1
|
Chu TW, Ho CC, Hsu YJ, Lo YH, Wu NL, Cheng YB, Hong MX, Chang DC, Hung CF. Protective Effects of Pear Extract on Skin from In Vitro and In Vivo UVA-Induced Damage. Pharmaceuticals (Basel) 2024; 17:583. [PMID: 38794153 PMCID: PMC11124007 DOI: 10.3390/ph17050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The ancient Chinese medical book "Compendium of Materia Medica" records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus pyrifolia (Burm.f.) Nakai seed components have not been studied. Ultraviolet light (UV) causes skin inflammation, damages the skin barrier, and is an important cause of skin photoaging. Therefore, UV light with a wavelength of 365 nm was used to irradiate HaCaT and mice. Western blot, real-time quantitative polymerase chain reaction, and fluorescence imaging system were used to explore its anti-UVA mechanism. Dialysis membrane and nuclear magnetic resonance were used for the chemical constituent analysis of pear seed water extract (PSWE). We found that PSWE can significantly reduce UVA-induced skin cell death and mitogen-activated protein kinase phosphorylation and can inhibit the mRNA expression of UVA-induced cytokines (including IL-1β, IL-6, and TNF-α). In addition, PSWE can also reduce the generation of oxidative stress within skin cells. In vivo experimental studies found that PSWE pretreatment effectively reduced transepidermal water loss, inflammation, redness, and dryness in hairless mice. The molecular weight of the active part of pear water extract is approximately 384. Based on the above results, we first found that pear seeds can effectively inhibit oxidative stress and damage caused by UVA. It is a natural extract with antioxidant properties and anti-aging activity that protects skin cells and strengthens the skin barrier.
Collapse
Affiliation(s)
- Thomas W. Chu
- Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ching-Chih Ho
- Department of Anesthesiology, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan;
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Dermatology, MacKay Memorial Hospital, Taipei 10491, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804351, Taiwan; (Y.-B.C.); (M.-X.H.)
| | - Mao-Xuan Hong
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804351, Taiwan; (Y.-B.C.); (M.-X.H.)
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
2
|
Xiao Z, Liu F, Cheng J, Wang Y, Zhou W, Zhang Y. B-Raf inhibitor vemurafenib counteracts sulfur mustard-induced epidermal impairment through MAPK/ERK signaling. Drug Chem Toxicol 2023; 46:226-235. [PMID: 34986718 DOI: 10.1080/01480545.2021.2021927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chemical warfare agent sulfur mustard (SM) causes severe cutaneous lesions characterized by epidermal cell death, apoptosis, and inflammation. At present, the molecular mechanisms underlying SM-induced injury are not well understood, and there is no standard treatment protocol for SM-exposed patients. Here, we conducted a high-content screening of the Food and Drug Administration (FDA)-approved drug library of 1018 compounds against SM injury on an immortal human keratinocyte HaCaT cell line, focusing on cell survival. We found that the B-Raf inhibitor vemurafenib had an apparent therapeutic effect on HaCaT cells and resisted SM toxicity. Other tested B-Raf inhibitors, both type-I (dabrafenib and encorafenib) and type-II (RAF265 and AZ628), also exhibited potent therapeutic effects on SM-exposed HaCaT cells. Both SM and vemurafenib triggered extracellular signal-related kinase (ERK) activation. The therapeutic effect of vemurafenib in HaCaT cells during SM injury was ERK-dependent, indicating a specific role of ERK in keratinocyte regulatory mechanisms. Furthermore, vemurafenib partially improved cutaneous damage in a mouse ear vesicant model. Collectively, our results provide evidence that the B-Raf inhibitor vemurafenib is a potential therapeutic agent against SM injury, and oncogenic B-Raf might be an exciting new therapeutic target following exposure to mustard vesicating agents.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Junping Cheng
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ying Wang
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
3
|
Jamshidi V, Nobakht M Gh BF, Parvin S, Bagheri H, Ghanei M, Shahriary A, Davoudi SM, Arabfard M. Proteomics analysis of chronic skin injuries caused by mustard gas. BMC Med Genomics 2022; 15:175. [PMID: 35933451 PMCID: PMC9357330 DOI: 10.1186/s12920-022-01328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Sulfur mustard (SM) is an alkylating and forming chemical that was widely used by Iraqi forces during the Iran–Iraq wars. One of the target organs of SM is the skin. Understanding the mechanisms involved in the pathogenesis of SM may help better identify complications and find appropriate treatments. The current study collected ten SM-exposed patients with long-term skin complications and ten healthy individuals. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the skin protein profile, and statistical bioinformatics methods were used to identify the differentially expressed proteins. One hundred twenty-nine proteins had different expressions between the two groups. Of these 129 proteins, 94 proteins had increased expression in veterans' skins, while the remaining 35 had decreased expression. The hub genes included RPS15, ACTN1, FLNA, HP, SDHC, and RPL29, and three modules were extracted from the PPI network analysis. Skin SM exposure can lead to oxidative stress, inflammation, apoptosis, and cell proliferation.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Education Office, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
NAD + in sulfur mustard toxicity. Toxicol Lett 2020; 324:95-103. [PMID: 32017979 DOI: 10.1016/j.toxlet.2020.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) is a toxicant and chemical warfare agent with strong vesicant properties. The mechanisms behind SM-induced toxicity are not fully understood and no antidote or effective therapy against SM exists. Both, the risk of SM release in asymmetric conflicts or terrorist attacks and the usage of SM-derived nitrogen mustards as cancer chemotherapeutics, render the mechanisms of mustard-induced toxicity a highly relevant research subject. Herein, we review a central role of the abundant cellular molecule nicotinamide adenine dinucleotide (NAD+) in molecular mechanisms underlying SM toxicity. We also discuss the potential beneficial effects of NAD+ precursors in counteracting SM-induced damage.
