1
|
Li J, Zhang G, Sun Z, Jiang M, Jia G, Liu H, Liu N, Shi L, Zhang L, Nie L, Zhang Y, Fu Y. Immunogenic cuproptosis in cancer immunotherapy via an in situ cuproptosis-inducing system. Biomaterials 2025; 319:123201. [PMID: 40020502 DOI: 10.1016/j.biomaterials.2025.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Cell death-based therapies combined with immunotherapy have great potential in cancer therapy. To further explore and apply the combined therapies, the immunogenicity of different cell death modes in colorectal cancer (CRC) was evaluated by a cause-and-effect framework encompassing 12 cell death modes. Results show robust correlations among cuproptosis, immunogenic cell death (ICD) and immunity in CRC, as observed in our in-house and other independent cohorts, which are substantiated by in vitro and in vivo experiments. Subsequent investigations demonstrate that cuproptosis induces endoplasmic reticulum stress, leading to the release of damage-associated molecular patterns from CRC cells and triggering the maturation of antigen-presenting cells. Moreover, for in vivo therapeutic approaches, an in situ cuproptosis-inducing system was devised, which can further strengthen the effects of immune cells. Through the combined analysis including single-cell RNA sequencing, cuproptosis is shown to mobilize cytotoxic T lymphocytes and M1 macrophages within the tumor microenvironment (TME). Additionally, co-treatment with Imiquimod, the TLR7 agonist, augments the anti-tumor immune responses induced by cuproptosis. Overall, we provide compelling evidence that cuproptosis induces ICD thus fostering an inflammatory TME, and the cuproptosis-based delivery system further promotes this inflammatory environment, demonstrating considerable potential for enhancing tumor therapy efficacy.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Ge Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhao Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meimei Jiang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Guiyun Jia
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Hao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Nannan Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, 410082, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yingjie Zhang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Criado-Otero M, Navedo-de las Heras M, Samaniego-González E. Topical and Intralesional Treatments for Skin Metastases and Locoregionally Advanced Melanoma. Cancers (Basel) 2024; 17:67. [PMID: 39796696 PMCID: PMC11718870 DOI: 10.3390/cancers17010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Cutaneous melanoma is a malignant neoplasm with local and distant metastatic potential. When feasible, surgery is the first line of treatment in locoregionally advanced disease. Topical and intralesional treatments can be an alternative second-line treatment. The aim of this article was to perform a narrative review of the most widely used topical and intralesional treatments for locoregionally advanced melanoma. Diphenciprone, imiquimod and 5-florouracil were included as topical treatments and bacillus Calmette-Guerin, interleukin 2, rose bengal, talimogene laherparepvec and electrochemotherapy were included as intralesional treatments. Brief comments on other alternatives in development such as interferon-alpha, interleukin-12, ipilimumab and intralesional daromun are presented. Topical treatments generally have higher response rates in epidermal metastases than in deeper metastases. In addition, the larger the lesions, the worse they tend to respond to local treatments. Some reports show that combining certain systemic treatments and topical or intralesional therapies can improve response rates. It has also been described in a few papers that non-injected lesions may respond after the application of a local therapy in distant skin-metastases. Many of these intralesional treatments are being combined in different investigations with systemic immunotherapies, with the aim of obtaining synergic responses in those patients with refractory disease.
Collapse
Affiliation(s)
- María Criado-Otero
- Dermatology Department, Complejo Asistencial Universitario de León, 24008 León, Spain; (M.N.-d.l.H.); (E.S.-G.)
| | | | | |
Collapse
|
3
|
Yakkala C, Corria-Osorio J, Kandalaft L, Denys A, Koppolu B, Duran R. Cryoablation Does Not Significantly Contribute to Systemic Effector Immune Responses in a Poorly Immunogenic B16F10 Melanoma Model. Clin Cancer Res 2024; 30:4190-4200. [PMID: 39024020 DOI: 10.1158/1078-0432.ccr-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Cryoablation is a minimally invasive procedure implemented to destroy solid tumors. It also results in the release of tumor antigens into the systemic circulation. Preclinical studies using immunogenic tumor models have shown that cryoablation evokes antitumor immune responses. The mechanisms by which cryoablation impacts immune responses in poorly immunogenic tumors have not been sufficiently explored. EXPERIMENTAL DESIGN We used a bilateral B16F10 melanoma model devoid of strong immunogenic antigens. Cryoablation-induced effector immune responses were investigated, also in combination with a peritumoral STING agonist and systemic anti-PD-1. Selective immune cell depletion, T-cell migration arrest, in vivo T-cell transplantation, and cryoablation versus surgical removal techniques were used to determine the contribution of cryoablation and immunotherapies to systemic antitumor effector immune responses. RESULTS Treatment of a tumor with cryoablation + STING agonist + anti-PD-1 resulted in the rejection of unablated, contralateral tumors. Depletion studies demonstrated that tumor rejection is essentially dependent on CD8+ T cells. T-cell arrest in the lymph nodes had no effect on the rejection process. Splenic CD8+ T cells isolated from cryoablation-treated mice with B16F10 melanoma, upon transplantation into melanoma-bearing recipients, did not impact the recipient's tumor growth. Finally, comparison of cryoablation + STING agonist + anti-PD-1 versus surgery + STING agonist + anti-PD-1 in the bilateral tumor model showed no difference in the rejection of contralateral tumors. CONCLUSIONS Cryoablation does not significantly contribute to systemic antitumor effector immune responses in a B16F10 melanoma model. Cryoablation primarily performs tumor debulking, and immunotherapy functions independently of cryoablation in eliciting antitumor effector immune responses.
Collapse
Affiliation(s)
- Chakradhar Yakkala
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana Kandalaft
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bhanu Koppolu
- Immuno Oncology, Boston Scientific, Conshohocken, Pennsylvania, USA
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Séguier D, Adams ES, Kotamarti S, D'Anniballe V, Michael ZD, Deivasigamani S, Olivier J, Villers A, Hoimes C, Polascik TJ. Intratumoural immunotherapy plus focal thermal ablation for localized prostate cancer. Nat Rev Urol 2024; 21:290-302. [PMID: 38114768 DOI: 10.1038/s41585-023-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
Major advances have been made in the use of immunotherapy for the treatment of solid tumours, including the use of intratumourally injected immunotherapy instead of systemically delivered immunotherapy. The success of immunotherapy in prostate cancer treatment has been limited to specific populations with advanced disease, which is thought to be a result of prostate cancer being an immunologically 'cold' cancer. Accordingly, combining intratumoural immunotherapy with other treatments that would increase the immunological heat of prostate cancer is of interest. Thermal ablation therapy is currently one of the main strategies used for the treatment of localized prostate cancer and it causes immunological activation against prostate tissue. The use of intratumoural immunotherapy as an adjunct to thermal ablation offers the potential to elicit a systemic and lasting adaptive immune response to cancer-specific antigens, leading to a synergistic effect of combination therapy. The combination of thermal ablation and immunotherapy is currently in the early stages of investigation for the treatment of multiple solid tumour types, and the potential for this combination therapy to also offer benefit to prostate cancer patients is exciting.
Collapse
Affiliation(s)
- Denis Séguier
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
- Department of Urology, Lille University, Lille, France.
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER; UMR9020-U1277), Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Eric S Adams
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Srinath Kotamarti
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Vincent D'Anniballe
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Zoe D Michael
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Sriram Deivasigamani
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Jonathan Olivier
- Department of Urology, Lille University, Lille, France
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER; UMR9020-U1277), Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Arnauld Villers
- Department of Urology, Lille University, Lille, France
- Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER; UMR9020-U1277), Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christopher Hoimes
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina, 27708, USA
| | - Thomas J Polascik
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
5
|
Som A, Rosenboom J, Wehrenberg‐Klee E, Chandler A, Ndakwah G, Chen E, Suggs J, Morimoto J, Kim J, Mustafa AR, Marcos‐Vidal A, Fintelmann FJ, Basu A, Langer R, Traverso G, Mahmood U. Percutaneous Intratumoral Immunoadjuvant Gel Increases the Abscopal Effect of Cryoablation for Checkpoint Inhibitor Resistant Cancer. Adv Healthc Mater 2024; 13:e2301848. [PMID: 37870153 PMCID: PMC10922912 DOI: 10.1002/adhm.202301848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Percutaneous cryoablation is a common clinical therapy for metastatic and primary cancer. There are rare clinical reports of cryoablation inducing regression of distant metastases, known as the "abscopal" effect. Intratumoral immunoadjuvants may be able to augment the abscopal rate of cryoablation, but existing intratumoral therapies suffer from the need for frequent injections and inability to confirm target delivery, leading to poor clinical trial outcomes. To address these shortcomings, an injectable thermoresponsive gel-based controlled release formulation is developed for the FDA-approved Toll-like-receptor 7 (TLR7) agonist imiquimod ("Imigel") that forms a tumor-resident depot upon injection and contains a contrast agent for visualization under computed tomography (CT). The poly-lactic-co-glycolic acid-polyethylene glycol-poly-lactic-co-glycolic acid (PLGA-PEG-PLGA)-based amphiphilic copolymer gel's underlying micellar nature enables high drug concentration and a logarithmic release profile that is additive with the neo-antigen release from cryoablation, requiring only a single injection. Rheological testing demonstrated the thermoresponsive increase in viscosity at body temperature and radio-opacity via microCT. Its ability to significantly augment the abscopal rate of cryoablation is demonstrated in otherwise immunotherapy resistant metastatic tumors in two aggressive colorectal and breast cancer dual tumor models with an all or nothing response, responders generally demonstrating complete regression of bilateral tumors in 90-day survival studies.
