1
|
Šebeková K, Hodosy J, Celec P, Marková L, Miláček D, Ciesarová Z. Association of acrylamide dietary intake with glycation and oxidative status biomarkers and intakes of advanced glycation end-products or alpha-dicarbonyls. Sci Rep 2025; 15:14881. [PMID: 40295573 PMCID: PMC12037909 DOI: 10.1038/s41598-025-98285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Acrylamide, advanced glycation end products (AGEs), and alpha-dicarbonyls are formed during the thermal processing of foods. Their dietary intake raises potential health concerns. Using food frequency questionnaires on acrylamide-rich Slovak foods, we estimated dietary acrylamide intake in 107 students aged 19-to-30 years and correlated it with salivary, plasma, skin autofluorescence; plasma levels of soluble receptor for advanced glycated end-products, and oxidative status markers (thiobarbituric acid reacting substances, ferric-reducing ability of plasma). No significant relationship was revealed between estimated daily acrylamide intake and analyzed biomarkers. As the extent of exposure to alpha-dicarbonyls and AGEs when consuming acrylamide-rich food remains unknown, we aligned acrylamide intake with that of glyoxal, methylglyoxal, 3-deoxyglucosone, and Nε-carboxymethyllysine, Nε-carboxyethyllysine, or methylglyoxal-derived hydroimidazolone. Correlation coefficients between intakes of acrylamide and alpha-dicarbonyls or AGEs reached 0.7-to-0.8 (p < 0.001, all), but, at individual levels, high intake of acrylamide was not unequivocally associated with high intake of AGEs or alpha-dicarbonyls. Our data suggest that the restriction of dietary AGEs recommended to patients with chronic non-communicable diseases must not simultaneously mitigate acrylamide intake. Nutritional research should explore the potential cumulative or synergistic adverse health effects of concurrent dietary intakes of acrylamide, AGEs, and alpha-dicarbonyls.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucie Marková
- National Agricultural and Food Centre, Food Research Institute, Bratislava, Slovakia
| | - Dávid Miláček
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Ciesarová
- National Agricultural and Food Centre, Food Research Institute, Bratislava, Slovakia
| |
Collapse
|
2
|
Shen CY, Lu CH, Cheng CF, Li KJ, Kuo YM, Wu CH, Liu CH, Hsieh SC, Tsai CY, Yu CL. Advanced Glycation End-Products Acting as Immunomodulators for Chronic Inflammation, Inflammaging and Carcinogenesis in Patients with Diabetes and Immune-Related Diseases. Biomedicines 2024; 12:1699. [PMID: 39200164 PMCID: PMC11352041 DOI: 10.3390/biomedicines12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Increased production of advanced glycation end products (AGEs) among reducing sugars (glucose, fructose, galactose, or ribose) and amino acids/proteins via non-enzymatic Maillard reaction can be found in lifestyle-related disease (LSRD), metabolic syndrome (MetS), and obesity and immune-related diseases. Increased serum levels of AGEs may induce aging, diabetic complications, cardiovascular diseases (CVD), neurodegenerative diseases (NDD), cancer, and inflamm-aging (inflammation with immunosenescence). The Maillard reaction can also occur among reducing sugars and lipoproteins or DNAs to alter their structure and induce immunogenicity/genotoxicity for carcinogenesis. AGEs, as danger-associated molecular pattern molecules (DAMPs), operate via binding to receptor for AGE (RAGE) or other scavenger receptors on cell surface to activate PI3K-Akt-, P38-MAPK-, ERK1/2-JNK-, and MyD88-induced NF-κB signaling pathways to mediate various pathological effects. Recently, the concept of "inflamm-aging" became more defined, and we have unveiled some interesting findings in relation to it. The purpose of the present review is to dissect the potential molecular basis of inflamm-aging in patients with diabetes and immune-mediated diseases caused by different AGEs.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital-Hsinchu Branch, # 2, Section 1, Shengyi Road, Hsinchu County 302058, Taiwan;
| | - Chin-Hsiu Liu
- Department of Internal Medicine, National Taiwan University Hospital-Yunlin Branch, # 579, Section 2, Yunlin Road, Yunlin County 640203, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Chang-Youh Tsai
- Department of Internal Medicine, Fu-Jen Catholic University Hospital, College of Medicine, Fu-Jen Catholic University, # 69 Guizi Road, New Taipei City 24352, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| |
Collapse
|
3
|
Quraishi S, Nudrat S, Kumari K, Marboh EWM, Aguan K, Singha Roy A. Elucidation of inhibitory effects of bioactive anthraquinones towards formation of DNA advanced glycation end products (DNA-AGEs). Int J Biol Macromol 2024; 269:131810. [PMID: 38677669 DOI: 10.1016/j.ijbiomac.2024.131810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
DNA is essential in biological processes as it directs transcription and translation assisting in RNA and protein synthesis. Extended periods of elevated blood glucose levels cause non-enzymatic DNA glycation, which results in the formation of DNA-AGEs and the production of free radicals, causing structural perturbation of DNA. In this work, we have investigated the glycation of calf thymus (ct-DNA) DNA and examined its inhibition by two anthraquinone derivatives, purpurin and aloin. Ribose sugar served as the glycating agent inducing non-enzymatic glycation of DNA and subsequent DNA-AGEs formation. UV-vis and fluorescence spectroscopic methods were utilized to characterize DNA-AGE formation in vitro. Circular dichroism (CD) spectroscopy was used to observe the structural disruption of DNA caused by glycation. The changes in AGEs fluorescence intensity and melting temperature (Tm) were measured to assess the inhibition of glycation process by aloin and purpurin. These derivatives demonstrated inhibitory effects via binding to glycating sites of ct-DNA or by scavenging free radicals generated during glycation. The current study elucidates the inhibitory actions of aloin and purpurin on DNA glycation, suggesting their possible applications in mitigating the adverse consequences linked to increased ribose concentrations.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Sadia Nudrat
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Erica W M Marboh
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
4
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Velichkova S, Foubert K, Theunis M, Pieters L. HILIC UPLC/ QTof MS Method Development for the Quantification of AGEs Inhibitors - Trouble Shooting Protocol. Comb Chem High Throughput Screen 2024; 27:584-598. [PMID: 37415375 DOI: 10.2174/1386207326666230706120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE The paper reports an attempt to develop and validate a HILIC UPLC/ QTof MS method for quantifying N-ε-carboxymethyl-L-lysine (CML) in vitro, testing N-ε- carboxy[D2]methyl-L-lysine (d2-CML), and N-ε-carboxy[4,4,5,5-D4]methyl-L-lysine (d4-CML) as internal standards. METHODS During the method development, several challenging questions occurred that hindered the successful completion of the method. The study emphasizes the impact of issues, generally overlooked in the development of similar analytical protocols. For instance, the use of glassware and plasticware was critical for the accurate quantification of CML. Moreover, the origin of atypical variation in the response of the deuterated internal standards, though widely used in other experimental procedures, was investigated. RESULT A narrative description of the systematic approach used to address the various drawbacks during the analytical method development and validation is presented. CONCLUSION Reporting those findings can be considered beneficial while bringing an insightful notion about critical factors and potential interferences. Therefore, some conclusion and ideas can be drawn from these trouble-shooting questions, which might help other researchers to develop more reliable bioanalytical methods, or to raise their awareness of stumbling blocks along the way.
