1
|
Xiong X, Cesarato N, Gossmann Y, Wehner M, Kumar S, Thiele H, Demuth S, Oji V, Geyer M, Hamm H, Basmanav FB, Betz RC. A nonsense variant in KRT31 is associated with autosomal dominant monilethrix. Br J Dermatol 2024; 191:979-987. [PMID: 39026424 DOI: 10.1093/bjd/ljae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Monilethrix is a rare hereditary hair disorder that is characterized by a beaded hair shaft structure and increased hair fragility. Patients may also present with keratosis pilaris and nail changes. Research has identified three genes responsible for autosomal dominant monilethrix (KRT81, KRT83, KRT86) and one responsible for the autosomal recessive form (DSG4). OBJECTIVES To investigate the genetic basis of autosomal dominant monilethrix in families with no pathogenic variants in any of the known monilethrix genes, and to understand the mechanistic basis of variant pathogenicity using a cellular model. METHODS Nine affected individuals from four unrelated families were included. A clinical diagnosis of monilethrix was assigned based on clinical examination and/or trichoscopy. Exome sequencing was performed in six individuals to identify pathogenic variants; Sanger sequencing was used for co-segregation and haplotype analyses. Cell culture experiments [immunoblotting, immunofluorescence and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analyses] were used to confirm variant pathogenicity, to determine the expression and subcellular localization of proteins, and to identify possible nonsense-mediated mRNA decay. RESULTS In six affected individuals with clinically suggested monilethrix, exome sequencing led to the identification of the nonsense variant c.1081G>T; p.(Glu361*) in KRT31, which was subsequently identified in other affected members of these families by Sanger sequencing. This variant led to the abolition of both the last three amino acids of the 2B subdomain and the complete C-terminal tail domain of keratin 31. Immunoblotting demonstrated that when co-expressed with its binding partner keratin 85, the truncated keratin 31 was still expressed, albeit less abundantly than the wildtype protein. Immunofluorescence revealed that p.(Glu361*) keratin 31 had an altered cytoskeletal localization and formed vesicular-like structures in the cell cytoplasm near the cell membrane. RT-qPCR analysis did not generate evidence for nonsense-mediated decay of the mutant transcript. CONCLUSIONS This study is the first to identify pathogenic variants in KRT31 as a cause of autosomal dominant monilethrix. This highlights the importance of hair keratin proteins in hair biology, and will increase the molecular diagnostic yield for rare ectodermal phenotypes of hair and nail tissues.
Collapse
Affiliation(s)
- Xing Xiong
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Nicole Cesarato
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Yasmina Gossmann
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Maria Wehner
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | | | - Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Henning Hamm
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - F Buket Basmanav
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Liquat N, Hassan MU, Shafique F, Khan S, Alanzi AR, Khan NU. Investigating the role of keratin proteins and microbial associations in hereditary and pathogenic alopecia. Arch Dermatol Res 2024; 316:718. [PMID: 39460809 DOI: 10.1007/s00403-024-03436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
The purpose of this research was to identify the role of keratin proteins in causing inherited as well as pathogenic alopecia, pinpoint deleterious SNPs, and predict structural changes affecting protein-protein interactions in hair disorders. To elucidate the role of keratin proteins and genetic mutations in alopecia by analyzing protein structures through bioinformatics and identifying a mutation in the LPAR6 gene. It sought to identify the microorganisms linked to alopecia and conducted a comprehensive bioinformatics analysis of proteins with unknown experimental structures and molecular simulation analysis. The study identified a genetic mutation (c.188 A > T, p.Asp63Val) in the LPAR6 gene associated with hereditary hair loss. Pathogenic alopecia was identified to be associated with S. aureus and two ic keratinophilic fungi namely M. canis, and T. violaceum. Additionally, among 14 proteins lacking prior structural information, four proteins namely Keratin, type II cuticular Hb3 (KR1), Keratin, type II cuticular Hb6 (KR2), Keratin, type II cytoskeletal 74 (KR3) and Keratin, type II cuticular Hb1 (KR4) exhibited common 'K-head' and 'F' domains. Docking analysis revealed five distinct binding sites (C1-C5) for each protein. The 'K-head' displayed the highest predicted binding affinities with Vina scores of -5.6 for KR2 and - 4.7 for KR4 whereas the 'F' domain showed Vina scores of -6.0 for KR3 and - 5.7 for KR2. This research underscores the crucial role of keratin proteins in both hereditary and pathogenic alopecia, emphasizing their significance for future investigations.
Collapse
Affiliation(s)
- Nadia Liquat
- Department of Microbiology, Shaheed Benazir Bhutto Women University Peshawar, Pakhtunkhwa, Pakistan
| | - Mahreen Ul Hassan
- Department of Microbiology, Shaheed Benazir Bhutto Women University Peshawar, Pakhtunkhwa, Pakistan
| | - Farheen Shafique
- Department of Zoology, Faculty of Science, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Sana Khan
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, South Korea
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Pakhtunkhwa, Pakistan.
| |
Collapse
|
3
|
Ebert JR, Magi A, Unt E, Prans E, Wood DJ, Koks S. Genome-wide association study identifying variants related to performance and injury in high-performance athletes. Exp Biol Med (Maywood) 2023; 248:1799-1805. [PMID: 37750015 PMCID: PMC10792416 DOI: 10.1177/15353702231198068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 09/27/2023] Open
Abstract
A growing body of evidence exists supporting the role that genetic variation plays in athletic performance and injury. This study sought to identify genetic variants associated with performance and lower limb musculoskeletal injury in a high-level athletic cohort. A total of 126 Estonian National Team members (Olympic athletes and participants of International Championships) (104 males, 82.5%) underwent a genome-wide association analysis between 2017 and 2018, to identify single-nucleotide polymorphisms (SNPs) associated with performance and/or injury. The athletic cohort was stratified within each sport based on performance and whether they were a medalist (n = 29) or not (n = 97), whether they sustained an injury (n = 47) or not (n = 79), and the type of injury (patella tendinopathy n = 22, Achilles tendinopathy n = 17, hamstring injury n = 3, anterior cruciate ligament rupture n = 6). Three SNPs demonstrated strong genome-wide association with athletic performance (podium/medalist versus not), including DSG1 (rs10502567, OR 14.3) and DSG4 (rs73410248, OR 17.4), while 76 SNPs demonstrated suggestive significance. Overall, 37 SNPs gave genome-wide suggestive association with any type of injury, including PAPPA2 (rs11580456, OR 13.8) and MAS1 (rs220735, rs170219, OR 3.1) which demonstrated positive signal with multiple SNPs. Several genes demonstrated positive association for the specific injury types, including COL22A1 (rs3924862) and PLXNA2 (rs11799530), as well as PAPPA2 (rs11580456), DOK5 (rs73142922), GNG12 (rs28435277), and DAP (rs267959, rs2930047, rs1080440, rs267939). The current study identified genetic variants associated with high-level athletic performance and musculoskeletal injury. Further work is required to permit integration of this and future knowledge into individualized training practices, as well as injury mitigation and rehabilitation programs.
