1
|
Jia Z, Yang S, Wang Y, Liang X, Tang Y, Wang R. Advances in Covalent Organic Frameworks as Fluorescent Sensors for pH. LUMINESCENCE 2025; 40:e70153. [PMID: 40119680 DOI: 10.1002/bio.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025]
Abstract
pH value is essential for maintaining ecological balance, and it plays a significant role in atmospheric monitoring, water quality assessment, and biological health. Therefore, it is very important for developing rapid and sensitive pH detection methods. Covalent organic frameworks (COFs) have emerged as promising fluorescent sensing materials due to their tunable organic structures, high thermal stability, and large specific surface area, making them ideal for pH detection in both environmental and biological samples. This review examines various types of COF fluorescence sensors and discusses their sensing mechanisms and provides the theoretical foundation for the development of more excellent pH fluorescence sensors.
Collapse
Affiliation(s)
- Zhaowei Jia
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region School of Chemistry and Chemical Engineering Guangxi University, Nanning, People's Republic of China
| | - Siyu Yang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region School of Chemistry and Chemical Engineering Guangxi University, Nanning, People's Republic of China
| | - Yuduo Wang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region School of Chemistry and Chemical Engineering Guangxi University, Nanning, People's Republic of China
| | - Xiangyu Liang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region School of Chemistry and Chemical Engineering Guangxi University, Nanning, People's Republic of China
| | - Yuhui Tang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region School of Chemistry and Chemical Engineering Guangxi University, Nanning, People's Republic of China
| | - Ruimeng Wang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region School of Chemistry and Chemical Engineering Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
2
|
Dietrich L, Agip ANA, Kunz C, Schwarz A, Kühlbrandt W. In situ structure and rotary states of mitochondrial ATP synthase in whole Polytomella cells. Science 2024; 385:1086-1090. [PMID: 39236170 DOI: 10.1126/science.adp4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Cells depend on a continuous supply of adenosine triphosphate (ATP), the universal energy currency. In mitochondria, ATP is produced by a series of redox reactions, whereby an electrochemical gradient is established across the inner mitochondrial membrane. The ATP synthase harnesses the energy of the gradient to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate. We determined the structure of ATP synthase within mitochondria of the unicellular flagellate Polytomella by electron cryo-tomography and subtomogram averaging at up to 4.2-angstrom resolution, revealing six rotary positions of the central stalk, subclassified into 21 substates of the F1 head. The Polytomella ATP synthase forms helical arrays with multiple adjacent rows defining the cristae ridges. The structure of ATP synthase under native operating conditions in the presence of a membrane potential represents a pivotal step toward the analysis of membrane protein complexes in situ.
Collapse
Affiliation(s)
- Lea Dietrich
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Ahmed-Noor A Agip
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Christina Kunz
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Selvakumar S, Singh S, Swaminathan P. Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Int Microbiol 2024:10.1007/s10123-024-00537-3. [PMID: 38767682 DOI: 10.1007/s10123-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H2S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H2S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H2S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H2S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization.
Collapse
Affiliation(s)
- Sahithya Selvakumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India
| | - Shubhi Singh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India
| | - Priya Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India.
| |
Collapse
|
4
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
5
|
Krasecki V, Sharma A, Cavell AC, Forman C, Guo SY, Jensen ET, Smith MA, Czerwinski R, Friederich P, Hickman RJ, Gianneschi N, Aspuru-Guzik A, Cronin L, Goldsmith RH. The Role of Experimental Noise in a Hybrid Classical-Molecular Computer to Solve Combinatorial Optimization Problems. ACS CENTRAL SCIENCE 2023; 9:1453-1465. [PMID: 37521801 PMCID: PMC10375572 DOI: 10.1021/acscentsci.3c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/01/2023]
Abstract
Chemical and molecular-based computers may be promising alternatives to modern silicon-based computers. In particular, hybrid systems, where tasks are split between a chemical medium and traditional silicon components, may provide access and demonstration of chemical advantages such as scalability, low power dissipation, and genuine randomness. This work describes the development of a hybrid classical-molecular computer (HCMC) featuring an electrochemical reaction on top of an array of discrete electrodes with a fluorescent readout. The chemical medium, optical readout, and electrode interface combined with a classical computer generate a feedback loop to solve several canonical optimization problems in computer science such as number partitioning and prime factorization. Importantly, the HCMC makes constructive use of experimental noise in the optical readout, a milestone for molecular systems, to solve these optimization problems, as opposed to in silico random number generation. Specifically, we show calculations stranded in local minima can consistently converge on a global minimum in the presence of experimental noise. Scalability of the hybrid computer is demonstrated by expanding the number of variables from 4 to 7, increasing the number of possible solutions by 1 order of magnitude. This work provides a stepping stone to fully molecular approaches to solving complex computational problems using chemistry.