Collapse
Affiliation(s)
- Avik Som
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jan‐Georg Rosenboom
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of GastroenterologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Eric Wehrenberg‐Klee
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Alana Chandler
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gabrielle Ndakwah
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Eric Chen
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jack Suggs
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Joshua Morimoto
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jonathan Kim
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Abdul Rehman Mustafa
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Asier Marcos‐Vidal
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Florian J. Fintelmann
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Arijit Basu
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Robert Langer
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyBostonMA02139USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of GastroenterologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyBostonMA02139USA
| | - Umar Mahmood
- Department of RadiologyDivision of Interventional RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
6
|
D'Souza DL, Ragulojan R, Guo C, Dale CM, Jones CJ, Talaie R. Thermal Ablation in the Liver: Heat versus Cold-What Is the Role of Cryoablation? Semin Intervent Radiol 2023; 40:491-496. [PMID: 38274220 PMCID: PMC10807970 DOI: 10.1055/s-0043-1777845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cryoablation is commonly used in the kidney, lung, breast, and soft tissue, but is an uncommon choice in the liver where radiofrequency ablation (RFA) and microwave ablation (MWA) predominate. This is in part for historical reasons due to serious complications that occurred with open hepatic cryoablation using early technology. More current technology combined with image-guided percutaneous approaches has ameliorated these issues and allowed cryoablation to become a safe and effective thermal ablation modality for treating liver tumors. Cryoablation has several advantages over RFA and MWA including the ability to visualize the ice ball, minimal procedural pain, and strong immunomodulatory effects. This article will review the current literature on cryoablation of primary and secondary liver tumors, with a focus on efficacy, safety, and immunogenic potential. Clinical scenarios when it may be more beneficial to use cryoablation over heat-based ablation in the liver, as well as directions for future research, will also be discussed.
Collapse
Affiliation(s)
- Donna L. D'Souza
- Division of Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Ranjan Ragulojan
- Division of Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Chunxiao Guo
- Division of Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Connie M. Dale
- Division of Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Christopher J. Jones
- Division of Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Reza Talaie
- Division of Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Mauda-Havakuk M, Hawken NM, Owen JW, Mikhail AS, Starost MF, Karim B, Wakim PG, Franco-Mahecha OL, Lewis AL, Pritchard WF, Karanian JW, Wood BJ. Immune Effects of Cryoablation in Woodchuck Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1973-1990. [PMID: 37954494 PMCID: PMC10637190 DOI: 10.2147/jhc.s426442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Objectives Local and systemic immune responses evoked by locoregional therapies such as cryoablation are incompletely understood. The aim of this study was to characterize cryoablation-related immune response and the capacity of immune drugs to augment immunity upon cryoablation for the treatment of hepatocellular carcinoma (HCC) using a woodchuck hepatocellular carcinoma model. Materials and Methods Twelve woodchucks chronically infected with woodchuck hepatitis virus and with hepatocellular carcinoma underwent imaging with contrast-enhanced CT. Partial cryoablation of tumors in three woodchucks was performed. Fourteen days after cryoablation, liver tissues were harvested and stained with H&E and TUNEL, and immune infiltrates were quantified. Peripheral blood mononuclear cells (PBMC) were collected from ablated and nonablated woodchucks, labeled with carboxyfluorescein succinimidyl ester (CFSE) and cultured with immune-modulating drugs, including a small PD-L1 antagonist molecule (BMS-202) and three TLR7/8 agonists (DSR 6434, GS-9620, gardiquimod). After incubation, cell replication and immune cell populations were analyzed by flow cytometry. Results Local immune response in tumors was characterized by an increased number of CD3+ T lymphocytes and natural killer cells in the cryolesion margin compared to other tumor regions. T regulatory cells were found in higher numbers in distant tumors within the liver compared to untreated or control tumors. Cryoablation also augmented the systemic immune response as demonstrated by higher numbers of PBMC responses upon immune drug stimulation in the cryoablation group. Conclusions Partial cryoablation augmented immune effects in both treated and remote untreated tumor microenvironments, as well as systemically, in woodchucks with HCC. Characterization of these mechanisms may enhance development of novel drug-device combinations for treatment of HCC.
Collapse
Affiliation(s)
- Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- Interventional Radiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Natalie M Hawken
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Joshua W Owen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Olga L Franco-Mahecha
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Lewis
- Alchemed Bioscience Consulting Ltd, Stable Cottage, Monkton Lane, Farnham, Surrey, UK
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institute of Biomedical Imaging and Bioengineering and National Cancer Institute Center for Cancer Research; National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Tambunlertchai S, Geary SM, Naguib YW, Salem AK. Anti-melanoma Effects of Resiquimod (RSQ) In Vitro and in Combination with Immune Checkpoint Blockade In Vivo. AAPS J 2023; 25:57. [PMID: 37266761 DOI: 10.1208/s12248-023-00824-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and surgery is currently the most effective treatment. However, there are situations where surgery fails or is not an option to treat melanoma patients. Immunotherapy such as immune checkpoint blockade (e.g., anti-PD-1) can be effective as an alternative treatment for melanoma patients; however, the percentage of melanoma patients that exhibit complete responses from anti-PD-1 monotherapy is low, and a hostile immunosuppressive tumor microenvironment may be at least partly responsible. Resiquimod (RSQ) is an imidazoquinolinamine derivative and TLR-7/8 agonist that could enhance the antitumor activity of immune checkpoint blockade when these agents are combined as a treatment for melanoma. Here, the effect of combining systemic anti-PD-1 and locally administered RSQ on the survival of melanoma-challenged mice was tested. Our results demonstrated that anti-PD-1 in combination with RSQ can significantly prolong the survival of melanoma-challenged mice, compared to untreated mice and mice treated with anti-PD-1 alone. In addition, the in vitro studies showed that RSQ can mediate a direct anti-proliferative effect on melanoma cells. In conclusion, the combination of RSQ and anti-PD-1 may be a promising treatment for melanoma patients, especially as both treatments have already been used independently to safely treat melanoma patients.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
9
|
Jiang M, Fiering S, Shao Q. Combining energy-based focal ablation and immune checkpoint inhibitors: preclinical research and clinical trials. Front Oncol 2023; 13:1153066. [PMID: 37251920 PMCID: PMC10211342 DOI: 10.3389/fonc.2023.1153066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Energy-based focal therapy (FT) uses targeted, minimally invasive procedures to destroy tumors while preserving normal tissue and function. There is strong emerging interest in understanding how systemic immunity against the tumor can occur with cancer immunotherapy, most notably immune checkpoint inhibitors (ICI). The motivation for combining FT and ICI in cancer management relies on the synergy between the two different therapies: FT complements ICI by reducing tumor burden, increasing objective response rate, and reducing side effects of ICI; ICI supplements FT by reducing local recurrence, controlling distal metastases, and providing long-term protection. This combinatorial strategy has shown promising results in preclinical study (since 2004) and the clinical trials (since 2011). Understanding the synergy calls for understanding the physics and biology behind the two different therapies with distinctive mechanisms of action. In this review, we introduce different types of energy-based FT by covering the biophysics of tissue-energy interaction and present the immunomodulatory properties of FT. We discuss the basis of cancer immunotherapy with the emphasis on ICI. We examine the approaches researchers have been using and the results from both preclinical models and clinical trials from our exhaustive literature research. Finally, the challenges of the combinatory strategy and opportunities of future research is discussed extensively.
Collapse
Affiliation(s)
- Minhan Jiang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth Health, Lebanon, NH, United States
| | - Qi Shao
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Xie Y, Liu M, Cai C, Ye C, Guo T, Yang K, Xiao H, Tang X, Liu H. Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Front Oncol 2023; 13:1027254. [PMID: 36860309 PMCID: PMC9969147 DOI: 10.3389/fonc.2023.1027254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Surgical resection and postoperative radiotherapy remained the most common therapeutic modalities for malignant tumors. However, tumor recurrence after receiving such combination is difficult to be avoided because of high invasiveness and radiation resistance of cancer cells during long-term therapy. Hydrogels, as novel local drug delivery systems, presented excellent biocompatibility, high drug loading capacity and sustained drug release property. Compared with conventional drug formulations, hydrogels are able to be administered intraoperatively and directly release the entrapped therapeutic agents to the unresectable tumor sites. Therefore, hydrogel-based local drug delivery systems have their unique advantages especially in sensitizing postoperative radiotherapy. In this context, classification and biological properties of hydrogels were firstly introduced. Then, recent progress and application of hydrogels for postoperative radiotherapy were summarized. Finally, the prospects and challenges of hydrogels in postoperative radiotherapy were discussed.
