1
|
Batista M, Murphy P, Igoshin OA, Perepelitsa M, Timofeyev I. Role of non-exponential reversal times in aggregation models of bacterial populations. Math Biosci 2025; 383:109418. [PMID: 40058455 DOI: 10.1016/j.mbs.2025.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/03/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Individual bacteria typically follow somewhat simple rules of motion, but collective behavior can exhibit complex behavioral patterns. For instance, the formation and dispersal of aggregates of reversing bacteria in biofilms are primarily driven by coordinated motion among cells. Many mathematical models of aggregation assume that cells have no memory, e.g., the time between their behavior changes, such as direction reversals, is exponentially distributed. However, in practice, the distribution is quite distinct from exponential. Therefore, in this paper, we analyze numerically the importance of non-exponential reversal times in 1D agent-based and kinetic models of aggregation. In particular, we consider these models in a practical parameter regime by fitting a Gamma distribution to represent the run times of myxobacteria and study their collective behavior with exponential and non-exponential reversal times. We demonstrate that non-exponential reversal times aid aggregation and result in tighter aggregates. We compare and contrast the behavior of agent-based and kinetic models that consider aggregation driven by chemotaxis. Thus, incorporating non-exponential reversal times into models of aggregation can be particularly important for reproducing experimental data, such as aggregate persistence and dispersal. These results provide a simple example of how the existence of memory helps bacteria coordinate their behaviors.
Collapse
Affiliation(s)
- Michael Batista
- University of Houston, Department of Mathematics, Houston, TX, USA
| | - Patrick Murphy
- San Jose State University, Department of Mathematics and Statistics, San Francisco, CA, USA
| | - Oleg A Igoshin
- Rice University, Departments of Bioengineering, of Biosciences, and of Chemistry; Center for Theoretical Biological Physics and Rice Synthetic Biology Institute, Houston, TX, USA
| | | | - Ilya Timofeyev
- University of Houston, Department of Mathematics, Houston, TX, USA.
| |
Collapse
|
2
|
Xu F, Zhang Q, Liu Y, Tang R, Li H, Yang H, Lin L. The role of exosomes derived from various sources in facilitating the healing of chronic refractory wounds. Pharmacol Res 2025; 216:107753. [PMID: 40311956 DOI: 10.1016/j.phrs.2025.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Chronic refractory wounds (CRWs) represent a common and challenging issue in clinical practice, including diabetic foot ulcers, pressure ulcers, venous ulcers, and arterial ulcers. These wounds significantly impact patients' quality of life and may lead to severe consequences such as amputation. Their treatment requires a comprehensive consideration of both the patient's overall physical condition and the local wound situation. The major challenges in treatment include complex pathogenesis, a long treatment cycle, a high recurrence rate, and heavy economic pressure on the patients. Exosomes represent an emerging therapeutic modality with characteristics such as low immunogenicity, good biostability, and high targeting efficiency in the treatment of diseases. Exosomes derived from different sources exhibit heterogeneity, demonstrating their respective advantages and unique properties in treatment. This article delves into the potential applications and mechanisms of action of exosomes from various sources in the treatment of CRWs, aiming to provide new perspectives and ideas for the management of such wounds.
Collapse
Affiliation(s)
- Fengdan Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiling Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Longfei Lin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Tay JQ, Riches-Suman K, Graham AM, Mahajan AL, Thornton MJ. Divergent effects of vitamin D 3 on human dermal fibroblasts and keratinocytes in wound repair: Implications for therapeutic targeting in tissue remodelling and scarring. J Plast Reconstr Aesthet Surg 2025; 105:323-335. [PMID: 40344806 DOI: 10.1016/j.bjps.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Vitamin D is known to regulate inflammation and immunity, suggesting it may play a role in wound healing. However, its mechanism of action in key skin cell types-keratinocytes and fibroblasts-involved in wound repair is poorly understood. OBJECTIVES This study aimed to elucidate the impact of vitamin D3 and its precursors on keratinocyte and fibroblast behaviour during wound healing using human ex vivo skin explant and primary cell culture models. METHODS The rate of closure of incisional wounds made on human ex vivo skin explants treated with the vitamin D3 precursor, cholecalciferol, or the active form 1,25(OH)2D3 was measured over 6 days in culture. Primary cultures of human keratinocytes and dermal fibroblasts were propagated from female facial skin, and changes in gene expression and physiological responses to cholecalciferol or 1,25(OH)2D3 were assessed using various techniques, including scratch wound assays, quantitative reverse transcription polymerase chain reaction, zymography, and immunocytochemistry. RESULTS 1,25(OH)2D3 significantly increased the early wound closure rate in ex vivo human skin explants, while cholecalciferol had no effect. 1,25(OH)2D3 accelerated keratinocyte migration but inhibited fibroblast migration and their transition into pro-fibrotic myofibroblasts, reducing extracellular matrix remodelling. Using small interfering RNA, it was established that responses were mediated by vitamin D receptor signalling. CONCLUSIONS This study highlighted the divergent effects of vitamin D on keratinocyte and fibroblast wound responses, i.e., promoting re-epithelialisation, while potentially suppressing aberrant fibrosis. Optimising vitamin D status may facilitate wound repair while minimising scarring, which has implications for treating non-healing wounds and excessive scarring disorders.
Collapse
Affiliation(s)
- Jing Qin Tay
- Plastic Surgery and Burns Research Unit, Centre for Skin Sciences, University of Bradford, Bradford BD7 1DP, UK; Department of Plastic and Reconstructive Surgery, Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK.
| | - Kirsten Riches-Suman
- Plastic Surgery and Burns Research Unit, Centre for Skin Sciences, University of Bradford, Bradford BD7 1DP, UK; Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Anne M Graham
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; John Innes Centre, Norwich Biosciences Institute, Norwich, Norfolk NR4 7UH, UK
| | - Ajay L Mahajan
- Plastic Surgery and Burns Research Unit, Centre for Skin Sciences, University of Bradford, Bradford BD7 1DP, UK; Department of Plastic and Reconstructive Surgery, Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK
| | - M Julie Thornton
- Plastic Surgery and Burns Research Unit, Centre for Skin Sciences, University of Bradford, Bradford BD7 1DP, UK; Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
4
|
Truzzi F, Tibaldi C, Dilloo S, Saltari A, Levesque MP, Arcangeli F, Garzi A, Ruggiero G, Dinelli G. Topical Administration of Vitamin D2 Combined with Colloidal Silver Nanoparticles Promotes Wound Repair and Protection Against Skin Irritation and UVB Irradiation in 3D Reconstructed Human Skin Models. Pharmaceutics 2025; 17:472. [PMID: 40284467 PMCID: PMC12030705 DOI: 10.3390/pharmaceutics17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: There is a great demand for novel, multipurpose, natural skin-care products in the global skin repair and sun protection markets. Within this framework, the potential benefits of topical Vitamin D2 (VD2) administration in combination with silver nanoparticles (AgNPs) were examined. Methods: Evaluating the efficacy of the VD2+AgNP cream in wound healing, skin irritation and UVB irradiation protection necessitated preclinical testing using reconstructed human skin equivalent models (prepared from human foreskins) containing both a fully stratified epidermal layer and underlying dermis. Results: Application of the cream significantly improved wound healing by stimulating keratinocyte re-epithelialization and dermal fibroblast migration in models subjected to full-thickness (scratch and biopsy punch) wounds, compared to untreated models. The VD2+AgNP cream, administered prior to the induction of skin irritation by 5% sodium dodecyl sulfate (SDS) afforded protection by ameliorating cell viability epidermal thickness and interleukin-1alpha levels. UVB exposure (50 mJ/cm2) significantly reduced cell viability and epidermal thickness (associated with increased epidermal breakage), as well as basal layer Ki67 and supra-basal layer involucrin expression, compared to the CTRL sham-irradiated models. The cream administered prior to UVB irradiation (protective capacity) showed greater efficacy in minimizing epidermal damage. This was reflected by significantly higher Ki67 and involucrin expression, as well as lower epidermal breakage, compared to models where the cream was applied following UVB irradiation (curative capacity). Conclusions: The VD2+AgNP cream shows multipurpose potential in skin protection. The underlying molecular mechanisms remain to be investigated.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (C.T.); (S.D.); (G.D.)
| | - Camilla Tibaldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (C.T.); (S.D.); (G.D.)
| | - Silvia Dilloo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (C.T.); (S.D.); (G.D.)
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, 8091 Zurich, Switzerland; (A.S.); (M.P.L.)