Collapse
Affiliation(s)
- Veronica
K. Krasecki
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Abhishek Sharma
- Department
of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Andrew C. Cavell
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christopher Forman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Si Yue Guo
- Department
of Chemistry, University of Toronto, Toronto, Ontario MS5 3H6, Canada
| | - Evan Thomas Jensen
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mackinsey A. Smith
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rachel Czerwinski
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pascal Friederich
- Department
of Chemistry, University of Toronto, Toronto, Ontario MS5 3H6, Canada
| | - Riley J. Hickman
- Department
of Chemistry, University of Toronto, Toronto, Ontario MS5 3H6, Canada
| | - Nathan Gianneschi
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alán Aspuru-Guzik
- Department
of Chemistry, University of Toronto, Toronto, Ontario MS5 3H6, Canada
| | - Leroy Cronin
- Department
of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Jia Y, Shen Y, Zhu Y, Wang J. Covalent organic framework-based fluorescent nanoprobe for intracellular pH sensing and imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121002. [PMID: 35168035 DOI: 10.1016/j.saa.2022.121002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Lysosomes are the acidic organelles in the cells that play an important role in intracellular degradation and other various cellular functions. The pH disturbance of lysosomes will result in the lysosomal dysfunction and many lysosomal related diseases. In this work, we reported a methoxy-based covalent organic framework (TAPB-DMTP-COF) that a novel pH-responsive fluorescent probe for lysosomal pH imaging in cells. The prepared TAPB-DMTP-COF presented regular crystal structure, low toxicity and good pH responsive property. The rich imine structure in the material enabled pH-responsive properties of the TAPB-DMTP-COF and made it exhibited pH-dependent fluorescence response. Good detection linearity for pH measurements in aqueous solution was achieved by this probe. Moreover, the TAPB-DMTP-COF can be used for the selective lysosomal pH imaging. Confocal fluorescence imaging results demonstrated that the pH fluctuations (from 4.0 to 7.4) and the pH changes in lysosomes can be effectively monitored in situ by the developed probe. This study may provide a new avenue for the intracellular pH sensing, deep study and understanding about the mechanism of diseases related to abnormal lysosomal pH.
Collapse
Affiliation(s)
- Yutao Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, People's Republic of China
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| | - Yanyan Zhu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
7
|
Zhang D, He Y, Wang J, Wu L, Liu B, Cai S, Li Y, Yan W, Yang Z, Qu J. Mitochondrial structural variations in the process of mitophagy. JOURNAL OF BIOPHOTONICS 2022; 15:e202200006. [PMID: 35072357 DOI: 10.1002/jbio.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Mitochondrion is one of significant organelles inside cells because it serves as a hub for energy management and intracellular signaling. Internal/external damages on mitochondria would lead to mitochondrial stresses with the malfunctions, accompanying with the changes of morphological structure and abnormal local environments (pH values). Mitophagy is capable of degradation of damaged mitochondrial segments to restore its normal metabolism, dynamics, and biogenesis. The dynamic structural visualization and pH quantification can be helpful for the understanding of mitochondrial functions as well as the diagnosis of disorders linking with this process. In this work, we use confocal laser scanning microscopy, STED super-resolution nanoscopy and fluorescence lifetime imaging microscopy, in conjunction with a mitochondrial probe to image the dynamic changes in the mitochondrial morphology and microenvironmental pH values during mitophagy in live cells, in particular, the structural changes of mitochondrial cristae beyond optical diffraction can be distinguished by STED nanoscopy with/without treatment by CCCP, which will provide a new view for the diagnosis and personalized treatment of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Ying He
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Jinying Wang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Liuying Wu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Bing Liu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Yuan Li
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Wei Yan
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
McDonald AG, Tipton KF. Parameter Reliability and Understanding Enzyme Function. Molecules 2022; 27:263. [PMID: 35011495 PMCID: PMC8746786 DOI: 10.3390/molecules27010263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of the Michaelis-Menten parameters and their meaning in different circumstances is an essential prerequisite to understanding enzyme function and behaviour. The published literature contains an abundance of values reported for many enzymes. The problem concerns assessing the appropriateness and validity of such material for the purpose to which it is to be applied. This review considers the evaluation of such data with particular emphasis on the assessment of its fitness for purpose.
Collapse
Affiliation(s)
- Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | | |
Collapse
|
9
|
Yapici N, Gao X, Yan X, Hou S, Jockusch S, Lesniak L, Gibson KM, Bi L. Novel Dual-Organelle-Targeting Probe (RCPP) for Simultaneous Measurement of Organellar Acidity and Alkalinity in Living Cells. ACS OMEGA 2021; 6:31447-31456. [PMID: 34869971 PMCID: PMC8637586 DOI: 10.1021/acsomega.1c03087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Many organelles, such as lysosomes and mitochondria, maintain a pH that is different from the cytoplasmic pH. These pH differences have important functional ramifications for those organelles. Many cellular events depend upon a well-compartmentalized distribution of H+ ions spanning the membrane for the optimal function. Cells have developed a variety of mechanisms that enable the regulation of organelle pH. However, the measurement of organellar acidity/alkalinity in living cells has remained a challenge. Currently, most existing probes for the estimation of intracellular pH show a single -organelle targeting capacity. Such probes provide data that fails to comprehensively reveal the pathological and physiological roles and connections between mitochondria and lysosomes in different species. Mitochondrial and lysosomal functions are closely related and important for regulating cellular homeostasis. Accordingly, the design of a single fluorescent probe that can simultaneously target mitochondria and lysosomes is highly desirable, enabling a better understanding of the crosstalk between these organelles. We report the development of a novel fluorescent sensor, rhodamine-coumarin pH probe (RCPP), for detection of organellar acidity/alkalinity. RCPP simultaneously moves between mitochondrion and lysosome subcellular locations, facilitating the simultaneous monitoring of pH alterations in mitochondria and lysosomes.