Collapse
Affiliation(s)
- Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Cai
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Chengkun Ye
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Hongyi Liu, ; Xianglong Tang, ; Hong Xiao,
| |
Collapse
|
11
|
Tambunlertchai S, Geary SM, Naguib YW, Salem AK. Investigating silver nanoparticles and resiquimod as a local melanoma treatment. Eur J Pharm Biopharm 2023; 183:1-12. [PMID: 36549400 PMCID: PMC10158852 DOI: 10.1016/j.ejpb.2022.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Over the last decade, the potential for silver nanoparticles (AgNP) to be used as an anti-melanoma agent has been supported by both in vitro and in vivo evidence. However, an undesirably high concentration of AgNP is often required to achieve an antitumor effect. Therefore a combination treatment that can maintain or improve antitumor efficacy (with lower amounts of AgNP) while also reducing off-target effects is sought. In this study, the combination of AgNP and resiquimod (RSQ: a Toll-like receptor agonist) was investigated and shown to significantly prolong the survival of melanoma-challenged mice when added sequentially. Results from toxicity studies showed that the treatment was non-toxic in mice. Immune cell depletion studies suggested the possible involvement of CD8+ T cells in the antitumor response observed in the AgNP + RSQ (sequential) treatment. NanoString was also employed to further understand the mechanism underlying the increase in the treatment efficacy of AgNP + RSQ (sequential); showing significant changes, compared to the naive group, in gene expression in pathways involved in apoptosis and immune stimulation. In conclusion, the combination of AgNP and RSQ is a new combination worthy of further investigation in the context of melanoma treatment.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
12
|
Gu L, Lin E, Liu S, Yang N, Kurtansky N, Neumann N, Stoll J, Lezcano C, Pulitzer M, Noor S, Markova A, Rossi A, Dickson MA, Deng L. Efficacy of immunotherapy with combination of cryotherapy and topical imiquimod for treatment of Kaposi sarcoma. J Med Virol 2023; 95:e28396. [PMID: 36504005 PMCID: PMC10461380 DOI: 10.1002/jmv.28396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Multiple treatment modalities for Kaposi sarcoma (KS) have been reported, including chemotherapy, radiation therapy, surgical excision, electrochemotherapy, and cryotherapy. Common topical treatments include timolol, imiquimod, and alitretinoin. We searched our institutional database for patients with ICD-9 or 10 codes for KS seen by a dermatologist with experience in KS management from July 1, 2004 to January 1, 2022. We screened patient charts to include patients who received combination therapy of cryotherapy followed by topical imiquimod three times a week for 2 months (n = 9). Patients were followed in the clinic every 3 months. Time to resolution was assessed by photographic evidence of resolution as determined by a dermatologist and corroborated with clinical documentation in patient charts. Median age (IQR) at KS diagnosis was 58 (27.5) years. All patients were male (n = 9, 100%). Majority were white (n = 7, 78%) and non-Hispanic (n = 8, 89%). Five (56%) had classic KS, one (11%) had HIV-associated KS, and three (33%) were HIV-negative men who have sex with men. Median time to resolution was 30.5 weeks, with a median of two treatments. In our study, 93% (n = 42/45) of lesions and 89% (n = 8/9) of patients experienced complete resolution during a median (range) duration of follow-up of 58 (13-209) weeks. Side effects were limited to pain during cryotherapy, occasional blister formation after cryotherapy, and mild inflammation due to imiquimod. No infections were observed. Combination therapy of cryotherapy and topical imiquimod may be an efficacious and comparatively low-risk treatment for limited, cutaneous KS.
Collapse
Affiliation(s)
- Lilly Gu
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
| | - Erica Lin
- Warren Alpert Medical School of Brown University, Providence, RI 02903
| | - Shuaitong Liu
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas Kurtansky
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neil Neumann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Stoll
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
| | - Cecilia Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Melissa Pulitzer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Noor
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alina Markova
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony Rossi
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A. Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Tambunlertchai S, Geary SM, Salem AK. Topically Applied Resiquimod versus Imiquimod as a Potential Adjuvant in Melanoma Treatment. Pharmaceutics 2022; 14:pharmaceutics14102076. [PMID: 36297510 PMCID: PMC9611754 DOI: 10.3390/pharmaceutics14102076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023] Open
Abstract
Melanoma is the most lethal form of skin cancer and surgery remains the preferred and most effective treatment. Nevertheless, there are cases where surgery is not a viable method and alternative treatments are therefore adopted. One such treatment that has been tested is topical 5% imiquimod (IMQ) cream, which, although showing promise as a treatment for melanoma, has been found to have undesirable off-target effects. Resiquimod (RSQ) is an immunomodulatory molecule that can activate immune responses by binding to Toll-like receptors (TLR) 7 and 8 and may be more effective than IMQ in the context of melanoma treatment. RSQ can cross the stratum corneum (SC) easily without requiring pretreatment of the skin. In a gel formulation, RSQ has been studied as a monotherapy and adjuvant for melanoma treatment in pre-clinical studies and as an adjuvant in clinical settings. Although side effects of RSQ in gel formulation were also reported, they were never severe enough for the treatment to be suspended. In this review, we discuss the potential use of RSQ as an adjuvant for melanoma treatment.
Collapse
|
14
|
An In Vitro Investigation into Cryoablation and Adjunctive Cryoablation/Chemotherapy Combination Therapy for the Treatment of Pancreatic Cancer Using the PANC-1 Cell Line. Biomedicines 2022; 10:biomedicines10020450. [PMID: 35203660 PMCID: PMC8962332 DOI: 10.3390/biomedicines10020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
As the incidence of pancreatic ductal adenocarcinoma (PDAC) continues to grow, so does the need for new strategies for treatment. One such area being evaluated is cryoablation. While promising, studies remain limited and questions surrounding basic dosing (minimal lethal temperature) coupled with technological issues associated with accessing PDAC tumors and tumor proximity to vasculature and bile ducts, among others, have limited the use of cryoablation. Additionally, as chemotherapy remains the first-line of attack for PDAC, there is limited information on the impact of combining freezing with chemotherapy. As such, this study investigated the in vitro response of a PDAC cell line to freezing, chemotherapy, and the combination of chemotherapy pre-treatment and freezing. PANC-1 cells and PANC-1 tumor models were exposed to cryoablation (freezing insult) and compared to non-frozen controls. Additionally, PANC-1 cells were exposed to varying sub-clinical doses of gemcitabine or oxaliplatin alone and in combination with freezing. The results show that freezing to −10 °C did not affect viability, whereas −15 °C and −20 °C resulted in a reduction in 1 day post-freeze viability to 85% and 20%, respectively, though both recovered to controls by day 7. A complete cell loss was found following a single freeze below −25 °C. The combination of 100 nM gemcitabine (1.1 mg/m2) pre-treatment and a single freeze at −15 °C resulted in near-complete cell death (<5% survival) over the 7-day assessment interval. The combination of 8.8 µM oxaliplatin (130 mg/m2) pre-treatment and a single −15 °C freeze resulted in a similar trend of increased PANC-1 cell death. In summary, these in vitro results suggest that freezing alone to temperatures in the range of −25 °C results in a high degree of PDAC destruction. Further, the data support a potential combinatorial chemo/cryo-therapeutic strategy for the treatment of PDAC. These results suggest that a reduction in chemotherapeutic dose may be possible when offered in combination with freezing for the treatment of PDAC.
Collapse
|
15
|
Gaitanis G, Bassukas ID. A Review of Immunocryosurgery and a Practical Guide to Its Applications. Diseases 2021; 9:71. [PMID: 34698134 PMCID: PMC8544578 DOI: 10.3390/diseases9040071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Immunocryosurgery is a minimally invasive combinational therapeutic procedure that has been designed, developed, and evaluated in the Dermatology Department of the University of Ioannina from 2004. In a fixed time protocol, this approach combines immune stimulatory therapy with imiquimod and cryosurgery, i.e., cryosurgery is applied during continuous imiquimod treatment. Laboratory findings in tissue and blood level credit the efficacy to the synergy of imiquimod and cryosurgery. The synergy has been established through clinical trials and the excellent feasibility and efficacy demonstrated in clinical practice. Immunocryosurgery has extensive proof of excellent efficacy, comparable to surgery, in the treatment of basal cell carcinoma. It has also been evaluated in cases of Bowen's disease, keratoacanthoma, Merkel cell carcinoma, lentigo maligna, and cutaneous squamous cell carcinoma with or without the addition of adjuvants. The aims of this review are to detail the immunocryosurgery protocol with the addition of daily practice clinical tips, compile data on the mechanism of action of immunocryosurgery, and delineate indications and possible future applications. Most of the available data originate from the treatment of BCC, of all histological types and localizations, and the principles reported mainly reflect on evidence related to the treatment of this common skin cancer.