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, 8091 Zurich, Switzerland; (A.S.); (M.P.L.)
| | - Fabio Arcangeli
- Department of Dermatology, Guglielmo Marconi University, 00193 Rome, Italy;
| | - Alfredo Garzi
- Department of Medicine and Surgery, University of Salerno, 84084 Salerno, Italy;
| | - Giuseppe Ruggiero
- National Head of the Dermatology Study Group of the Italian Federation of General Pediatricians, 00193 Rome, Italy;
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (C.T.); (S.D.); (G.D.)
| |
Collapse
|
5
|
Chocarro-Wrona C, Pleguezuelos-Beltrán P, López de Andrés J, Antich C, de Vicente J, Jiménez G, Arias-Santiago S, Gálvez-Martín P, López-Ruiz E, Marchal JA. A bioactive three-layered skin substitute based on ECM components effectively promotes skin wound healing and regeneration. Mater Today Bio 2025; 31:101592. [PMID: 40092225 PMCID: PMC11910132 DOI: 10.1016/j.mtbio.2025.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
To overcome the limitations of conventional skin tissue engineering (TE), 3D biofabrication approaches are being developed. However, tissue mimicry should be further improved in skin models. Here, we developed and characterized biomimetic hydrogels to obtain a biofabricated three-layered (BT) skin substitute based on the main components found in the epidermal, dermal, and hypodermal skin layers. Hydrogels for dermal and hypodermal skin layers were based on a mix of agarose and type I collagen, supplemented with skin-related extracellular matrix (ECM) components (dermatan sulfate, hyaluronic acid, and elastin) and loaded with human dermal fibroblasts (hDFs) or human mesenchymal stem/stromal cells (hMSCs), respectively. The epidermal hydrogel was formulated using type I collagen supplemented with keratin and sphingolipids, and seeded with human epidermal keratinocytes (hEKs). Physicochemical results revealed adequate viscosity, gelling times, and pH for each hydrogel solution. The BT Skin also showed good swelling and degradation kinetics, and mechanical properties in a similar range of human skin. The hydrogels and BT Skin demonstrated stable cell viability and metabolic activity, as well as intercellular communication through the release of growth factors. Moreover, the BT Skin demonstrated controlled inflammation in vivo, and produced results comparable to autografting in a mouse skin wound model. This bioactive and biomimetic three-layered BT Skin has a composition that attempts to mimic the natural ECM of the skin, formulated with the characteristic cells and biomolecules present in each skin layer, and offers promising properties for its clinical application in the treatment of patients with skin injuries.
Collapse
Affiliation(s)
- Carlos Chocarro-Wrona
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Paula Pleguezuelos-Beltrán
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
- National Center for Advancing Translational Sciences, National Institute of Health, 28050, Rockville, MD, USA
| | - Juan de Vicente
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- F2N2Lab, Magnetic Soft Matter Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| | - Salvador Arias-Santiago
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Dermatology Department, Hospital Universitario Virgen de las Nieves, 18012, Granada, Spain
- Dermatology Department, Faculty of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18016, Granada, Spain
| |
Collapse
|
6
|
Gonçalves A, Machado R, Gomes AC. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. BIOMATERIALS ADVANCES 2025; 169:214150. [PMID: 39693870 DOI: 10.1016/j.bioadv.2024.214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine that can significantly enhance wound healing. Here, we report on the use of nanoparticles (NPs) formulated from a genetically engineered A200_hOSM protein polymer, which combines an elastin-like recombinamer (A200) with human OSM (hOSM) in the same molecule, aiming at enhancing wound healing processes. A200_hOSM NPs were obtained by self-assembly and evaluated for their bioactivity in human keratinocytes and fibroblasts. The NPs demonstrated superior efficacy in promoting cell proliferation in a dose-dependent manner, exhibiting nearly threefold greater proliferation at 48 and 72 h, compared to cells treated with commercial hOSM. Moreover, the NPs stimulated cell migration and collagen production through activation of JAK/STAT3 signaling. They also promoted the production of IL-6 and IL-8, pro-inflammatory cytokines with a critical role for wound healing. Promotion of keratinocyte proliferation and differentiation were further validated in non-commercial 3D skin equivalents. The A200_hOSM NPs revealed potential in accelerating wound healing, evidenced by reduced wound size and a thicker epidermal layer. This system represents a significant advancement in the field of bioinspired biomaterials by improving cytokine bioavailability, allowing for localized therapy and offering a cost-effective strategy for employing hOSM in wound healing management.
Collapse
Affiliation(s)
- Anabela Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
7
|
Clavel S, Denizot C, Boëzennec B, Turzi A, Albache N. A Randomised Controlled Clinical Study Comparing the Efficacy and Safety of an Autologous Standardised Leukocyte-Poor Platelet Gel With Standard Care for the Treatment of Chronic Neuropathic Diabetic Foot Ulcers. Int Wound J 2025; 22:e70495. [PMID: 40240289 PMCID: PMC12003047 DOI: 10.1111/iwj.70495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This randomised controlled clinical trial compared the efficacy of a standardised autologous platelet gel (RegenWound gel) (n = 48) with a standard care treatment (hydrocellular or hydrocolloid dressing) (n = 48) for the treatment of hard-to-heal foot ulcers in type 1 or 2 diabetes mellitus patients > 18 years old. The primary outcomes were the percentage of ulcers healed 6 weeks after treatment commenced. The secondary outcomes were the average healing time, the time course of the healing process, the local tolerance, and the acceptability of the treatment by the patient compared to the standard treatment. At the 6 weeks end-of-treatment visit (ETV), 56.5% of the patients in the RegenWound gel group and 20.0% of the patients in the control group had completely healed. Healing continued to evolve after the ETV and reached 77.3% at end-of-study visit 2 (12 weeks) in the RegenWound gel group, compared to 35.1% for the control group. The treatment was well tolerated and safe. RegenWound gel could be an effective treatment for diabetic foot ulcers, with most patients being healed within 6 weeks of treatment, and on average 1 to 2 treatments being needed. Trial Registration: ISRCTN10032417.
Collapse
Affiliation(s)
- Sylvaine Clavel
- Department of EndocrinologySOS Group–Hotel DieuLe CreusotFrance
| | | | | | | | - Nizar Albache
- Department of EndocrinologySOS Group–Hotel DieuLe CreusotFrance
| |
Collapse
|
8
|
Han C, Yuan H, Chen AK, DiPietro LA, Chen L. Differential Temperature-Induced Responses in Immortalized Oral and Skin Keratinocytes. Int J Mol Sci 2025; 26:2851. [PMID: 40243437 PMCID: PMC11988828 DOI: 10.3390/ijms26072851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The epidermis of the skin and oral mucosa is constantly exposed to various environmental stimuli, including temperature changes. In particularly extreme conditions, such as excess heat or cold, significant injury may occur. Oral and skin keratinocytes exhibit tissue-specific differences in wound healing outcomes and the transcriptomic response to injury. This study investigated if skin and oral keratinocytes also have differential responses to heat- and cold-induced injury. Oral keratinocytes (TIGKs) were found to exhibit an enhanced viability following heat-induced injury compared to skin keratinocytes (HaCaTs). However, there were no discernible differences between skin and oral keratinocyte viability following cold-induced injury. To examine the transcriptomic differences between skin and oral keratinocytes in response to temperature-induced injury, we generated an mRNA-sequencing gene expression dataset. Differentially expressed genes (DEGs) including heat shock proteins (HSPs) were identified between HaCaTs and TIGKs at baseline (37 °C) and after heat- (60 °C) or cold-induced (-25 °C) injury. Our comparative analyses suggest that skin and oral keratinocytes exhibit transcriptomic differences at baseline and in their responses to heat or cold exposure. The enhanced heat tolerance of TIGKs relative to HaCaTs may be due to an advantageous expression of a subset of HSPs at baseline in TIGKs. Our work also provides a source of skin and oral keratinocyte gene expression data following heat- and cold-induced injury that can be used for future analyses.
Collapse
Affiliation(s)
| | | | | | | | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, IL 60612, USA; (C.H.); (H.Y.); (A.K.C.); (L.A.D.)
| |
Collapse
|
9
|
Kocourková K, Kadlečková M, Wrzecionko E, Mikulka F, Knechtová E, Černá P, Humenik M, Minařík A. Silk Fibroin Surface Engineering Using Phase Separation Approaches for Enhanced Cell Adhesion and Proliferation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13702-13712. [PMID: 39967507 PMCID: PMC11891832 DOI: 10.1021/acsami.5c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Due to excellent mechanical properties and biocompatibility, materials based on silk fibroin are increasingly included in advanced biomedical research and applications. However, their poor supporting properties for cell adhesion and proliferation represent limiting factors of the utilization. To eliminate this deficiency, we developed a series of phase-separation approaches allowing for tunable texturing of planar and 3D printed fibroin surfaces from nano to macro levels. The formation of surface structures presented is based on a combination of good and poor solvents, whereas no potentially problematic templates or additives, diminishing biocompatibility of the resulting material, are required. A critical factor in obtaining and scaling of the textures is control over the degree of transformation of fibroin secondary structures between prevalently amorphous Silk I and semicrystalline Silk II forms before and during surface treatment. Employing a set of optimized procedures, selectively or hierarchically structured fibroin surfaces can be prepared at the nano, micro, and macro level, which are characterized by long-term stability in physiological environments, allowing enhanced adhesion and proliferation of human keratinocytes as well as skin fibroblast cultivations.
Collapse
Affiliation(s)
- Karolína Kocourková
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Markéta Kadlečková
- Centre
of Polymer Systems, Tomas Bata University
in Zlín, Třída
Tomáš Bati 5678, 760 01 Zlín, Czech Republic
| | - Erik Wrzecionko
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Filip Mikulka
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Eliška Knechtová
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Petronela Černá
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Martin Humenik
- Department
of Biomaterials, Faculty of Engineering Science, University Bayreuth, Prof.-Rüdiger-Bormann. Str. 1, 95447 Bayreuth, Germany
| | - Antonín Minařík
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
- Centre
of Polymer Systems, Tomas Bata University
in Zlín, Třída
Tomáš Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
10
|
Choi W, Park DJ, Dorschner RA, Nakatsutsumi K, Yi M, Eliceiri BP. CDK1-loaded extracellular vesicles promote cell cycle to reverse impaired wound healing in diabetic obese mice. Mol Ther 2025; 33:1118-1133. [PMID: 39865653 PMCID: PMC11897770 DOI: 10.1016/j.ymthe.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
Small extracellular vesicles (sEVs) mediate intercellular signaling to coordinate the proliferation of cell types that promote re-epithelialization of skin following injury. Cyclin-dependent kinase 1 (CDK1) drives cell division and is a key regulator of entry to the cell cycle. To understand the potential of sEV-mediated delivery of CDK1 to reverse impaired wound healing, we generated CDK1-loaded sEVs (CDK1-sEVs) and evaluated their ability to mediate cell proliferation, re-epithelialization, and downstream signaling responses in the wound bed. We found that treatment of human keratinocytes with CDK1-sEVs increased phosphorylation of the CDK1 target, eukaryotic translation inhibition factor 4E-binding protein 1 (4E-BP1), and histone H3 within 24 h via AKT and ERK phosphorylation, driving increased proliferation and cell migration. Treatment of the wound bed of diabetic obese mice, a model of delayed wound healing, with a single dose of CDK1-sEVs accelerated wound closure, increased re-epithelialization, and promoted the proliferation of keratinocytes. These studies show that delivery of CDK1 by sEVs can stimulate selective and transient proliferation of cell types that increase re-epithelialization and promote proliferation of keratinocytes to accelerate wound healing.