Collapse
Affiliation(s)
- Stefaniya Velichkova
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mart Theunis
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
9
|
Ciminera AK, Shuck SC, Termini J. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance 2021; 4:4/10/e202101159. [PMID: 34426491 PMCID: PMC8385305 DOI: 10.26508/lsa.202101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Exposure to chronic, elevated glucose inhibits nucleotide excision repair, which leads to accumulation of DNA glycation adducts, increased DNA strand breaks, and activation of the DNA damage response. We investigated potential mechanisms by which elevated glucose may promote genomic instability. Gene expression studies, protein measurements, mass spectroscopic analyses, and functional assays revealed that elevated glucose inhibited the nucleotide excision repair (NER) pathway, promoted DNA strand breaks, and increased levels of the DNA glycation adduct N2-(1-carboxyethyl)-2ʹ-deoxyguanosine (CEdG). Glycation stress in NER-competent cells yielded single-strand breaks accompanied by ATR activation, γH2AX induction, and enhanced non-homologous end-joining and homology-directed repair. In NER-deficient cells, glycation stress activated ATM/ATR/H2AX, consistent with double-strand break formation. Elevated glucose inhibited DNA repair by attenuating hypoxia-inducible factor-1α–mediated transcription of NER genes via enhanced 2-ketoglutarate–dependent prolyl hydroxylase (PHD) activity. PHD inhibition enhanced transcription of NER genes and facilitated CEdG repair. These results are consistent with a role for hyperglycemia in promoting genomic instability as a potential mechanism for increasing cancer risk in metabolic disease. Because of the pleiotropic functions of many NER genes beyond DNA repair, these results may have broader implications for cellular pathophysiology.
Collapse
Affiliation(s)
- Alexandra K Ciminera
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA.,Irell and Manella Graduate School of Biomedical Sciences, City of Hope, Duarte, CA, USA
| | - Sarah C Shuck
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, USA
| |
Collapse
|
10
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
11
|
Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8:cells8070749. [PMID: 31331077 PMCID: PMC6678343 DOI: 10.3390/cells8070749] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.
Collapse
|
12
|
Boteva E, Mironova R. Maillard reaction and aging: can bacteria shed light on the link? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Elitsa Boteva
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
13
|
Gensberger-Reigl S, Atzenbeck L, Göttler A, Pischetsrieder M. Identification of [6-Hydroxy-2-(hydroxymethyl)-5-oxo-5,6-dihydro-2 H-pyran-3-yl]-cysteine (HHPC) as a Cysteine-specific Modification Formed from 3,4-Dideoxyglucosone-3-ene (3,4-DGE). Chem Res Toxicol 2019; 32:304-311. [PMID: 30640474 DOI: 10.1021/acs.chemrestox.8b00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucose degradation products (GDPs) are formed from glucose and other reducing sugars during heat treatment, for example, in heat-sterilized peritoneal dialysis fluids or foods. Because of their reactive mono- and dicarbonyl structure, they react readily with proteins, resulting in the formation of advanced glycation end products (AGEs), loss of protein functionality, and cytotoxicity. Among the GDPs, 3,4-dideoxyglucosone-3-ene (3,4-DGE) exerts the strongest effects despite its relatively low concentration levels. The goal of the present study was therefore to identify the structure of specific protein modifications deriving from 3,4-DGE. A nonapeptide containing the reactive amino acids lysine, arginine, and cysteine was incubated with 3,4-DGE and the dominant GDPs 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) in concentrations as present in peritoneal dialysis fluids (235 μM 3-DG, 100 μM 3-Gal, and 11 μM 3,4-DGE). Glycation rate and product formation were determined by ultra-HPLC-MS/MS (UHPLC-MS/MS). 3,4-DGE showed the strongest glycation activity. After 2 h of incubation, 3,4-DGE had modified 57% of the nonapeptide, whereas 3-DG had modified only 2% and 3-DGal had modified 29% of the peptide. A stable 3,4-DGE-derived cysteine modification was isolated. Its structure was determined by comprehensive NMR and MS experiments to be [6-hydroxy-2-(hydroxymethyl)-5-oxo-5,6-dihydro-2 H-pyran-3-yl]-cysteine (HHPC), which represents a novel cysteine-AGE derived from 3,4-DGE. The results indicate that 3,4-DGE might contribute to a severe loss of protein functionality by forming cysteine-specific AGEs, such as HHPC.
Collapse
Affiliation(s)
- Sabrina Gensberger-Reigl
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Lisa Atzenbeck
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Alexander Göttler
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Monika Pischetsrieder
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| |
Collapse
|
14
|
Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int J Mol Sci 2017; 18:ijms18050984. [PMID: 28475116 PMCID: PMC5454897 DOI: 10.3390/ijms18050984] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) are non-enzymatic protein and amino acid adducts as well as DNA adducts which form from dicarbonyls and glucose. AGE formation is enhanced in diabetes and is associated with the development of diabetic complications. In the current review, we discuss mechanisms that lead to enhanced AGE levels in the context of diabetes and diabetic complications. The methylglyoxal-detoxifying glyoxalase system as well as alternative pathways of AGE detoxification are summarized. Therapeutic approaches to interfere with different pathways of AGE formation are presented.
Collapse
|
15
|
Vilanova B, Fernández D, Casasnovas R, Pomar AM, Alvarez-Idaboy JR, Hernández-Haro N, Grand A, Adrover M, Donoso J, Frau J, Muñoz F, Ortega-Castro J. Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor. Int J Biol Macromol 2017; 98:664-675. [PMID: 28192135 DOI: 10.1016/j.ijbiomac.2017.01.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking.
Collapse
Affiliation(s)
- B Vilanova
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain.
| | - D Fernández
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - R Casasnovas
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - A M Pomar
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J R Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | | | - A Grand
- Univ. Greboble Alpes, INAC-SCIB, F-38000 Grenoble, France; CEA, INAC-SyMMES, F-38000 Grenoble, France; Universidad Autónoma de Chile, Carlos Antúnez 1920, 7500566, Providencia, Santiago de, Chile
| | - M Adrover
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Donoso
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Frau
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - F Muñoz
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Ortega-Castro
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| |
Collapse
|
16
|
Jaramillo R, Shuck SC, Chan YS, Liu X, Bates SE, Lim PP, Tamae D, Lacoste S, O'Connor TR, Termini J. DNA Advanced Glycation End Products (DNA-AGEs) Are Elevated in Urine and Tissue in an Animal Model of Type 2 Diabetes. Chem Res Toxicol 2017; 30:689-698. [PMID: 28107623 DOI: 10.1021/acs.chemrestox.6b00414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More precise identification and treatment monitoring of prediabetic/diabetic individuals will require additional biomarkers to complement existing diagnostic tests. Candidates include hyperglycemia-induced adducts such as advanced glycation end products (AGEs) of proteins, lipids, and DNA. The potential for DNA-AGEs as diabetic biomarkers was examined in a longitudinal study using the Leprdb/db animal model of metabolic syndrome. The DNA-AGE, N2-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) was quantified by mass spectrometry using isotope dilution from the urine and tissue of hyperglycemic and normoglycemic mice. Hyperglycemic mice (fasting plasma glucose, FPG, ≥ 200 mg/dL) displayed a higher median urinary CEdG value (238.4 ± 112.8 pmol/24 h) than normoglycemic mice (16.1 ± 11.8 pmol/24 h). Logistic regression analysis revealed urinary CEdG to be an independent predictor of hyperglycemia. Urinary CEdG was positively correlated with FPG in hyperglycemic animals and with HbA1c for all mice. Average tissue-derived CEdG was also higher in hyperglycemic mice (18.4 CEdG/106 dG) than normoglycemic mice (4.4 CEdG/106 dG). Urinary CEdG was significantly elevated in Leprdb/db mice relative to Leprwt/wt, and tissue CEdG values increased in the order Leprwt/wt < Leprwt/db < Leprdb/db. These data suggest that urinary CEdG measurement may provide a noninvasive quantitative index of glycemic status and augment existing biomarkers for the diagnosis and monitoring of diabetes.