Collapse
|
5
|
Steinritz D, Lang S, Popp T, Siegert M, Rothmiller S, Kranawetvogl A, Schmidt A, John H, Gudermann T, Thiermann H, Kehe K. Skin sensitizing effects of sulfur mustard and other alkylating agents in accordance to OECD guidelines. Toxicol Lett 2019; 314:172-180. [PMID: 31404593 DOI: 10.1016/j.toxlet.2019.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 11/28/2022]
Abstract
Vesicants cause a multitude of cutaneous reactions like erythema, blisters and ulcerations. After exposure to sulfur mustard (SM) and related compounds, patients present dermal symptoms typically known for chemicals categorized as skin sensitizer (e.g. hypersensitivity and flare-up phenomena). However, although some case reports led to the assumption that SM and other alkylating compounds represent sensitizers, a comprehensive investigation of SM-triggered immunological responses has not been conducted so far. Based on a well-structured system of in chemico and in vitro test methods, the Organization for Economic Co-operation and Development (OECD) established procedures to categorize agents on their skin sensitizing abilities. In this study, the skin sensitizing potential of SM and three related alkylating agents (AAs) was assessed following the OECD test guidelines. Besides SM, investigated AAs were chlorambucil (CHL), nitrogen mustard (HN3) and 2-chloroethyl ethyl sulfide (CEES). The methods are described in detail in the EURL ECVAM DataBase service on ALternative Methods to animal experimentation (DB-ALM). In accordance to OECD recommendations, skin sensitization is a pathophysiological process starting with a molecular initiating step and ending with the in vivo outcome of an allergic contact dermatitis. This concept is called adverse outcome pathway (AOP). An AOP links an adverse outcome to various key events which can be assayed by established in chemico and in vitro test methods. Positive outcome in two out of three key events indicates that the chemical can be categorized as a skin sensitizer. In this study, key event 1 "haptenation" (covalent modification of epidermal proteins), key event 2 "activation of epidermal keratinocytes" and key event 3 "activation of dendritic cells" were investigated. Covalent modification of epidermal proteins measured by using the DPRA-assay provided distinct positive results for all tested substances. Same outcome was seen in the KeratinoSens assay, investigating the activation of epidermal keratinocytes. The h-CLAT assay performed to determine the activation of dendritic cells provided positive results for SM and CEES but not for CHL and HN3. Altogether, following OECD requirements, our results suggest the classification of all investigated substances as skin sensitizers. Finally, a tentative AOP for SM-induced skin sensitization is suggested.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany.
