukin)-6, as a multifunctional cytokine is involved in the processes. However, the causative effect of IL-6 in muscle regeneration remains unclear. In a mouse model of cardiotoxin-induced muscle injury/regeneration, infiltrated monocytes/macrophages produce a high level of IL-6 started on 1 day (24 h) after injury. In IL-6 knock-out (-/-) mice, the muscle regeneration procedure was impaired along with decreased myogenic determination factor (MyoD) and myogenin mRNA level and increased interstitial fibrosis. The IL-6(-/-) mice exhibited less macrophage infiltration, lower inflammatory cytokine (IL-1β, inducible NO synthase, Transforming growth factor (TGF)-β1, and IL-10) and chemokine (CCL2, CCL3, and CCL5) expression, and inhibited myoblast proliferation. In vitro, IL-6 deficiency or Signal Transducer and Activator of Transcription 3 (STAT3) knockdown in activated macrophage attenuated the expression of CCL2, CCL3, but not CCL5, which resulted in less macrophage migration. Moreover, inflammatory macrophages promoted myoblast proliferation in an IL-6-dependent manner. Finally, adoptive transfer IL-6(+/+) BM cells into IL-6(-/-) mice rescued the impaired regeneration with improved MyoD and myogenin expression. Taken together, IL-6 expression and the activated STAT3 signaling pathway in monocytes/macrophages is a critical mediator of macrophage migration and myoblast proliferation during muscle regeneration.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
29
|
Rayah A, Kanellopoulos JM, Di Virgilio F. P2 receptors and immunity. Microbes Infect 2012; 14:1254-62. [PMID: 22909902 PMCID: PMC3514633 DOI: 10.1016/j.micinf.2012.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022]
Abstract
Immune cells express receptors for extracellular nucleotides named P2 receptors. P2 receptors transduce signals delivered by nucleotides present in the extracellular environment. Accruing evidence shows that purinergic signalling has a profound effect on multiple immune cell responses such as T lymphocyte proliferation, chemotaxis, cytokine release, phagocytosis, Ag presentation and cytotoxicity. This makes P2 receptors an attractive target for the therapy of immuno-mediated disease and cancer.
Collapse
Affiliation(s)
- Amel Rayah
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
30
|
Souza VDCG, Schlemmer KB, Noal CB, Jaques JADS, Zimmermann CEP, Leal CAM, Fleck J, Casali EA, Morsch VM, Schetinger MRC, Leal DBR. E-NTPDase and E-ADA activities are altered in lymphocytes of patients with indeterminate form of Chagas' disease. Parasitol Int 2012; 61:690-6. [PMID: 22846899 DOI: 10.1016/j.parint.2012.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Trypanosoma cruzi infection triggers a chronic inflammatory process in human host and purinergic system ecto-enzymes play an important role in modulating the inflammatory and immune responses. In this study, it was investigated ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5; CD39) and ecto-adenosine deaminase (E-ADA; EC 3.5.4.4) activities in lymphocytes from patients with indeterminate form of Chagas' disease (IFCD). Twenty-five IFCD patients and 25 healthy subjects (control group) were selected. The peripheral lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Adenine nucleotides and adenosine levels were determined in serum by HPLC and the E-NTPDase1 expression in lymphocytes by Western blot analysis. E-NTPDase (ATP and ADP as substrates) and E-ADA (adenosine as substrate) activities were decreased in lymphocytes from IFCD patients (P<0.05 and P<0.01, respectively), while the E-NTPDase1 expression presented no changes in these patients. Serum ATP levels showed to be decreased (P<0.05) and both AMP (P<0.01) and adenosine (P<0.001) levels were increased in the IFCD group. The enzymatic alterations observed are in agreement with the immune response against T. cruzi infection in IFCD patients, since the decreased extracellular ATP and the increased adenosine levels trigger a Th2 anti-inflammatory response, which it is associated to adaptation of host to parasite, preventing clinical progress of disease.