Collapse
Affiliation(s)
- Nazmiye
B. Yapici
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shanshan Hou
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lillian Lesniak
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
10
|
McDonald AG, Tipton KF. Enzyme Nomenclature and Classification: the State of the Art. FEBS J 2021; 290:2214-2231. [PMID: 34773359 DOI: 10.1111/febs.16274] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
The IUBMB Enzyme classification system, available at the IUBMB ExplorEnz website, uses a four component number (the EC number) that identifies an enzyme in terms of reaction catalysed. There were originally six recognised groups of enzymes: Oxidoreductases (EC 1), Transferases (EC 2), Hydrolases, Lyases (EC 4), Isomerases (EC 5) and Ligases (EC 6). Of these the lyases, which are defined as "enzymes that cleave C-C, C-O, C-N and other bonds by means other than by hydrolysis or oxidation" present particular recognition and classification problems. Recently a new class, the Translocases (EC 7) has been added, which incorporates enzymes that catalyse the movement of ions or molecules across membranes or their separation within membranes. A new subclass of the isomerases has also been included for those enzymes that alter the conformations of proteins and nucleic acids. Newly reported enzymes are being regularly added to the list after validation and where new information affects the classification of an existing entry, a new EC number is created, but the old one is not re-used.
Collapse
Affiliation(s)
- Andrew G McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
Association of the malate dehydrogenase-citrate synthase metabolon is modulated by intermediates of the Krebs tricarboxylic acid cycle. Sci Rep 2021; 11:18770. [PMID: 34548590 PMCID: PMC8455617 DOI: 10.1038/s41598-021-98314-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial malate dehydrogenase (MDH)-citrate synthase (CS) multi-enzyme complex is a part of the Krebs tricarboxylic acid (TCA) cycle ‘metabolon’ which is enzyme machinery catalyzing sequential reactions without diffusion of reaction intermediates into a bulk matrix. This complex is assumed to be a dynamic structure involved in the regulation of the cycle by enhancing metabolic flux. Microscale Thermophoresis analysis of the porcine heart MDH-CS complex revealed that substrates of the MDH and CS reactions, NAD+ and acetyl-CoA, enhance complex association while products of the reactions, NADH and citrate, weaken the affinity of the complex. Oxaloacetate enhanced the interaction only when it was present together with acetyl-CoA. Structural modeling using published CS structures suggested that the binding of these substrates can stabilize the closed format of CS which favors the MDH-CS association. Two other TCA cycle intermediates, ATP, and low pH also enhanced the association of the complex. These results suggest that dynamic formation of the MDH-CS multi-enzyme complex is modulated by metabolic factors responding to respiratory metabolism, and it may function in the feedback regulation of the cycle and adjacent metabolic pathways.
Collapse
|
12
|
Patel S, Howard D, French L. A pH-eQTL Interaction at the RIT2- SYT4 Parkinson's Disease Risk Locus in the Substantia Nigra. Front Aging Neurosci 2021; 13:690632. [PMID: 34305570 PMCID: PMC8299340 DOI: 10.3389/fnagi.2021.690632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease causes severe motor and cognitive disabilities that result from the progressive loss of dopamine neurons in the substantia nigra. The rs12456492 variant in the RIT2 gene has been repeatedly associated with increased risk for Parkinson's disease. From a transcriptomic perspective, a meta-analysis found that RIT2 gene expression is correlated with pH in the human brain. To assess these pH associations in relation to Parkinson's disease risk, we examined the two datasets that assayed rs12456492, gene expression, and pH in the postmortem human brain. Using the BrainEAC dataset, we replicate the positive correlation between RIT2 gene expression and pH in the human brain (n = 100). Furthermore, we found that the relationship between expression and pH is influenced by rs12456492. When tested across ten brain regions, this interaction is specifically found in the substantia nigra. A similar association was found for the co-localized SYT4 gene. In addition, SYT4 associations are stronger in a combined model with both genes, and the SYT4 interaction appears to be specific to males. In the Genotype-Tissue Expression (GTEx) dataset, the pH associations involving rs12456492 and expression of either SYT4 and RIT2 were not seen. This null finding may be due to the short postmortem intervals of the GTEx tissue samples. In the BrainEAC data, we tested the effect of postmortem interval and only observed the interactions in samples with the longer intervals. These previously unknown associations suggest novel roles for rs12456492, RIT2, and SYT4 in the regulation and response to pH in the substantia nigra.