Collapse
Affiliation(s)
- Richard Jaramillo
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Sarah C Shuck
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Yin S Chan
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Xueli Liu
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Steven E Bates
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Punnajit P Lim
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Daniel Tamae
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Sandrine Lacoste
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - Timothy R O'Connor
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| | - John Termini
- Departments of Molecular Medicine, ‡Biostatistics, and §Cancer Biology, Beckman Research Institute at City of Hope , Duarte, California 91010, United States
| |
Collapse
|
17
|
Abstract
Glyoxalase- and methylglyoxal-related research has required the development of quantitative and reliable techniques for the measurement of methylglyoxal-derived glycation adducts of protein and DNA. There are also other glycation adducts, oxidation adducts and nitration adducts of proteins and oxidation adducts of DNA. Proteolysis of protein releases glycation, oxidation and nitration free adducts (glycated, oxidized and nitrated amino acids) in plasma and nuclease digestion of DNA releases glycated and oxidized nucleosides into plasma and other body fluids for excretion in urine. The gold standard method for quantifying these adducts is stable isotopic dilution analysis LC-MS/MS. Protein and DNA adduct residues are determined by assay of enzymatic hydrolysates of protein and DNA extracts prepared using cocktails of proteases and nucleases respectively. Free adducts are determined by analysis of ultrafiltrates of plasma, urine and other physiological fluids. Protein damage markers (13 glycation adducts, five oxidation adducts and 3-nitrotyrosine) and DNA damage markers (three glycation adducts and one oxidation adduct) are quantified using 25 μg of protein, 10 μg of DNA or 5 μl of physiological fluid. Protein and nucleotide AGE (advanced glycation end-product) assay protocols resistant to interferences is described.
Collapse
|
18
|
Abstract
Methylglyoxal is a potent protein-glycating agent. It is an arginine-directed glycating agent and often modifies functionally important sites in proteins. Glycation forms mainly MG-H1 [Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine] residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis-MS/MS and also by immunoblotting with specific monoclonal antibodies. Methylglyoxal-modified proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation end-product in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and aging. Proteins susceptible to methylglyoxal modification with related functional impairment are called the DCP (dicarbonyl proteome). The DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and others. DCP component proteins are linked to mitochondrial dysfunction in diabetes and aging, oxidative stress, dyslipidaemia, cell detachment and anoikis and apoptosis. Methylglyoxal also modifies DNA where deoxyguanosine residues are modified to imidazopurinone MGdG {3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one} isomers. MGdG was the major quantitative adduct detected in vivo. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell-permeant glyoxalase I inhibitor. Glyoxalase I metabolizes >99% methylglyoxal and thereby protects the proteome and genome. Gene deletion of GLO1 is embryonically lethal and GLO1 silencing increases methylglyoxal concentration, MG-H1 and MGdG, premature aging and disease. Studies of methylglyoxal glycation have importance for human health, longevity and treatment of disease.
Collapse
|
19
|
Chandra GK, Eklouh-Molinier C, Fere M, Angiboust JF, Gobinet C, Van-Gulick L, Jeannesson P, Piot O. Probing in Vitro Ribose Induced DNA-Glycation Using Raman Microspectroscopy. Anal Chem 2015; 87:2655-64. [DOI: 10.1021/acs.analchem.5b00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goutam Kumar Chandra
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Christophe Eklouh-Molinier
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Michael Fere
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Jean-François Angiboust
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Cyril Gobinet
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Laurence Van-Gulick
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Pierre Jeannesson
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| | - Olivier Piot
- MéDIAN Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, CNRS UMR 7369 MEDyC, UFR de Pharmacie, SFR CAP Santé, 51096 Reims Cedex, France
| |
Collapse
|
20
|
Ashraf JM, Arfat MY, Arif Z, Ahmad J, Moinuddin, Alam K. A clinical correlation of anti-DNA-AGE autoantibodies in type 2 diabetes mellitus with disease duration. Cell Immunol 2015; 293:74-9. [PMID: 25577340 DOI: 10.1016/j.cellimm.2014.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/02/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022]
Abstract
Nonenzymatic glycation of amino groups of DNA bases by reducing sugars can generate advanced glycation end products (AGEs). Cellular formation of AGEs under normal physiology is continuously scanned and removed by efficient system in the cells. However, excess formation and accumulation of AGEs may be cause or consequence of some human diseases. Mammalian DNA incubated with d-glucose for 28 days at 37°C showed structural changes in DNA as confirmed by UV, fluorescence, CD, melting temperature, S1 nuclease sensitivity and gel electrophoresis. Formation of DNA-AGE was confirmed by HPLC and LC-MS. Enzyme immunoassay and electrophoretic mobility shift assay of autoantibodies in type 2 diabetes patients' sera with disease duration of 5-15 years exhibited significantly high binding with DNA-AGE as compared to patients with 1-5 years of disease duration. Autoantibodies against aberrant DNA-AGE may be important in the assessment of initiation/progression of secondary complications in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Jalaluddin M Ashraf
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Mir Yasir Arfat
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Zarina Arif
- R.G. Centre for Diabetes and Endocrinology, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Jamal Ahmad
- R.G. Centre for Diabetes and Endocrinology, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India.
| |
Collapse
|
21
|
Waris S, Winklhofer-Roob BM, Roob JM, Fuchs S, Sourij H, Rabbani N, Thornalley PJ. Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res 2015; 2015:915486. [PMID: 25950009 PMCID: PMC4408631 DOI: 10.1155/2015/915486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of this study was to assess the changes of markers of DNA damage by glycation and oxidation in patients with type 2 diabetes and the association with diabetic nephropathy. METHODOLOGY DNA oxidation and glycation adducts were analysed in plasma and urine by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. DNA markers analysed were as follows: the oxidation adduct 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OxodG) and glycation adducts of glyoxal and methylglyoxal--imidazopurinones GdG, MGdG, and N2-(1,R/S-carboxyethyl)deoxyguanosine (CEdG). RESULTS Plasma 8-OxodG and GdG were increased 2-fold and 6-fold, respectively, in patients with type 2 diabetes, with respect to healthy volunteers. Median urinary excretion rates of 8-OxodG, GdG, MGdG, and CEdG were increased 28-fold, 10-fold, 2-fold, and 2-fold, respectively, in patients with type 2 diabetes with respect to healthy controls. In patients with type 2 diabetes, nephropathy was associated with increased plasma 8-OxodG and increased urinary GdG and CEdG. In a multiple logistic regression model for diabetic nephropathy, diabetic nephropathy was linked to systolic blood pressure and urinary CEdG. CONCLUSION DNA oxidative and glycation damage-derived nucleoside adducts are increased in plasma and urine of patients with type 2 diabetes and further increased in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Sahar Waris
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Brigitte M. Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center Graz, Institute of Molecular Biosciences, Karl Franzens University, 8010 Graz, Austria
| | - Johannes M. Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Sebastian Fuchs
- Human Nutrition & Metabolism Research and Training Center Graz, Institute of Molecular Biosciences, Karl Franzens University, 8010 Graz, Austria
| | - Harald Sourij
- Clinical Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK
- *Naila Rabbani:
| | - Paul J. Thornalley
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Petrova KV, Millsap AD, Stec DF, Rizzo CJ. Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal. Chem Res Toxicol 2014; 27:1019-29. [PMID: 24801980 PMCID: PMC4060920 DOI: 10.1021/tx500068v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.