Collapse
Affiliation(s)
- Georgios Gaitanis
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Delc Clinique, 2502 Biel/Bienne, Switzerland
| | - Ioannis D. Bassukas
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
16
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
17
|
Sun L, Shen F, Tian L, Tao H, Xiong Z, Xu J, Liu Z. ATP-Responsive Smart Hydrogel Releasing Immune Adjuvant Synchronized with Repeated Chemotherapy or Radiotherapy to Boost Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007910. [PMID: 33788339 DOI: 10.1002/adma.202007910] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Certain chemotherapeutics and forms of ionizing radiation can induce immunogenic cell death (ICD). If there simultaneously exist immune adjuvants within the tumor, such antitumor immunity would be further amplified. However, as clinical chemo/radiotherapies are usually repeatedly given at low individual doses, it would be impractical to administrate immune adjuvants into tumors at each dose of chemo/radiotherapies. Thus, a smart hydrogel is developed that releases immune adjuvants in response to repeatedly applied chemo-/radiotherapies. Herein, alginate is conjugated with an adenosine triphosphate (ATP)-specific aptamer, which is hybridized with immunoadjuvant CpG oligonucleotide. Upon intratumoral injection, alginate-based hydrogel is formed in situ. Interestingly, low doses of oxaliplatin or X-rays, while inducing ICD of tumor cells, could trigger release of ATP, which competitively binds with ATP-specific aptamer to trigger CpG release. Therefore, the smart hydrogel could release the immune adjuvant synchronized with low-dose repeated chemo/radiotherapies, achieving remarkable synergistic responses in eliminating established tumors, as well as immune memory to reject re-challenged tumors. Moreover, repeated radiotherapies assisted by the smart hydrogel could inhibit distant tumor metastases, especially in combination with immune checkpoint blockade. The study presents a conceptually new strategy to boost cancer immunotherapy coherent with repeated low-dose chemo-/radiotherapies following a clinically relevant manner.
Collapse
Affiliation(s)
- Lele Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fengyun Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Longlong Tian
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huiquan Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zijian Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
18
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Zhang B, Wang Y, Zhao Z, Han B, Yang J, Sun Y, Zhang B, Zang Y, Guan H. Temperature Plays an Essential Regulatory Role in the Tumor Immune Microenvironment. J Biomed Nanotechnol 2021; 17:169-195. [PMID: 33785090 DOI: 10.1166/jbn.2021.3030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, emerging immunotherapy has been included in various malignant tumor treatment standards. Temperature has been considered to affect different pathophysiological reactions such as inflammation and cancer for a long time. However, in tumor immunology research, temperature is still rarely considered a significant variable. In this review, we discuss the effects of room temperature, body temperature, and the local tumor temperature on the tumor immune microenvironment from multiple levels and perspectives, and we discuss changes in the body's local and whole-body temperature under tumor conditions. We analyze the current use of ablation treatment-the reason for the opposite immune effect. We should pay more attention to the therapeutic potential of temperature and create a better antitumor microenvironment that can be combined with immunotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Ziyin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jinbo Yang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yang Sun
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Huashi Guan
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
20
|
Scandiffio R, Bozzi E, Ezeldin M, Capanna R, Ceccoli M, Colangeli S, Donati DM, Colangeli M. Image-guided Cryotherapy for Musculoskeletal Tumors. Curr Med Imaging 2021; 17:166-178. [PMID: 32842945 DOI: 10.2174/1573405616666200825162712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND This article represents a review of the use of image-guided cryotherapy in the treatment of musculoskeletal tumor lesions. Cryotherapy is able to induce a lethal effect on cancer cells through direct and indirect mechanisms. In this manuscript, we combined our experience with that of other authors who have published on this topic in order to provide indications on when to use cryotherapy in musculoskeletal oncology. DISCUSSION Image-Guided percutaneous cryotherapy is a therapeutic method now widely accepted in the treatment of patients with musculoskeletal tumors. It can be used both for palliative treatments of metastatic bone lesions and for the curative treatment of benign bone tumors, such as osteoid osteoma or osteoblastoma. In the treatment of bone metastases, cryotherapy plays a major role in alleviating or resolving disease-related pain, but it has also been demonstrated that it can have a role in local disease control. In recent years, the use of cryotherapy has also expanded for the treatment of both benign and malignant soft tissue tumors. CONCLUSION Percutaneous cryotherapy can be considered a safe and effective technique in the treatment of benign and malignant musculoskeletal tumors. Cryotherapy can be considered the first option in benign tumor lesions, such as osteoid osteoma, and a valid alternative to radiofrequency ablation. In the treatment of painful bone metastases, it must be considered secondarily to other standard treatments (radiotherapy, bisphosphonate therapy, and chemotherapy) when they are no longer effective in controlling the disease or when they cannot be repeated (for example, radiotherapy).
Collapse
Affiliation(s)
- Rossella Scandiffio
- Division of Interventional Radiology, Cisanello University Hospital, Pisa, Italy
| | - Elena Bozzi
- Division of Interventional Radiology, Cisanello University Hospital, Pisa, Italy
| | - Mohamed Ezeldin
- Department of Diagnostic and Interventional Radiology, Sohag University Hospital, Sohag, Egypt
| | - Rodolfo Capanna
- 2nd Orthopedic Division, Department Of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Matteo Ceccoli
- 2nd Orthopedic Division, Department Of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Simone Colangeli
- 2nd Orthopedic Division, Department Of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Davide M Donati
- Department of Musculo-Skeletal Oncology, IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Colangeli
- Department of Musculo-Skeletal Oncology, IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
21
|
Cryoimmunology: Opportunities and challenges in biomedical science and practice. Cryobiology 2021; 100:1-11. [PMID: 33639110 DOI: 10.1016/j.cryobiol.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Autologous and allogeneic cryoimmunological medicine is a brand new branch of biomedical science and clinical practice that examines the features and formation of the immune response to immunogenic properties of normal and malignant biological structures altered by ultralow temperature, as well as specific changes in the structural and functional characteristics of immune cells and tissues after cryopreservation. Cryogenic protein denaturation phenomenon provides important insights into the mechanisms underlying the damage to cryogenic lesions immediately after freeze-thawing sessions in bioscience and medicine applications. The newly formed cryocoagulated protein components (cryomodified protein components) are crucial in cryoimmunology from the perspective of the formation of immunological substances at ultralow temperatures. Dendritic cells and cryocell detritus (cryocell debris) formed in living biological tissue after exposure to ultralow temperature in vivo may be an indication of one of the essential mechanisms involved in the cryoimmunological response of living structures to the impact of ultralow temperature exposure. Hence, the formation of new autologous and allogeneic cryoinduced immunogenic substances is a novel concept in biomedical research globally. Accordingly, this review focuses on issues concerning the peculiarities of the interaction of the immune system with a dominant malignant neoplasm tissue after exposure to subzero temperatures, considering the original cryogenic technical approaches. We present an overview of the state-of-the-art methods of cryoimmunology, and their major developments, past and present. The need for the delineation of structural and functional characteristics of the biological substrates of the immune system after cryopreservation that can be used in adoptive cell therapy, especially in cancer patients, is emphasized.
Collapse
|
22
|
Chen J, Qian W, Mu F, Niu L, Du D, Xu K. The future of cryoablation: An abscopal effect. Cryobiology 2020; 97:1-4. [PMID: 32097610 DOI: 10.1016/j.cryobiol.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023]
Abstract
Cryoablation has become a popular modality to treat a variety of malignant tumors in solid organs and soft tissues. In the future, the use of cryoablation should focus on its abscopal effect. The present review discusses the increased immune response triggered by cryoablation alone or by cryoablation combined with immunotherapies, which can improve the immune response and limit immunosuppression. First, cryoablative techniques should be improved to increase the area of necrosis and reduce the area of apoptosis. Second, cryoablation should be combined with immunotherapies, for example, cyclophosphamide, natural killer cells, granulocyte monocyte colony stimulating factor (GM-CSF), cytotoxic T lymphocyte-associated antigen (CTLA)-4, and programmed death receptor 1 (PD)-1 inhibitors. Cryoablation could also be combined with Hydrogen gas molecules, which were shown recently to stimulate peroxisome proliferator activated receptor gamma coactivator (PGC)-1α, thereby promoting mitochondrial function, which might rescue exhausted CD8+ T cells, leading to prolonged progression-free survival and overall survival of patients with advanced colorectal cancer.