Collapse
Affiliation(s)
- Sejal Patel
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leon French
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021; 40:2339-2354. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Haining, Zhejiang, PR China.,2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Matias J Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Jie Zheng
- School of Information Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
14
|
Yuan J, Peng R, Cheng D, Zou LH, Yuan L. Revealing Minor pH Changes of Mitochondria by a Highly Sensitive Molecular Fluorescent Probe. Chem Asian J 2021; 16:342-347. [PMID: 33427391 DOI: 10.1002/asia.202001350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial pH is an important factor associated with cellular metabolism and pathological states. Thus, sensitively monitoring its minor change was essential. However, it was challengeable due to the lack of suitable probes. Here, a mitochondria-targeted probe (NIR-OH-1) was synthesized. Based on the protonation/deprotonation of the hydroxy group and the assistance of carboxyl group on NIR-OH-1 molecular structure, a dramatic NIR activated signal was generated for sensing pH. Probe NIR-OH-1 displayed a good photo-stability and reversibility and could detect pH change without interference by other biologically active species. Importantly, NIR-OH-1 had an appropriate pKa value (7.77) and tiny acid-base transition range, which was allowed to map the small pH changes of cellular mitochondrial. Moreover, NIR-OH-1 was also successfully applied in real-time monitoring mitochondrial pH-related pathological events in living cells under different stimulation, demonstrating the prospect of its clinical application in accurate mitochondrial pH detection under related physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Liang-Hua Zou
- School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
15
|
Zhao T, Wan Z, Sambath K, Yu S, Uddin MN, Zhang Y, Belfield KD. Regulating Mitochondrial pH with Light and Implications for Chemoresistance. Chemistry 2021; 27:247-251. [PMID: 33048412 DOI: 10.1002/chem.202004278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Chemoresistance is one of the major challenges for cancer treatment, more recently ascribed to defective mitochondrial outer membrane permeabilization (MOMP), significantly diminishing chemotherapeutic agent-induced apoptosis. A boron-dipyrromethene (BODIPY) chromophore-based triarylsulfonium photoacid generator (BD-PAG) was used to target mitochondria with the aim to regulate mitochondrial pH and further depolarize the mitochondrial membrane. Cell viability assays demonstrated the relative biocompatibility of BD-PAG in the dark while live cell imaging suggested high accumulation in mitochondria. Specific assays indicated that BD-PAG is capable of regulating mitochondrial pH with significant effects on mitochondrial membrane depolarization. Therapeutic tests using chlorambucil in combination with BD-PAG revealed a new strategy in chemoresistance suppression.
Collapse
Affiliation(s)
- Tinghan Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Zhaoxiong Wan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Karthik Sambath
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Mehrun Nahar Uddin
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| |
Collapse
|
16
|
Roy S, Zhu D, Parak WJ, Feliu N. Lysosomal Proton Buffering of Poly(ethylenimine) Measured In Situ by Fluorescent pH-Sensor Microcapsules. ACS NANO 2020; 14:8012-8023. [PMID: 32568521 DOI: 10.1021/acsnano.9b10219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Poly(ethylenimine) (PEI) is frequently used as transfection agent for delivery of nucleic acids to the cytosol. After endocytosis of complexes of PEI and nucleic acids, a fraction of them can escape endosomes/lysosomes and reach the cytosol. One proposed mechanism is the so-called proton sponge effect, which involves buffering of the lysosomal pH by PEI. There are however also reports that report the absence of such buffering. In this work, the buffering capacity of PEI of the lysosomal pH was investigated in situ by combining PEI and pH-sensing ratiometric fluorophores in a single carrier particle. As carrier particles, hereby capsules were used, which were composed of polyelectrolyte walls based on layer-by-layer assembly, with the pH sensors located inside the capsule cavities. In this way, the local pH around individual particles could be monitored during the whole process of endocytosis. Results demonstrate the pH-buffering capability of PEI, which prevents the strong acidification of lysosomes containing PEI. This effect was related to the presence of PEI and was not related to the overall charge of the carrier particles. In case PEI was added in molecular form, no buffering of pH could be observed by endocytosed encapsulated pH-sensing ratiometric fluorophores. Co-localization experiments demonstrated that this was due to the fact that internalized free PEI and the encapsulated pH-sensing ratiometric fluorophores were not located in the same lysosomes. Missing co-localization might explain why also in other studies no pH buffering was found; in the case of co-delivery of PEI, the pH sensors could be clearly observed.
Collapse
Affiliation(s)
- Sathi Roy
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- CIC Biomagune, Miramon Pasealekua 182, 20014 San Sebastian, Spain
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
17
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
18
|
Ripoll C, Roldan M, Contreras-Montoya R, Diaz-Mochon JJ, Martin M, Ruedas-Rama MJ, Orte A. Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:E3731. [PMID: 32466332 PMCID: PMC7279253 DOI: 10.3390/ijms21103731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The main role of mitochondria, as pivotal organelles for cellular metabolism, is the production of energy (ATP) through an oxidative phosphorylation system. During this process, the electron transport chain creates a proton gradient that drives the synthesis of ATP. One of the main features of tumoral cells is their altered metabolism, providing alternative routes to enhance proliferation and survival. Hence, it is of utmost importance to understand the relationship between mitochondrial pH, tumoral metabolism, and cancer. In this manuscript, we develop a highly specific nanosensor to accurately measure the intramitochondrial pH using fluorescence lifetime imaging microscopy (FLIM). Importantly, we have applied this nanosensor to establish differences that may be hallmarks of different metabolic pathways in breast cancer cell models, leading to the characterization of different metabophenotypes.