| | - Simon Lang
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Tanja Popp
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Institute of Radiobiology, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Faculty of Human Sciences, Bundeswehr University, 85579, Neubiberg, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Kai Kehe
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Medical Service Academy, 80937, Munich, Germany
| |
Collapse
|
6
|
Relevance of Erk1/2-PI3K/Akt signaling pathway in CEES-induced oxidative stress regulates inflammation and apoptosis in keratinocytes. Cell Biol Toxicol 2019; 35:541-564. [PMID: 30805762 DOI: 10.1007/s10565-019-09467-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022]
|
7
|
Rose D, Schmidt A, Brandenburger M, Sturmheit T, Zille M, Boltze J. Sulfur mustard skin lesions: A systematic review on pathomechanisms, treatment options and future research directions. Toxicol Lett 2017; 293:82-90. [PMID: 29203275 DOI: 10.1016/j.toxlet.2017.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare, which has been used for one hundred years. However, its exact pathomechanisms are still incompletely understood and there is no specific therapy available so far. In this systematic review, studies published between January 2000 and July 2017 involving pathomechanisms and experimental treatments of SM-induced skin lesions were analyzed to summarize current knowledge on SM pathology, to provide an overview on novel treatment options, and to identify promising targets for future research to more effectively counter SM effects. We suggest that future studies should focus on (I) systemic effects of SM intoxication due to its distribution throughout the body, (II) removal of SM depots that continuously release active compound contributing to chronic skin damage, and (III) therapeutic options that counteract the pleiotropic effects of SM.
Collapse
Affiliation(s)
- Dorothee Rose
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
| | - Matthias Brandenburger
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Tabea Sturmheit
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany; Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| |
Collapse
|
8
|
Anti-apoptotic and moderate anti-inflammatory effects of berberine in sulfur mustard exposed keratinocytes. Toxicol Lett 2017; 293:2-8. [PMID: 28916288 DOI: 10.1016/j.toxlet.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
Skin affections after sulfur mustard (SM) exposure include erythema, blister formation and severe inflammation. An antidote or specific therapy does not exist. Anti-inflammatory compounds as well as substances counteracting SM-induced cell death are under investigation. In this study, we investigated the benzylisoquinoline alkaloide berberine (BER), a metabolite in plants like berberis vulgaris, which is used as herbal pharmaceutical in Asian countries, against SM toxicity using a well-established in vitro approach. Keratinocyte (HaCaT) mono-cultures (MoC) or HaCaT/THP-1 co-cultures (CoC) were challenged with 100, 200 or 300mM SM for 1h. Post-exposure, both MoC and CoC were treated with 10, 30 or 50μM BER for 24h. At that time, supernatants were collected and analyzed both for interleukine (IL) 6 and 8 levels and for content of adenylate-kinase (AK) as surrogate marker for cell necrosis. Cells were lysed and nucleosome formation as marker for late apoptosis was assessed. In parallel, AK in cells was determined for normalization purposes. BER treatment did not influence necrosis, but significantly decreased apoptosis. Anti-inflammatory effects were moderate, but also significant, primarily in CoC. Overall, BER has protective effects against SM toxicity in vitro. Whether this holds true should be evaluated in future in vivo studies.
Collapse
|
9
|
Kim S, Jeong KJ, Cho SK, Park JW, Park WJ. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway. Mol Med Rep 2016; 14:4454-4460. [DOI: 10.3892/mmr.2016.5766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/05/2016] [Indexed: 11/06/2022] Open
|
10
|
Nobakht M Gh BF, Oskouie AA, Aliannejad R, Rezaei-Tavirani M, Tavallaie S, Baghban AA, Taheri S, Keramati MR, Alamdari DH. Pro-oxidant-antioxidant balance in Iranian veterans with sulfur mustard toxicity and different levels of pulmonary disorders. Drug Chem Toxicol 2015; 39:362-6. [PMID: 26679093 DOI: 10.3109/01480545.2015.1122033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Sulfur mustard (SM) is a strong alkylating agent that primarily targets the skin, eye and lung. The current study evaluated the pro-oxidant-antioxidant balance (PAB) assay in human serum of SM-exposed patients. DESIGN AND METHODS sera of 35 SM-exposed patients and 19 healthy volunteers were recruited. Both groups had nonsmoker and nonalcoholic people with no diseases such as diabetes, heart disease and other pulmonary diseases (COPD because of smoking, asthma and so on). All patients had documented exposure to SM. The PAB was measured. RESULTS SM-exposed patients with normal values for pulmonary function test and severe obstructive pulmonary disease demonstrated a significant increase in PAB value in compared with healthy volunteers (the PAB values in healthy volunteers, normal and severe patients were 48.74 ± 21.07 HK, 101.45 ± 32.68 HK and 120.23 ± 31.55 HK, respectively). However, the level of oxidation is not related to the severity of disease defined by spirometry findings. A significant negative correlation was established between the PAB value and FEV1. CONCLUSIONS The increased PAB value in chemical casualties showed that these patients are exposed to oxidative stress.