Collapse
Affiliation(s)
- Jibing Chen
- Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Wei Qian
- Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Feng Mu
- Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Lizhi Niu
- Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Duanming Du
- Intervention Dept. of Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Kecheng Xu
- Fuda Cancer Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
23
|
Lee DY, Yun JH, Park YB, Hyeon JS, Jang Y, Choi YB, Kim HH, Kang TM, Ovalle R, Baughman RH, Kim SM, Kee CW, Kim SJ. Two-Ply Carbon Nanotube Fiber-Typed Enzymatic Biofuel Cell Implanted in Mice. IEEE Trans Nanobioscience 2020; 19:333-338. [PMID: 32603292 DOI: 10.1109/tnb.2020.2995143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Implantable devices have emerged as a promising industry. It is inevitable that these devices will require a power source to operate in vivo. Thus, to power implantable medical devices, biofuel cells (BFCs) that generate electricity using glucose without an external power supply have been considered. Although implantable BFCs have been developed for application in vivo, they are limited by their bulky electrodes and low power density. In the present study, we attempted to apply to living mice an implantable enzymatic BFC (EBFC) that was previously reported to be a high-power EBFC comprising carbon nanotube yarn electrodes. To improve their mechanical properties and for convenient implantation, the electrodes were coated with Nafion and twisted into a micro-sized, two-ply, one-body system. When the two-ply EBFC system was implanted in the abdominal cavity of mice, it provided a high-power density of 0.3 mW/cm2. The two-ply EBFC system was injected through a needle using a syringe without surgery and the inflammatory response in vivo initially induced by the injection of the EBFC system was attenuated after 7 days, indicating the biocompatibility of the system in vivo.
Collapse
|
24
|
Sharma A, Sharma D, Baldi A, Jyoti K, Chandra R, Madan J. Imiquimod-oleic acid prodrug-loaded cream reduced drug crystallinity and induced indistinguishable cytotoxicity and apoptosis in mice melanoma tumour. J Microencapsul 2019; 36:759-774. [DOI: 10.1080/02652048.2019.1677796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Akanksha Sharma
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | | | - Ashish Baldi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Kiran Jyoti
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Ramesh Chandra
- Dr. B.R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| |
Collapse
|
25
|
Kim D, Erinjeri JP. Postablation Immune Microenvironment: Synergy between Interventional Oncology and Immuno-oncology. Semin Intervent Radiol 2019; 36:334-342. [PMID: 31680725 DOI: 10.1055/s-0039-1696704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current tumor thermal ablation techniques rely on extreme temperatures to induce irreversible cellular injury and coagulative tissue necrosis. Ablation-induced cellular injury or death releases cancer neoantigens and activates the cancer-immunity cycle, potentially generating tumor-specific immune effectors. However, multiple negative regulatory modulators exist at each step of the cycle, mitigating meaningful and therapeutic anticancer effect provided by the immune system. Recent studies have focused on the introduction and testing of adjuvant immunotherapy combined with ablation to synergistically shift the equilibrium out of inhibitory immune modulation. This article reviews the immune microenvironment in relation to image-guided ablation techniques and discusses current and upcoming novel strategies to take advantage of antitumor immunity.
Collapse
Affiliation(s)
- DaeHee Kim
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph P Erinjeri
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
26
|
Yakkala C, Chiang CLL, Kandalaft L, Denys A, Duran R. Cryoablation and Immunotherapy: An Enthralling Synergy to Confront the Tumors. Front Immunol 2019; 10:2283. [PMID: 31608067 PMCID: PMC6769045 DOI: 10.3389/fimmu.2019.02283] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Treatment of solid tumors by ablation techniques has gained momentum in the recent years due to their technical simplicity and reduced morbidity as juxtaposed to surgery. Cryoablation is one of such techniques, known for its uniqueness to destroy the tumors by freezing to lethal temperatures. Freezing the tumor locally and allowing it to remain in situ unleashes an array of tumor antigens to be exposed to the immune system, paving the way for the generation of anti-tumor immune responses. However, the immune responses triggered in most cases are insufficient to eradicate the tumors with systemic spread. Therefore, combination of cryoablation and immunotherapy is a new treatment strategy currently being evaluated for its efficacy, notably in patients with metastatic disease. This article examines the mechanistic fabric of cryoablation for the generation of an effective immune response against the tumors, and various possibilities of its combination with different immunotherapies that are capable of inducing exceptional therapeutic responses. The combinatorial treatment avenues discussed in this article if explored in sufficient profundity, could reach the pinnacle of future cancer medicine.
Collapse
Affiliation(s)
- Chakradhar Yakkala
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Cheryl Lai-Lai Chiang
- Vaccine Development Laboratory, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana Kandalaft
- Vaccine Development Laboratory, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
27
|
Yang L, Ding JL. MEK1/2 Inhibitors Unlock the Constrained Interferon Response in Macrophages Through IRF1 Signaling. Front Immunol 2019; 10:2020. [PMID: 31507609 PMCID: PMC6718554 DOI: 10.3389/fimmu.2019.02020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophages are immune sentinels essential for pathogen recognition and immune defense. Nucleic acid-sensing toll-like receptors like TLR7 activate tailored proinflammatory and interferon responses in macrophages. Here we found that TLR7 activation constrained itself and other TLRs from inducing interferon response genes in macrophages through MAPK kinase 1/2 (MEK1/2)-dependent IRF1 inhibition. Downstream of the MEK1/2-ERK pathway, TLR7-activated macrophages induced interleukin-10 (IL-10), a signal transducer and activator of transcription 3 (STAT3) signaling axis, which constrained the expression of interferon response genes, immunomodulatory cytokines, and chemokines. Nevertheless, MEK1/2 inhibitors unlocked an IRF1-interferon signature response in an NF-κB-dependent manner. Deficiency in interferon regulatory factor 1 (Irf1) completely abrogated the interferon response and prevented the reprogramming of macrophages into an immunostimulatory phenotype. As a proof of concept, combination treatment with a TLR7 agonist and MEK1/2 inhibitor synergistically extended the survival of wild-type but not Irf1-deficient melanoma-bearing mice. In a retrospective study, higher expression of Irf1 and interferon response genes correlated with more favorable prognosis in patients with cutaneous melanoma. Our findings demonstrated how MEK1/2 inhibitor unlocks IRF1-mediated interferon signature response in macrophages, and the therapeutic potentials of combination therapy with MEK1/2 inhibitor and TLR7 agonist.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Mansourpour H, Ziari K, Motamedi SK, Poor AH. Therapeutic effects of iNOS inhibition against vitiligo in an animal model. Eur J Transl Myol 2019; 29:8383. [PMID: 31579486 PMCID: PMC6767835 DOI: 10.4081/ejtm.2019.8383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is involved in several biological processes, but its role in human melanogenesis and vitiligo need further studies. Previous studies revealed that exposure to UVA and UVB were capable of the inducing nitric oxide production in keratinocytes and melanocytes through the activation of constitutive nitric oxide synthase, whereas inducible nitric oxide synthase overexpression has been reported to play an important role in hyperpigmentary disorders. The aim of this study was to evaluate iNOS inhibitor aminoguanidine (AG) as a therapeutic agent in our mouse model of vitiligo. In this study, male C57BL/6J Ler-vit/vit mice were purchased to evaluate the effect of iNOS inhibitor (aminoguanidine) (50 and 100 mg/kg) and L-arginine (100 mg/kg) in a mouse model of vitiligo induced by monobenzone 40%. Moreover, we used phototherapy device to treat the mice with NBUVB as a gold standard.The findings revealed that monobenzone was capable of inducing depigmentation after 6 weeks. However, aminoguanidine in combination with monobenzone was decrease the effect of monobenzone, while L-arginine play a key role in promoting the effect of monobenzone (P<0.001). Based on the phototherapy, the efficacy of phototherapy significantly increased by adding L-arginine (P<0.05). Taken together, we suggest that iNOS inhibitor can be a novel treatment for the prevention and treatment of vitiligo by combination of NBUVB therapy, furthermore; NO agents like L-arginine could also increase the effectiveness of phototherapy. Taken together, this pilot study showed significant repigmentation of vitiligous lesions treated with iNOS inhibitor plus NBUVB therapy, where other aspect including expression of an inducible iNOS, NO and TNF levels remained to be evaluated in mice model.
Collapse
Affiliation(s)
- Hamid Mansourpour
- Shahid Beheshti University of Medical Science, Tehran, Iran and AJA University of Medical Science, Tehran, Iran
| | - Katayoun Ziari
- Department of Pathology, AJA University of Medical Science, Tehran, Iran
| | | | | |
Collapse
|
29
|
Nomikos K, Lampri E, Spyridonos P, Bassukas ID. Alterations in the inflammatory cells infiltrating basal cell carcinomas during immunocryosurgery. Arch Dermatol Res 2019; 311:499-504. [PMID: 31115658 DOI: 10.1007/s00403-019-01933-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Immunocryosurgery, the combination modality of a cryosurgery session at day 14 of a 5-week daily imiquimod treatment cycle, has shown remarkable efficacy in the treatment of basal cell carcinoma (BCC). The modality was designed to exploit synergy of antitumor effects, including the induction of immune responses, elicited by imiquimod and cryosurgery. Herein, we report on the infiltration of the BCC by selected inflammatory cell species during an immunocryosurgery treatment cycle. The density of tissue infiltrating CD68+, CD3+ and Foxp3+ cells was studied by immunohistochemistry in 56 BCC biopsies from 28 treated sites (26 patients) at baseline and at days 12, 16 or 28 during treatment. Immunocryosurgery induces statistically significant alterations in all three cell species (p < 0.003): The density of CD68+ increased already by day 12 and remained at a higher level during the treatment thereafter. The density of CD3+ cells increased significantly between days 12 and 16 of treatment. The density of Treg (Foxp3+) cells increased in the early phase of treatment (highest at day 12) to decrease significantly already 2 days after the cryosurgery session (day 16) and thereafter up to day 28 of the treatment cycle (p = 0.033). Within the tumor tissue, these alterations result in an abrupt increase in the CD3+/Foxp3+ ratio, a finding suggesting that the cryosurgical perturbation may probably play a decisive modulating role in the cellular composition of the inflammatory infiltrate during immunocryosurgery, eventually heralding the induction of an effective tumor-destructing immune response.