Collapse
Affiliation(s)
- Jay R Ebert
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA 6009, Australia
| | - Agnes Magi
- Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Eve Unt
- Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 51014 Tartu, Estonia
| | - David J Wood
- School of Surgery, The University of Western Australia, Crawley, WA 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Perth, WA 6150, Australia
| |
Collapse
|
4
|
Kadhi A, Hamie L, Tamer C, Nemer G, Kurban M. A Novel Pathogenic CDH3 Variant underlying Heredity Hypotrichosis Simplex detected by Whole-Exome Sequencing (WES)-A Case Report. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006225. [PMID: 35962736 PMCID: PMC9528967 DOI: 10.1101/mcs.a006225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Heredity Hypotrichosis Simplex (HHS) is a rare non-syndromic disease form of Hypotrichosis Simplex (HS) characterized by progressive hair follicle (HF) miniaturization. It is usually inherited in an autosomal dominant manner. The differential diagnosis of HHS and the treatments remain challenging despite recent advancement. In this report, we describe a 19-year old female affected with HHS alongside most of her family members. METHODS Whole Exome Sequencing (WES) was performed for some of the family members to unravel the culprit gene involved in HHS phenotype and ascertain the dermatological examination that was done to classify the phenotypes of the disease. RESULTS A novel pathogenic variant in the CDH3 gene (p.Ser223GlyfsTer4) was identified as a plausible disease-causing variant for HHS. CONCLUSION This is the first report to associate CDH3 variants with a HHS phenotype without macular degeneration using WES. WES is an important tool for genotype-phenotype correlation, precision in diagnosis, and in-depth understanding of the disease mechanisms, leading to possible novel therapeutic targets treatment and better patient's outcomes.
Collapse
|
5
|
Zhou C, Wang P, Yang D, Liao W, Guo Q, Li J, Wen G, Zheng S, Zhang X, Wang R, Zhang J. Autosomal recessive monilethrix: Novel variants of the DSG4 gene in three Chinese families. Mol Genet Genomic Med 2022; 10:e1889. [PMID: 35146972 PMCID: PMC9000931 DOI: 10.1002/mgg3.1889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Monilethrix is a rare hereditary hair loss disorder characterized by hair fragility and beaded hair shaft alterations. Monilethrix is classically inherited in an autosomal dominant (AD) fashion caused by variants in the hair keratin genes KRT81, KRT83, or KRT86. Interestingly, an autosomal recessive (AR) form of monilethrix with variants in DSG4 gene has also been reported in recent years. Objective To identify causative variants in Chinese patients with autosomal recessive (AR) form of monilethrix. Methods Three families with AR form of monilethrix were observed and sequence variant analysis of DSG4 was performed by polymerase chain reaction (PCR), quantitative real‐time PCR, and DNA sequencing. Results All the patients had sparse, fragile hair involving the scalp, eyebrows, and eyelashes with keratotic follicular papules and pruritus since birth. Atypical‐beaded hairs and broken hair shaft fragments were identified in all the patients under dermoscopy. Heterozygous variants c.837del and c. 2389C > T, a homozygous splice site variant c.2355 + 1G > A, and a homozygous 48,644 bp large deletion variant g.31381440_31430084del in the DSG4 gene were identified and verified in the families. Conclusion This report provided further evidence for the phenotypic spectrum and clinical features of, and the expanded variant database of AR form of monilethrix.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Pei Wang
- Department of Dermatology, Guangdong Provincial people's Hospital, Guangzhou, China
| | - Dingquan Yang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Wenjun Liao
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qing Guo
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiacheng Li
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing, China
| | - Guangdong Wen
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Shuying Zheng
- Electron Microscopy Laboratory, Peking University People's hospital, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Independent DSG4 frameshift variants in cats with hair shaft dystrophy. Mol Genet Genomics 2021; 297:147-154. [PMID: 34878611 PMCID: PMC8803678 DOI: 10.1007/s00438-021-01842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 11/05/2022]
Abstract
Investigations of hereditary phenotypes in spontaneous mutants may help to better understand the physiological functions of the altered genes. We investigated two unrelated domestic shorthair cats with bulbous swellings of the hair shafts. The clinical, histopathological, and ultrastructural features were similar to those in mice with lanceolate hair phenotype caused by loss-of-function variants in Dsg4 encoding desmoglein 4. We sequenced the genomes from both affected cats and compared the data of each affected cat to 61 control genomes. A search for private homozygous variants in the DSG4 candidate gene revealed independent frameshift variants in each case, c.76del or p.Ile26fsLeu*4 in case no. 1 and c.1777del or p.His593Thrfs*23 in case no. 2. DSG4 is a transmembrane glycoprotein located primarily in the extracellular part of desmosomes, a complex of adhesion molecules responsible for connecting the keratin intermediate filaments of neighbouring epithelial cells. Desmosomes are essential for normal hair shaft formation. Both identified DSG4 variants in the affected cats lead to premature stop codons and truncate major parts of the open-reading frame. We assume that this leads to a complete loss of DSG4 function, resulting in an incorrect formation of the desmosomes and causing the development of defective hair shafts. Together with the knowledge on the effects of DSG4 variants in other species, our data suggest that the identified DSG4 variants cause the hair shaft dystrophy. To the best of our knowledge, this study represents the first report of pathogenic DSG4 variants in domestic animals.