Collapse
Affiliation(s)
- Wooil Choi
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Jun Park
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Keita Nakatsutsumi
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle Yi
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Chen L, Wu P, Zhu Y, Luo H, Tan Q, Chen Y, Luo D, Chen Z. Electrospinning strategies targeting fibroblast for wound healing of diabetic foot ulcers. APL Bioeng 2025; 9:011501. [PMID: 40027546 PMCID: PMC11869202 DOI: 10.1063/5.0235412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
The high incidence and prevalence of diabetic foot ulcers (DFUs) present a substantial clinical and economic burden, necessitating innovative therapeutic approaches. Fibroblasts, characterized by their intrinsic cellular plasticity and multifunctional capabilities, play key roles in the pathophysiological processes underlying DFUs. Hyperglycemic conditions lead to a cascade of biochemical alterations that culminate in the dysregulation of fibroblast phenotype and function, which is the primary cause of impaired wound healing in DFUs. Biomaterials, particularly those engineered at the nanoscale, hold significant promise for enhancing DFU treatment outcomes. Electrospun nanofiber scaffolds, with their structural and compositional similarities to the natural extracellular matrix, serve as an effective substrate for fibroblast adhesion, proliferation, and migration. This review comprehensively summarizes the biological behavior of fibroblasts in DFUs and the mechanism mediating wound healing. At the same time, the mechanism of biological materials, especially electrospun nanofiber scaffolds, to improve the therapeutic effect by regulating the activity of fibroblasts was also discussed. By highlighting the latest advancements and clinical applications, we aim to provide a clear perspective on the future direction of DFU treatment strategies centered on fibroblast-targeted therapies.
Collapse
Affiliation(s)
| | - Ping Wu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yu Zhu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Han Luo
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Qiang Tan
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yongsong Chen
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zhiyong Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Park JM, Nam GB, Lee ES, Kim HM, Kim H, Myoung K, Lee JE, Baek HS, Ko J, Lee CS. Effects of Chlorella protothecoides-derived polydeoxyribonucleotides on skin regeneration and wound healing. Arch Dermatol Res 2025; 317:483. [PMID: 39994014 DOI: 10.1007/s00403-025-03885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025]
Abstract
The skin acts as a crucial barrier and, upon injury, initiates complex wound-healing processes involving various cell types. Polydeoxyribonucleotides (PDRNs) are well-known for their efficacy in enhancing skin regeneration and wound healing. This study sought to investigate the effectiveness of PDRNs derived from Chlorella protothecoides, a sustainable and scalable microalgal source, in promoting skin regeneration and wound healing. Keratinocytes and fibroblasts were used for assessing the impact of PDRNs on cell proliferation, migration, collagen synthesis, and angiogenesis. Gene expression and associated signaling pathways were also examined using RT-qPCR and Western blot analyses. Our findings demonstrated that PDRNs significantly enhanced the proliferation and migration of skin cells, upregulated growth arrest specific 6 (GAS6) and hepatocyte growth factor (HGF) expression, and increased collagen synthesis by modulating collagen type I alpha 1 (COLIA1) expression. Additionally, PDRNs enhanced angiogenesis by promoting vascular endothelial growth factor (VEGF) expression and activation of ERK, AKT, β-catenin and STAT3 pathways via an adenosine A2A receptor (A2AR)-dependent mechanism. These findings suggest that microalgal-derived PDRNs have significant potential as sustainable and effective agents for clinical and cosmetic applications aimed at improving skin health and wound healing.
Collapse
Affiliation(s)
- Jung Min Park
- Department of Senior Healthcare Major in Biopharmaceuticals, Eulji University, Sanseong-daero 553, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Gi Beag Nam
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eun-Soo Lee
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Hyung-Min Kim
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Hyuk Kim
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Kilsun Myoung
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Ji Ean Lee
- R&D Center, Morechem Co., Ltd, 605 Heungdeok IT Valley A, 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954, Korea
| | - Heung Soo Baek
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Jaeyoung Ko
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17074, Republic of Korea.
| | - Chang Seok Lee
- Department of Senior Healthcare Major in Biopharmaceuticals, Eulji University, Sanseong-daero 553, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea.
| |
Collapse
|
13
|
Zhao P, Li Y, Guo B, Liu Z, Zhang X, Liu M, Ma X. Hydrogen-Releasing Micromaterial Dressings: Promoting Wound Healing by Modulating Extracellular Matrix Accumulation Through Wnt/β-Catenin and TGF-β/Smad Pathways. Pharmaceutics 2025; 17:279. [PMID: 40142944 PMCID: PMC11944919 DOI: 10.3390/pharmaceutics17030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Wound healing is a complex and intricate biological process that involves multiple systems within the body and initiates a series of highly coordinated responses to repair damage and restore integrity and functionality. We previously identified that breathing hydrogen can significantly inhibit early inflammation, activate autologous stem cells, and promote the accumulation of extracellular matrix (ECM). However, the broader functions and downstream targets of hydrogen-induced ECM accumulation and tissue remodeling are unknown in the wound-healing process. Methods: Consequently, this thesis developed a hydrogen sustained-release dressing based on a micro storage material and reveals the mechanism of hydrogen in treating wound healing. Upon encapsulating the hydrogen storage materials, magnesium (Mg), and ammonia borane (AB), we found that SiO2@Mg exhibits superior sustained-release performance, while SiO2@AB demonstrates a higher hydrogen storage capacity. We used a C57/BL6 mouse full-thickness skin defect wound model to analyze and compare different hydrogen dressings. Results: It was identified that hydrogen dressings can significantly improve the healing rate of wounds by promoting epithelialization, angiogenesis, and collagen accumulation in wound tissue, and that the effect of slow-release dressings is better than of non-slow-release dressings. We also found that hydrogen dressing can promote transcriptome-level expression related to cell proliferation and differentiation and ECM accumulation, mainly through the Wnt1/β-catenin pathway and TGF-β1/Smad2 pathway. Conclusions: Overall, these results provide a novel insight into the field of hydrogen treatment and wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Ma
- College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China; (P.Z.); (Y.L.); (B.G.); (Z.L.); (X.Z.); (M.L.)
| |
Collapse
|
14
|
Nguyen M, Chen J, Spurgeon-Hess T, Kyoung J, Simman R. Improving partial-thickness burn pain and outcomes using cultured epithelial allografts or highly concentrated surfactant-based dressings. J Wound Care 2025; 34:S27-S32. [PMID: 39928506 DOI: 10.12968/jowc.2023.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
OBJECTIVE The prevention and treatment of burn wounds has improved over the years, leading to decreased incidence, severity and mortality. However, burn injuries, particularly partial-thickness burns, have a painful treatment course which, if not optimised, can cause undue suffering to patients and prolonged recovery. Although silver sulfadiazine has been the most commonly accepted treatment for partial-thickness burns due to its strong hindrance of infection, wide availability and low cost, it requires daily dressing changes which are labour intensive and painful. Exploring alternative techniques, such as using cultured keratinocytes, to prevent and treat burn wounds may provide a path to better optimising the path to recovery. METHOD This paper presents two cases that use two alternative treatments, either PluroGel (a gel surfactant, Medline Industries, US) or cultured keratinocytes, in the treatment of partial-thickness burns to minimise pain and enhance treatment experience. RESULTS Using surfactant-based treatments, such as the gel surfactant, in partial-thickness burns exhibited prohealing outcomes via enhanced antimicrobial effects, a strengthened physical barrier and cell salvage. CONCLUSION Using cultured keratinocytes and a highly concentrated surfactant may achieve more rapid re-epithelialisation of partial-thickness burn wounds. These alternative techniques may offer significant advancement in the quality of care in burn injury treatment.