Collapse
Affiliation(s)
- Katya V Petrova
- Departments of Chemistry and Biochemistry, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | |
Collapse
|
23
|
Ahmad S, Moinuddin, Shahab U, Habib S, Salman Khan M, Alam K, Ali A. Glycoxidative damage to human DNA: Neo-antigenic epitopes on DNA molecule could be a possible reason for autoimmune response in type 1 diabetes. Glycobiology 2014; 24:281-291. [PMID: 24347633 DOI: 10.1093/glycob/cwt109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Advanced glycation end-products (AGEs) are known to be mutagenic, diabetogenic and vascular disease risk factors. Methylglyoxal (MG) is a dicarbonyl species that reacts with biological macromolecule (proteins, DNA and lipids) to give AGEs. Nonenzymatic glycation of MG with lysine (Lys) in the presence of copper (Cu(2+)) is reported to generate reactive oxygen species (ROS) capable of causing DNA damage. We show that DNA modification in MG-Lys-Cu(2+) system results in the generation of strand breaks, base modification, hyperchromicity and increased fluorescence intensity. Superoxide generation in the MG-Lys system was found to be significantly higher when compared with that in the MG and Lys alone. Moreover, d-penicillamine and pyridoxal phosphate significantly inhibited the formation of glycation products. The presence of a major DNA glycation adduct, N(2)-carboxyethyl-2'-deoxyguanosine (CEdG), was detected by high performance liquid chromatography (HPLC) and confirmed by nuclear magnetic resonance (NMR). As reported earlier, modified DNA (MG-Lys-Cu(2+)-DNA) was highly immunogenic in experimental animals. Furthermore, induced anti-MG-Lys-Cu(2+)-DNA antibodies were effective probe for detecting glycoxidative lesions in human genomic DNA of type I diabetes patients. Our results clearly imply that interaction of MG-Lys and Cu(2+) leads to the formation of AGEs and also the production of potent ROS, capable of causing DNA damage, thereby playing an important role in diabetes mellitus.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Akhter F, Salman Khan M, Shahab U, Moinuddin, Ahmad S. Bio-physical characterization of ribose induced glycation: A mechanistic study on DNA perturbations. Int J Biol Macromol 2013; 58:206-10. [DOI: 10.1016/j.ijbiomac.2013.03.036] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/10/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
|
25
|
A quantitative assay for assessing the effects of DNA lesions on transcription. Nat Chem Biol 2013; 8:817-22. [PMID: 22902614 PMCID: PMC3509257 DOI: 10.1038/nchembio.1046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/22/2012] [Indexed: 12/12/2022]
Abstract
Most mammalian cells in nature are quiescent but actively transcribing mRNA for normal physiological processes; thus, it is important to investigate how endogenous and exogenous DNA damage compromises transcription in cells. Here we describe a new competitive transcription and adduct bypass (CTAB) assay to determine the effects of DNA lesions on the fidelity and efficiency of transcription. Using this strategy, we demonstrate that the oxidatively induced lesions 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) and the methylglyoxal-induced lesion N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) strongly inhibited transcription in vitro and in mammalian cells. In addition, cdA and cdG, but not N(2)-CEdG, induced transcriptional mutagenesis in vitro and in vivo. Furthermore, when located on the template DNA strand, all examined lesions were primarily repaired by transcription-coupled nucleotide excision repair in mammalian cells. This newly developed CTAB assay should be generally applicable for quantitatively assessing how other DNA lesions affect DNA transcription in vitro and in cells.
Collapse
|
26
|
Physicochemical analysis of structural changes in DNA modified with glucose. Int J Biol Macromol 2012; 51:604-11. [DOI: 10.1016/j.ijbiomac.2012.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/13/2023]
|
27
|
Pathological significance of mitochondrial glycation. Int J Cell Biol 2012; 2012:843505. [PMID: 22778743 PMCID: PMC3388455 DOI: 10.1155/2012/843505] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/01/2012] [Indexed: 01/08/2023] Open
Abstract
Glycation, the nonenzymatic glycosylation of biomolecules, is commonly observed in diabetes and ageing. Reactive dicarbonyl species such as methylglyoxal and glyoxal are thought to be major physiological precursors of glycation. Because these dicarbonyls tend to be formed intracellularly, the levels of advanced glycation end products on cellular proteins are higher than on extracellular ones. The formation of glycation adducts within cells can have severe functional consequences such as inhibition of protein activity and promotion of DNA mutations. Although several lines of evidence suggest that there are specific mitochondrial targets of glycation, and mitochondrial dysfunction itself has been implicated in disease and ageing, it is unclear if glycation of biomolecules specifically within mitochondria induces dysfunction and contributes to disease pathology. We discuss here the possibility that mitochondrial glycation contributes to disease, focussing on diabetes, ageing, cancer, and neurodegeneration, and highlight the current limitations in our understanding of the pathological significance of mitochondrial glycation.
Collapse
|
28
|
Mittelmaier S, Niwa T, Pischetsrieder M. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis. J Ren Nutr 2012; 22:181-5. [PMID: 22200439 DOI: 10.1053/j.jrn.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/25/2023] Open
Abstract
Fibrosis and vascular sclerosis are main complications that limit the long-term application of peritoneal dialysis (PD). Low biocompatibility has been largely attributed to the presence of glucose degradation products (GDPs), which are formed during the heat sterilization of PD fluids. GDPs readily modify proteins in the peritoneum, leading to a decline of their biological function. After absorption, GDPs can also promote systemic protein glycation. Additionally, GDPs may augment DNA glycation, a process enhanced in uremia. Apart from their glycating activity, GDPs induce cytotoxicity and interfere with cell signaling in peritoneal mesothelial cells. Targeted screening revealed the nature of the 6 major GDPs with α-dicarbonyl structure as 3-deoxyglucosone, 3-deoxygalactosone, glucosone, glyoxal, methylglyoxal, and 3,4-dideoxyglucosone-3-ene. Valid quantification of these GDPs was achieved by ultrahigh-performance liquid chromatography/diode array detector/tandem mass spectrometry. Identification and quantification of single GDPs allow a structure-dependent risk evaluation. As a consequence, PD fluids and processes can be improved to reduce the GDP burden of patients undergoing PD.
Collapse
Affiliation(s)
- Stefan Mittelmaier
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
29
|
Breyer V, Weigel I, Huang TT, Pischetsrieder M. Endogenous mitochondrial oxidative stress in MnSOD-deficient mouse embryonic fibroblasts promotes mitochondrial DNA glycation. Free Radic Biol Med 2012; 52:1744-9. [PMID: 22370091 PMCID: PMC3341489 DOI: 10.1016/j.freeradbiomed.2012.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/13/2012] [Accepted: 02/15/2012] [Indexed: 11/28/2022]
Abstract
The accumulation of somatic mutations in mitochondrial DNA (mtDNA) induced by reactive oxygen species (ROS) is regarded as a major contributor to aging and age-related degenerative diseases. ROS have also been shown to facilitate the formation of certain advanced glycation end-products (AGEs) in proteins and DNA and N(2)-carboxyethyl-2'-deoxyguanosine (CEdG) has been identified as a major DNA-bound AGE. Therefore, the influence of mitochondrial ROS on the glycation of mtDNA was investigated in primary embryonic fibroblasts derived from mutant mice (Sod2(-/+)) deficient in the mitochondrial antioxidant enzyme manganese superoxide dismutase. In Sod2(-/+) fibroblasts vs wild-type fibroblasts, the CEdG content of mtDNA was increased from 1.90 ± 1.39 to 17.14 ± 6.60 pg/μg DNA (p<0.001). On the other hand, the CEdG content of nuclear DNA did not differ between Sod2(+/+) and Sod2(-/+) cells. Similarly, cytosolic proteins did not show any difference in advanced glycation end-products or protein carbonyl contents between Sod2(+/+) and Sod2(-/+). Taken together, the data suggest that mitochondrial oxidative stress specifically promotes glycation of mtDNA and does not affect nuclear DNA or cytosolic proteins. Because DNA glycation can change DNA integrity and gene functions, glycation of mtDNA may play an important role in the decline of mitochondrial functions.