Collapse
|
7
|
Pili Torti: A Feature of Numerous Congenital and Acquired Conditions. J Clin Med 2021; 10:jcm10173901. [PMID: 34501349 PMCID: PMC8432236 DOI: 10.3390/jcm10173901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pili torti is a rare condition characterized by the presence of the hair shaft, which is flattened at irregular intervals and twisted 180° along its long axis. It is a form of hair shaft disorder with increased fragility. The condition is classified into inherited and acquired. Inherited forms may be either isolated or associated with numerous genetic diseases or syndromes (e.g., Menkes disease, Björnstad syndrome, Netherton syndrome, and Bazex-Dupré-Christol syndrome). Moreover, pili torti may be a feature of various ectodermal dysplasias (such as Rapp-Hodgkin syndrome and Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome). Acquired pili torti was described in numerous forms of alopecia (e.g., lichen planopilaris, discoid lupus erythematosus, dissecting cellulitis, folliculitis decalvans, alopecia areata) as well as neoplastic and systemic diseases (such as cutaneous T-cell lymphoma, scalp metastasis of breast cancer, anorexia nervosa, malnutrition, cataracts, and chronic graft-vs.-host disease). The condition may also be induced by several drugs (epidermal growth factor receptor inhibitors, oral retinoids, sodium valproate, and carbamide perhydrate). The diagnosis of pili torti is based on trichoscopic or microscopic examination. As pili torti is a marker of numerous congenital and acquired disorders, in every case, the search for the signs of underlying conditions is recommended.
Collapse
|
8
|
Moreno-Sosa T, Sánchez MB, Pietrobon EO, Fernandez-Muñoz JM, Zoppino FCM, Neira FJ, Germanó MJ, Cargnelutti DE, Innocenti AC, Jahn GA, Valdez SR, Mackern-Oberti JP. Desmoglein-4 Deficiency Exacerbates Psoriasiform Dermatitis in Rats While Psoriasis Patients Displayed a Decreased Gene Expression of DSG4. Front Immunol 2021; 12:625617. [PMID: 33995349 PMCID: PMC8116535 DOI: 10.3389/fimmu.2021.625617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/23/2021] [Indexed: 02/04/2023] Open
Abstract
Desmogleins are involved in cell adhesion conferring structural skin integrity. However, their role in inflammation has been barely studied, and whether desmoglein-4 modulates psoriasis lesions is completely unknown. In this study, we assessed the impact of desmoglein-4 deficiency on the severity of imiquimod (IMQ)-induced skin inflammation and psoriasiform lesions. To this end, desmoglein-4-/- Oncins France Colony A (OFA) with Sprague-Dawley (SD) genetic background were used. Additionally, human RNA-Seq datasets from psoriasis (PSO), atopic dermatitis (AD), and a healthy cohort were analyzed to obtain a desmosome gene expression overview. OFA rats displayed an intense skin inflammation while SD showed only mild inflammatory changes after IMQ treatment. We found that IMQ treatment increased CD3+ T cells in skin from both OFA and SD, being higher in desmoglein-4-deficient rats. In-depth transcriptomic analysis determined that PSO displayed twofold less DSG4 expression than healthy samples while both, PSO and AD showed more than three-fold change expression of DSG3 and DSC2 genes. Although underlying mechanisms are still unknown, these results suggest that the lack of desmoglein-4 may contribute to immune-mediated skin disease progression, promoting leukocyte recruitment to skin. Although further research is needed, targeting desmoglein-4 could have a potential impact on designing new biomarkers for skin diseases.
Collapse
Affiliation(s)
- Tamara Moreno-Sosa
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Belén Sánchez
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Elisa Olivia Pietrobon
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Manuel Fernandez-Muñoz
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Flavia Judith Neira
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María José Germanó
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Graciela Alma Jahn
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Susana Ruth Valdez
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
9
|
Nanomechanical properties of Monilethrix affected hair are independent of phenotype. J Struct Biol 2020; 213:107679. [PMID: 33309724 DOI: 10.1016/j.jsb.2020.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022]
Abstract
Utilising the AFM nanoindentation technique for the study of hair cross- and longitudinal sections, the mechanical anisotropy of human hair fibres affected by a rare congenital condition, Monilethrix, has been investigated for the first time. Supported by X-ray microdiffraction data, and applying a model based on an ideal composite material consisting of rods (KIFs) and matrix (KAPs) to Monilethrix affected fibres, it has been shown that the results could be grouped into clearly different classes, namely: almost isotropic behaviour for Monilethrix affected hairs and anisotropic behaviour for Control hair. Moreover, AFM nanoindentation of hair cross sections has demonstrated, also for the first time that hairs affected by Monilethrix have a continuous, and not periodic, weakness within the cortex. This has been attributed to disruptions in the KIF-KIF, KIF-intermacrofibrillar matrix or KIF-desmosome complexes within the hair shaft, as suggested by X-ray microdiffraction examination. Hairs from a patient exhibiting no obvious phenotype exhibited similar mechanical weakness despite the otherwise normal visual appearance of the fibre. This further supports a hypothesis that the beaded appearance of Monilethrix hair is a secondary factor, unrelated to the inherent structural weakness.
Collapse
|
10
|
Lee JYW, McGrath JA. Mutations in genes encoding desmosomal proteins: spectrum of cutaneous and extracutaneous abnormalities. Br J Dermatol 2020; 184:596-605. [PMID: 32593191 DOI: 10.1111/bjd.19342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2020] [Indexed: 12/27/2022]
Abstract
The desmosome is a type of intercellular junction found in epithelial cells, cardiomyocytes and other specialized cell types. Composed of a network of transmembranous cadherins and intracellular armadillo, plakin and other proteins, desmosomes contribute to cell-cell adhesion, signalling, development and differentiation. Mutations in genes encoding desmosomal proteins result in a spectrum of erosive skin and mucosal phenotypes that also may affect hair or heart. This review summarizes the molecular pathology and phenotypes associated with desmosomal dysfunction with a focus on inherited disorders that involve the skin/hair, as well as associated extracutaneous pathologies. We reviewed the relevant literature to collate studies of pathogenic human mutations in desmosomes that have been reported over the last 25 years. Mutations in 12 different desmosome genes have been documented, with mutations in nine genes affecting the skin/mucous membranes (DSG1, DSG3, DSC2, DSC3, JUP, PKP1, DSP, CDSN, PERP) and eight resulting in hair abnormalities (DSG4, DSC2, DSC3, JUP, PKP1, DSP, CDSN, PERP). Mutations in three genes can result in cardiocutaneous syndromes (DSC2, JUP, DSP), although mutations have been described in five genes in inherited heart disorders that may lack any dermatological manifestations (DSG2, DSC2, JUP, PKP2, DSP). Understanding the diverse nature of these clinical phenotypes, as well as the desmosome gene mutation(s), has clinical value in managing and counselling patients, as well as demonstrating the biological role and activity of specific components of desmosomes in skin and other tissues.