Collapse
Affiliation(s)
- Melinda Nguyen
- University of Toledo, College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Joanna Chen
- University of Toledo, College of Medicine and Life Sciences, Toledo, Ohio, US
| | | | - Jun Kyoung
- University of Toledo, College of Medicine and Life Sciences, Toledo, Ohio, US
| | - Richard Simman
- Jobst Vascular Institute, ProMedica Health Network, Wound Care Program, Toledo, Ohio, US
- University of Toledo, College of Medicine and Life Sciences, Department of Surgery, Toledo, Ohio, US
| |
Collapse
|
15
|
Li R, Wang H, Wang X, Yang Y, Zhong K, Zhang X, Li H. MSC-EVs and UCB-EVs promote skin wound healing and spatial transcriptome analysis. Sci Rep 2025; 15:4006. [PMID: 39893214 PMCID: PMC11787299 DOI: 10.1038/s41598-025-87592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Extracellular vesicles (EVs) are important paracrine mediators derived from various cells and biological fluids, including plasma, that are capable of inducing regenerative effects by transferring bioactive molecules such as microRNAs (miRNAs). This study investigated the effect of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) isolated from umbilical cord blood and human umbilical cord plasma-derived extracellular vesicles (UCB-EVs) on wound healing and scar formation reduction. Spatial transcriptomics (ST) was used to study the effects of MSC-EVs and UCB-EVs on the heterogeneity of major cell types and wound healing pathways in mouse skin tissue. MSC-EVs and UCB-EVs were isolated using ultracentrifugation and identified using transmission electron microscopy, nanoparticle tracking analysis, and western blot. The effects of MSC-EVs and UCB-EVs on human dermal fibroblast-adult cell (HDF-a) migration and proliferation were evaluated using cell scratch assays, cell migration assays, and cell proliferation assays. In vivo, MSC-EVs and UCB-EVs were injected around full-cut wounds to evaluate their efficacy of wound healing by measuring wound closure rates and scar width and performing histological analysis. ST was performed on skin tissue samples from mice in each group after wound healing to analyze the heterogeneity of major cell types compared with the control group and investigate potential mechanisms affecting wound healing and scar formation. In vitro experiments demonstrated that MSC-EVs and UCB-EVs promoted the proliferation and migration of HDF-a cells. Local injection of MSC-EVs and UCB-EVs into the periphery of a mouse skin wound accelerated re-epithelialization, promoted wound healing, and reduced scar width. ST analysis of skin tissue from each group after wound healing revealed that MSC-EVs and UCB-EVs reduced the relative expression of marker genes in myofibroblasts, regulated wound healing, and decreased scar formation by reducing the expression of the TGF-β signaling pathway and increasing the expression of the Wnt signaling pathway. The results suggest that MSC-EVs and UCB-EVs play a significant role in the activity of cord blood plasma-derived mesenchymal stem cells and cord blood plasma. They can be considered promising new agents for promoting skin wound healing.
Collapse
Affiliation(s)
- Ruonan Li
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Haotian Wang
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Xiaolong Wang
- HenanYinfeng Biological Engineering Technology Co., LTD, No. 11 Changchun Road, Zhengzhou High tech Industrial Development Zone, Zhengzhou, 450000, China
| | - Yanbin Yang
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
| | - Xuemei Zhang
- HenanYinfeng Biological Engineering Technology Co., LTD, No. 11 Changchun Road, Zhengzhou High tech Industrial Development Zone, Zhengzhou, 450000, China.
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
| |
Collapse
|
16
|
Ezaddoustdar A, Kalina D, Bielohuby M, Boehm M, Wygrecka M. dEREGulated pathways: unraveling the role of epiregulin in skin, kidney, and lung fibrosis. Am J Physiol Cell Physiol 2025; 328:C617-C626. [PMID: 39750963 DOI: 10.1152/ajpcell.00813.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is an evolutionary conserved mechanism to control cell behavior during tissue development and homeostasis. Deregulation of this pathway has been associated with abnormal cell behavior, including hyperproliferation, senescence, and an inflammatory cell phenotype, thereby contributing to pathologies across a variety of organs, including the kidneys, skin, and lungs. To date, there are seven distinct EGFR ligands described. Although binding of these ligands to the receptor is cell type-specific and spatio-temporally controlled with distinct affinities and kinetics, epiregulin (EREG) stands out as a long-acting EGFR ligand that emerges under pathological conditions, particularly in tissue fibrosis. Although EREG has been extensively studied in cancer, its contribution to the maladaptive remodeling of tissue is elusive. The aim of this review is to highlight the role of EREG in skin, kidney, and lung fibrosis and to discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aysan Ezaddoustdar
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | | | | | | | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
- CSL Innovation GmbH, Marburg, Germany
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| |
Collapse
|
17
|
Rajić J, Grdović N, Marković A, Škoro N, Dinić S, Uskoković A, Arambašić Jovanović J, Đorđević M, Sarić A, Vidaković M, Puač N, Mihailović M. Plasma-Activated Water Improve Wound Healing in Diabetic Rats by Influencing the Inflammatory and Remodelling Phase. Int J Mol Sci 2025; 26:1265. [PMID: 39941031 PMCID: PMC11818764 DOI: 10.3390/ijms26031265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Diabetic foot ulcers have an enormous impact on patients' quality of life and represent a major economic burden. The cause is delayed and incomplete wound healing due to hyperglycemia, reduced blood flow, infections, oxidative stress and chronic inflammation. Plasma-activated water (PAW) is emerging as a new therapeutic approach in wound treatment, as it has many of the advantages of cold atmospheric plasma but is easier to apply, thus allowing for widespread use. The aim of this study was to investigate the potential of PAW to improve wound healing in diabetic rats, with a focus on uncovering the underlying mechanisms. Two full-thickness wounds in control and diabetic animals were treated with PAW, and healing was monitored for 15 days at five time points. PAW improved wound healing in diabetic rats and mainly affected the inflammatory phase of wound healing. Application of PAW decreased the number of inflammatory cells, myeloperoxidase (MPO) and N-acetyl-b-D-glycosaminidase (NAG) activity, as well as the mRNA expression of proinflammatory genes in diabetic rats. Ten days after injury, PAW treatment increased collagen deposition in the diabetic animals by almost 10% without affecting collagen mRNA expression, and this is in correlation with a decrease in the Mmp-9/Timp-1 ratio. In conclusion, PAW treatment affects wound healing by reducing the inflammatory response and influencing extracellular matrix turnover, suggesting that it has great potential to accelerate the healing of diabetic wounds.
Collapse
Affiliation(s)
- Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Anđelija Marković
- Center for Non-Equilibrium Processes, Institute of Physics, National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (A.M.); (N.Š.)
| | - Nikola Škoro
- Center for Non-Equilibrium Processes, Institute of Physics, National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (A.M.); (N.Š.)
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Ana Sarić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Nevena Puač
- Center for Non-Equilibrium Processes, Institute of Physics, National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (A.M.); (N.Š.)
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (N.G.); (S.D.); (A.U.); (J.A.J.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| |
Collapse
|
18
|
Watanabe Y, Shimada K, Doi Y, Higuchi T, Kato Y, Li X, Kurihara Y, Murakami S. A Comparative Analysis of Cell Proliferation and Wound Closure in Cultured Gingival Epithelial Cells Using Plasma Rich in Growth Factors and Platelet-Rich Plasma Containing Leukocytes. Eur J Dent 2025. [PMID: 39832784 DOI: 10.1055/s-0044-1801274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVES Plasma rich in growth factors (PRGF) is presumed to be able to stimulate the regeneration of skin and periodontal tissue. This effect can be attributed to the fact that PRGF contains fewer leukocyte-derived interleukins in comparison to platelet-rich plasma (PRP). However, a comparison of the effects of PRGF and PRP on gingival epithelial cells has not been conducted yet. Therefore, our objective was to clarify and compare the effects of PRGF and PRP on gingival epithelial cell proliferation, wound healing, and gene expression. MATERIALS AND METHODS PRGF and PRP were obtained from three donors. A complete medium containing bovine pituitary extract (BPE) and growth factors was used as a positive control (PC), while a medium without BPE was used as a negative control (NC). We evaluated the presence of platelets and leukocytes, as well as the number of leukocytes, in PRP and PRGF using the cell block method and a cell counting chamber. We assessed gingival epithelial cell proliferation with WST-1 and wound healing by using cell-free culture inserts. To examine the mRNA expression of tumor necrosis factor-α (TNF-α), which is related to cell growth inhibition, and integrin β4, which contributes to cell adhesion, we used quantitative reverse transcription polymerase chain reactions (RT-PCRs) under PRGF and PRP samples in vitro. The nonparametric data were analyzed using the Kruskal-Wallis test. RESULTS Large quantities of platelets were observed in both PRGF and PRP. The leukocyte concentration in PRGF was generally lower than that in PRP. Our report indicated that cell proliferation was significantly higher in PRGF than in PRP on day 1 and 2. We found that there was no significant difference in the wound closure rate between PRGF and PRP in comparison to their respective control groups. The quantitative RT-PCR revealed insignificant differences in mRNA expression as TNF-α and integrin β4 between PRGF and PRP in comparison to the each of their respective control groups. CONCLUSION Our research indicated that PRGF can promote the proliferation of gingival epithelium more than PRP, contributing to the healing of periodontal tissue. TNF-α and integrin β4 mRNA expression may not be significantly involved in wound closure within the gingival epithelium under the influence of PRGF and PRP.