Collapse
Affiliation(s)
- B Fatemeh Nobakht M Gh
- a Proteomics Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran .,b Department of Basic Sciences, Faculty of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Afsaneh Arefi Oskouie
- b Department of Basic Sciences, Faculty of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Rasoul Aliannejad
- c Pulmonary Department , Shariati Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- a Proteomics Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Shima Tavallaie
- d Department of Biochemistry, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Alireza Akbarzadeh Baghban
- e Department of Basic Sciences , School of Rehabilitation, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Salman Taheri
- f Chemistry and Chemical Engineering Research Center of Iran , Tehran , Iran
| | - Mohammad Reza Keramati
- g Faculty of Medicine , Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - Daryoush Hamidi Alamdari
- h Biochemistry and Nutrition Research Center, Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
11
|
Han AA, Currie HN, Loos MS, Vrana JA, Fabyanic EB, Prediger MS, Boyd JW. Spatiotemporal phosphoprotein distribution and associated cytokine response of a traumatic injury. Cytokine 2015; 79:12-22. [PMID: 26702931 DOI: 10.1016/j.cyto.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/06/2015] [Indexed: 02/02/2023]
Abstract
Molecular mechanisms of wound healing have been extensively characterized, providing a better understanding of the processes involved in wound repair and offering advances in treatment methods. Both spatial and temporal investigations of injury biomarkers have helped to pinpoint significant time points and locations during the recovery process, which may be vital in managing the injury and making the appropriate diagnosis. This study addresses spatial and temporal differences of phosphoproteins found in skeletal muscle tissue following a traumatic femur fracture, which were further compared to co-localized cytokine responses. In particular, several proteins (Akt, ERK, c-Jun, CREB, JNK, MEK1, and p38) and post-translational phosphorylations (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-MEK1, p-p38, p-GSK3α/β, p-HSP27, p-p70S6K, and p-STAT3) associated with inflammation, new tissue formation, and remodeling were found to exhibit significant spatial and temporal differences in response to the traumatic injury. Quadratic discriminant analysis of all measured responses, including cytokine concentrations from previously published findings, was used to classify temporal and spatial observations at high predictive rates, further confirming that distinct spatiotemporal distributions for total protein, phosphorylation signaling, and cytokine (IL-1α, IL-1ß, IL2, IL6, TNF-α, and MIP-1α) responses exist. Finally, phosphoprotein measurements were found to be significantly correlated to cytokine concentrations, suggesting coordinated intracellular and extracellular activity during crucial periods of repair. This study represents a first attempt to monitor and assess integrated changes in extracellular and intracellular signaling in response to a traumatic injury in muscle tissues, which may provide a framework for future research to improve both our understanding of wounds and their treatment options.
Collapse
Affiliation(s)
- Alice A Han
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Holly N Currie
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew S Loos
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Julie A Vrana
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Emily B Fabyanic
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Maren S Prediger
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
12
|
The Mixture of Salvianolic Acids from Salvia miltiorrhiza and Total Flavonoids from Anemarrhena asphodeloides Attenuate Sulfur Mustard-Induced Injury. Int J Mol Sci 2015; 16:24555-73. [PMID: 26501264 PMCID: PMC4632764 DOI: 10.3390/ijms161024555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p<0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries.
Collapse
|
13
|
Kumar D, Tewari-Singh N, Agarwal C, Jain AK, Inturi S, Kant R, White CW, Agarwal R. Nitrogen mustard exposure of murine skin induces DNA damage, oxidative stress and activation of MAPK/Akt-AP1 pathway leading to induction of inflammatory and proteolytic mediators. Toxicol Lett 2015; 235:161-71. [PMID: 25891025 DOI: 10.1016/j.toxlet.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023]
Abstract
Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA.
| |
Collapse
|
14
|
Sagar S, Kumar P, Behera RR, Pal A. Effects of CEES and LPS synergistically stimulate oxidative stress inactivates OGG1 signaling in macrophage cells. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:236-249. [PMID: 24976129 DOI: 10.1016/j.jhazmat.2014.05.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 05/17/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
2-chloroethyl ethyl sulphide (CEES), a monofunctional analogue of sulfur mustard, is a strong vesicant and an alkylating chemical warfare agent. We studied the molecular mechanism of oxidative stress triggered signaling cascades in murine macrophages exposed to CEES with lipopolysaccharide (LPS). Exposure of CEES with specific dose of LPS stimulates oxidative stress caused increasing level of intracellular ROS and RNS, decreased antioxidant enzymes, increasing bimolecular damage, reduced cell viability, and cell cycle arrest. Synergistic exposure of CEES and LPS provoked significant increase in phosphorylation of MAPKs, Akt, tuberin, that down regulate OGG1 expression and 8-OHdG accumulations. Treatment with Akt and ERK1/2 inhibitors, the cells with constitutively active inhibiting activity of Akt and ERK1/2MAPK significant reduce CEES and LPS challenge tuberin but not the OGG1. In addition, the N-acetylcysteine inhibited ROS/RNS generation, elevation of antioxidants level, expression of ERK1/2, Akt, tuberin phosphorylation, resulted in deceased 8-OHdG accumulation and upregulation of OGG1 protein expression suggesting no involvement of Akt and ERK1/2MAPK pathways after CEES and LPS challenge. Collectively, our results indicate that exposure of CEES and LPS induces oxidative stress and the activation of tuberin, and 8-OHdG accumulation via upstream signaling pathways including Akt and ERK1/2MAPK pathway in macrophages but not the down regulation of OGG1.