Collapse
Affiliation(s)
- J Y W Lee
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
11
|
The Significance of Scalp Involvement in Pemphigus: A Literature Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6154397. [PMID: 29770335 PMCID: PMC5889856 DOI: 10.1155/2018/6154397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/18/2018] [Indexed: 12/11/2022]
Abstract
Scalp is a unique location for pemphigus because of the abundance of desmogleins localized in hair follicles. Scalp involvement is observed in up to 60% of patients in the course of pemphigus. The lesions may occasionally lead to alopecia. Unforced removal of anagen hairs in a pull test is a sign of high disease activity. Direct immunofluorescence of plucked hair bulbs is considered a reliable diagnostic method in patients with pemphigus. Follicular acantholysis is a characteristic histopathological feature of pemphigus lesions localized on the scalp. Trichoscopy may serve as a supplementary method in the diagnosis of pemphigus. This review summarizes the most recent data concerning scalp involvement in pemphigus vulgaris and pemphigus foliaceus. A systematic literature search was conducted in three medical databases: PubMed, Embase, and Web of Science. The analysis included literature data about desmoglein distribution in hair follicles, as well as information about clinical manifestations, histopathology, immunopathology, and trichoscopy of scalp lesions in pemphigus and their response to treatment.
Collapse
|
12
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
13
|
Journey toward unraveling the molecular basis of hereditary hair disorders. J Dermatol Sci 2016; 84:232-238. [DOI: 10.1016/j.jdermsci.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022]
|
14
|
Celentano A, Mignogna MD, McCullough M, Cirillo N. Pathophysiology of the Desmo-Adhesome. J Cell Physiol 2016; 232:496-505. [PMID: 27505028 DOI: 10.1002/jcp.25515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Advances in our understanding of desmosomal diseases have provided a clear demonstration of the key role played by desmosomes in tissue and organ physiology, highlighting the importance of their dynamic and finely regulated structure. In this context, non-desmosomal regulatory molecules have acquired increasing relevance in the study of this organelle resulting in extending the desmosomal interactome, named the "desmo-adhesome." Spatiotemporal changes in the expression and regulation of the desmo-adhesome underlie a number of genetic, infectious, autoimmune, and malignant conditions. The aim of the present article was to examine the structural and functional relationship of the desmosome, by providing a comprehensive, yet focused overview of the constituents targeted in human disease. The inclusion of the novel regulatory network in the desmo-adhesome pathophysiology opens new avenues to a deeper understanding of desmosomal diseases, potentially unveiling pathogenic mechanisms waiting to be explored. J. Cell. Physiol. 232: 496-505, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Celentano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy.,Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Michael McCullough
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia.,Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, Carlton, Victoria, Australia.,Oral Health Cooperative Research Centre (CRC), University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
15
|
Intragenic deletion mutation in the gene desmoglein 4 underlies autosomal recessive hypotrichosis in six consanguineous families. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2015.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Polivka L, Bodemer C, Hadj-Rabia S. Combination of palmoplantar keratoderma and hair shaft anomalies, the warning signal of severe arrhythmogenic cardiomyopathy: a systematic review on genetic desmosomal diseases. J Med Genet 2015; 53:289-95. [DOI: 10.1136/jmedgenet-2015-103403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/21/2015] [Indexed: 12/14/2022]
|
17
|
Wang JM, Xiao YJ, Liang YH. Novel D323G mutation ofDSG4gene in a girl with localized autosomal recessive hypotrichosis clinically overlapped with monilethrix. Int J Dermatol 2015; 54:1163-8. [PMID: 26173648 DOI: 10.1111/ijd.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Man Wang
- Department of Dermatology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - Yu-Juan Xiao
- Department of Dermatology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| | - Yan-Hua Liang
- Department of Dermatology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong China
| |
Collapse
|
18
|
Kato M, Shimizu A, Yokoyama Y, Kaira K, Shimomura Y, Ishida-Yamamoto A, Kamei K, Tokunaga F, Ishikawa O. An Autosomal Recessive Mutation of DSG4 Causes Monilethrix through the ER Stress Response. J Invest Dermatol 2015; 135:1253-1260. [DOI: 10.1038/jid.2015.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 02/03/2023]
|
19
|
Redler S, Pasternack SM, Wolf S, Stienen D, Wenzel J, Nöthen MM, Betz RC. A novel KRT86 mutation in a Turkish family with monilethrix, and identification of maternal mosaicism. Clin Exp Dermatol 2015; 40:781-5. [PMID: 25809918 DOI: 10.1111/ced.12631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Monilethrix is a rare monogenic dystrophic hair loss disorder with high levels of intrafamilial and interfamilial variability. It is characterized by diffuse occipital or temporal alopecia, hair fragility and follicular hyperkeratosis of the occipital region. Mutations in the keratin genes KRT81, KRT83 and KRT86 lead to autosomal dominant monilethrix, whereas mutations in the desmoglein 4 gene (DSG4) cause an autosomal recessive form. AIM To identify the mutation in a consanguineous Turkish family with three affected children and apparently unaffected parents. METHODS Sequencing analysis of the genes DSG4 and KRT86 was performed. SNaPshot analysis was conducted to quantify the proportion of cells carrying the KRT86 mutation and to confirm maternal mosaicism of KRT86. RESULTS No pathogenic mutation was found by sequencing analysis of DSG4; however, analysis of KRT86 revealed a novel mutation, c.1231G>T;p.Glu411*, in exon 7 in the three affected children and their mother. The mutation signal was weaker in the mother than in the three siblings, and SNaPshot analysis revealed substantial mutation-level variation between the children and their mother. CONCLUSIONS Our results extend the spectrum of KRT86 mutations and indicate KRT86 mosaicism in the family examined. This study is the first, to our knowledge, to describe mosaicism for a monogenic hair loss disorder, and suggests that mosaicism leads to a mild manifestation of monilethrix.
Collapse
Affiliation(s)
- S Redler
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - S M Pasternack
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - S Wolf
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - D Stienen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - J Wenzel
- Department of Dermatology, University of Bonn, Bonn, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - R C Betz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Abstract
Desmosomes serve as intercellular junctions in various tissues including the skin and the heart where they play a crucial role in cell-cell adhesion, signalling and differentiation. The desmosomes connect the cell surface to the keratin cytoskeleton and are composed of a transmembranal part consisting mainly of desmosomal cadherins, armadillo proteins and desmoplakin, which form the intracytoplasmic desmosomal plaque. Desmosomal genodermatoses are caused by mutations in genes encoding the various desmosomal components. They are characterized by skin, hair and cardiac manifestations occurring in diverse combinations. Their classification into a separate and distinct clinical group not only recognizes their common pathogenesis and facilitates their diagnosis but might also in the future form the basis for the design of novel and targeted therapies for these occasionally life-threatening diseases.