Collapse
Affiliation(s)
- K Nomikos
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - E Lampri
- Pathologist in Private Practice, Ioannina, Greece
| | - P Spyridonos
- Department of Medical Physics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - I D Bassukas
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
30
|
Kita K, Nakamura T, Yamanaka T, Yoshida K, Hagi T, Asanuma K, Nakatsuka A, Sudo A. Successful treatment with cryoablation in a patient with bone metastasis in the mid-shaft femur: a case report. Onco Targets Ther 2019; 12:2949-2953. [PMID: 31114238 PMCID: PMC6489639 DOI: 10.2147/ott.s195634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/21/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Treatment of metastatic bone tumors is challenging due to the morbidity associated with patients with metastasis. The present case report described a patient with successful treatment of bone metastasis using cryoablation with plate and cementation to prevent fracture for bone metastasis of leiomyosarcoma in the mid-shaft of the femur. Case report: The metastatic tumor was located at intramedullary lesion of the femur. At first, cryoablation was performed under local anesthesia. After one week after cryoablation, curettage and fixation with plate and cementation were performed to prevent fracture. Tumor cells were not observed in the histopathological findings of the curettage tissue. Four years after cryoablation, there was no recurrence and the patient could walk without any support. Conclusion: We suggest that a tumor with limited cancellous bone and of a small size may undergo cryoablation. The prevention of fracture after cryoablation should be considered.
Collapse
Affiliation(s)
- Kouji Kita
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takashi Yamanaka
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keisuke Yoshida
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomohito Hagi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsuhiro Nakatsuka
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
31
|
Sunkari S, Thatikonda S, Pooladanda V, Challa VS, Godugu C. Protective effects of ambroxol in psoriasis like skin inflammation: Exploration of possible mechanisms. Int Immunopharmacol 2019; 71:301-312. [PMID: 30933843 DOI: 10.1016/j.intimp.2019.03.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to investigate the protective effects of ambroxol in psoriasis-like skin inflammation both in vitro and in vivo and delineate the molecular mechanism of ambroxol. Our data demonstrated that ambroxol has an imperative role in inhibiting the lipopolysaccharide (LPS) stimulated nitrite levels, total cellular and mitochondrial reactive oxygen species level which was determined by Griess assay, DCFDA, and MitoSOX Red staining, respectively. We found that ambroxol remarkably reduced imiquimod (IMQ) induced epidermal hyperplasia, psoriasis area and severity index (PASI) scoring, splenomegaly, skin, and ear fold thickness. In addition, the histopathological evaluation revealed that ambroxol topical and subcutaneous treatment eloquently reduced psoriasiform lesions including acanthosis. Moreover, with ambroxol intervention, the levels of antioxidants glutathione (GSH), superoxide dismutase (SOD), and IL-10 were found to be increased along with a reduction in nitrite levels in skin tissues. On the other hand, ambroxol treatment significantly reduced imiquimod-induced levels of inflammatory cytokines such as IL-1β, IL-6, IL-17, IL-22, IL-23, TGF-β, and TNF-α. Furthermore, from immunoblotting, we found a decrease in the protein expression of nitrotyrosine, iNOS, NF-κB and MAPKs signaling cascade with a concomitant increase in the expression of Nrf-2 and SOD-1 in RAW 264.7 cells and skin tissues by ambroxol. Similar findings were observed by immunofluorescence in macrophages. Moreover, ambroxol downregulated the ICAM-1 and Ki67 expression observed in skin tissues. Collectively, our results demonstrate that ambroxol may have intriguing therapeutic possibilities in attenuating psoriasis.
Collapse
Affiliation(s)
- Shruthi Sunkari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Veerabhadra Swamy Challa
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
32
|
Abstract
Innovation has been the cornerstone of interventional radiology since the early years of the founders, with a multitude of new therapeutic approaches developed over the last 50 years. What is the future holding for us? This article presents an overview of the in-coming developments that are catching on at this moment, particularly focusing on three items: the new applications of existing techniques, particularly embolotherapy and interventional oncology; the cutting-edge devices; the imaging technologies at the forefront of the image-guidance. Besides this, clinical vision and patient relation remain crucial for the future of the discipline.
Collapse
|
33
|
Shao Q, O'Flanagan S, Lam T, Roy P, Pelaez F, Burbach BJ, Azarin SM, Shimizu Y, Bischof JC. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia 2019; 36:130-138. [DOI: 10.1080/02656736.2018.1539253] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Stephen O'Flanagan
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tiffany Lam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Priyatanu Roy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Francisco Pelaez
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Brandon J Burbach
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Baust JM, Rabin Y, Polascik TJ, Santucci KL, Snyder KK, Van Buskirk RG, Baust JG. Defeating Cancers' Adaptive Defensive Strategies Using Thermal Therapies: Examining Cancer's Therapeutic Resistance, Ablative, and Computational Modeling Strategies as a means for Improving Therapeutic Outcome. Technol Cancer Res Treat 2018; 17:1533033818762207. [PMID: 29566612 PMCID: PMC5871056 DOI: 10.1177/1533033818762207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diverse thermal ablative therapies are currently in use for the treatment of cancer. Commonly applied with the intent to cure, these ablative therapies are providing promising success rates similar to and often exceeding "gold standard" approaches. Cancer-curing prospects may be enhanced by deeper understanding of thermal effects on cancer cells and the hosting tissue, including the molecular mechanisms of cancer cell mutations, which enable resistance to therapy. Furthermore, thermal ablative therapies may benefit from recent developments in computer hardware and computation tools for planning, monitoring, visualization, and education. METHODS Recent discoveries in cancer cell resistance to destruction by apoptosis, autophagy, and necrosis are now providing an understanding of the strategies used by cancer cells to avoid destruction by immunologic surveillance. Further, these discoveries are now providing insight into the success of the diverse types of ablative therapies utilized in the clinical arena today and into how they directly and indirectly overcome many of the cancers' defensive strategies. Additionally, the manner in which minimally invasive thermal therapy is enabled by imaging, which facilitates anatomical features reconstruction, insertion guidance of thermal probes, and strategic placement of thermal sensors, plays a critical role in the delivery of effective ablative treatment. RESULTS The thermal techniques discussed include radiofrequency, microwave, high-intensity focused ultrasound, laser, and cryosurgery. Also discussed is the development of thermal adjunctive therapies-the combination of drug and thermal treatments-which provide new and more effective combinatorial physical and molecular-based approaches for treating various cancers. Finally, advanced computational and planning tools are also discussed. CONCLUSION This review lays out the various molecular adaptive mechanisms-the hallmarks of cancer-responsible for therapeutic resistance, on one hand, and how various ablative therapies, including both heating- and freezing-based strategies, overcome many of cancer's defenses, on the other hand, thereby enhancing the potential for curative approaches for various cancers.
Collapse
Affiliation(s)
- John M Baust
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Yoed Rabin
- 3 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas J Polascik
- 4 Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kimberly L Santucci
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Kristi K Snyder
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Robert G Van Buskirk
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.,5 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - John G Baust
- 2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.,5 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
35
|
Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front Immunol 2018; 9:2909. [PMID: 30619273 PMCID: PMC6297829 DOI: 10.3389/fimmu.2018.02909] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, where the patient's own immune system is exploited to eliminate tumor cells, has become one of the most prominent new cancer treatment options in the last decade. The main hurdle for classical cancer vaccines is the need to identify tumor- and patient specific antigens to include in the vaccine. Therefore, in situ vaccination represents an alternative and promising approach. This type of immunotherapy involves the direct intratumoral administration of different immunomodulatory agents and uses the tumor itself as the source of antigen. The ultimate aim is to convert an immunodormant tumor microenvironment into an immunostimulatory one, enabling the immune system to eradicate all tumor lesions in the body. In this review we will give an overview of different strategies, which can be exploited for the immunomodulation of the tumor microenvironment and their emerging role in the treatment of cancer patients.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah K. Maenhout
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
36
|
Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol 2018; 28:xii44-xii55. [PMID: 28945841 DOI: 10.1093/annonc/mdx237] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are the main professional antigen-presenting cells for induction of T-cell adaptive responses. Cancer cells express tumor antigens, including neoantigens generated by nonsynonymous mutations, but are poor for antigen presentation and for providing costimulatory signals for T-cell priming. Mounting evidence suggests that antigen transfer to DCs and their surrogate presentation on major histocompatibility complex class I and II molecules together with costimulatory signals is paramount for induction of viral and cancer immunity. Of the great diversity of DCs, BATF3/IRF8-dependent conventional DCs type 1 (cDC1) excel at cross-presentation of tumor cell-associated antigens. Location of cDC1s in the tumor correlates with improved infiltration by CD8+ T cells and tumor-specific T-cell immunity. Indeed, cDC1s are crucial for antitumor efficacy using checkpoint inhibitors and anti-CD137 agonist monoclonal antibodies in mouse models. Enhancement and exploitation of T-cell cross-priming by cDC1s offer opportunities for improved cancer immunotherapy, including in vivo targeting of tumor antigens to internalizing receptors on cDC1s and strategies to increase their numbers, activation and priming capacity within tumors and tumor-draining lymph nodes.