Collapse
Affiliation(s)
- Satish Sagar
- School of Biotechnology, KIIT University, Campus 11, Bhubaneswar 751024, India
| | - Premranjan Kumar
- School of Biotechnology, KIIT University, Campus 11, Bhubaneswar 751024, India
| | - Reena Rani Behera
- School of Biotechnology, KIIT University, Campus 11, Bhubaneswar 751024, India
| | - Arttatrana Pal
- School of Biotechnology, KIIT University, Campus 11, Bhubaneswar 751024, India.
| |
Collapse
|
15
|
Yego ECK, Dillman JF. Cytokine regulation by MAPK activated kinase 2 in keratinocytes exposed to sulfur mustard. Toxicol In Vitro 2013; 27:2067-75. [PMID: 23851002 DOI: 10.1016/j.tiv.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/18/2022]
Abstract
Uncontrolled inflammation contributes to cutaneous damage following exposure to the warfare agent bis(2-chloroethyl) sulfide (sulfur mustard, SM). Activation of the p38 mitogen activated protein kinase (MAPK) precedes SM-induced cytokine secretion in normal human epidermal keratinocytes (NHEKs). This study examined the role of p38-regulated MAPK activated kinase 2 (MK2) during this process. Time course analysis studies using NHEK cells exposed to 200μM SM demonstrated rapid MK2 activation via phosphorylation that occurred within 15 min. p38 activation was necessary for MK2 phosphorylation as determined by studies using the p38 inhibitor SB203580. To compare the role of p38 and MK2 during SM-induced cytokine secretion, small interfering RNA (siRNA) targeting these proteins was utilized. TNF-α, IL-1β, IL-6 and IL-8 secretion was evaluated 24h postexposure, while mRNA changes were quantified after 8h. TNF-α, IL-6 and IL-8 up regulation at the protein and mRNA level was observed following SM exposure. IL-1β secretion was also elevated despite unchanged mRNA levels. p38 knockdown reduced SM-induced secretion of all the cytokines examined, whereas significant reduction in SM-induced cytokine secretion was only observed with TNF-α and IL-6 following MK2 knockdown. Our observations demonstrate potential activation of other p38 targets in addition to MK2 during SM-induced cytokine secretion.
Collapse
Affiliation(s)
- E Chepchumba K Yego
- Cell and Molecular Biology Branch, US Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, 21010 MD, United States.
| | | |
Collapse
|
16
|
Ishida H, Ray R, Amnuaysirikul J, Ishida K, Ray P. Nitric oxide synthase gene transfer overcomes the inhibition of wound healing by sulfur mustard in a human keratinocyte in vitro model. ISRN TOXICOLOGY 2012; 2012:190429. [PMID: 23762631 PMCID: PMC3664197 DOI: 10.5402/2012/190429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent that causes extensive skin injury. Previously we reported that SM exposure resulted in suppression of inducible nitric oxide synthase (iNOS) expression to inhibit the healing of scratch wounds in a cultured normal human epidermal keratinocyte (NHEK) model. Based on this finding, the present study was to use adenovirus-mediated gene transfer of iNOS to restore the nitric oxide (NO) supply depleted by exposure to SM and to evaluate the effect of NO on wound healing inhibited by SM in NHEKs. The effect of the iNOS gene transfer on iNOS protein expression and NO generation were monitored by Western blot and flow cytometry, respectively. Wound healing with or without the iNOS gene transfer after SM exposure was assessed by light and confocal microscopy. The iNOS gene transfer via adenovirus resulted in overexpression of the iNOS and an increase in NO production regardless of SM exposure in the NHEK model. The gene transfer was also effective in overcoming the inhibition of wound healing due to SM exposure leading to the promotion of wound closure. The findings in this study suggest that the iNOS gene transfer is a promising therapeutic strategy for SM-induced skin injury.