Collapse
|
21
|
Basit S, Khan S, Ahmad W. Genetics of human isolated hereditary hair loss disorders. Clin Genet 2014; 88:203-12. [DOI: 10.1111/cge.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022]
Affiliation(s)
- S. Basit
- Center for Genetics and Inherited Diseases; Taibah University; Almadinah Almunawwarah Saudi Arabia
| | - S. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - W. Ahmad
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
22
|
Ullah A, Raza SI, Ali RH, Naveed AK, Jan A, Rizvi SDA, Satti R, Ahmad W. A novel deletion mutation in theDSG4gene underlies autosomal recessive hypotrichosis with variable phenotype in two unrelated consanguineous families. Clin Exp Dermatol 2014; 40:78-84. [DOI: 10.1111/ced.12457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. Ullah
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - S. I. Raza
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
- Army Medical College; National University of Science and Technology (NUST); Islamabad Pakistan
| | - R. H. Ali
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - A. K. Naveed
- Army Medical College; National University of Science and Technology (NUST); Islamabad Pakistan
| | - A. Jan
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - S. D. A. Rizvi
- Army Medical College; National University of Science and Technology (NUST); Islamabad Pakistan
| | - R. Satti
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - W. Ahmad
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
23
|
Barber AG, Castillo-Martin M, Bonal DM, Rybicki BA, Christiano AM, Cordon-Cardo C. Characterization of desmoglein expression in the normal prostatic gland. Desmoglein 2 is an independent prognostic factor for aggressive prostate cancer. PLoS One 2014; 9:e98786. [PMID: 24896103 PMCID: PMC4045811 DOI: 10.1371/journal.pone.0098786] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The expression of desmogleins (DSGs), which are known to be crucial for establishing and maintaining the cell-cell adhesion required for tissue integrity, has been well characterized in the epidermis and hair follicle; however, their expression in other epithelial tissues such as prostate is poorly understood. Although downregulation of classical cadherins, such as E-cadherin, has been described in prostate cancer tissue samples, the expression of desmogleins has only been previously reported in prostate cancer cell lines. In this study we characterized desmoglein expression in normal prostate tissues, and further investigated whether Desmoglein 2 (DSG2) expression specifically can serve as a potential clinical prognostic factor for patients diagnosed with primary prostate cancer. EXPERIMENTAL DESIGN We utilized immunofluorescence to examine DSG2 expression in normal prostate (n = 50) and in a clinically well-characterized cohort of prostate cancer patients (n = 414). Correlation of DSG2 expression with clinico-pathological characteristics and biochemical recurrence was analyzed to assess its clinical significance. RESULTS These studies revealed that DSG2 and DSG4 were specifically expressed in prostatic luminal cells, whereas basal cells lack their expression. In contrast, DSG1 and DSG3 were not expressed in normal prostate epithelium. Further analyses of DSG2 expression in prostate cancer revealed that reduced levels of this biomarker were a significant independent marker of poor clinical outcome. CONCLUSION Here we report for the first time that a low DSG2 expression phenotype is a useful prognostic biomarker of tumor aggressiveness and may serve as an aid in identifying patients with clinically significant prostate cancer.
Collapse
Affiliation(s)
- Alison G. Barber
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (MCM); (CCC)
| | - Dennis M. Bonal
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Benjamin A. Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Angela M. Christiano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Carlos Cordon-Cardo
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Department of Urology, Columbia University, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (MCM); (CCC)
| |
Collapse
|
24
|
Nitoiu D, Etheridge SL, Kelsell DP. Insights into Desmosome Biology from Inherited Human Skin Disease and Cardiocutaneous Syndromes. ACTA ACUST UNITED AC 2014; 21:129-40. [DOI: 10.3109/15419061.2014.908854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Abstract
The study of rare genetic disorders of the hair follicle has resulted in the identification of many causative genes, leading to the potential for the development of novel therapeutic approaches for both inherited and acquired hair disorders. In this issue, Fujimoto et al. identify a missense mutation within the keratin 71 (KRT71) gene as the cause for autosomal dominant woolly hair/hypotrichosis in a Japanese family. This represents the first human mutation in KRT71 to be linked to a hair disorder, establishing this gene as an important determinant of mammalian hair texture. Moreover, this finding provides new insight into the relationship between similar phenotypes resulting from mutations in distinct regulatory pathways and underscores the role of the inner root sheath in human hair growth.
Collapse
|
26
|
|
27
|
De Cruz R, Horev L, Green J, Babay S, Sladden M, Zlotogorski A, Sinclair R. A novel monilethrix mutation in coil 2A of KRT86 causing autosomal dominant monilethrix with incomplete penetrance. Br J Dermatol 2012; 166 Suppl 2:20-6. [DOI: 10.1111/j.1365-2133.2012.10861.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Abstract
Desmosomes are intercellular junctions that contribute to cell-cell adhesion, signalling, development and differentiation in various tissues, including the skin. Composed of a network of transmembranous and intracellular plaque proteins, pathogenic autosomal dominant or recessive mutations have been reported in 10 different desmosomal genes, resulting in a spectrum of phenotypes variably affecting skin, hair and heart. This review summarizes the molecular pathology and phenotypes that predominantly affect the skin/hair. Recent desmosomal genodermatoses described include lethal congenital epidermolysis bullosa (plakoglobin), cardiomyopathy with alopecia and palmoplantar keratoderma (plakoglobin), hypotrichosis with scalp vesicles (desmocollin 3), and generalized peeling skin disease (corneodesmosin). Understanding the range of clinical phenotypes in combination with knowledge of the inherent desmosome gene mutation(s) is helpful in managing and counselling patients, as well as providing insight into the biological function of specific components of desmosomes in skin and other tissues.
Collapse
Affiliation(s)
- G Petrof
- St John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | | | | |
Collapse
|
29
|
|
30
|
Farooq M, Ito M, Naito M, Shimomura Y. A case of monilethrix caused by novel compound heterozygous mutations in the desmoglein 4 (DSG4) gene. Br J Dermatol 2011; 165:425-31. [DOI: 10.1111/j.1365-2133.2011.10373.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
|
32
|
Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 2010; 508:123-37. [PMID: 21176769 DOI: 10.1016/j.abb.2010.12.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.