Collapse
Affiliation(s)
- Viviane do Carmo Gonçalves Souza
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Extracellular ATP (eATP), the most abundant among nucleotides, can act as a mediator during inflammatory responses by binding to plasmamembrane P2 purinergic receptors, which are widely expressed on cells of the immune system. eATP is generally considered as a classical danger signal, which stimulates immune responses in the presence of tissue damage. Converging evidence from several studies using murine models of chronic inflammation have supported this hypothesis; however, the role of eATP in the regulation of human immune function appears to be more complex. Chronic stimulation with micromolar eATP concentrations inhibits the proliferation of T and NK lymphocytes and enhances the capacity of dendritic cells to promote tolerance. The effect of eATP depends on multiple factors, such as the extent of stimulation, eATP concentration, presence/absence of other mediators in the microenvironment, and pattern of P2 receptor engagement. Small but significant differences in the pattern of P2 receptor expression in mice and humans confer the diverse capacities of ATP in regulating the immune response. Such diversity, which is often overlooked, should therefore be carefully considered when evaluating the role of eATP in human inflammatory and autoimmune diseases.
Collapse
|
32
|
Zhang Z, Wang Z, Ren H, Yue M, Huang K, Gu H, Liu M, Du B, Qian M. P2Y(6) agonist uridine 5'-diphosphate promotes host defense against bacterial infection via monocyte chemoattractant protein-1-mediated monocytes/macrophages recruitment. THE JOURNAL OF IMMUNOLOGY 2011; 186:5376-87. [PMID: 21444765 DOI: 10.4049/jimmunol.1002946] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular nucleotides are important messengers involved in series crucial physiological functions through the activation of P2 purinergic receptors. The detailed function and mechanism of the P2Y family in regulating immune response against invaded pathogens still remains unknown. In this study, the activation of purinoreceptor P2Y(6) by UDP was found to play a crucial role in promoting host defense against invaded bacteria through monocytes/macrophages recruitment. The expression level of P2Y(6) was much higher than other purinoreceptors in RAW264.7 cells, bone marrow macrophages, and peritoneal macrophages determined by real-time PCR. The supernatant of UDP (P2Y(6)-specific agonist)-treated RAW264.7 cells exhibited direct chemotaxis to monocytes/macrophages in vitro through Boyden Chambers assay. Meanwhile, the releasing of MCP-1 (MCP-1/CCL2) was enhanced obviously by UDP both in mRNA and protein level. Furthermore, the activation of P2Y(6) receptor by UDP also promotes ERK phosphorylation and AP-1 activation in a concentration- and time-dependent manner in RAW264.7 cells. This UDP-induced activation could be inhibited by P2Y(6) selectivity antagonist (MRS2578), MEK inhibitor (U0126), and MCP-1 blocking Ab, respectively. Moreover, i.p. injection with UDP resulted in a more efficacious clearance of invaded Escherichia coli and lower mortality in peritonitis mouse model. Together, our studies demonstrate that P2Y(6) receptor could be a novel mediator in upregulating innate immune response against the invaded pathogens through recruiting monocytes/macrophages.
Collapse
Affiliation(s)
- Zhi Zhang
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Stimulation of almost all mammalian cell types leads to the release of cellular ATP and autocrine feedback through a diverse array of purinergic receptors. Depending on the types of purinergic receptors that are involved, autocrine signalling can promote or inhibit cell activation and fine-tune functional responses. Recent work has shown that autocrine signalling is an important checkpoint in immune cell activation and allows immune cells to adjust their functional responses based on the extracellular cues provided by their environment. This Review focuses on the roles of autocrine purinergic signalling in the regulation of both innate and adaptive immune responses and discusses the potential of targeting purinergic receptors for treating immune-mediated disease.