Collapse
Affiliation(s)
- Hiroshi Ishida
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | |
Collapse
|
17
|
Ruff AL, Jarecke AJ, Hilber DJ, Rothwell CC, Beach SL, Dillman JF. Development of a mouse model for sulfur mustard-induced ocular injury and long-term clinical analysis of injury progression. Cutan Ocul Toxicol 2012; 32:140-9. [PMID: 23106216 DOI: 10.3109/15569527.2012.731666] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CONTEXT Sulfur mustard (SM) is a highly reactive vesicating agent that can induce severe ocular injury. The clinical features of this injury have been well documented, but the molecular basis for this pathology is not well understood. Identification and validation of specific targets is necessary in the effort to develop effective therapeutics for this injury. Currently used rabbit models are not well suited for many molecular studies because the necessary reagents are not widely available. However, these reagents are widely available for the mouse model. OBJECTIVE Our objective is to develop a mouse model of SM-induced ocular injury suitable for the study of the molecular mechanisms of injury and the evaluation of therapeutics. MATERIALS AND METHODS Ocular exposure to sulfur mustard vapor was accomplished by using a vapor cup method. Dose response studies were conducted in female BALB/c mice. An exposure dose which produced moderate injury was selected for further study as moderate injury was determined to be amenable to studying the beneficial effects of potential therapeutics. Histopathology and inflammatory markers were evaluated for up to 28 days after exposure, while clinical injury progression was evaluated for 1 year post-exposure. RESULTS A biphasic ocular injury was observed in mice exposed to SM. Acute phase SM ocular injury in mice was characterized by significant corneal epithelium loss, corneal edema, limbal engorgement, and ocular inflammation. This was followed by a brief recovery phase. A delayed injury phase then ensued in the following weeks to months and was characterized by keratitis, stromal edema, infiltrates, neovascularization, and eventual corneal scarring. DISCUSSION AND CONCLUSIONS SM-induced ocular injury in mice is consistent with observations of SM-induced ocular injury in humans and rabbit models. However, in the mouse model, the SM ocular injury, a more rapid onset of the delayed injury phase was observed. We have developed an animal model of SM injury that is suitable for studies to elucidate molecular mechanisms of injury and identify potential therapeutic targets.
Collapse
|
18
|
Sahebkar A. Baicalin as a potentially promising drug for the management of sulfur mustard induced cutaneous complications: a review of molecular mechanisms. Cutan Ocul Toxicol 2012; 31:226-234. [PMID: 22107027 DOI: 10.3109/15569527.2011.633950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM) is a bifunctional alkylating agent with strong blistering, irritant, mutagenic and cytotoxic properties. SM has been widely deployed as a chemical warfare agent for over a century, leading to extensive casualties. Skin is among the first and most heavily damaged organs upon SM exposure. Unfortunately, a considerable fraction of SM-intoxicated patients are still suffering from chronic cutaneous complications. While these complications adversely affect patients' quality of life, there is as yet no ideal treatment for them and therapeutic options are limited and mainly symptomatic. During recent decades, remarkable progress has been made in understanding molecular mechanisms underlying SM-induced dermatotoxicity and several intra- and extracellular targets have been identified. This review argues that baicalin, a bioactive flavonoid from the roots of Scutellaria spp., could counteract different molecular and biochemical abnormalities that mediate SM dermatotoxicity and could therefore be regarded as a promising therapeutic option for the management of SM-induced cutaneous lesions.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| |
Collapse
|
19
|
Tewari-Singh N, Jain AK, Inturi S, Ammar DA, Agarwal C, Tyagi P, Kompella UB, Enzenauer RW, Petrash JM, Agarwal R. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries. Toxicol Appl Pharmacol 2012; 264:23-31. [PMID: 22841772 DOI: 10.1016/j.taap.2012.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023]
Abstract
There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100nmol) exposure of the corneas for 2h (cultured for 24h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2h and every 4h thereafter, for 24h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline+dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants.
Collapse
Affiliation(s)
- Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ham HY, Hong CW, Lee SN, Kwon MS, Kim YJ, Song DK. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling. Toxicol Appl Pharmacol 2011; 258:82-8. [PMID: 22036725 DOI: 10.1016/j.taap.2011.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
Abstract
Sulfur mustard (2,2'-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca(2+)](i) in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca(2+)](i) increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils.