Collapse
|
33
|
Abstract
The 6-billion human population provides a vast reservoir of mutations, which, in addition to the opportunity of detecting very subtle defects, including specific cognitive dysfunctions as well as late appearing disorders, offers a unique background in which to investigate the roles of cell-cell adhesion proteins. Here we focus on inherited human disorders involving members of the cadherin superfamily. Most of the advances concern monogenic disorders. Yet, with the development of single nucleotide polymorphism (SNP) association studies, cadherin genes are emerging as susceptibility genes in multifactorial disorders. Various skin and heart disorders revealed the critical role played by desmosomal cadherins in epidermis, hairs, and myocardium, which experience high mechanical stress. Of particular interest in that respect is the study of Usher syndrome type 1 (USH1), a hereditary syndromic form of deafness. Studies of USH1 brought to light the crucial role of transient fibrous links formed by cadherin 23 and protocadherin 15 in the cohesion of the developing hair bundle, the mechanoreceptive structure of the auditory sensory cells, as well as the involvement of these cadherins in the formation of the tip-link, a key component of the mechano-electrical transduction machinery. Finally, in line with the well-established role of cadherins in synaptic formation, maintenance, strength, and plasticity, a growing number of cadherin family members, especially protocadherins, have been found to be involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aziz El-Amraoui
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, 25 Rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
34
|
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Angela M. Christiano
- Department of Dermatology, Columbia University, New York, NY 10032
- Department of Genetics and Development, Columbia University, New York, NY 10032;
| |
Collapse
|
35
|
Abstract
Desmosomes are intercellular junctions whose primary function is strong intercellular adhesion, known as hyperadhesion. In the present review, we discuss how their structure appears to support this function as well as how they are assembled and down-regulated. Desmosomal components also have signalling functions that are important in tissue development and remodelling. Their adhesive and signalling functions are both compromised in genetic and autoimmune diseases that affect the heart, skin and mucous membranes. We conclude that much work is required on structure–function relationships within desmosomes in vivo and on how they participate in signalling processes to enhance our knowledge of tissue homoeostasis and human disease.
Collapse
|
36
|
Bazzi H, Demehri S, Potter CS, Barber AG, Awgulewitsch A, Kopan R, Christiano AM. Desmoglein 4 is regulated by transcription factors implicated in hair shaft differentiation. Differentiation 2009; 78:292-300. [PMID: 19683850 DOI: 10.1016/j.diff.2009.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/24/2022]
Abstract
The hair fiber is made of specialized keratinocytes, known as trichocytes, that primarily express hair keratins, which are cemented by a multitude of keratin-associated proteins (KAPs). The hair keratins form the intermediate filament cytoskeleton of the trichocytes, which are linked to abundant cell-cell adhesion junctions, called desmosomes. Desmoglein 4 (DSG4) is the major desmosomal cadherin expressed in the hair shaft cortex where the hair keratins are highly expressed. In humans, mutations affecting either the hair keratins or DSG4 lead to beaded hair phenotypes with features of monilethrix. In this work, we postulated that the regulatory pathways governing the expression of hair shaft components, such as hair keratins and DSG4, are shared. Therefore, we studied the transcriptional regulation of DSG4 by transcription factors/pathways that are known regulators of hair keratin or KAP expression. We show that HOXC13, LEF1 and FOXN1 repress DSG4 transcription and provide in vitro and in vivo evidence correlating the Notch pathway with the activation and/or maintenance of DSG4 expression in the hair follicle.
Collapse
Affiliation(s)
- Hisham Bazzi
- Departments of Genetics & Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Petukhova L, Shimomura Y, Wajid M, Gorroochurn P, Hodge SE, Christiano AM. The effect of inbreeding on the distribution of compound heterozygotes: a lesson from Lipase H mutations in autosomal recessive woolly hair/hypotrichosis. Hum Hered 2009; 68:117-30. [PMID: 19365138 DOI: 10.1159/000212504] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/15/2008] [Indexed: 01/03/2023] Open
Abstract
Autozygosity mapping in consanguineous families has proven to be a powerful method for identifying recessive disease genes. Using this technique with whole genome SNP data generated from low density mapping arrays, we previously identified two genes that underlie autosomal recessive woolly hair (ARWH/hypotrichosis; OMIM278150), specifically P2RY5 and Lipase H (LIPH). In the current study, we sought to identify a novel disease locus for ARWH/hypotrichosis by analyzing two large consanguineous families from Pakistan who had initially been excluded for mutations at either of these disease loci by haplotype analysis with microsatellite markers. A genome-wide analysis of 10 members from each of the two families failed to identify significant regions of autozygosity or linkage. Upon genotyping an additional 10 family members in one of the families, parametric linkage analysis identified a region on chromosome 3q27 with evidence for linkage (Z = 2.5). Surprisingly, this region contains the LIPH gene. Microsatellite markers located within the LIPH gene were used for haplotype analysis and demonstrated that not one, but two haplotypes were segregating with the phenotype in each of these families. DNA sequencing identified two distinct LIPH mutations (280_369dup90 and 659_660delTA). Each affected individual (n = 38) was either homozygous for one mutation (n = 7 and 16 respectively), or compound heterozygous (n = 15). A review of the literature identified several reports of compound heterozygotes in consanguineous families. Prompted by this finding, we derived the probability that a patient affected with a recessive disease is carrying two mutations at the disease locus. We suggest that the validity of the IBD assumption may be challenged in large consanguineous families.