Collapse
|
34
|
Abstract
The immune and inflammatory responses initiated by the interaction of a pathogen with airway surfaces constitute vital mechanisms to eradicate an infection. Sentinel dendritic cells embedded in the mucosa migrate to the lymph nodes to induce immune responses, whereas epithelial cells release chemokines to recruit inflammatory cells engaged in the active destruction of the intruder. All immune and inflammatory cells are regulated by customized purinergic networks of receptors and ectonucleotidases. The general concept is that bacterial products induce ATP release, which activates P2 receptors to initiate an inflammatory response, and is terminated by the conversion of ATP into adenosine (ADO) to initiate P1 receptor-mediated negative feedback responses. However, this chapter exposes a far more complex purinergic regulation of critical functions, such as the differentiation of naive lymphocytes and the complex maturation and secretion of pro-cytokines (i.e. IL-1β) by the "inflammasome". This material also reconciles decades of research by exposing the specificity and plasticity of the signaling network expressed by each immune and inflammatory cell, which changes through cell differentiation and in response to infectious or inflammatory mediators. By the end of this chapter, the reader will have a new appreciation for this aspect of airway defenses, and several leads in terms of therapeutic applications for the treatment of chronic respiratory diseases.
Collapse
|
35
|
Abstract
Purinergic receptors and the associated signaling cascades are known to play critical roles in cardiovascular, nervous, respiratory, gastrointestinal and urinogenital systems. Recent studies have also shed light on the importance of nucleotides and purinergic receptors in the regulation of the immune response. With a better understanding of the distribution and the receptor subtypes, the purinoceptors have the potential to become important therapeutic targets in inflammation, chemotaxis and immune-related diseases.
Collapse
|
36
|
Corrêa G, Marques da Silva C, de Abreu Moreira-Souza AC, Vommaro RC, Coutinho-Silva R. Activation of the P2X(7) receptor triggers the elimination of Toxoplasma gondii tachyzoites from infected macrophages. Microbes Infect 2010; 12:497-504. [PMID: 20298798 DOI: 10.1016/j.micinf.2010.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/23/2022]
Abstract
Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which is widespread throughout the world. After active penetration, the parasite is enclosed within a parasitophorous vacuole and survives in the host cell by avoiding, among other mechanisms, lysosomal degradation. A large number of studies have demonstrated the importance of ATP signalling via the P2X(7) receptor, as a component of the inflammatory response against intracellular pathogens. Here we evaluate the effects of extracellular ATP on T. gondii infection of macrophages. ATP treatment inhibits the parasite load and the appearance of large vacuoles in the cytoplasm of intracellular parasites. ROS and NO assays showed that only ROS production is involved with the ATP effects. Immunofluorescence showed colocalization of Lamp1 and SAG1 only after ATP treatment, suggesting the formation of phagolysosomes. The involvement of P2X(7) receptors in T. gondii clearance was confirmed by the use of P2X(7) agonists and antagonists, and by infecting macrophages from P2X(7) receptor-deficient mice. We conclude that parasite elimination might occur following P2X(7) signalling and that novel therapies against intracellular pathogens could take advantage of activation of purinergic signalling.
Collapse
Affiliation(s)
- Gladys Corrêa
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373. 21941-902 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
37
|
Callender HL, Ann Horn M. Mathematical modelling and analysis of cellular signalling in macrophages. JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:12-27. [PMID: 22881068 DOI: 10.1080/17513750903026437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cell signalling pathways play a crucial role in proper cell development and behaviour, with implications to survival, chemotaxis, proliferation, and even programmed cell death known as apoptosis. In this article, we outline a mathematical model of the G-protein signalling pathway in a particular cell line of macrophages, focusing on activation of a particular G-protein-coupled receptor, P2Y(6). The model is based on the kinetics of P2Y(6) surface receptors, inositol trisphosphate, cytosolic calcium, and differential dynamics of multiple species of diacylglycerol. Insight into the dynamics of the system is given through recently available experimental results and incorporated into the model. Mathematical analysis of the model, including establishment of global existence, uniqueness, positivity, and boundedness of solutions, and global stability of a unique steady-state solution is discussed.