Collapse
Affiliation(s)
- Yuri Watanabe
- Hard Tissue Pathology Unit, Graduate School of Oral Medicine, Matsumoto Dental University, Nagano, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Nagano, Japan
| | - Katsumitsu Shimada
- Department of Clinical Pathophysiology, School of Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Yousuke Doi
- Hard Tissue Pathology Unit, Graduate School of Oral Medicine, Matsumoto Dental University, Nagano, Japan
- Department of Orthodontic Clinic, Matsumoto Dental University Hospital, Nagano, Japan
| | - Takuyoshi Higuchi
- Hard Tissue Pathology Unit, Graduate School of Oral Medicine, Matsumoto Dental University, Nagano, Japan
| | - Yoshiya Kato
- Department of Clinical Pathophysiology, School of Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Nagano, Japan
| | - Yuji Kurihara
- Hard Tissue Pathology Unit, Graduate School of Oral Medicine, Matsumoto Dental University, Nagano, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Nagano, Japan
| | - Satoshi Murakami
- Hard Tissue Pathology Unit, Graduate School of Oral Medicine, Matsumoto Dental University, Nagano, Japan
- Department of Clinical Pathophysiology, School of Dentistry, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
19
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2025; 76:5-16. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
20
|
Trimukhe AM, Melo JS, Chaturvedi D, Jain RD, Dandekar P, Deshmukh RR. RF pulsed plasma modified composite scaffold for enhanced anti-microbial activity and accelerated wound healing. Int J Pharm 2024; 667:124864. [PMID: 39461682 DOI: 10.1016/j.ijpharm.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Infected wounds present significant challenges pertaining to healing and often demand administration of strong antibiotics to patients. Also, drug resistant microbes may alter the physiology of wounds to create biofilms, frequently leading to high morbidity and mortality. In this investigation, a biodegradable, microporous composite agarose-chitosan scaffold was fabricated. Furthermore, its surface was modified with diphenyldiselenide deposition, using low pressure pulsed plasma technology. The optimized plasma parameters, viz. 5ON/15OFF (ms) of plasma pulse rate and 80 min of treatment time resulted in scaffolds having enhanced anti-bacterial activity against gram positive microbes like Staphylococcus (S.) aureus and S. epidermidis. The scaffolds were non-toxic to skin cells, as confirmed by the MTT assay. Cell proliferation through plasma treated and untreated scaffolds was assessed by culturing primary human dermal fibroblasts (HdaF) and human keratinocytes (HaCaT) and visualizing via confocal microscopy. Moreover, in-vivo rat model confirmed accelerated wound healing with plasma treated scaffold (100 % on day 14), as compared to the untreated scaffold (100 % on day 16) when compared with over-the-counter (OTC) ointment Betadine (100 % on day 12).
Collapse
Affiliation(s)
- A M Trimukhe
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - J S Melo
- Enzyme Microbial Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - D Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R D Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
21
|
Mehdipour chari K, Enderami SE, Mansour RN, Hasanzadeh E, Amini Mahabadi J, Abazari M, Asadi P, Hojjat A. Applications of blood plasma derivatives for cutaneous wound healing: A mini-review of clinical studies. Regen Ther 2024; 27:251-258. [PMID: 38596823 PMCID: PMC11002853 DOI: 10.1016/j.reth.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Skin injuries are a global healthcare problem. Chronic ulcers do not heal in a timely fashion, so it is essential to help the body with skin repair. There are some treatments that have been applied to chronic ulcers. One of these treatments is growth factor (GF) therapy. Platelet-rich plasma (PRP) and Platelet-poor plasma (PPP) are two types of plasma derivatives containing many GFs important for wound healing. Several works have reported their application in wound healing and tissue regeneration. The use of autologous PRP is now an adequate alternative in regenerative medicine. It was also demonstrated that PPP is a hemostatic agent for wounds. This review has studied the latest clinical studies, which have applied PRP and PPP to patients with chronic wounds.
Collapse
Affiliation(s)
- Kayvan Mehdipour chari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reyhaneh Nassiri Mansour
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mohamadfoad Abazari
- Division of Medical Sciences, Island Medical Program, University of British Columbia, Victoria, BC, Canada
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Peyman Asadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atefeh Hojjat
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Xu J, Ruan X. Schwann cell autotransplantation for the treatment of peripheral nerve injury. Life Sci 2024; 358:123129. [PMID: 39393574 DOI: 10.1016/j.lfs.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Peripheral nerve injury occurs in a relatively large proportion of trauma patients, in whom it generally results in severe functional impairment and permanent disability. At present, however, there are no effective treatments available. Studies have shown that Schwann cells play an indispensable role in removing myelin debris and guiding axonal regeneration, and transplantation using autologous Schwann cells has shown good efficacy for patients with peripheral nerve injury. In recent years, Schwann cell autologous transplantation therapy has become an area of intensive research and is anticipated to provide a new strategy for the clinical treatment of peripheral nerve injury. In this article, we review the rationale for selecting Schwann cell autotransplantation therapy and the latest progress in key aspects of cell transplantation and clinical efficacy, and also summarize the future directions of research on this therapy. All of the above provide a strong basis for the further improvement and clinical promotion of this therapy.
Collapse
Affiliation(s)
- Jialiang Xu
- China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| | - Xuelei Ruan
- Department of Neurobiology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
23
|
Sharifi A, Mashjoor S, Makhmalzadeh BS, Khorsandi L, Shushizadeh MR. Baicalin-loaded proline and hydroxy proline functionalized chitosan derivative nanofiber composite as burning wound dressings. APPLIED MATERIALS TODAY 2024; 41:102519. [DOI: 10.1016/j.apmt.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Meloni M, de Rooij B, Janssen FW, Rescigno F, Lombardi B. Targeted Antibacterial Endolysin to Treat Infected Wounds on 3D Full-Thickness Skin Model: XZ.700 Efficacy. Pharmaceutics 2024; 16:1539. [PMID: 39771518 PMCID: PMC11728803 DOI: 10.3390/pharmaceutics16121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Backgrounds/Objectives: Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Methods: Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers. To mirror the behavior of infected wounds, the established wound healing model was then colonized with S. aureus, and the efficacy of a novel antibacterial agent, XZ.700, was investigated. Viable counts (CFU/tissue), IF, and ultrastructural analysis (SEM) were performed to evaluate S. aureus colonization inside and around the wound bed in an experimental window of 3 h of colonization and 24 h of treatment. Results: Endolysin showed an efficacy in counteracting bacterial growth and invasion within the wound bed, reducing the S. aureus load compared to its placebo, thanks to its selective antimicrobial activity interfering with biofilm formation. Conclusions: The preclinical in vitro infected wound model on FT-kin showed interesting applications to assess the repair efficacy of dermo-pharmaceutical and cosmetic formulations.
Collapse
Affiliation(s)
- Marisa Meloni
- VitroScreen s.r.l., In Vitro Innovation Center, Via Mosè Bianchi 103, 20149 Milan, MI, Italy; (M.M.); (B.L.)
| | - Bob de Rooij
- Micreos Pharmaceuticals, Neuhofstrasse 12, CH-6430 Baar, ZG, Switzerland; (B.d.R.); (F.W.J.)
| | - Ferdinand W. Janssen
- Micreos Pharmaceuticals, Neuhofstrasse 12, CH-6430 Baar, ZG, Switzerland; (B.d.R.); (F.W.J.)
| | - Francesca Rescigno
- VitroScreen s.r.l., In Vitro Innovation Center, Via Mosè Bianchi 103, 20149 Milan, MI, Italy; (M.M.); (B.L.)
| | - Bernadette Lombardi
- VitroScreen s.r.l., In Vitro Innovation Center, Via Mosè Bianchi 103, 20149 Milan, MI, Italy; (M.M.); (B.L.)
| |
Collapse
|
25
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
26
|
Bila NM, Vaso CO, Belizário JA, Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Costa-Orlandi CB, Mendes-Giannini MJS. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics 2024; 16:1523. [PMID: 39771502 PMCID: PMC11728496 DOI: 10.3390/pharmaceutics16121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations. OBJECTIVE The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone. METHODS Cytotoxicity was assessed in two cellular models: monolayer (2D) and 3D. For this purpose, spheroids of two cell lines, primary dermal fibroblasts (HDFa) and adult human epidermal cell keratinocytes (HaCat), were developed and characterized following criteria on cell viability, shape, diameter, and number of cells. The survival percentages of Caenorhabditis elegans and Galleria mellonella were evaluated at 1 and 7 days, respectively. RESULTS The findings indicated that all the assessed platforms are appropriate for investigating PDT toxicity. Furthermore, 2-hydroxychalcone demonstrated low toxicity in the absence of light and when mediated by PDT across a range of in vitro (2D and 3D cultures) and in vivo (invertebrate animal models, including G. mellonella and C. elegans) models. CONCLUSION There was a strong correlation between the in vitro and in vivo tests, with similar toxicity results, particularly in the 3D models and C. elegans, where the concentration for 50% viability was approximately 100 µg/mL.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
- Department of Public Health, School of Veterinary, Universidade Eduardo Modlane (UEM), Maputo 257, Mozambique
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Jenyffie Araújo Belizário
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Letícia Ribeiro Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Luís Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estaudal Paulista (UNESP), São José do Rio Preto 01049-010, SP, Brazil; (L.R.A.); (L.O.R.)
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (N.M.B.); (C.O.V.); (J.A.B.); (C.R.F.); (A.M.F.-A.); (C.B.C.-O.)