Collapse
Affiliation(s)
- Lynn Petukhova
- Department of Dermatology, School of Public Health, Columbia University, New York, N.Y. 10032, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tariq M, Ayub M, Jelani M, Basit S, Naz G, Wasif N, Raza SI, Naveed AK, ullah Khan S, Azeem Z, Yasinzai M, Wali A, Ali G, Chishti MS, Ahmad W. Mutations in the P2RY5 gene underlie autosomal recessive hypotrichosis in 13 Pakistani families. Br J Dermatol 2009; 160:1006-10. [PMID: 19292720 DOI: 10.1111/j.1365-2133.2009.09046.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Autosomal recessive hypotrichosis is a rare genetic irreversible hair loss characterized by sparse scalp hair, sparse to absent eyebrows and eyelashes, and sparse axillary and body hair. Affected male individuals have normal beard hair. OBJECTIVES To search for pathogenic mutations in the human P2RY5 gene in Pakistani families with autosomal recessive hereditary hypotrichosis. METHODS In the present report, 16 unrelated consanguineous Pakistani families having multiple affected individuals with autosomal recessive hypotrichosis were investigated. Linkage in these families was searched by genotyping microsatellite markers linked to autosomal recessive hypotrichosis loci LAH1, LAH2 and LAH3. Thirteen of the families showed linkage to the LAH3 locus on chromosome 13q14.11-q21.32. These families were then subjected to direct sequencing of the P2RY5 gene, which encodes a G protein-coupled receptor. RESULTS Sequence analysis of the P2RY5 gene revealed two novel missense mutations (c.742A>T; p.N248Y and c.830C>T; p.L277P) in three families. Five previously described mutations including three missense (c.188A>T; p.D63V, c.436G>A; p.G146R, c.562A>T; p.I188F), one insertion (c.69insCATG; p.24insHfsX52) and one complex deletion (c.172-175delAACT; 177delG; p.N58-L59delinsCfsX88) were detected in the other 10 families. CONCLUSIONS Mutations revealed in the present study extend the body of evidence implicating the P2RY5 gene in the pathogenesis of human hereditary hair loss.
Collapse
Affiliation(s)
- M Tariq
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The molecular basis of human keratin disorders. Hum Genet 2009; 125:355-73. [DOI: 10.1007/s00439-009-0646-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
|
40
|
Abstract
The desmosomes form the basis of intercellular support structure within the epidermis. However, various junctions, including gap junctions, adherens junctions, and tight junctions play an important part in the intercellular bridges that are vital for cell—cell interactions and structural stability. Numerous mutations can affect the genetic structure that make up these junctions and in turn cause disease. Most of these conditions have hair abnormalities and this article will briefly elucidate the various manifestations in the hair. As these junctional elements are found in other organs like the heart, liver, and eye, there could be serious systemic associations along with the hair changes.
Collapse
|
41
|
Shimomura Y, Wajid M, Petukhova L, Shapiro L, Christiano AM. Mutations in the lipase H gene underlie autosomal recessive woolly hair/hypotrichosis. J Invest Dermatol 2008; 129:622-8. [PMID: 18830268 DOI: 10.1038/jid.2008.290] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Woolly hair (WH) is characterized by the presence of fine and tightly curled hair. WH can appear as a symptom of some systemic diseases, or without associated findings (nonsyndromic WH). Nonsyndromic WH is known to be inherited as either an autosomal-dominant (OMIM 194300) or recessive (ARWH; OMIM 278150) trait. In this study, we identified 11 consanguineous families of Pakistani origin with ARWH, as well as associated features including sparse and hypopigmented hair shafts. We first checked for mutations in the P2RY5 gene, which encodes an orphan G-protein-coupled receptor that we recently identified as a cause of ARWH. However, none of the 11 families had mutations in the P2RY5 gene. To identify the disease locus, we performed linkage studies in one of these families using the Affymetrix 10K array, and identified a region of suggestive linkage on chromosome 3q27. This region contains the lipase H (LIPH) gene which has been recently shown to underlie an autosomal-recessive form of hypotrichosis. Mutation analysis resulted in the identification of a total of 5 pathogenic mutations in the LIPH of all 11 families analyzed. These results show that LIPH is a second causative gene for ARWH/hypotrichosis, giving rise to a phenotype clinically indistinguishable from P2RY5 mutations.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
42
|
Shimomura Y, Garzon MC, Kristal L, Shapiro L, Christiano AM. Autosomal recessive woolly hair with hypotrichosis caused by a novel homozygous mutation in the P2RY5 gene. Exp Dermatol 2008; 18:218-21. [PMID: 18803659 DOI: 10.1111/j.1600-0625.2008.00788.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last decade, several causative genes for hereditary hair diseases have been identified, which have disclosed the molecular mechanisms involved in hair follicle morphogenesis and cycling. We and others recently reported that mutations in the P2RY5 gene, encoding an orphan G protein-coupled receptor, underlie autosomal recessive woolly hair (WH)/hypotrichosis. Although these findings clearly reveal the involvement of P2RY5 mutations in hereditary hair diseases, the clinical manifestations of P2RY5 mutations have not completely been elucidated because of limited information to date. In this study, we ascertained a consanguineous family of Iranian origin with an affected girl showing sparse and hypopigmented scalp hair. She exhibited the WH phenotype with normal hair density at birth, but progressed with age to develop hypotrichosis. Direct sequencing analysis resulted in the identification of a novel homozygous mutation in the P2RY5 gene of the patient, which results in a non-conservative amino acid change, G146R, at the protein level. Our findings extend the mutation spectrum of P2RY5 mutations, and further support a crucial role of P2Y5 in hair growth in humans.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
43
|
Petukhova L, Sousa EC, Martinez-Mir A, Vitebsky A, Dos Santos LG, Shapiro L, Haynes C, Gordon D, Shimomura Y, Christiano AM. Genome-wide linkage analysis of an autosomal recessive hypotrichosis identifies a novel P2RY5 mutation. Genomics 2008; 92:273-8. [PMID: 18692127 DOI: 10.1016/j.ygeno.2008.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
While there have been significant advances in understanding the genetic etiology of human hair loss over the previous decade, there remain a number of hereditary disorders for which a causative gene has yet to be identified. We studied a large, consanguineous Brazilian family that presented with woolly hair at birth that progressed to severe hypotrichosis by the age of 5, in which 6 of the 14 offspring were affected. After exclusion of known candidate genes, a genome-wide scan was performed to identify the disease locus. Autozygosity mapping revealed a highly significant region of extended homozygosity (lod score of 10.41) that contained a haplotype with a linkage lod score of 3.28. Results of these two methods defined a 9-Mb region on chromosome 13q14.11-q14.2. The interval contains the P2RY5 gene, in which we recently identified pathogenic mutations in several families of Pakistani origin affected with autosomal recessive woolly and sparse hair. After the exclusion of several other candidate genes, we sequenced the P2RY5 gene and identified a homozygous mutation (C278Y) in all affected individuals in this family. Our findings show that mutations in P2RY5 display variable expressivity, underlying both hypotrichosis and woolly hair, and underscore the essential role of P2RY5 in the tissue integrity and maintenance of the hair follicle.