Collapse
Affiliation(s)
- A R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - A Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - F J Cueto
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid.,Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid
| | - S Garasa
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - J L Pérez-Gracia
- University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| | - A Sánchez-Arráez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - D Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid
| | - I Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona.,University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
37
|
Vola M, Mónaco A, Bascuas T, Rimsky G, Agorio CI, Chabalgoity JA, Moreno M. TLR7 agonist in combination with Salmonella as an effective antimelanoma immunotherapy. Immunotherapy 2018; 10:665-679. [PMID: 29562809 DOI: 10.2217/imt-2017-0188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM We evaluated a novel approach combining the use of attenuated Salmonella immunotherapy with a Toll-like receptor agonist, imiquimod, in B16F1 melanoma-bearing mice. MATERIALS & METHODS B16F1 melanoma-bearing mice were daily treated with topical imiquimod in combination with one intratumoral injection of attenuated Salmonella enterica serovar Typhimurium LVR01. RESULTS The combined therapy resulted in retarded tumor growth and prolonged survival. Combination treatment led to an enhancement in the expression of pro-inflammatory cytokines and chemokines in the tumor microenvironment, with a Th1-skewed profile, resulting in a broad antitumor response. The induced immunity was effective in controlling the occurrence of metastasis. CONCLUSION Salmonella LVR01 immunotherapy in combination with imiquimod is a novel approach that could be considered as an effective antimelanoma therapy.
Collapse
Affiliation(s)
- Magdalena Vola
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay.,Cátedra de Dermatología, Hospital de Clínicas 'Dr. Manuel Quintela'. Facultad de Medicina, Universidad de la República. Av. Italia s/n, Montevideo, Uruguay
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - Thais Bascuas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - Geraldine Rimsky
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - Caroline Isabel Agorio
- Cátedra de Dermatología, Hospital de Clínicas 'Dr. Manuel Quintela'. Facultad de Medicina, Universidad de la República. Av. Italia s/n, Montevideo, Uruguay
| | - José Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| |
Collapse
|
38
|
Matas-Nadal C, Sòria X, García-de-la-Fuente MR, Huerva V, Ortega E, Vilardell F, Gatius S, Casanova JM, Martí RM. Immunocryosurgery as monotherapy for lentigo maligna or combined with surgical excision for lentigo maligna melanoma. J Dermatol 2018; 45:564-570. [DOI: 10.1111/1346-8138.14248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Clara Matas-Nadal
- Department of Dermatology; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Spain
| | - Xavier Sòria
- Department of Dermatology; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Spain
| | | | - Valentín Huerva
- Department of Ophthalmology; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Spain
| | - Eugenia Ortega
- Department of Oncology; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Spain
| | - Felip Vilardell
- Department of Pathology and Molecular Genetics; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Lleida Spain
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Lleida Spain
| | - Josep M. Casanova
- Department of Dermatology; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Spain
| | - Rosa M. Martí
- Department of Dermatology; Hospital Universitari Arnau de Vilanova; University of Lleida; IRBLleida Spain
- Centre of Biomedical Research on Cancer (CIBERONC); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| |
Collapse
|
39
|
Slovak R, Ludwig JM, Gettinger SN, Herbst RS, Kim HS. Immuno-thermal ablations - boosting the anticancer immune response. J Immunother Cancer 2017; 5:78. [PMID: 29037259 PMCID: PMC5644150 DOI: 10.1186/s40425-017-0284-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
The use of immunomodulation to treat malignancies has seen a recent explosion in interest. The therapeutic appeal of these treatments is far reaching, and many new applications continue to evolve. In particular, immune modulating drugs have the potential to enhance the systemic anticancer immune effects induced by locoregional thermal ablation. The immune responses induced by ablation monotherapy are well documented, but independently they tend to be incapable of evoking a robust antitumor response. By adding immunomodulators to traditional ablative techniques, several researchers have sought to amplify the induced immune response and trigger systemic antitumor activity. This paper summarizes the work done in animal models to investigate the immune effects induced by the combination of ablative therapy and immunomodulation. Combination therapy with radiofrequency ablation, cryoablation, and microwave ablation are all reviewed, and special attention has been paid to the addition of checkpoint blockades.
Collapse
Affiliation(s)
- Ryan Slovak
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06510, USA.,University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Johannes M Ludwig
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06510, USA.,Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Scott N Gettinger
- Division of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, 330 Cedar Street, New Haven, CT, 06510, USA
| | - Roy S Herbst
- Division of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06510, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, 330 Cedar Street, New Haven, CT, 06510, USA
| | - Hyun S Kim
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06510, USA. .,Division of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, New Haven, 330 Cedar Street, New Haven, CT, 06510, USA. .,Yale School of Medicine, Yale Cancer Center, 333 Cedar Street, P.O. Box 208042, New Haven, CT, 06520, USA.
| |
Collapse
|
40
|
Takaki H, Cornelis F, Kako Y, Kobayashi K, Kamikonya N, Yamakado K. Thermal ablation and immunomodulation: From preclinical experiments to clinical trials. Diagn Interv Imaging 2017; 98:651-659. [DOI: 10.1016/j.diii.2017.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
|
41
|
Cytoreductive cryosurgery in patients with bone metastatic prostate cancer: A retrospective analysis. Kaohsiung J Med Sci 2017; 33:609-615. [PMID: 29132550 DOI: 10.1016/j.kjms.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The current study is a retrospective analysis of 49 patients with bone metastatic prostate cancer: 26 receiving androgen deprivation therapy (ADT) alone versus 23 receiving cytoreductive cryosurgery of the primary tumor plus ADT treatment. Progression-free survival (PFS) was the primary outcome variable, and Cox proportional hazards regression analysis was used to identify predictors for PFS. The baseline characteristics were generally comparable between the 2 groups. Median follow-up time was 41 months (range 24-56) and 37 months (range 19-53) in ADT alone group and cryosurgery groups, respectively. Patients receiving cryosurgery had significantly longer PFS (35 vs 25 months, P = 0.0027) and time to castration resistance (36 vs 25 months, P = 0.0011). Cox multivariate analysis associated longer PFS with the following factors: cryosurgery (HR0.207, 95% CI 0.094-0.456), lower prostate specific antigen at diagnosis (≤100 ng/ml, HR0.235, 95% CI 0.072-0.763) and lower Gleason score (≤7, HR0.195, 95% CI 0.077-0.496). Cryosurgery reduced the risk of progression by 79.3%. In conclusion, cytoreductive cryosurgery of the primary tumor in patients with bone metastatic prostate cancer could reduce the risk of progression and delay time to castration-resistant prostate cancer.
Collapse
|
42
|
Aznar MA, Tinari N, Rullán AJ, Sánchez-Paulete AR, Rodriguez-Ruiz ME, Melero I. Intratumoral Delivery of Immunotherapy-Act Locally, Think Globally. THE JOURNAL OF IMMUNOLOGY 2017; 198:31-39. [PMID: 27994166 DOI: 10.4049/jimmunol.1601145] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022]
Abstract
Immune mechanisms have evolved to cope with local entry of microbes acting in a confined fashion but eventually inducing systemic immune memory. Indeed, in situ delivery of a number of agents into tumors can mimic in the malignant tissue the phenomena that control intracellular infection leading to the killing of infected cells. Vascular endothelium activation and lymphocyte attraction, together with dendritic cell-mediated cross-priming, are the key elements. Intratumoral therapy with pathogen-associated molecular patterns or recombinant viruses is being tested in the clinic. Cell therapies can be also delivered intratumorally, including infusion of autologous dendritic cells and even tumor-reactive T lymphocytes. Intralesional virotherapy with an HSV vector expressing GM-CSF has been recently approved by the Food and Drug Administration for the treatment of unresectable melanoma. Immunomodulatory monoclonal Abs have also been successfully applied intratumorally in animal models. Local delivery means less systemic toxicity while focusing the immune response on the malignancy and the affected draining lymph nodes.