Collapse
Affiliation(s)
- Hwa-Yong Ham
- Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Seagrave J, Weber WM, Grotendorst GR. Sulfur mustard vapor effects on differentiated human lung cells. Inhal Toxicol 2011; 22:896-902. [PMID: 20569120 DOI: 10.3109/08958378.2010.493901] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONTEXT Sulfur mustard (SM) causes skin blistering and long-term pulmonary dysfunction. Its adverse effects have been studied in battlefield-exposed humans, but lack of knowledge regarding confounding factors makes interpretation challenging. Animal studies are critical to understanding mechanisms, but differences between animals and humans must be addressed. Studies of cultured human cells can bridge animal studies and humans. OBJECTIVE Evaluate effects of SM vapor on airway cells. MATERIALS AND METHODS We examined responses of differentiated human tracheal/bronchial epithelial cells, cultured at an air-liquid interface, to SM vapors. SM effects on metabolic activity (Water Soluble Tetrazolium (WST) assay), cytokine and metalloproteinase secretion, and cellular heme oxygenase 1 (HO-1), an oxidative stress indicator, were measured after 24 h. RESULTS At noncytotoxic levels of exposure, interleukin 8 and matrix metalloproteinase-13 were significantly increased in these cultures, but HO-1 was not significantly affected. DISCUSSION AND CONCLUSION Exposure of differentiated airway epithelial cells to sub-cytotoxic levels of SM vapor induced inflammatory and degradative responses that could contribute to the adverse health effects of inhaled SM.
Collapse
|
22
|
Popp T, Egea V, Kehe K, Steinritz D, Schmidt A, Jochum M, Ries C. Sulfur mustard induces differentiation in human primary keratinocytes: opposite roles of p38 and ERK1/2 MAPK. Toxicol Lett 2011; 204:43-51. [PMID: 21524694 DOI: 10.1016/j.toxlet.2011.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 02/03/2023]
Abstract
The chemical warfare agent sulfur mustard (SM) severely affects the regeneration capacity of skin. The underlying molecular and cellular mechanisms, however, are far from clear. Here, we demonstrate that normal human epidermal keratinocytes (NHEK) after exposure to SM strongly upregulated expression of keratin-1, involucrin, and loricrin, thus indicating premature epidermal differentiation. Furthermore, proliferation was repressed after treatment with SM. Analysis of intracellular signaling in NHEK revealed that SM enhances phosphorylation, nuclear translocation, and activity of the mitogen-activated protein kinases (MAPK) p38 and ERK1/2. Inhibition of p38 activity downregulated expression of keratin-1 and loricrin, whereas blockage of ERK1/2 significantly stimulated biosynthesis of these markers, pointing to opposite roles of p38 and ERK1/2 in the differentiation process. Simultaneous interruption of p38 and ERK1/2 activity led to a decreased expression of keratin-1 and loricrin. This suggests that NHEK differentiation is essentially controlled by p38 activity which may be negatively influenced by ERK1/2 activity. Functional analysis demonstrated that SM affects NHEK in their ability to migrate through extracellular matrix which can be rescued upon application of an inhibitor of p38 activity. Thus, our findings indicate that SM triggers premature differentiation in keratinocytes via p38 activity which may contribute to impaired regeneration of SM-injured skin.
Collapse
Affiliation(s)
- Tanja Popp
- Division of Clinical Chemistry and Clinical Biochemistry, Ludwig-Maximilians-University of Munich, Nussbaumstrasse 20, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR, Sinko PJ, Laskin DL, Laskin JD. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2011; 253:112-20. [PMID: 21457723 DOI: 10.1016/j.taap.2011.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 01/14/2023]
Abstract
Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol 2011; 41:384-403. [PMID: 21329486 DOI: 10.3109/10408444.2010.541224] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) and similar bifunctional agents have been used as chemical weapons for almost 100 years. Victims of high-dose exposure, both combatants and civilians, may die within hours or weeks, but low-dose exposure causes both acute injury to the eyes, skin, respiratory tract and other parts of the body, and chronic sequelae in these organs are often debilitating and have a serious impact on quality of life. Ever since they were first used in warfare in 1917, SM and other mustard agents have been the subjects of intensive research, and their chemistry, pharmacokinetics and mechanisms of toxic action are now fairly well understood. In the present article we review this knowledge and relate the molecular-biological basis of SM toxicity, as far as it has been elucidated, to the pathological effects on exposure victims.
Collapse
Affiliation(s)
- Kamyar Ghabili
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
25
|
Black AT, Hayden PJ, Casillas RP, Heck DE, Gerecke DR, Sinko PJ, Laskin DL, Laskin JD. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 249:178-87. [PMID: 20840853 DOI: 10.1016/j.taap.2010.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022]
Abstract
Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE₂ synthases, leukotriene (LT) A₄ hydrolase and LTC₄ synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.