Collapse
Affiliation(s)
- Consuelo Ripoll
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Mar Roldan
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
| | - Rafael Contreras-Montoya
- Departamento de Quimica Organica, Facultad de Ciencias, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain;
| | - Juan J. Diaz-Mochon
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Quimica Farmaceutica y Organica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Martin
- GENYO, Pfizer-Universidad de Granada-Junta de Andalucia Centre for Genomics and Oncological Research, Avda Ilustracion 114, PTS, 18016 Granada, Spain; (M.R.); (J.J.D.-M.); (M.M)
- Departamento de Bioquimica y Biologia Celular I, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquimica, Facultad de Farmacia, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Campus Cartuja, 18071 Granada, Spain; (C.R.); (M.J.R.-R.)
| |
Collapse
|
19
|
Precipitation of Inorganic Salts in Mitochondrial Matrix. MEMBRANES 2020; 10:membranes10050081. [PMID: 32349446 PMCID: PMC7281443 DOI: 10.3390/membranes10050081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that maintain a constant pH and calcium concentration. In the present paper, we examine the properties of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates, which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions, which delays irreversible damage to heart and brain cells after stroke.
Collapse
|
20
|
Boczek T, Radzik T, Ferenc B, Zylinska L. The Puzzling Role of Neuron-Specific PMCA Isoforms in the Aging Process. Int J Mol Sci 2019; 20:ijms20246338. [PMID: 31888192 PMCID: PMC6941135 DOI: 10.3390/ijms20246338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
The aging process is a physiological phenomenon associated with progressive changes in metabolism, genes expression, and cellular resistance to stress. In neurons, one of the hallmarks of senescence is a disturbance of calcium homeostasis that may have far-reaching detrimental consequences on neuronal physiology and function. Among several proteins involved in calcium handling, plasma membrane Ca2+-ATPase (PMCA) is the most sensitive calcium detector controlling calcium homeostasis. PMCA exists in four main isoforms and PMCA2 and PMCA3 are highly expressed in the brain. The overall effects of impaired calcium extrusion due to age-dependent decline of PMCA function seem to accumulate with age, increasing the susceptibility to neurotoxic insults. To analyze the PMCA role in neuronal cells, we have developed stable transfected differentiated PC12 lines with down-regulated PMCA2 or PMCA3 isoforms to mimic age-related changes. The resting Ca2+ increased in both PMCA-deficient lines affecting the expression of several Ca2+-associated proteins, i.e., sarco/endoplasmic Ca2+-ATPase (SERCA), calmodulin, calcineurin, GAP43, CCR5, IP3Rs, and certain types of voltage-gated Ca2+ channels (VGCCs). Functional studies also demonstrated profound changes in intracellular pH regulation and mitochondrial metabolism. Moreover, modification of PMCAs membrane composition triggered some adaptive processes to counterbalance calcium overload, but the reduction of PMCA2 appeared to be more detrimental to the cells than PMCA3.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-272-5680
| |
Collapse
|
21
|
A small molecule emitting in the near infrared region with pH sensitivity for visualization mitochondria under super-resolution microscopy. Talanta 2019; 199:140-146. [DOI: 10.1016/j.talanta.2019.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 11/23/2022]
|
22
|
Billings JL, Gordon SL, Rawling T, Doble PA, Bush AI, Adlard PA, Finkelstein DI, Hare DJ. l
‐3,4‐dihydroxyphenylalanine (
l
‐DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha‐synuclein mouse models of Parkinson's disease. J Neurochem 2019; 150:88-106. [DOI: 10.1111/jnc.14676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica L. Billings
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Sarah L. Gordon
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Broadway New South Wales Australia
| | - Philip A. Doble
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
| | - Ashley I. Bush
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Paul A. Adlard
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - David I. Finkelstein
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Dominic J. Hare
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
- Department of Clinical Pathology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
23
|
Huang L, Cao YJ, Sun XY, Liu B, Shen JS. Diverse applications of TMB-based sensing probes. Org Biomol Chem 2019; 16:5667-5676. [PMID: 30043797 DOI: 10.1039/c8ob01364k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extending the research on 3,3',5,5'-tetramethylbenzidine (TMB) and its derivatives in analytical chemistry is important, considering that TMB is widely used as an enzyme catalytic substrate. In this work, two TMB derivatives, TMBS and TMBB, were synthesized via a facile and one-step condensation reaction between the -NH2 group of TMB and the -CHO group of salicylaldehyde or benzaldehyde. Because at low pH the two Schiff base compounds can release TMB which can emit strong fluorescence, the probes could show dual-modal signal responses, fluorescence and UV-vis absorption, towards the pH. Practical applications of pH sensing in Chinese rice vinegar and lemon juice samples were successfully demonstrated. On the basis of these findings, a catalytic chromogenic reaction was developed to monitor the pH with the naked eye, too. Furthermore, considering the chemical equilibrium reaction between CO2 and H2O and that glucose oxidase (GOD) can catalyse the dehydrogenation and oxidation reaction of β-d-glucose to produce gluconic acid, both of which can result in lowering the pH values of the two Schiff base systems, highly sensitive and selective dual-modal sensing systems for detecting CO2 and β-d-glucose have also been successfully established. Therefore, the two synthesized TMB derivatives can demonstrate their robust application potential.