Collapse
Affiliation(s)
- M Angela Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Nicola Tinari
- Department of Experimental and Clinical Sciences, G. D'Annunzio University and Foundation, Chieti 66100, Italy
| | - Antonio J Rullán
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona 08908, Spain; and
| | - Alfonso R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - María E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.,University Clinic, University of Navarra and Health Research Institute of Navarra, 31008 Pamplona, Spain
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; .,University Clinic, University of Navarra and Health Research Institute of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
43
|
Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases. Cancer Immunol Immunother 2016; 65:1201-12. [PMID: 27522582 DOI: 10.1007/s00262-016-1880-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Infiltration of cancers by T cells is associated with improved patient survival and response to immune therapies; however, optimal approaches to induce T cell infiltration of tumors are not known. This study was designed to assess whether topical treatment of melanoma metastases with the TLR7 agonist imiquimod plus administration of a multipeptide cancer vaccine will improve immune cell infiltration of melanoma metastases. PATIENTS AND METHODS Eligible patients were immunized with a vaccine comprised of 12 melanoma peptides and a tetanus toxoid-derived helper peptide, and imiquimod was applied topically to metastatic tumors daily. Adverse events were recorded, and effects on the tumor microenvironment were evaluated from sequential tumor biopsies. T cell responses were assessed by IFNγ ELIspot assay and T cell tetramer staining. Patient tumors were evaluated for immune cell infiltration, cytokine and chemokine production, and gene expression. RESULTS AND CONCLUSIONS Four eligible patients were enrolled, and administration of imiquimod and vaccination were well tolerated. Circulating T cell responses to the vaccine was detected by ex vivo ELIspot assay in 3 of 4 patients. Treatment of metastases with imiquimod induced immune cell infiltration and favorable gene signatures in the patients with circulating T cell responses. This study supports further study of topical imiquimod combined with vaccines or other immune therapies for the treatment of melanoma.
Collapse
|
44
|
Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response? Gastroenterol Res Pract 2016; 2016:9251375. [PMID: 27051417 PMCID: PMC4802022 DOI: 10.1155/2016/9251375] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/16/2016] [Indexed: 02/08/2023] Open
Abstract
Percutaneous image-guided ablation is an increasingly common treatment for a multitude of solid organ malignancies. While historically these techniques have been restricted to the management of small, unresectable tumors, there is an expanding appreciation for the systemic effects these locoregional interventions can cause. In this review, we summarize the mechanisms of action for the most common thermal ablation modalities and highlight the key advances in knowledge regarding the interactions between thermal ablation and the immune system.
Collapse
|
45
|
Wu F. Heat-Based Tumor Ablation: Role of the Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:131-53. [DOI: 10.1007/978-3-319-22536-4_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Rivas-Tolosa N, Ortiz-Brugués A, Toledo-Pastrana T, Baradad M, Traves V, Soriano V, Sanmartín V, Requena C, Martí R, Nagore E. Local cryosurgery and imiquimod: A successful combination for the treatment of locoregional cutaneous metastasis of melanoma: A case series. J Dermatol 2015; 43:553-6. [PMID: 26660713 DOI: 10.1111/1346-8138.13197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022]
Abstract
Locoregional cutaneous metastases of melanoma (LCMM) represent a therapeutic challenge. Many treatment options are available with varying results. The combination of cryotherapy and imiquimod, two treatments with a possible synergistic effect, has not yet been described for treating this disease. In this paper, we aimed to show the response of LCMM to cryotherapy combined with topical imiquimod 5%. A retrospective review of 20 patients diagnosed with LCMM and treated with cryotherapy combined with topical imiquimod 5% between November 2000 and May 2014 at three institutions was performed. The locoregional cutaneous response was evaluated. After a mean of five sessions, 13 patients (65%) responded to treatment, eight (40%) of these completely and five (25%) partially. Systemic disease progressed in 16 (80%) patients. Cryotherapy followed by topical imiquimod 5% is simple to apply, has minimal adverse effects and provides response rates similar to other, more complex treatment options.
Collapse
Affiliation(s)
- Nancy Rivas-Tolosa
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | | | | | - Manel Baradad
- Department of Dermatology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | - Víctor Traves
- Department of Pathology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Virtudes Soriano
- Department of Medical Oncology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Verónica Sanmartín
- Department of Dermatology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Rosa Martí
- Department of Dermatology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| |
Collapse
|
47
|
Baust JG, Bischof JC, Jiang-Hughes S, Polascik TJ, Rukstalis DB, Gage AA, Baust JM. Re-purposing cryoablation: a combinatorial 'therapy' for the destruction of tissue. Prostate Cancer Prostatic Dis 2015; 18:87-95. [PMID: 25622539 DOI: 10.1038/pcan.2014.54] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 11/09/2022]
Abstract
It is now recognized that the tumor microenvironment creates a protective neo-tissue that isolates the tumor from the various defense strategies of the body. Evidence demonstrates that, with successive therapeutic attempts, cancer cells acquire resistance to individual treatment modalities. For example, exposure to cytotoxic drugs results in the survival of approximately 20-30% of the cancer cells as only dividing cells succumb to each toxic exposure. With follow-up treatments, each additional dose results in tumor-associated fibroblasts secreting surface-protective proteins, which enhance cancer cell resistance. Similar outcomes are reported following radiotherapy. These defensive strategies are indicative of evolved capabilities of cancer to assure successful tumor growth through well-established anti-tumor-protective adaptations. As such, successful cancer management requires the activation of multiple cellular 'kill switches' to prevent initiation of diverse protective adaptations. Thermal therapies are unique treatment modalities typically applied as monotherapies (without repetition) thereby denying cancer cells the opportunity to express defensive mutations. Further, the destructive mechanisms of action involved with cryoablation (CA) include both physical and molecular insults resulting in the disruption of multiple defensive strategies that are not cell cycle dependent and adds a damaging structural (physical) element. This review discusses the application and clinical outcomes of CA with an emphasis on the mechanisms of cell death induced by structural, metabolic, vascular and immune processes. The induction of diverse cell death cascades, resulting in the activation of apoptosis and necrosis, allows CA to be characterized as a combinatorial treatment modality. Our understanding of these mechanisms now supports adjunctive therapies that can augment cell death pathways.
Collapse
Affiliation(s)
- J G Baust
- 1] Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA [2] Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - J C Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S Jiang-Hughes
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - T J Polascik
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - D B Rukstalis
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - A A Gage
- Department of Surgery, State University of New York at Buffalo, Medical School, Buffalo, NY, USA
| | | |
Collapse
|
48
|
Abstract
Cryoablation is increasingly being used as a primary treatment for localized cancers and as a salvage therapy for metastatic cancers. Anecdotal clinical reports and animal experiments have confirmed an induction of systemic antitumor immune response by tumor cryoablation. To capitalize on the stimulatory effects of cryoablation for cancer immunotherapy, this response must be intensified using other immunomodulatory agents. This article reviews the preclinical and clinical evidence and discusses the mechanism of the antitumor immune response generated by cryoablation. The rationale and evidence behind several immunotherapy approaches that can be combined with cryoablation to devise a cryoimmunotherapeutic strategy with a potential to impact the progression of metastatic disease are described.
Collapse
Affiliation(s)
- Abhinav Sidana
- Division of Urology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Suite 2513, Cincinnati, OH 45229, USA.
| |
Collapse
|
49
|
Seth A, Heo MB, Lim YT. Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 2014; 35:7992-8001. [PMID: 24954733 DOI: 10.1016/j.biomaterials.2014.05.076] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/26/2014] [Indexed: 12/21/2022]
Abstract
Advanced anti-cancer regimens are being introduced for more effective cancer treatment with improved life expectancy. In this research, immuno-stimulating agent toll-like receptor-7 (TLR-7) agonist-imiquimod and low dose chemotherapeutic agent-paclitaxel were synergized to demonstrate tumor therapy along with anti-tumor memory effect. Both therapeutic agents being water insoluble were dispersed in water with the help of water soluble polymer: poly (γ-glutamic acid) (γ-PGA) using a co-solvent systems leading to formation of micro-dispersions of drugs. Paclitaxel and imiquimod formed crystalline microstructures in the size range of 2-3 μm and were stably dispersed in γ-PGA matrix for more than 6 months. Paclitaxel and combination of paclitaxel and imiquimod had significant tumor killing effect in-vitro on various tumor cell lines, while antigen presenting cells (dendritic cells-DCs) treated with the same concentration of imiquimod along with the combination led to enhanced proliferation (250%). In DCs, enhanced secretion of pro-inflammatory and Th1 cytokines was observed in cells co-treated with paclitaxel and imiquimod dispersed in γ-PGA. When administered by intra-tumoral injection in mouse melanoma tumor model, the treatment with combination exemplified drastic inhibition of tumor growth leading to 70% survival as compared to individual components with 0% survival at day 41. The anti-tumor response generated was also found to have systemic memory response since the vaccinated mice significantly deferred secondary tumor development at distant site 6 weeks after treatment. The relative number and activation status of DCs in-vivo was found to be dramatically increased in case of mice treated with combination. The dramatic inhibition of tumor treated with combination is expected to be mediated by both chemotherapeutic killing of tumor cells followed by uptake of released antigen by the DCs and due to enhanced proliferation and activation of the DCs.
Collapse
Affiliation(s)
- Anushree Seth
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Min Beom Heo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
50
|
Bai JF, Liu P, Xu LX. Recent Advances in Thermal Treatment Techniques and Thermally Induced Immune Responses Against Cancer. IEEE Trans Biomed Eng 2014; 61:1497-505. [DOI: 10.1109/tbme.2014.2314357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|