Collapse
Affiliation(s)
- Hannah L Callender
- Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
38
|
Di Virgilio F, Boeynaems JM, Robson SC. Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 2009; 9:507-13. [PMID: 19628431 DOI: 10.1016/j.coph.2009.06.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 12/13/2022]
Abstract
Nucleotides are well known for being the universal currency of intracellular energy transactions, but over the past decade it has become clear that they are also ubiquitous extracellular messengers. In the immune system there is increasing awareness that nucleotides serve multiple roles as stimulants of lymphocyte proliferation, ROS generation, cytokine and chemokine secretion: in one word as pro-inflammatory mediators. However, although often neglected, extracellular nucleotides exert an additional more subtle function as negative modulators of immunity, or as immunodepressants. The more we understand the peculiar biochemical composition of the microenvironment generated at inflammatory sites, the more we appreciate how chronic exposure to low extracellular nucleotide levels affect immunity and inflammation. A deeper understanding of this complex network will no doubt help design more effective therapies for cancer and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy.
| | | | | |
Collapse
|
39
|
Roach TIA, Rebres RA, Fraser IDC, Decamp DL, Lin KM, Sternweis PC, Simon MI, Seaman WE. Signaling and cross-talk by C5a and UDP in macrophages selectively use PLCbeta3 to regulate intracellular free calcium. J Biol Chem 2008; 283:17351-61. [PMID: 18411281 DOI: 10.1074/jbc.m800907200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies in fibroblasts, neurons, and platelets have demonstrated the integration of signals from different G protein-coupled receptors (GPCRs) in raising intracellular free Ca(2+). To study signal integration in macrophages, we screened RAW264.7 cells and bone marrow-derived macrophages (BMDM) for their Ca(2+) response to GPCR ligands. We found a synergistic response to complement component 5a (C5a) in combination with uridine 5'-diphosphate (UDP), platelet activating factor (PAF), or lysophosphatidic acid (LPA). The C5a response was Galpha(i)-dependent, whereas the UDP, PAF, and LPA responses were Galpha(q)-dependent. Synergy between C5a and UDP, mediated by the C5a and P2Y6 receptors, required dual receptor occupancy, and affected the initial release of Ca(2+) from intracellular stores as well as sustained Ca(2+) levels. C5a and UDP synergized in generating inositol 1,4,5-trisphosphate, suggesting synergy in activating phospholipase C (PLC) beta. Macrophages expressed transcripts for three PLCbeta isoforms (PLCbeta2, PLCbeta3, and PLCbeta4), but GPCR ligands selectively used these isoforms in Ca(2+) signaling. C5a predominantly used PLCbeta3, whereas UDP used PLCbeta3 but also PLCbeta4. Neither ligand required PLCbeta2. Synergy between C5a and UDP likewise depended primarily on PLCbeta3. Importantly, the Ca(2+) signaling deficiency observed in PLCbeta3-deficient BMDM was reversed by re-constitution with PLCbeta3. Neither phosphatidylinositol (PI) 3-kinase nor protein kinase C was required for synergy. In contrast to Ca(2+), PI 3-kinase activation by C5a was inhibited by UDP, as was macropinocytosis, which depends on PI 3-kinase. PLCbeta3 may thus provide a selective target for inhibiting Ca(2+) responses to mediators of inflammation, including C5a, UDP, PAF, and LPA.