Collapse
Affiliation(s)
- Li Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | | | | | | | | |
Collapse
|
24
|
Gabriel GVDM, Yasuno R, Mitani Y, Ohmiya Y, Viviani VR. Novel application ofMacrolampissp2 firefly luciferase for intracellular pH-biosensing in mammalian cells. Photochem Photobiol Sci 2019; 18:1212-1217. [DOI: 10.1039/c8pp00573g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioluminescence is widely used in biosensors.
Collapse
Affiliation(s)
| | - Rie Yasuno
- National Institute of Advanced Industrial Science and Technology (AIST)
- Biomedical Research Institute
- Tsukuba
- Japan
| | - Yasuo Mitani
- National Institute of Advanced Industrial Science and Technology (AIST)
- Bioproduction Research Institute
- Sapporo
- Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Biomedical Research Institute
- Tsukuba
- Japan
| | - Vadim Ravara Viviani
- Graduate School of Biotechnology and Environmental Monitoring
- Federal University of São Carlos (UFSCar)
- Sorocaba
- Brazil
- Graduate School of Evolutive Genetics and Molecular Biology
| |
Collapse
|
25
|
Chen H, Ge C, Cao H, Zhang X, Zhang L, Jiang L, Zhang P, Zhang Q. Isomeric Ir(iii) complexes for tracking mitochondrial pH fluctuations and inducing mitochondrial dysfunction during photodynamic therapy. Dalton Trans 2019; 48:17200-17209. [DOI: 10.1039/c9dt03453f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two pairs of isomeric phosphorescent Ir(iii) complexes that show mitochondrial pH-response and induce mitochondrial dysfunction during photodynamic therapy.
Collapse
Affiliation(s)
- Haijie Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chen Ge
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huiqun Cao
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Xuepeng Zhang
- Lab of Computational and Drug Design
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Ling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Linhai Jiang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
26
|
Tramonti A, Nardella C, di Salvo ML, Barile A, Cutruzzolà F, Contestabile R. Human Cytosolic and Mitochondrial Serine Hydroxymethyltransferase Isoforms in Comparison: Full Kinetic Characterization and Substrate Inhibition Properties. Biochemistry 2018; 57:6984-6996. [PMID: 30500180 DOI: 10.1021/acs.biochem.8b01074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible conversion of l-serine and tetrahydrofolate into glycine and 5,10-methylenetetrahydrofolate. This enzyme, which plays a pivotal role in one-carbon metabolism, is involved in cancer metabolic reprogramming and is a recognized target of chemotherapy intervention. In humans, two isoforms of the enzyme exist, which are commonly termed cytosolic SHMT1 and mitochondrial SHMT2. Considerable attention has been paid to the structural, mechanistic, and metabolic features of these isozymes. On the other hand, a detailed comparison of their catalytic and regulatory properties is missing, although this aspect seems to be considerably important, considering that SHMT1 and SHMT2 reside in different cellular compartments, where they play distinct roles in folate metabolism. Here we performed a full kinetic characterization of the serine hydroxymethyltransferase reaction catalyzed by SHMT1 and SHMT2, with a focus on pH dependence and substrate inhibition. Our investigation, which allowed the determination of all kinetic parameters of serine hydroxymethyltransferase forward and backward reactions, uncovered a previously unobserved substrate inhibition by l-serine and highlighted several interesting differences between SHMT1 and SHMT2. In particular, SHMT2 maintains a pronounced tetrahydrofolate substrate inhibition even at the alkaline pH characteristic of the mitochondrial matrix, whereas with SHMT1 this is almost abolished. At this pH, SHMT2 also shows a catalytic efficiency that is much higher than that of SHMT1. These observations suggest that such different properties represent an adaptation of the isoforms to the respective cellular environments and that substrate inhibition may be a form of regulation.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari , Consiglio Nazionale delle Ricerche , Piazzale Aldo Moro 5 , 00185 Roma , Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Anna Barile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" , Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , 00185 Roma , Italy
| |
Collapse
|
27
|
Sun Y, Pham AN, Hare DJ, Waite TD. Kinetic Modeling of pH-Dependent Oxidation of Dopamine by Iron and Its Relevance to Parkinson's Disease. Front Neurosci 2018; 12:859. [PMID: 30534046 PMCID: PMC6275323 DOI: 10.3389/fnins.2018.00859] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease. While age is the most significant risk factor, the exact cause of this disease and the most effective approaches to mitigation remain unclear. It has long been proposed that dopamine may play a role in the pathology of Parkinson's disease in view of its ability to generate both protein-modifying quinones such as aminochrome and reactive oxygen species, especially in the presence of pathological iron accumulation in the primary site of neuron loss. Given the clinically measured acidosis of post-mortem Parkinson's disease brain tissue, the interaction between dopamine and iron was investigated over a pH range of 7.4 to 6.5 with emphasis on the accumulation of toxic quinones and generation of reactive oxygen species. Our results show that the presence of iron accelerates the formation of aminochrome with ferrous iron (Fe[II]) being more efficient in this regard than ferric iron (Fe[III]). Our results further suggest that a reduced aminochrome rearrangement rate coupled with an enhanced turnover rate of Fe[II] as a result of brain tissue acidosis could result in aminochrome accumulation within cells. Additionally, under these conditions, the enhanced redox cycling of iron in the presence of dopamine aggravates oxidative stress as a result of the production of damaging reactive species, including hydroxyl radicals.