Collapse
Affiliation(s)
- Viola Breyer
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nuremberg, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Ingrid Weigel
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nuremberg, Schuhstr. 19, D-91052 Erlangen, Germany
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nuremberg, Schuhstr. 19, D-91052 Erlangen, Germany
| |
Collapse
|
30
|
Nicousamide blocks the effects of advanced glycation end products on renal cells. Eur J Pharmacol 2012; 674:455-9. [PMID: 21763303 DOI: 10.1016/j.ejphar.2011.06.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 12/22/2022]
|
31
|
Breyer V, Becker CM, Pischetsrieder M. Intracellular glycation of nuclear DNA, mitochondrial DNA, and cytosolic proteins during senescence-like growth arrest. DNA Cell Biol 2011; 30:681-9. [PMID: 21612395 DOI: 10.1089/dna.2011.1236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To investigate the accumulation of intracellular advanced glycation end products (AGEs), a method was established for the simultaneous analysis of glycation products of cytosolic proteins, nuclear DNA, and mitochondrial DNA (mtDNA). Nuclear DNA, mtDNA, and cytosolic proteins were simultaneously isolated from one cell lysate by differential centrifugation and combined mechanical and chemical cell disruption methods. The major DNA-AGE N(2)-carboxyethyl-2'-deoxyguanosine (CEdG) was quantified in nuclear DNA and mtDNA by ELISA, whereas the protein-AGEs N(ɛ)-(carboxymethyl)lysine (CML) and N(ɛ)-(carboxyethyl)lysine (CEL) were determined by western blot. The method was used to analyze NIH3T3 fibroblasts. In untreated cells, CEdG levels of mtDNA (14.84 ± 3.07 pg CEdG/μg mtDNA) were significantly higher compared with nuclear DNA (4.40 ± 0.64 pg CEdG/μg DNA; p < 0.001). Then, fibroblasts were analyzed after 7 days of senescence-like growth arrest. In senescent fibroblasts, the CEdG content of nuclear DNA significantly increased by 25%. However, the CEdG level of mtDNA significantly decreased to 52%; in parallel, an increase in mitochondrial mass and mtDNA was observed. Senescence did not lead to general accumulation of protein-AGEs, but two protein bands at 32 and 34 kDa showed a significant increase in the CML/CEL modification rate (208%, p < 0.001; 196%, p = 0.0016) in senescent fibroblasts compared with control cells.
Collapse
Affiliation(s)
- Viola Breyer
- Department of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
32
|
Yuan B, You C, Andersen N, Jiang Y, Moriya M, O'Connor TR, Wang Y. The roles of DNA polymerases κ and ι in the error-free bypass of N2-carboxyalkyl-2'-deoxyguanosine lesions in mammalian cells. J Biol Chem 2011; 286:17503-11. [PMID: 21454642 DOI: 10.1074/jbc.m111.232835] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To counteract the deleterious effects of DNA damage, cells are equipped with specialized polymerases to bypass DNA lesions. Previous biochemical studies revealed that DinB family DNA polymerases, including Escherichia coli DNA polymerase IV and human DNA polymerase κ, efficiently incorporate the correct nucleotide opposite some N(2)-modified 2'-deoxyguanosine derivatives. Herein, we used shuttle vector technology and demonstrated that deficiency in Polk or Poli in mouse embryonic fibroblast (MEF) cells resulted in elevated frequencies of G→T and G→A mutations at N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) and N(2)-carboxymethyl-2'-deoxyguanosine (N(2)-CMdG) sites. Steady-state kinetic measurements revealed that human DNA polymerase ι preferentially inserts the correct nucleotide, dCMP, opposite N(2)-CEdG lesions. In contrast, no mutation was found after the N(2)-CEdG- and N(2)-CMdG-bearing plasmids were replicated in POLH-deficient human cells or Rev3-deficient MEF cells. Together, our results revealed that, in mammalian cells, both polymerases κ and ι are necessary for the error-free bypass of N(2)-CEdG and N(2)-CMdG. However, in the absence of polymerase κ or ι, other translesion synthesis polymerase(s) could incorporate nucleotide(s) opposite these lesions but would do so inaccurately.
Collapse
Affiliation(s)
- Bifeng Yuan
- From the Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Tamae D, Lim P, Wuenschell GE, Termini J. Mutagenesis and repair induced by the DNA advanced glycation end product N2-1-(carboxyethyl)-2'-deoxyguanosine in human cells. Biochemistry 2011; 50:2321-9. [PMID: 21355561 DOI: 10.1021/bi101933p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycation of biopolymers by glucose-derived α-oxo-aldehydes such as methylglyoxal (MG) is believed to play a major role in the complex pathologies associated with diabetes and metabolic disease. In contrast to the extensive literature detailing the formation and physiological consequences of protein glycation, there is little information about the corresponding phenomenon for DNA. To assess the potential contribution of DNA glycation to genetic instability, we prepared shuttle vectors containing defined levels of the DNA glycation adduct N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) and transfected them into isogenic human fibroblasts that differed solely in the capacity to conduct nucleotide excision repair (NER). In the NER-compromised fibroblasts, the induced mutation frequencies increased up to 18-fold relative to background over a range of ∼10-1400 CEdG adducts/10(5) dG, whereas the same substrates transfected into NER-competent cells induced a response that was 5-fold over background at the highest adduct density. The positive linear correlation (R(2) = 0.998) of mutation frequency with increasing CEdG level in NER-defective cells suggested that NER was the primary if not exclusive mechanism for repair of this adduct in human fibroblasts. Consistent with predictions from biochemical studies using CEdG-substituted oligonucleotides, guanine transversions were the predominant mutation resulting from replication of MG-modified plasmids. At high CEdG levels, significant increases in the number of AT → GC transitions were observed exclusively in NER-competent cells (P < 0.0001). This suggested the involvement of an NER-dependent mutagenic process in response to critical levels of DNA damage, possibly mediated by error-prone Y-family polymerases.
Collapse
Affiliation(s)
- Daniel Tamae
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | | | | | | |
Collapse
|
34
|
The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 2010; 187:21-35. [PMID: 20980236 DOI: 10.1534/genetics.110.124172] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A cell's ability to tolerate DNA damage is directly connected to the human development of diseases and cancer. To better understand the processes underlying mutagenesis, we studied the cell's reliance on the potentially error-prone translesion synthesis (TLS), and an error-free, template-switching pathway in Saccharomyces cerevisiae. The primary proteins mediating S. cerevisiae TLS are three DNA polymerases (Pols): Rev1, Pol ζ (Rev3/7), and Pol η (Rad30), all with human homologs. Rev1's noncatalytic role in recruiting other DNA polymerases is known to be important for TLS. However, the biological significance of Rev1's unusual conserved DNA polymerase activity, which inserts dC, is much less well understood. Here, we demonstrate that inactivating Rev1's DNA polymerase function sensitizes cells to both chronic and acute exposure to 4-nitroquinoline-1-oxide (4-NQO) but not to UV or cisplatin. Full Rev1-dependent resistance to 4-NQO, however, also requires the additional Rev1 functions. When error-free tolerance is disrupted through deletion of MMS2, Rev1's catalytic activity is more vital for 4-NQO resistance, possibly explaining why the biological significance of Rev1's catalytic activity has been elusive. In the presence or absence of Mms2-dependent error-free tolerance, the catalytic dead strain of Rev1 exhibits a lower 4-NQO-induced mutation frequency than wild type. Furthermore, Pol ζ, but not Pol η, also contributes to 4-NQO resistance. These results show that Rev1's catalytic activity is important in vivo when the cell has to cope with specific DNA lesions, such as N(2)-dG.