| |
Collapse
|
27
|
Liu L, Hao X, Zhang J, Li S, Han S, Qian P, Zhang Y, Yu H, Kang Y, Yin Y, Zhang W, Chen J, Yu Y, Jiang H, Chai J, Yin H, Chai W. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res Ther 2024; 15:437. [PMID: 39563365 PMCID: PMC11575178 DOI: 10.1186/s13287-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Deep partial-thickness burns have a significant impact on both the physical and mental health of patients. Our previous study demonstrated human Umbilical Cord Mesenchymal stem cells (hUCMSCs) could enhance the healing of severe burns in small animal burn models, such as rats. Furthermore, our team has developed a deep partial-thickness burn model in Bama miniature pigs, which can be utilized for assessing drug efficacy in preclinical trials for wound healing. Therefore, this study further determine the optimal dosage of hUCMSCs in future clinical practice by comparing the efficacy of low-to-high doses of hUCMSCs on deep partial-thickness burn wounds in Bama miniature pigs. MATERIALS AND METHODS The male Bama miniature pigs (N = 8, weight: 23-28 kg and length: 71-75 cm) were used to establish deep partial-thickness burn models, which used a continuous pressure of 1 kg and contact times of 35 s by the invented electronic burn instrument at 100℃ to prepare 10 round burn wounds with diameter of 5 cm according to our previous report. And then, 0 × 10^7, 1 × 10^7, 2 × 10^7, 5 × 10^7 and 1 × 10^8 doses of hUCMSCs were respectively injected into burn wounds of their corresponding groups. After treatment for 7, 14 and 21 days, the burned wound tissues were obtained for histological evaluation, including HE staining for histopathological changes, immunohistochemistry for neutrophil (MPO+) infiltration and microvessel (CD31+) quantity, as well as Masson staining for collagen deposition. The levels of inflammatory factors TNF-α, IL-1β, IL-10 and angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), as well as collagen type-I/type-III of the wound tissues were quantified by ELISA. RESULTS All of doses hUCMSCs can significantly increase wound healing rate and shorten healing time of the deep partial-thickness burn pigs in a dose-dependent manner. Furthermore, all of doses hUCMSCs can significantly promote epithelialization and decreased inflammatory reaction of wound, including infiltration of inflammatory cells and levels inflammatory factors. Meanwhile, the amounts of microvessel were increased in all of doses hUCMSCs group than those in the burn group. Furthermore, the collagen structure was disordered and partially necrotized, and ratios of collagen type-I and type-III were significantly decreased in burn group (4:1 in normal skin tissue), and those of all hUCMSCs groups were significantly improved in a dose-dependent manner. In a word, 1 × 10^8 dose of hUCMSCs could regenerate the deep partial-thickness burn wounds most efficaciously compared to other dosages groups and the burn group. CONCLUSION This regenerative cell therapy study using hUCMSCs demonstrates the best efficacy toward a high dose, that is dose of 1 × 10^8 of hUCMSCs was used as a reference therapeutic dose for treating 20 cm2 deep partial-thickness burns wound in future clinical practice.
Collapse
Affiliation(s)
- Lingying Liu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
| | - Xingxia Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Jing Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Shaozeng Li
- Department of Clinical Laboratory, The Fourth Medical Center Affiliated to PLA General Hospital, Beijing, 100037, China
| | - Shaofang Han
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Peipei Qian
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yong Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
| | - Huaqing Yu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yuxin Kang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Weiouwen Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, The Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Endocrinology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Huinan Yin
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| |
Collapse
|
28
|
Mgwenya TN, Abrahamse H, Houreld NN. Modulatory Effects of 830 nm on Diabetic Wounded Fibroblast Cells: An In Vitro Study on Inflammatory Cytokines. Photobiomodul Photomed Laser Surg 2024; 42:676-692. [PMID: 39253808 DOI: 10.1089/photob.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Background:After skin damage, a complicated set of processes occur for epidermal and dermal wound healing. This process is hindered under diabetic conditions, resulting in nonhealing diabetic ulcers. In diabetes there is an increase in inflammation and proinflammatory cytokines. Modulating cells using photobiomodulation (PBM) may have an effect on inflammation and cell viability, which are crucial for the healing of wounds. Objective: This study explored the impact of PBM in the near-infrared spectrum (830 nm; 5 J/cm2) on inflammation in diabetic wound healing. Materials and Methods: Five cell models, namely normal, wounded, diabetic, diabetic wounded, and wounded with d-galactose were used. Cell morphology and migration rate were assessed, while cellular response measures included viability (Trypan blue and adenosine triphosphate), apoptosis (annexin-V/PI), proinflammatory cytokines interleukin-6, tumor necrosis factor-alpha (TNF-α), and cyclooxygenase-2, nuclear translocation of nuclear factor kappa B (NF-κB), and gene expression of advanced glycation end product receptor (AGER). Results: PBM resulted in increased levels of TNF-α, supported by activation of NF-κB. PBM stimulated translocation of NF-κB and upregulation of AGER. Conclusions: PBM modulates diabetic wound healing in vitro at 830 nm through stimulated NF-κB signaling activated by TNF-α.
Collapse
Affiliation(s)
- Tintswalo Nomsa Mgwenya
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
29
|
Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol 2024; 12:1475584. [PMID: 39539690 PMCID: PMC11557333 DOI: 10.3389/fbioe.2024.1475584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic wounds present a significant clinical challenge due to their prolonged healing time and susceptibility to infection. Boron, a trace element with diverse biological functions, has emerged as a promising therapeutic agent in wound healing. This review article comprehensively investigates the mechanisms underlying the beneficial effects of boron compounds in wound healing. Boron exerts its healing properties through multiple pathways, including anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects. Inflammation is a crucial component of the wound-healing process, and boron has been shown to modulate inflammatory responses by inhibiting pro-inflammatory cytokines and promoting the resolution of inflammation. Furthermore, boron exhibits antimicrobial activity against a wide range of pathogens commonly associated with chronic wounds, thereby reducing the risk of infection and promoting wound closure. The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing. Additionally, boron stimulates cell proliferation and migration, as well as essential tissue regeneration and wound closure processes. Overall, this review highlights the potential of boron as a novel therapeutic approach for treating chronic wounds, offering insights into its diverse mechanisms of action and clinical implications.
Collapse
|
30
|
Li Y, Wang X, Li Y, Li D, Li S, Shen C. Efficacy and safety of allogeneic platelet-rich plasma in chronic wound treatment: a meta-analysis of randomized controlled trials. Sci Rep 2024; 14:25209. [PMID: 39448627 PMCID: PMC11502684 DOI: 10.1038/s41598-024-75090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Allogeneic platelet-rich plasma (al-PRP) is gaining attention in clinical practice for treating chronic refractory wounds, though research results remain controversial. To assess the clinical efficacy of al-PRP for chronic refractory wounds. Databases including PubMed, Cochrane Library, Embase, CNKI, SinoMed, VIP, and WFPD were searched for randomized controlled trials comparing al-PRP with conventional treatments up to October 2023. Two researchers independently screened studies, extracted data, and assessed quality. Statistical analysis was conducted using RevMan 5.4, and potential publication bias was assessed and corrected using funnel plots and Egger's test. Twelve studies with 717 cases were included. Meta-analysis showed al-PRP significantly improved outcomes compared to non-al-PRP treatments: increased healing rate (RR 2.72, 95% CI 1.77-4.19, p < 0.00001), shortened healing time (SMD - 1.03, 95% CI -1.31 to -0.75, p < 0.00001), improved efficacy rate (RR 1.19, 95% CI 1.10-1.28, p < 0.00001), increased wound shrinkage (MD 35.65%, 95% CI 21.65-49.64, p < 0.00001), and reduced hospital stays (MD -2.62, 95% CI -4.35 to -0.90, p = 0.003). Al-PRP is a feasible, effective, and safe biological therapy for chronic refractory wounds.Trial registration: PROSPERO Identifier CRD42022374920.
Collapse
Affiliation(s)
- Yalong Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Xingtong Wang
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Yucong Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Dawei Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Shijie Li
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China
| | - Chuanan Shen
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General, Beijing, China.
| |
Collapse
|
31
|
Toledano-Macías E, Martínez-Pascual MA, Cecilia-Matilla A, Bermejo-Martínez M, Pérez-González A, Jara RC, Sacristán S, Hernández-Bule ML. Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes. Int J Mol Sci 2024; 25:10663. [PMID: 39408993 PMCID: PMC11476504 DOI: 10.3390/ijms251910663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Keratinocytes play an essential role in the inflammatory phase of wound regeneration. In addition to migrating and proliferating for tissue regeneration, they produce a large amount of cytokines that modulate the inflammatory process. Previous studies have shown that subthermal treatment with radiofrequency (RF) currents used in capacitive resistive electric transfer (CRET) therapy promotes the proliferation of HaCat keratinocytes and modulates their cytokine production. Although physical therapies have been shown to have anti-inflammatory effects in a variety of experimental models and in patients, knowledge of the biological basis of these effects is still limited. The aim of this study was to investigate the effect of CRET on keratinocyte proliferation, cytokine production (IL-8, MCP-1, RANTES, IL-6, IL-11), TNF-α secretion, and the expression of MMP9, MMP1, NF-κB, ERK1/2, and EGFR. Human keratinocytes (HaCat) were treated with an intermittent 448 kHz electric current (CRET signal) in subthermal conditions and for different periods of time. Cell proliferation was analyzed by XTT assay, cytokine and TNF-α production by ELISA, NF-κB expression and activation by immunofluorescence, and MMP9, MMP1, ERK1/2, and EGF receptor expression and activation by immunoblot. Compared to a control, CRET increases keratinocyte proliferation, increases the transient release of MCP-1, TNF-α, and IL-6 while decreasing IL-8. In addition, it modifies the expression of MMPs and activates EGFR, NF-κB, and ERK1/2 proteins. Our results indicate that CRET reasonably modifies cytokine production through the EGF receptor and the ERK1/2/NF-κB pathway, ultimately modulating the inflammatory response of human keratinocytes.
Collapse
Affiliation(s)
- Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - Almudena Cecilia-Matilla
- Angiology and Vascular Surgery Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (A.C.-M.); (M.B.-M.)
| | - Mariano Bermejo-Martínez
- Angiology and Vascular Surgery Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (A.C.-M.); (M.B.-M.)
| | - Alfonso Pérez-González
- Dermatology Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - Rosa Cristina Jara
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - Silvia Sacristán
- Aptamer Group, Histology Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| |
Collapse
|
32
|
Wang LH, Marfil-Garza BA, Ernst AU, Pawlick RL, Pepper AR, Okada K, Epel B, Viswakarma N, Kotecha M, Flanders JA, Datta AK, Gao HJ, You YZ, Ma M, Shapiro AMJ. Inflammation-induced subcutaneous neovascularization for the long-term survival of encapsulated islets without immunosuppression. Nat Biomed Eng 2024; 8:1266-1284. [PMID: 38052996 DOI: 10.1038/s41551-023-01145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.