Collapse
Affiliation(s)
- Yingying Sun
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - A Ninh Pham
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Dominic J Hare
- Atomic Pathology Laboratory, Melbourne Dementia Research Centre at the Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Tramonti A, Paiardini A, Paone A, Bouzidi A, Giardina G, Guiducci G, Magnifico MC, Rinaldo S, McDermott L, Menendez JA, Contestabile R, Cutruzzolà F. Differential inhibitory effect of a pyrazolopyran compound on human serine hydroxymethyltransferase-amino acid complexes. Arch Biochem Biophys 2018; 653:71-79. [PMID: 29991441 DOI: 10.1016/j.abb.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pivotal enzyme in one-carbon metabolism that catalyses the reversible conversion of serine and tetrahydrofolate into glycine and methylenetetrahydrofolate. It exists in cytosolic (SHMT1) and mitochondrial (SHMT2) isoforms. Research on one-carbon metabolism in cancer cell lines has shown that SHMT1 preferentially catalyses serine synthesis, whereas in mitochondria SHMT2 is involved in serine breakdown. Recent research has focused on the identification of inhibitors that bind at the folate pocket. We have previously found that a representative derivative of the pyrazolopyran scaffold, namely 2.12, inhibits both SHMT isoforms, with a preference for SHMT1, causing apoptosis in lung cancer cell lines. Here we show that the affinity of 2.12 for SHMT depends on the identity of the amino acid substrate bound to the enzyme. The dissociation constant of 2.12 is 50-fold lower when it binds to SHMT1 enzyme-serine complex, as compared to the enzyme-glycine complex. Evidence is presented for a similar behaviour of compound 2.12 in the cellular environment. These findings suggest that the presence and identity of the amino acid substrate should be considered when designing SHMT inhibitors. Moreover, our data provide the proof-of-concept that SHMT inhibitors selectively targeting the directionality of one-carbon metabolism flux could be designed.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185, Roma, Italy; Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Alessandro Paiardini
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Alessio Paone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Amani Bouzidi
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Giorgio Giardina
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Giulia Guiducci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Maria Chiara Magnifico
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Lee McDermott
- Department of Pharmaceutical Sciences and Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy.
| | - Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy.
| |
Collapse
|
29
|
Qiu K, Ke L, Zhang X, Liu Y, Rees TW, Ji L, Diao J, Chao H. Tracking mitochondrial pH fluctuation during cell apoptosis with two-photon phosphorescent iridium(iii) complexes. Chem Commun (Camb) 2018; 54:2421-2424. [DOI: 10.1039/c8cc00299a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-photon phosphorescent Ir(iii) complexes containing two morpholine moieties were developed for monitoring the mitochondrial pH fluctuation during apoptosis.
Collapse
Affiliation(s)
- Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xuepeng Zhang
- Lab of Computational and Drug Design
- Laboratory of Chemical Genomics
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- P. R. China
| | - Yukang Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jiajie Diao
- Department of Cancer Biology
- University of Cincinnati College of Medicine
- Cincinnati
- USA
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
30
|
Lin B, Fan L, Ge J, Zhang W, Zhang C, Dong C, Shuang S. A naphthalene-based fluorescent probe with a large Stokes shift for mitochondrial pH imaging. Analyst 2018; 143:5054-5060. [DOI: 10.1039/c8an01371c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A naphthalene-based fluorescent pH probe with a pKa of 8.8 for imaging mitochondrial pH changes in live cells.
Collapse
Affiliation(s)
- Bo Lin
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Li Fan
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| | - Jinyin Ge
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Wenjia Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Caihong Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
31
|
Chen G, Fu Q, Yu F, Ren R, Liu Y, Cao Z, Li G, Zhao X, Chen L, Wang H, You J. Wide-Acidity-Range pH Fluorescence Probes for Evaluation of Acidification in Mitochondria and Digestive Tract Mucosa. Anal Chem 2017; 89:8509-8516. [DOI: 10.1021/acs.analchem.7b02164] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guang Chen
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Qiang Fu
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Fabiao Yu
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Rui Ren
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuxia Liu
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ziping Cao
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Guoliang Li
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xianen Zhao
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lingxin Chen
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hua Wang
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinmao You
- The
Key Laboratory of Life-Organic Analysis; Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
32
|
A rapid, accurate and sensitive method with the new stable isotopic tags based on microwave-assisted dispersive liquid-liquid microextraction and its application to the determination of hydroxyl UV filters in environmental water samples. Talanta 2017; 167:242-252. [DOI: 10.1016/j.talanta.2017.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
33
|
Cao L, Zhao Z, Zhang T, Guo X, Wang S, Li S, Li Y, Yang G. In vivo observation of the pH alternation in mitochondria for various external stimuli. Chem Commun (Camb) 2016; 51:17324-7. [PMID: 26462552 DOI: 10.1039/c5cc07118f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pH of mitochondria (pHm) has a close relationship with many biological processes. Here we developed a new indicator Mito-pH-1 for the ratiometric fluorescence detection of the mitochondria pH value, which has excellent tolerance to environmental change. And Mito-pH-1 has been used for the first time to monitor the change of pHm under temperature and H2O2 stimuli in living cells.