Collapse
|
35
|
Thornalley PJ, Waris S, Fleming T, Santarius T, Larkin SJ, Winklhofer-Roob BM, Stratton MR, Rabbani N. Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance. Nucleic Acids Res 2010; 38:5432-42. [PMID: 20435681 PMCID: PMC2938218 DOI: 10.1093/nar/gkq306] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glyoxal and methylglyoxal are reactive dicarbonyl metabolites formed and metabolized in physiological systems. Increased exposure to these dicarbonyls is linked to mutagenesis and cytotoxicity and enhanced dicarbonyl metabolism by overexpression of glyoxalase 1 is linked to tumour multidrug resistance in cancer chemotherapy. We report herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systems—imidazopurinones. The adduct derived from methylglyoxal-3-(2′-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one isomers—was the major quantitative adduct detected in mononuclear leukocytes in vivo and tumour cell lines in vitro. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell permeable glyoxalase 1 inhibitor. Unexpectedly, the DNA content of methylglyoxal-derived imidazopurinone and oxidative marker 7,8-dihydro-8-oxo-2′-deoxyguanosine were increased moderately in glyoxalase 1-linked multidrug resistant tumour cell lines. Together these findings suggest that imidazopurinones are a major type of endogenous DNA damage and glyoxalase 1 overexpression in tumour cells strives to counter increased imidazopurinone formation in tumour cells likely linked to their high glycolytic activity.
Collapse
Affiliation(s)
- Paul J Thornalley
- Warwick Medical School, Clinical Sciences Research Institute, University of Warwick, University Hospital, Coventry CV2 2DX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wuenschell GE, Tamae D, Cercillieux A, Yamanaka R, Yu C, Termini J. Mutagenic potential of DNA glycation: miscoding by (R)- and (S)-N2-(1-carboxyethyl)-2'-deoxyguanosine. Biochemistry 2010; 49:1814-21. [PMID: 20143879 DOI: 10.1021/bi901924b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated circulating glucose resulting from complications of obesity and metabolic disease can result in the accumulation of advanced glycation end products (AGEs) of proteins, lipids, and DNA. The formation of DNA-AGEs assumes particular importance as these adducts may contribute to genetic instability and elevated cancer risk associated with metabolic disease. The principal DNA-AGE, N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG), is formed as a mixture of R and S isomers at both the polymer and monomer levels. In order to examine the miscoding potential of this adduct, oligonucleotides substituted with (R)- and (S)-CEdG and the corresponding triphosphates (R)- and (S)-CEdGTP were synthesized, and base-pairing preferences for each stereoisomer were examined using steady-state kinetic approaches. Purine dNTPs were preferentially incorporated opposite template CEdG when either the Klenow (Kf(-)) or Thermus aquaticus (Taq) polymerases were used. The Kf(-) polymerase preferentially incorporated dGTP, whereas Taq demonstrated a bias for dATP. Kf(-) incorporated purines opposite the R isomer with greater efficiency, but Taq favored the S isomer. Incorporation of (R)- and (S)-CEdGTP only occurred opposite dC and was catalyzed by Kf(-) with equal efficiencies. Primer extension from a 3'-terminal CEdG was observed only for the R isomer. These data suggest CEdG is the likely adduct responsible for the observed pattern of G transversions induced by exposure to elevated glucose or its alpha-oxoaldehyde decomposition product methylglyoxal. The results imply that CEdG within template DNA and the corresponding triphosphate possess different syn/anti conformations during replication which influence base-pairing preferences. The implications for CEdG-induced mutagenesis in vivo are discussed.
Collapse
Affiliation(s)
- Gerald E Wuenschell
- Department of Molecular Medicine, Beckman Research Institute of theCity of Hope, 1500 Duarte Road, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wang H, Cao H, Wang Y. Quantification of N2-carboxymethyl-2'-deoxyguanosine in calf thymus DNA and cultured human kidney epithelial cells by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method. Chem Res Toxicol 2010; 23:74-81. [PMID: 19968260 DOI: 10.1021/tx900286c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyoxal is generated endogenously from the degradation of glucose and the oxidation of carbohydrates, lipids, and the 2-deoxyribose moieties of DNA. Glyoxal is also widely used in industry and is present in cigarette smoke and food. Glyoxal can conjugate with nucleobases and proteins to give advanced glycation end products. N(2)-Carboxymethyl-2'-deoxyguanosine (N(2)-CMdG) and the cyclic 1,N(2)-glyoxal-dG are the major glyoxal adducts formed in DNA. In this study, we first assessed the stabilities of these two adducts. It turned out that 1,N(2)-glyoxal-dG was very unstable, with more than 70% of the adduct being decomposed to dG upon a 24 h incubation at 37 degrees C in phosphate-buffered saline. However, N(2)-CMdG was very stable; less than 0.5% of the lesion was degraded to dG after a 7 day incubation under the same conditions. We further developed a sensitive capillary liquid chromatography-electrospray ionization-tandem mass spectrometry coupled with a stable isotope dilution method and quantified the formation of N(2)-CMdG in calf thymus DNA and 293T human kidney epithelial cells that were exposed to glyoxal and in calf thymus DNA treated with d-glucose. Our results showed that N(2)-CMdG was produced at 2-134 lesions per 10(6) nucleosides in calf thymus DNA when the surrounding glyoxal concentration was increased from 10 to 500 microM and approximately 3-27 lesions per 10(7) nucleosides, while the D-glucose concentration changed from 2 to 50 mM. Furthermore, N(2)-CMdG was induced endogenously in 293T human kidney epithelial cells and exposure to glyoxal further stimulated the formation of this lesion; the level of this adduct ranged from 7 to 15 lesions per 10(8) nucleosides, while the glyoxal concentration increased from 10 microM to 1.25 mM. Collectively, our results suggested that N(2)-CMdG might serve as a biomarker for glyoxal exposure.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | |
Collapse
|
38
|
Synold T, Xi B, Wuenschell GE, Tamae D, Figarola JL, Rahbar S, Termini J. Advanced glycation end products of DNA: quantification of N2-(1-Carboxyethyl)-2'-deoxyguanosine in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol 2009; 21:2148-55. [PMID: 18808156 DOI: 10.1021/tx800224y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methylglyoxal (MG) and related alpha-oxoaldehydes react with proteins, lipids, and DNA to give rise to covalent adducts known as advanced glycation end products (AGEs). Elevated levels of AGEs have been implicated in the pathological complications of diabetes, uremia, Alzheimer's disease, and possibly cancer. There is therefore widespread interest in developing sensitive methods for the in vivo measurement of AGEs as prognostic biomarkers and for treatment monitoring. The two diastereomeric MG-DNA adducts of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) are the primary glycation products formed in DNA; however, accurate assessment of their distribution in vivo has not been possible since there is no readily available quantitative method for CEdG determination in biological samples. To address these issues, we have developed a sensitive and quantitative liquid chromatography electrospray ionization tandem mass spectrometry assay using the stable isotope dilution method with an (15)N(5)-CEdG standard. Methods for CEdG determination in urine or tissue extracted DNA are described. Changes in urinary CEdG in diabetic rats in response to oral administration of the AGE inhibitor LR-90 are used to demonstrate the potential utility of the method for treatment monitoring. Both stereoisomeric CEdG adducts were detected in a human breast tumor and normal adjacent tissue at levels of 3-12 adducts/10(7) dG, suggesting that this lesion may be widely distributed in vivo. Strategies for dealing with artifactual adduct formation due to oxoaldehyde generation during DNA isolation and enzymatic workup procedures are described.