Collapse
Affiliation(s)
- Adrienne T Black
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2010; 245:352-60. [PMID: 20382172 DOI: 10.1016/j.taap.2010.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 microM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A(4) (LTA(4)) hydrolase and leukotriene C(4) (LTC(4)) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA(4) hydrolase and LTC(4) synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.
Collapse
|
27
|
Ruff AL, Dillman JF. Sulfur mustard induced cytokine production and cell death: Investigating the potential roles of the p38, p53, and NF-κB signaling pathways with RNA interference. J Biochem Mol Toxicol 2010; 24:155-64. [DOI: 10.1002/jbt.20321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Pal A, Tewari-Singh N, Gu M, Agarwal C, Huang J, Day BJ, White CW, Agarwal R. Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 hairless mice. Free Radic Biol Med 2009; 47:1640-51. [PMID: 19761830 PMCID: PMC2801552 DOI: 10.1016/j.freeradbiomed.2009.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/20/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022]
Abstract
A monofunctional analog of the chemical warfare agent sulfur mustard (HD), 2-chloroethyl ethyl sulfide (CEES), induces tissue damage similar to HD. Herein we studied the molecular mechanisms associated with CEES-induced skin inflammation and toxicity in SKH-1 hairless mice. Topical CEES exposure caused an increase in oxidative stress as observed by enhanced 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation and an increase in protein oxidation. The CEES-induced increase in the formation of 8-oxo-2-deoxyguanosine indicated DNA oxidation. CEES exposure instigated an increase in the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK1/2, JNK, and p38). After CEES exposure, a significant increase in the phosphorylation of Akt at Ser473 and Thr308 was observed as well as upregulation of its upstream effector, PDK1, in mouse skin tissue. Subsequently, CEES exposure caused activation of AP-1 family proteins and the NF-kappaB pathway, including phosphorylation and degradation of IkappaBalpha in addition to phosphorylation of the NF-kappaB essential modulator. Collectively, our results indicate that CEES induces oxidative stress and the activation of the transcription factors AP-1 and NF-kappaB via upstream signaling pathways including MAPKs and Akt in SKH-1 hairless mouse skin. These novel molecular targets could be supportive in the development of prophylactic and therapeutic interventions against HD-related skin injury.
Collapse
Affiliation(s)
- Arttatrana Pal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado at Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin DL, Laskin JD. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 2009; 114:5-19. [PMID: 19833738 DOI: 10.1093/toxsci/kfp253] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Debiak M, Kehe K, Bürkle A. Role of poly(ADP-ribose) polymerase in sulfur mustard toxicity. Toxicology 2009; 263:20-5. [DOI: 10.1016/j.tox.2008.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/06/2008] [Accepted: 06/09/2008] [Indexed: 01/27/2023]
|
31
|
Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology 2009; 263:12-9. [DOI: 10.1016/j.tox.2009.01.019] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 02/07/2023]
|
32
|
Steinritz D, Elischer A, Balszuweit F, Gonder S, Heinrich A, Bloch W, Thiermann H, Kehe K. Sulphur mustard induces time- and concentration-dependent regulation of NO-synthesizing enzymes. Toxicol Lett 2009; 188:263-9. [DOI: 10.1016/j.toxlet.2009.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 02/07/2023]
|
33
|
Vermeulen L, Vanden Berghe W, Beck IME, De Bosscher K, Haegeman G. The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 2009; 34:311-8. [PMID: 19464896 DOI: 10.1016/j.tibs.2009.02.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
Abstract
Among the mitogen-activated protein kinase (MAPK) targets, MSKs (mitogen- and stress-activated protein kinases) comprise a particularly interesting protein family. Because MSKs can be activated by both extracellular-signal-regulated kinase and p38 MAPKs, they are activated by many physiological and pathological stimuli. About ten years after their original discovery, they have been recognized as versatile kinases regulating gene transcription at multiple levels. MSKs directly target transcription factors, such as cAMP-response-element-binding protein and nuclear factor-kappaB, thereby enhancing their transcriptional activity. They also induce histone phosphorylation, which is accompanied by chromatin relaxation and facilitated binding of additional regulatory proteins. Here, we review the current knowledge on MSK activation and its molecular targets, focusing on recent insights into the role of MSKs at multiple levels of transcriptional regulation.
Collapse
Affiliation(s)
- Linda Vermeulen
- Laboratory of Eukaryotic Gene Expression & Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|