Collapse
Affiliation(s)
- Tamara I A Roach
- Alliance for Cellular Signaling, Northern California Institute for Research and Education, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 2007; 28:429-36. [PMID: 17845865 DOI: 10.1016/j.it.2007.08.004] [Citation(s) in RCA: 443] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/18/2007] [Accepted: 08/29/2007] [Indexed: 12/12/2022]
Abstract
Immune responses are initiated and perpetuated by molecules derived from microorganisms pathogen-associated molecular-pattern molecules or from the damage or death of host cells [damage-associated molecular-pattern (DAMP) molecules]. Many DAMPs are nuclear or cytosolic proteins with defined intracellular function that, when released outside the cell following tissue injury, move from a reducing to an oxidizing milieu resulting in their functional denaturation. Here, we discuss the consequences of DAMP oxidation on the outcome of acute inflammation. We also suggest that, outside the cell, DAMPs might adopt novel conformations or alter the redox of the extracellular environment to more closely mimic the internal one, thereby avoiding oxidation-mediated inactivation and promoting pathology. We propose that chronic inflammation associated with autoimmunity, chronic viral infection and cancer is probably mediated by persistent release and function of DAMPs, promoting and promoted by a disordered redox environment.
Collapse
Affiliation(s)
- Anna Rubartelli
- Cell Biology Unit, National Cancer Research Institute, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | | |
Collapse
|
41
|
Atkins MB, Carbone D, Coukos G, Dhodapkar M, Ernstoff MS, Finke J, Gajewski TF, Gollob J, Lotze MT, Storkus W, Weiner LM. Report on the ISBTC mini-symposium on biologic effects of targeted therapeutics. J Immunother 2007; 30:577-90. [PMID: 17667521 DOI: 10.1097/cji.0b013e318064e7b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society for Biologic Therapy of Cancer held a mini-symposium on October 26, 2006 in Los Angeles to review current information regarding the biologic effects of both standard and targeted therapies. The purpose of the mini-symposium was to describe the existing knowledge regarding various biologic effects of current therapies, identify the most relevant issues and gaps in the knowledge base and discuss the optimal means of obtaining necessary missing information. Topics discussed included: (1) The impact of antitumor monoclonal antibody therapy on antigen presentation and adaptive immunity; (2) the effects of antiangiogenic/targeted therapy of the immune system; (3) the impact of chemotherapy on angiogenesis and immune function; (4) combination of antiangiogenic and immunotherapy at the clinical level; (5) the effects of tyrosine kinase inhibitors on TH1/TH2 response and T-regulatory cells; (6) the impact of farnesyltransferase inhibitors and other targeted agents on T-cell activation; (7) the impact of epigenetic modulators on biologic properties, and (8) the impact of the nature of cell death on the immune system. The ultimate goals of this mini-symposium were to use the above information to inform and influence basic science efforts and discussions, rationally design combination treatment regimens and optimally employ correlative studies in the context of ongoing and future clinical investigations.
Collapse
|
42
|
Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 2007; 28:465-72. [PMID: 17692395 DOI: 10.1016/j.tips.2007.07.002] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/10/2007] [Accepted: 07/24/2007] [Indexed: 11/22/2022]
Abstract
Inflammation is initiated by specific pathogen constituents, in addition to intrinsic host molecules that are released by injured or dying cells. Among such host endogenous pro-inflammatory factors, nucleotides (mainly ATP) are attracting increasing interest for their potential as natural adjuvants. Extracellular ATP stimulates a family of receptors, named P2, one of which, P2X(7), is a potent mediator of interleukin (IL)-1beta and IL-18 processing and release. The mechanism and physiological significance of this unusual pro-inflammatory activity have long remained elusive. Recent data unveiling the structure and function of a novel caspase-activating platform, the inflammasome, shed light on P2X(7) receptor coupling to IL-1beta release, and suggest a fascinating scenario for the initiation and amplification of the innate immune response. Here, I outline the intriguing links between the P2X(7) receptor and the NALP3 inflammasome, review recent evidence showing that this receptor is a potent activator of this multimolecular platform and discuss implications for pathogen-immune cell interaction and for anti-inflammatory drug development.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Via Borsari, 46, Ferrara, Italy.
| |
Collapse
|