Collapse
Affiliation(s)
- Timothy Synold
- Division of Clinical and Molecular Pharmacology, City of Hope Medical Center, 1500 East Duarte Road, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ribeiro DA, Campos RR, Bergamaschi CT. Chronic renal failure induces genetic instability in multiple organs of Wistar rats. Eur J Clin Invest 2009; 39:289-95. [PMID: 19292884 DOI: 10.1111/j.1365-2362.2009.02100.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Taking into consideration the strong evidence for a relationship between DNA damage and carcinogenesis, the aim of this study was to investigate whether blood, liver, heart, kidney and brain are particularly sensitive organs for DNA damaging during chronic renal disease by the single-cell gel (comet) assay to predict genetic instability induced by this pathological condition. METHODS A total of 18 male Wistar rats were divided into two groups: negative control (n = 8) and experimental (n = 10), in which was submitted to the 5/6 renal mass ablation by ligation of two or three branches of the left renal artery and total right nephrectomy during 8 weeks. RESULTS The results showed that chronic renal disease was able to induce genetic damage in blood, heart, liver and kidney cells as depicted by the mean tail moment. No genetic damage was induced in brain cells, i.e. no significant statistically differences (P > 0.05) were noticed when compared to negative control. CONCLUSION In conclusion, our results suggest that chronic renal failure could contribute to the damage of DNA at all organs evaluated, except to the brain cells. As DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risks associated with kidney disease.
Collapse
Affiliation(s)
- D A Ribeiro
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, Santos, SP, Brazil.
| | | | | |
Collapse
|
40
|
Efficient and accurate bypass of N2-(1-carboxyethyl)-2'-deoxyguanosine by DinB DNA polymerase in vitro and in vivo. Proc Natl Acad Sci U S A 2008; 105:8679-84. [PMID: 18562283 DOI: 10.1073/pnas.0711546105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DinB, a Y-family DNA polymerase, is conserved among all domains of life; however, its endogenous substrates have not been identified. DinB is known to synthesize accurately across a number of N(2)-dG lesions. Methylglyoxal (MG) is a common byproduct of the ubiquitous glycolysis pathway and induces the formation of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) as the major stable DNA adduct. Here, we found that N(2)-CEdG could be detected at a frequency of one lesion per 10(7) nucleosides in WM-266-4 human melanoma cells, and treatment of these cells with MG or glucose led to a dose-responsive increase in N(2)-CEdG formation. We further constructed single-stranded M13 shuttle vectors harboring individual diastereomers of N(2)-CEdG at a specific site and assessed the cytotoxic and mutagenic properties of the lesion in wild-type and bypass polymerase-deficient Escherichia coli cells. Our results revealed that N(2)-CEdG is weakly mutagenic, and DinB (i.e., polymerase IV) is the major DNA polymerase responsible for bypassing the lesion in vivo. Moreover, steady-state kinetic measurements showed that nucleotide insertion, catalyzed by E. coli pol IV or its human counterpart (i.e., polymerase kappa), opposite the N(2)-CEdG is both accurate and efficient. Taken together, our data support that N(2)-CEdG, a minor-groove DNA adduct arising from MG, is an important endogenous substrate for DinB DNA polymerase.
Collapse
|
41
|
Breyer V, Frischmann M, Bidmon C, Schemm A, Schiebel K, Pischetsrieder M. Analysis and biological relevance of advanced glycation end-products of DNA in eukaryotic cells. FEBS J 2008; 275:914-25. [DOI: 10.1111/j.1742-4658.2008.06255.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Li Y, Cohenford MA, Dutta U, Dain JA. The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2′-deoxyguanosine. Anal Bioanal Chem 2007; 390:679-88. [DOI: 10.1007/s00216-007-1682-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/01/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
43
|
Abstract
Numerous reports on the molecular mechanism of atherogenesis indicate an increase in oxidative stress, formation of advanced glycoxidation end products (AGEs), chronic inflammation, and activated cellular response particularly in diabetic patients. To elucidate the initiating and early accelerating events this review will focus on the molecular causes of the induction of these stress factors, their interactions, and their contribution to atherogenesis. Metabolic factors such as elevated free fatty acids, high glucose levels or AGEs induce reactive oxygen species (ROS) in vascular cells leading to ongoing AGE formation and to gene induction of proinflammatory cytokines. Vice versa, numerous cytokines found elevated in obesity and diabetes may also induce oxidative stress thus a circulus vitious may be initiated and accelerated. Increased production of ROS, mainly from mitochondria and NAD(P)H oxidase, stimulates signaling cascades including protein kinase C and mitogen-activated protein kinase pathway leading to nuclear translocation of transcription factors such as nuclear factor-kappaB (NF-kappaB), activator protein 1, and specificity protein 1. Subsequently, the expression of numerous genes including cytokines is rapidly induced, which, in turn, may act on vascular cells promoting the deleterious effects. From animal models of accelerated atherosclerosis a causal role of NAD(P)H oxidase and the AGE/RAGE/NF-kappaB axis to atherogenesis is suggested. Because all factors involved form a highly interwoven network of interactions, the blockade of ROS or AGE formation at different sites may interrupt the vicious cycle. Promising candidate agents are, currently on trial. Most important to clinical practice, a number of drugs commonly used in the treatment of diabetes, hypertension, or cardiovascular disease, such as angiotensin-converting enzyme inhibitors, AT(1) receptor blockers, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins), and thiazolidindiones have shown promising 'preventive' intracellular antioxidant activity in addition to their primary pharmacological actions.
Collapse
Affiliation(s)
- E Schleicher
- Department for Internal Medicine IV, Clinical Chemistry (Central Laboratory), University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
44
|
Li Y, Dutta U, Cohenford MA, Dain JA. Nonenzymatic glycation of guanosine 5'-triphosphate by glyceraldehyde: an in vitro study of AGE formation. Bioorg Chem 2007; 35:417-29. [PMID: 17937966 DOI: 10.1016/j.bioorg.2007.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/18/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway.
Collapse
Affiliation(s)
- Yuyuan Li
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA
| | | | | | | |
Collapse
|
45
|
Cao H, Jiang Y, Wang Y. Stereospecific synthesis and characterization of oligodeoxyribonucleotides containing an N2-(1-carboxyethyl)-2'-deoxyguanosine. J Am Chem Soc 2007; 129:12123-30. [PMID: 17877341 PMCID: PMC3169888 DOI: 10.1021/ja072130e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methylglyoxal is a highly reactive alpha-ketoaldehyde that is produced endogenously and present in the environment and foods. It can modify DNA and proteins to form advanced glycation end products (AGEs). Emerging evidence has shown that N2-(1-carboxyethyl)-2'-deoxyguanosine (N2-CEdG) is a major marker for AGE-linked DNA adducts. Here, we report, for the first time, the preparation of oligodeoxyribonucleotides (ODNs) containing individual diastereomers of N2-CEdG via a postoligomerization synthesis method, which provided authentic substrates for examining the replication and repair of this lesion. In addition, thermodynamic parameters derived from melting temperature data revealed that the two diastereomers of N2-CEdG destabilized significantly the double helix as represented by a 4 kcal/mol increase in Gibbs free energy for duplex formation at 25 degrees C. Primer extension assay results demonstrated that both diastereomers of N2-CEdG could block considerably the replication synthesis mediated by the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I. Strikingly, the polymerase incorporated incorrect nucleotides, dGMP and dAMP, opposite the lesion more preferentially than the correct nucleotide, dCMP.