Collapse
Affiliation(s)
- Lynn Petukhova
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jelani M, Wasif N, Ali G, Chishti M, Ahmad W. A novel deletion mutation in LIPH gene causes autosomal recessive hypotrichosis (LAH2). Clin Genet 2008; 74:184-8. [PMID: 18445047 DOI: 10.1111/j.1399-0004.2008.01011.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Autosomal recessive hypotrichosis is a rare hereditary disorder characterized by sparse hair on scalp and rest of the body of affected subjects. Recently, three clinically similar autosomal recessive forms of hypotrichosis [localized autosomal recessive hypotrichosis (LAH)1], LAH2 and LAH3 have been mapped on chromosomes 18q12.1, 3q27.3, and 13q14.11-q21.32, respectively. For these three loci, two genes DSG4 for LAH1 and LIPH for LAH2 have been identified. To date, only five mutations in DSG4 and two in LIPH genes have been reported. In this study, we have ascertained two large unrelated consanguineous Pakistani families with autosomal recessive form of hypotrichosis. Affected individuals showed homozygosity to the microsatellite markers tightly linked to LIPH gene on chromosome 3q27. Sequence analysis of the gene in the affected subjects from both the families revealed a novel deletion mutation in exon 5 (c.659-660delTA) causing frameshift and downstream premature termination codon. All the three mutations identified in the LIPH gene, including the one in this study, are deletion mutations.
Collapse
Affiliation(s)
- M Jelani
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | |
Collapse
|
45
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
Tight junctions, gap junctions, adherens junctions, and desmosomes represent intricate structural intercellular channels and bridges that are present in several tissues, including epidermis. Clues to the important function of these units in epithelial cell biology have been gleaned from a variety of studies including naturally occurring and engineered mutations, animal models and other in vitro experiments. In this review, we focus on mutations that have been detected in human diseases. These observations provide intriguing insight into the biological complexities of cell-cell contact and intercellular communication as well as demonstrating the spectrum of inherited human diseases that are associated with mutations in genes encoding the component proteins. Over the last decade or so, human gene mutations have been reported in four tight junction proteins (claudin 1, 14, 16, and zona occludens 2), nine gap junction proteins (connexin 26, 30, 30.3, 31, 32, 40, 43, 46, and 50), one adherens junction protein (P-cadherin) and eight components of desmosomes (plakophilin (PKP) 1 and 2, desmoplakin, plakoglobin--which is also present in adherens junctions, desmoglein (DSG) 1, 2, 4, and corneodesmosin). These discoveries have often highlighted novel or unusual phenotypes, including abnormal skin barrier function, alterations in epidermal differentiation, and developmental anomalies of various ectodermal appendages, especially hair, as well as a range of extracutaneous pathologies. However, this review focuses mainly on inherited disorders of junctions that have an abnormal skin phenotype.
Collapse
Affiliation(s)
- Joey E Lai-Cheong
- King's College London, The Guy's, King's College and St Thomas' School of Medicine, Genetic Skin Disease Group, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK
| | | | | |
Collapse
|
47
|
Broken hearts, woolly hair, and tattered skin: when desmosomal adhesion goes awry. Curr Opin Cell Biol 2007; 19:515-20. [PMID: 17951043 DOI: 10.1016/j.ceb.2007.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/14/2007] [Indexed: 11/23/2022]
Abstract
Desmosomal cadherins constitute the adhesive core of desmosomes. Different desmosomal cadherins are differentially expressed in a tissue-specific as well as differentiation-dependent manner. The skin and the heart are two examples of tissues whose vital functions require the ability to endure mechanical stress, and therefore, rely on the integrity of desmosomal adhesion. When this adhesion is compromised via mutations in genes encoding desmosomal cadherins or associated plaque proteins, both tissues can suffer the consequences. Open questions revolve around whether the resulting phenotypes are solely because of physical disruption of cell adhesion or whether these events are coupled with signaling mechanisms that influence many additional cellular processes. In this review, we focus on new developments in desmosomal adhesion with an emphasis on the skin, hair, and heart.
Collapse
|
48
|
Wajid M, Bazzi H, Rockey J, Lubetkin J, Zlotogorski A, Christiano AM. Localized Autosomal Recessive Hypotrichosis Due to a Frameshift Mutation in the Desmoglein 4 Gene Exhibits Extensive Phenotypic Variability within a Pakistani Family. J Invest Dermatol 2007; 127:1779-82. [PMID: 17392831 DOI: 10.1038/sj.jid.5700791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Uitto J, Richard G, McGrath JA. Diseases of epidermal keratins and their linker proteins. Exp Cell Res 2007; 313:1995-2009. [PMID: 17531221 PMCID: PMC2578874 DOI: 10.1016/j.yexcr.2007.03.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/07/2007] [Accepted: 03/12/2007] [Indexed: 12/01/2022]
Abstract
Epidermal keratins, a diverse group of structural proteins, form intermediate filament networks responsible for the structural integrity of keratinocytes. The networks extend from the nucleus of the epidermal cells to the plasma membrane where the keratins attach to linker proteins which are part of desmosomal and hemidesmosomal attachment complexes. The expression of specific keratin genes is regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Progress in molecular characterization of the epidermal keratins and their linker proteins has formed the basis to identify mutations which are associated with distinct cutaneous manifestations in patients with genodermatoses. The precise phenotype of each disease apparently reflects the spatial level of expression of the mutated genes, as well as the types and positions of the mutations and their consequences at mRNA and protein levels. Identification of specific mutations in keratinization disorders has provided the basis for improved diagnosis and subclassification with prognostic implications and has formed the platform for prenatal testing and preimplantation genetic diagnosis. Finally, precise knowledge of the mutations is a prerequisite for development of gene therapy approaches to counteract, and potentially cure, these often devastating and currently intractable diseases.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
50
|
Schweizer J. More than one gene involved in monilethrix: intracellular but also extracellular players. J Invest Dermatol 2006; 126:1216-9. [PMID: 16702971 DOI: 10.1038/sj.jid.5700266] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monilethrix, an autosomal dominant human hair disorder, is caused by mutations in three type II hair cortex keratins. Rare cases of the disease with non-vertical transmission have now been found to overlap with localized autosomal recessive hypotrichosis. The underlying gene, desmoglein 4 (DSG4), belongs to the desmosomal cadherin superfamily and is also expressed in the cortex of the hair follicle.
Collapse
Affiliation(s)
- Jurgen Schweizer
- Section of Normal and Neoplastic Epidermal Differentiation, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|