Collapse
Affiliation(s)
- Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Braulio A Marfil-Garza
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Rena L Pawlick
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kento Okada
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- O2M Technologies, LLC, Chicago, IL, USA
| | | | | | | | - Ashim K Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hong-Jie Gao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
33
|
Rihs S, Parisi L, Lauener A, Mansour F, Schnyder I, Dekany GM, La Scala GC, Katsaros C, Degen M. Reflecting the human lip in vitro: Cleft lip skin and mucosa keratinocytes keep their identities. Oral Dis 2024; 30:4390-4403. [PMID: 38178623 DOI: 10.1111/odi.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Cell models have shown great promise as tools for research, potentially providing intriguing alternatives to animal models. However, the original tissue characteristics must be maintained in culture, a fact that is often assumed, but seldom assessed. We aimed to follow the retention of the original tissue identities of cleft lip-derived skin and mucosa keratinocytes in vitro. METHODS Cleft lip-derived keratinocytes were isolated from discarded tissue along the cleft margins during cheiloplasty. Cell identities were assessed by immunohistochemistry and quantitative real-time PCR for tissue-specific markers and compared with native lip tissue. Moreover, keratinocytes were regularly analyzed for the retention of the original tissue characteristics by the aforementioned methods as well as by differentiation assays. RESULTS The various anatomical zones of the human lip could be distinguished using a panel of differentiation and functional-based markers. Using these markers, retention of the original tissue identities could be followed and confirmed in the corresponding primary keratinocytes in culture. CONCLUSIONS Our findings promote patient-derived cells retaining their original identities as astonishing and clinically relevant in vitro tools. Such cells allow a better molecular understanding of various lip-associated pathologies as well as their modeling in vitro, including but not restricted to orofacial clefts.
Collapse
Affiliation(s)
- Silvia Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Anic Lauener
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Farah Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Gabriela M Dekany
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Cherri M, Stergiou PS, Ahmadian Z, Povolotsky TL, Thongrom B, Fan X, Mohammadifar E, Haag R. Redox-Responsive Hydrogels Loaded with an Antibacterial Peptide as Controlled Drug Delivery for Healing Infectious Wounds. Adv Healthc Mater 2024; 13:e2401289. [PMID: 38978439 DOI: 10.1002/adhm.202401289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Infectious wounds occur when harmful microorganisms such as bacteria or viruses invade a wound site. Its problems associated include delayed healing, increased pain, swelling, and the potential for systemic infections. Therefore, developing new wound dressing materials with antibacterial effects is crucial for improving the healing process. Here a redox-degradable hydrogel loaded with an antibacterial peptide (vancomycin) in a straightforward gram-scale synthesis, is developed. The hydrogel structure consists of a disulfide bond-containing hyperbranched polyglycerol (SS-hPG) that is cross-linked by 4-arm polyethylene glycol-thiol (4-arm PEG-SH). The polymerization mechanism and full characterization of SS-hPG are described as this synthesis is reported for the first time. Rheology is used to ascertain the hydrogel's mechanical characteristics, such as stiffness, and self-healing, determining these properties for different ratios and concentrations of both gel components. The incorporation of disulfide bonds in the hydrogel is proved by conducting degradation experiments in reductive environments. Fluorescein isothiocyanate-albumin (FITC-BSA) and vancomycin both are loaded into the gel, and the guest release kinetics is assessed for both slow and on-demand releases. Finally, the in vitro and in vivo experiments prove that the vancomycin-loaded hydrogel acts as an antibacterial barrier for wound dressing and accelerates the healing of infectious wounds in a mouse model.
Collapse
Affiliation(s)
- Mariam Cherri
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Paraskevi S Stergiou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, 68151-44311, Khorramabad, Iran
| | - Tatyana L Povolotsky
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Boonya Thongrom
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Xin Fan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
35
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
36
|
Shin E, Kim HT, Lee H, Kim B, Park J, Park S, Yum S, Kim SK, Lee JM, Youn B. Low-temperature pulverization-specific Sargassum horneri extract accelerates wound healing and attenuates inflammation in a mouse burn model. Anim Cells Syst (Seoul) 2024; 28:428-438. [PMID: 39246418 PMCID: PMC11378683 DOI: 10.1080/19768354.2024.2396903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Burn injuries, affecting local skin disruption as well as inducing systemic inflammatory responses, are presented as a global public health problem. To enhance the effects of burn wound healing, treatment must simultaneously regulate both re-epithelialization and hyperinflammation. Extracts of Sargassum horneri (S. horneri) have shown a potential to enhance skin wound healing through antioxidative properties, immune enhancement, and modulation of inflammatory responses. However, despite its promising application for burn wound healing, specific investigation into S. horneri-derived compounds for enhancing wound healing has not yet been conducted. In this research, we investigated the burn wound-healing effect of the low-temperature pulverization-specific S. horneri extract (LPSHE), which could not be detected using the room-temperature grinding method. In a mouse burn model with third-degree burn injuries, LPSHE accelerated re-epithelialization by promoting the increase in F-actin formation and reduced burn-induced ROS levels. Additionally, LPSHE significantly regulated hyperinflammation by reducing pro-inflammatory cytokines. Further investigation into molecular mechanisms using HaCaT keratinocytes also demonstrated beneficial effects on burn wound healing. Taken together, our findings suggested that LPSHE is a promising therapeutic candidate for enhancing burn wound healing. Furthermore, this research underscored the importance of low-temperature pulverization in discovering novel natural compounds from marine organisms.
Collapse
Affiliation(s)
- Eunguk Shin
- Nuclear Science Research Institute, Pusan National University, Busan, Korea
| | - Hee-Tae Kim
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Junhyeong Park
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Sujin Park
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Soomin Yum
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Seul-Kee Kim
- Hydrogen Ship Technology Center, Pusan National University, Busan, Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Korea
- Hydrogen Ship Technology Center, Pusan National University, Busan, Korea
| | - BuHyun Youn
- Nuclear Science Research Institute, Pusan National University, Busan, Korea
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
- Department of Biological Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
37
|
P A, P A, M RJ, Joy JM, Mathew S. Developmental prospects of carrageenan-based wound dressing films: Unveiling techno-functional properties and freeze-drying technology for the development of absorbent films - A review. Int J Biol Macromol 2024; 276:133668. [PMID: 38992537 DOI: 10.1016/j.ijbiomac.2024.133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Akshay P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; St.Teresa's College (Autonomous), Ernakulam, Kerala-682011
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
38
|
Zhu B, Liang L, Hui L, Lu Y. Exploring the role of dermal sheath cells in wound healing and fibrosis. Wound Repair Regen 2024; 32:735-745. [PMID: 39129718 DOI: 10.1111/wrr.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lu Liang
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lihua Hui
- Burn Research Institute of Inner Mongolia Autonomous Region, affiliated with Inner Mongolia Baogang Hospital, Baotou, China
| | - Yaojun Lu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| |
Collapse
|
39
|
Chuang AEY, Chen YL, Nguyen HT, Lu HT, Liu CH. Sequential management of burn wound healing stages through biointelligence-inspired platelet extracellular vesicle-encapsulated photodynamic diferuloylmethane. NANOSCALE 2024; 16:16089-16106. [PMID: 39092551 DOI: 10.1039/d4nr01500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The process of wound healing is a complex, multi-phase phenomenon crucial for optimal tissue regeneration. Traditional drug delivery systems often target specific phases of wound repair, neglecting the dynamic interplay among the stages. This limitation highlights the need for comprehensive delivery systems that cater to the holistic needs of wound healing, enhancing tissue regeneration efficiency. Herein, we explored the utility of platelet-derived extracellular vesicles (pEVs) as carriers for the phototherapeutic diferuloylmethane (DIF), resulting in a formulation termed DIF@pEVs, which is designed to sequentially address the distinct phases of wound healing. Initially, upon exposure to light, administered DIF@pEVs generate photodynamic therapy-derived reactive oxygen species during the early inflammatory phase. This generation of ROS aims to modulate the inflammatory response, induce the protective mechanisms of heat shock proteins, and kickstart the tissue regeneration process. Following this initial phase, the remaining DIF and pEVs persist in promoting tissue repair and regeneration. Ultimately, it reduces inflammation, speeds up the healing process, and promotes vascular and follicular formation in a model of burn wound skin damage, thereby supporting skin regeneration. The deployment of DIF@pEVs represents an advancement in regenerative medicine, providing a precise, versatile approach to fostering regeneration across a wide range of clinical scenarios.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Yo-Lin Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hsien-Tsung Lu
- Department of Orthopedics, College of Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| |
Collapse
|
40
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
41
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. Polyphosphate Nanoparticles: Balancing Energy Requirements in Tissue Regeneration Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309528. [PMID: 38470207 DOI: 10.1002/smll.202309528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation. The biomedical breakthrough of polyP came with the development of a successful fabrication process, in depot form, as Ca- or Mg-polyP nanoparticles, or as the directly effective polymer, as soluble Na-polyP, for regenerative repair and healing processes, especially in tissue areas with insufficient blood supply. Physiologically, the platelets are the main vehicles for polyP nanoparticles in the circulating blood. To be biomedically active, these particles undergo coacervation. This review provides an overview of the properties of polyP and polyP nanoparticles for applications in the regeneration and repair of bone, cartilage, and skin. In addition to studies on animal models, the first successful proof-of-concept studies on humans for the healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
42
|
Kamenova K, Prancheva A, Radeva L, Yoncheva K, Zaharieva MM, Najdenski HM, Petrov PD. Nanosized Complexes of the Proteolytic Enzyme Serratiopeptidase with Cationic Block Copolymer Micelles Enhance the Proliferation and Migration of Human Cells. Pharmaceutics 2024; 16:988. [PMID: 39204333 PMCID: PMC11358905 DOI: 10.3390/pharmaceutics16080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, we describe the preparation of the cationic block copolymer nanocarriers of the proteolytic enzyme serratiopeptidase (SER). Firstly, an amphiphilic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA9-b-PCL35-b-PDMAEMA9) triblock copolymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Then, cationic micellar nanocarriers consisting of a PCL hydrophobic core and a PDMAEMA hydrophilic shell were formed by the solvent evaporation method. SER was loaded into the polymeric micelles by electrostatic interaction between the positively charged micellar shell and the negatively charged enzyme molecules. The particle size, zeta potential, and colloid stability of complexes as a function of SER concentration were investigated by dynamic and electrophoretic light scattering. It was found that SER retained its proteolytic activity after immobilization in polymeric carriers. Moreover, the complexes have a concentration-dependent enhancing effect on the proliferation and migration of human keratinocyte HaCaT and gingival fibroblast HGF cells.