Collapse
Affiliation(s)
- Huachuan Cao
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Yong Jiang
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| |
Collapse
|
46
|
Bidmon C, Frischmann M, Pischetsrieder M. Analysis of DNA-bound advanced glycation end-products by LC and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855:51-8. [PMID: 17161667 DOI: 10.1016/j.jchromb.2006.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/15/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
Sugars and sugar degradation products readily react in vitro with guanine derivatives, resulting in the formation of DNA-bound advanced glycation end-products (DNA-AGEs). The two diastereomers of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG(A,B)) and the cyclic adduct of methylglyoxal and 2'-deoxyguanosine (mdG) (N(2)-7-bis(1-hydroxy-2-oxopropyl)-2'-deoxyguanosine have also been detected in cultured cells and/or in vivo. LC-MS/MS methods have been developed to analyze sensitively DNA adducts in vitro and in vivo. In this paper, the chemical structures of possible DNA-AGEs and the application of LC-MS/MS to measure DNA-AGEs are reviewed.
Collapse
Affiliation(s)
- Clemens Bidmon
- Institute of Pharmacy and Food Chemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
47
|
Piroddi M, Depunzio I, Calabrese V, Mancuso C, Aisa CM, Binaglia L, Minelli A, Butterfield AD, Galli F. Oxidatively-modified and glycated proteins as candidate pro-inflammatory toxins in uremia and dialysis patients. Amino Acids 2007; 32:573-92. [PMID: 17356806 DOI: 10.1007/s00726-006-0433-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/02/2007] [Indexed: 02/07/2023]
Abstract
End stage renal disease (ESRD) patients accumulate blood hallmarks of protein glycation and oxidation. It is now well established that these protein damage products may represent a heterogeneous class of uremic toxins with pro-inflammatory and pro-oxidant properties. These toxins could be directly involved in the pathogenesis of the inflammatory syndrome and vascular complications, which are mainly sustained by the uremic state and bioincompatibility of dialysis therapy. A key underlying event in the toxicity of these proteinaceous solutes has been identified in scavenger receptor-dependent recognition and elimination by inflammatory and endothelial cells, which once activated generate further and even more pronounced protein injuries by a self-feeding mechanism based on inflammation and oxidative stress-derived events. This review examines the literature and provides original information on the techniques for investigating proteinaceous pro-inflammatory toxins. We have also evaluated therapeutic - either pharmacological or dialytic - strategies proposed to alleviate the accumulation of these toxins and to constrain the inflammatory and oxidative burden of ESRD.
Collapse
Affiliation(s)
- M Piroddi
- Department of Internal Medicine, Section of Applied Biochemistry and Nutritional Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schettgen T, Tings A, Brodowsky C, Müller-Lux A, Musiol A, Kraus T. Simultaneous determination of the advanced glycation end product N ɛ-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution–hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2007; 387:2783-91. [PMID: 17318517 DOI: 10.1007/s00216-007-1163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/22/2007] [Accepted: 01/26/2007] [Indexed: 12/12/2022]
Abstract
Analysis of biomarkers in exhaled breath condensate (EBC) is a non-invasive method for investigating the effects of different diseases or exposures, on the lungs and airways. N(epsilon)-carboxymethyllysine (CML) is an important biomarker of advanced glycation end products (AGEs). A method has been developed for simultaneous determination of CML and its precursor, the amino acid lysine, in exhaled breath condensate (EBC). After addition of labelled internal standards (d-4-CML; d-4-lysine), the EBC was concentrated by freeze-drying. Separation and detection of the analytes were performed by hydrophilic-ion liquid chromatography coupled with tandem mass-spectrometric detection (HILIC-MS-MS). The limits of quantification were 10 pg mL(-1) EBC and 0.5 ng mL(-1) EBC for CML and lysine, respectively. The relative standard deviation of the within-series precision was between 2.8 and 7.8% at spiked concentrations between 40 and 200 pg mL(-1) for CML and between 6 and 20 ng mL(-1) for lysine. Accuracy for the analytes ranged between 89.5 and 133%. The method was used for the analysis of EBC samples from ten healthy persons from the general population and ten persons receiving dialysis. CML and lysine were detected in all EBC samples with median values of 19 pg mL(-1) CML and 11.9 ng mL(-1) lysine in EBC of healthy persons and 25 pg mL(-1) CML and 9.5 ng mL(-1) lysine in EBC of dialysis patients.
Collapse
Affiliation(s)
- T Schettgen
- Institute and Outpatient Clinic of Occupational and Social Medicine, University Hospital, Aachen University of Technology, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Sebeková K, Wagner Z, Schupp N, Boor P. Genomic Damage and Malignancy in End-Stage Renal Failure: Do Advanced Glycation End Products Contribute? Kidney Blood Press Res 2006; 30:56-66. [PMID: 17261927 DOI: 10.1159/000099029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Indexed: 01/28/2023] Open
Abstract
In end-stage renal disease (ESRD) there is not only excessive morbidity and mortality due to cardiovascular disease but also an enhanced occurrence of various types of cancer. Both are characterized by oxidative stress and inflammation as two of the central underlying causes of the disease states. In cancer, genomic damage has been demonstrated to be of high pathogenetic relevance. DNA lesions may induce mutations of oncogenes and tumor-suppressor genes which, in the long-run, may lead to malignancies if mutagenicity is not mitigated by repair mechanisms. A high incidence of genomic damage in ESRD patients has been validated by various biomarkers of DNA lesions. We reviewed the mechanisms of DNA damage, focusing in particular on the role of advanced glycation end products (AGEs) which accumulate markedly in renal insufficiency. Considering the in vitro and in vivo findings to date, one has to assume a significant role of AGEs in DNA damage and the potential development of cancer.
Collapse
Affiliation(s)
- Katarína Sebeková
- Department of Experimental and Clinical Pharmacotherapy, Research Base of Slovak Medical University, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
50
|
Dutta U, Cohenford MA, Dain JA. The effect of nonenzymatic glycation on the stability and conformation of two deoxyoligonucleotide duplexes: a spectroscopic analysis by circular dichroism. Anal Biochem 2006; 360:235-43. [PMID: 17097593 DOI: 10.1016/j.ab.2006.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 11/23/2022]
Abstract
Advanced glycation end products (AGEs) play a significant role in the pathophysiology of diabetes leading to such conditions as atherosclerosis, cataract formation, and renal dysfunction. While the formation of nucleoside AGEs was previously demonstrated, no extensive studies have been performed to assess the effect of AGEs on DNA structure and folding. The objective of this study was to investigate the nonenzymatic glycation of two DNA oligonucleotide duplexes with one duplex consisting of deoxy-poly(A)15 and deoxy-poly(T)15 and the other consisting of deoxy-poly(GA)15 and deoxy-poly(CT)15. With D-glucose, D-galactose, D/L-glyceraldehyde, and D-glucosamine serving as the model glycating carbohydrates, D-glucosamine was found to exhibit the greatest effect on the stability and structure of the oligonucleotide duplexes, a finding that was confirmed by circular dichroism. The nonenzymatic glycation of deoxy-poly(AT) by D-glucosamine destabilized the deoxy-poly(AT) structure and changed its conformation from A form to X form. D-glucosamine also altered the conformation of deoxy-poly(GA)15 and deoxy-poly(CT)15 from A form to B form. Capillary electrophoresis and ultraviolet and fluorescence spectroscopy revealed that, of the various purines and pyrimidines, 2'-deoxyguanosine and guanine were most reactive with D-glucosamine. The nonenzymatic modification of nucleic acids warrants further investigation because this phenomenon may occur in vivo, altering DNA structure and/or function.
Collapse
Affiliation(s)
- Udayan Dutta
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|