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (K.K.); (A.P.)
| | - Anna Prancheva
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (K.K.); (A.P.)
| | - Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (L.R.); (K.Y.)
| | - Krassimira Yoncheva
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (L.R.); (K.Y.)
| | - Maya M. Zaharieva
- The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria; (M.M.Z.); (H.M.N.)
| | - Hristo M. Najdenski
- The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria; (M.M.Z.); (H.M.N.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (K.K.); (A.P.)
| |
Collapse
|
43
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
44
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
45
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
46
|
Jung D, Seung NR, Seo SB, Park EJ, Kim KH. Skin rejuvenation through topical application of indocyanine green with diffractive optical element mode of 785 nm picosecond laser in Asian females. J Cosmet Dermatol 2024; 23:2411-2419. [PMID: 38494897 DOI: 10.1111/jocd.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Indocyanine green (ICG) exhibits robust absorption near 800 nm. AIMS To examine the clinical effects of combining ICG with a 785 nm picosecond laser for treating photo-aged skin. PATIENT/METHODS A 785 nm 600 picosecond laser was used on the facial area of 16 female patients with Fitzpatrick skin type III and IV (mean age: 58.44 ± 5.24 years) after applying 0.0125% ICG cream. A total of 3000 shots were administered in diffractive optical element mode at a pulse energy of 200 mJ and frequency of 10 Hz. Hyperpigmented lesions were treated using the Zoom handpiece set at a spot size of 3-4 mm, pulse energy of 60-120 mJ, and frequency of 3-7 Hz. Patients underwent five sessions of treatment at intervals of 1-2 weeks. Wrinkles, pores and pigmented lesions were assessed at the initial assessment and 4 weeks after the final treatment using the Modified Fitzpatrick Wrinkle Scale and 10-point visual analog scale, respectively. Skin biopsy of the postauricular area was performed on two consenting patients. RESULTS Significant improvements in wrinkles (p = 0.02), pores (p = 0.034), and hyperpigmentation (p = 0.036) were observed, along with increased patient subjective improvement. Adverse effects were transient and well-tolerated. Hematoxylin and eosin and Masson's trichrome staining revealed increased and thickened dermal collagen fibers. Immunohistochemical staining revealed increased expression of collagen I and III throughout the papillary and upper reticular dermis, along with diffuse increase of STRO-1 in the dermis. CONCLUSIONS The combined application of a 785 nm picosecond laser and ICG yielded promising clinical outcomes for treating photo-aged skin in Asian patients with Fitzpatrick skin type III and IV.
Collapse
Affiliation(s)
- Dayeon Jung
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | | | | | - Eun Joo Park
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Kwang Ho Kim
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
47
|
Hameed A, Tariq M, Sadia S, Alam MR, Haider A, Wahedi HM. Aloesin-loaded chitosan/cellulose-based scaffold promotes skin tissue regeneration. Int J Biol Macromol 2024; 273:133030. [PMID: 38857730 DOI: 10.1016/j.ijbiomac.2024.133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.
Collapse
Affiliation(s)
- Aasia Hameed
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan; Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Mehreen Tariq
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Sobia Sadia
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - M Rizwan Alam
- Department of Biochemistry, Quaid-I-Azam University, Islamabad Capital Territory 45320, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Hussain Mustatab Wahedi
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan.
| |
Collapse
|
48
|
Rossi A, Pescara T, Gambelli AM, Gaggia F, Asthana A, Perrier Q, Basta G, Moretti M, Senin N, Rossi F, Orlando G, Calafiore R. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol 2024; 12:1393641. [PMID: 38974655 PMCID: PMC11225062 DOI: 10.3389/fbioe.2024.1393641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Amongst the range of bioprinting technologies currently available, bioprinting by material extrusion is gaining increasing popularity due to accessibility, low cost, and the absence of energy sources, such as lasers, which may significantly damage the cells. New applications of extrusion-based bioprinting are systematically emerging in the biomedical field in relation to tissue and organ fabrication. Extrusion-based bioprinting presents a series of specific challenges in relation to achievable resolutions, accuracy and speed. Resolution and accuracy in particular are of paramount importance for the realization of microstructures (for example, vascularization) within tissues and organs. Another major theme of research is cell survival and functional preservation, as extruded bioinks have cells subjected to considerable shear stresses as they travel through the extrusion apparatus. Here, an overview of the main available extrusion-based printing technologies and related families of bioprinting materials (bioinks) is provided. The main challenges related to achieving resolution and accuracy whilst assuring cell viability and function are discussed in relation to specific application contexts in the field of tissue and organ fabrication.
Collapse
Affiliation(s)
- Arianna Rossi
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alberto Maria Gambelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Quentin Perrier
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Basta
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Moretti
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Nicola Senin
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Federico Rossi
- Engineering Department, University of Perugia, Perugia, Italy
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
49
|
Singh S, Supaweera N, Nwabor OF, Yusakul G, Chaichompoo W, Suksamrarn A, Panpipat W, Chunglok W. Polymeric scaffold integrated with nanovesicle-entrapped curcuminoids for enhanced therapeutic efficacy. Nanomedicine (Lond) 2024; 19:1313-1329. [PMID: 38884141 PMCID: PMC11285238 DOI: 10.1080/17435889.2024.2347823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: Polymeric scaffolds were developed fortified with nanovesicle-encapsulated individual curcumin (CUR) and tetrahydrocurcumin (THC) for improved therapeutic efficacy due to their low stability and efficacy in native form. Method: Nanovesicle-encapsulated individual CUR and THC were fabricated using thin-film hydration techniques and characterized. Results & conclusion: CUR/THC in native and vesicle-encapsulated form demonstrated diminished LPS-instigate nitric oxide (NO) levels in macrophage cells in a concentration-dependent demeanor. However, vesicle-encapsulated CUR/THC inhibited NO production at lower concentrations, compared with the native CUR/THC form. Furthermore, the scaffold fortified with vesicle-encapsulated CUR/THC demonstrated improved physical properties with excellent antioxidant, biocompatibility, and human keratinocyte cell proliferation ability. The results recommended that nanovesicle-encapsulated THC can be retained as a potential substitute for CUR with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Sudarshan Singh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nassareen Supaweera
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Ozioma F Nwabor
- Department of Biomedical & Chemical Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, NY 13244, USA
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food & Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry & Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Worawan Panpipat
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- School of Agricultural Technology & Food Industry, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
50
|
Juárez-Vicuña Y, Ruiz-Ojeda D, González-Ramírez J, Flores-Balderas X, Springall R, Sánchez-Muñoz F, Guzmán-Martín CA. LncRNA MALAT1 in Keratinocyte function: A review of recent advances. Noncoding RNA Res 2024; 9:594-601. [PMID: 38532797 PMCID: PMC10963180 DOI: 10.1016/j.ncrna.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Keratinocytes, the principal epidermal cells, play a vital role in maintaining the structural integrity and functionality of the skin. Beyond their protective role, keratinocytes are key contributors to the process of wound healing, as they migrate to injury sites, proliferate, and generate new layers of epidermis, facilitating tissue repair and remodeling. Moreover, keratinocytes actively participate in the skin's immune responses, expressing pattern recognition receptors (PRRs) to detect microbial components and interact with immune cells to influence adaptive immunity. Keratinocytes express a diverse repertoire of signaling pathways, transcription factors, and epigenetic regulators to regulate their growth, differentiation, and response to environmental cues. Among these regulatory elements, long non-coding RNAs (lncRNAs) have emerged as essential players in keratinocyte biology. LncRNAs, including MALAT1, play diverse roles in gene regulation and cellular processes, influencing keratinocyte proliferation, differentiation, migration, and response to environmental stimuli. Dysregulation of specific lncRNAs such as MALAT1 can disrupt keratinocyte homeostasis, leading to impaired differentiation, compromised barrier integrity, and contributing to the pathogenesis of various skin disorders. Understanding the intricate interplay between lncRNAs and keratinocytes offers promising insights into the molecular underpinnings of skin health and disease, with potential implications for targeted therapies and advancements in dermatological research. Hence, our objective is to provide a comprehensive summary of the available knowledge concerning keratinocytes and their intricate relationship with MALAT1.
Collapse
Affiliation(s)
- Yaneli Juárez-Vicuña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Dayanara Ruiz-Ojeda
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
- Posgrado en Medicina Interna, Hospital Central Sur de Alta Especialidad de Petróleos Mexicanos, Ciudad de México, Mexico
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
- Laboratorio de Biología Celular, Unidad de Ciencias de La Salud Campus Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Ximena Flores-Balderas
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Carlos A. Guzmán-Martín
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
- Departamento de Programas de Investigación, Hospital Shriners para Niños México, Ciudad de México, Mexico
| |
Collapse
|