Collapse
Affiliation(s)
- Lixia Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhensheng Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xudong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shayu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
34
|
Żurawik TM, Pomorski A, Belczyk-Ciesielska A, Goch G, Niedźwiedzka K, Kucharczyk R, Krężel A, Bal W. Revisiting Mitochondrial pH with an Improved Algorithm for Calibration of the Ratiometric 5(6)-carboxy-SNARF-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH. PLoS One 2016; 11:e0161353. [PMID: 27557123 PMCID: PMC4996429 DOI: 10.1371/journal.pone.0161353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022] Open
Abstract
Fluorescence measurements of pH and other analytes in the cell rely on accurate calibrations, but these have routinely used algorithms that inadequately describe the properties of indicators. Here, we have established a more accurate method for calibrating and analyzing data obtained using the ratiometric probe 5(6)-carboxy-SNARF-1. We tested the implications of novel approach to measurements of pH in yeast mitochondria, a compartment containing a small number of free H+ ions. Our findings demonstrate that 5(6)-carboxy-SNARF-1 interacts with H+ ions inside the mitochondria in an anticooperative manner (Hill coefficient n of 0.5) and the apparent pH inside the mitochondria is ~0.5 unit lower than had been generally assumed. This result, at odds with the current consensus on the mechanism of energy generation in the mitochondria, is in better agreement with theoretical considerations and warrants further studies of organellar pH.
Collapse
Affiliation(s)
- Tomasz Michał Żurawik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A, 50-383, Wrocław, Poland
| | | | - Grażyna Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Katarzyna Niedźwiedzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A, 50-383, Wrocław, Poland
- * E-mail: (AK); (WB)
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- * E-mail: (AK); (WB)
| |
Collapse
|
35
|
Kumar N, Bhalla V, Kumar M. Development and sensing applications of fluorescent motifs within the mitochondrial environment. Chem Commun (Camb) 2016; 51:15614-28. [PMID: 26759839 DOI: 10.1039/c5cc07098h] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The potential use of fluorescent molecular probes to measure ions and biomolecules has contributed incessantly to the understanding of chemical and biological systems. The approach has many advantages such as high sensitivity, simplicity and non-destructive cellular imaging that offer visible information about the targeted species. In this article, our objective is to discuss fluorescent probes that have sensing applications within the mitochondrial environment. Mitochondria are cellular organelles which are well known for their unique physiological functions and have been found to be associated with various diseases and disorders. It is therefore, important to develop new tools and tactics that can provide useful information concerning the mitochondrial environment which in turn is essential to understand its biophysical functioning and related diseases.
Collapse
|
36
|
Pan W, Wang H, Yang L, Yu Z, Li N, Tang B. Ratiometric Fluorescence Nanoprobes for Subcellular pH Imaging with a Single-Wavelength Excitation in Living Cells. Anal Chem 2016; 88:6743-8. [DOI: 10.1021/acs.analchem.6b01010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wei Pan
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Honghong Wang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Limin Yang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhengze Yu
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Na Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
37
|
Li L, Yi H, Chang M, Cao X, Zhou Z, Qin C, Zhang S, Pan H, Chen Y, Xu J. Fluorescence dynamics of N-terminal Trp–Trp residues in polypeptide: intrinsic indicators for monitoring pH. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0942-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Lee MH, Park N, Yi C, Han JH, Hong JH, Kim KP, Kang DH, Sessler JL, Kang C, Kim JS. Mitochondria-immobilized pH-sensitive off-on fluorescent probe. J Am Chem Soc 2014; 136:14136-42. [PMID: 25158001 PMCID: PMC4195376 DOI: 10.1021/ja506301n] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
We
report here a mitochondria-targetable pH-sensitive probe that
allows for a quantitative measurement of mitochondrial pH changes,
as well as the real-time monitoring of pH-related physiological effects
in live cells. This system consists of a piperazine-linked naphthalimide
as a fluorescence off–on signaling unit, a cationic triphenylphosphonium
group for mitochondrial targeting, and a reactive benzyl chloride
subunit for mitochondrial fixation. It operates well in a mitochondrial
environment within whole cells and displays a desirable off–on
fluorescence response to mitochondrial acidification. Moreover, this
probe allows for the monitoring of impaired mitochondria undergoing
mitophagic elimination as the result of nutrient starvation. It thus
allows for the monitoring of the organelle-specific dynamics associated
with the conversion between physiological and pathological states.
Collapse
Affiliation(s)
- Min Hee Lee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu Y, Hitomi H, Diah S, Deguchi K, Mori H, Masaki T, Nakano D, Kobori H, Nishiyama A. Roles of Na⁺/H⁺ exchanger type 1 and intracellular pH in angiotensin II-induced reactive oxygen species generation and podocyte apoptosis. J Pharmacol Sci 2014; 122:176-83. [PMID: 23800993 DOI: 10.1254/jphs.12291fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A growing body of evidence suggests that podocyte apoptosis is a major cause of decreased podocyte number, which leads to albuminuria and glomerular injury. The aim of this study was to clarify the molecular mechanisms of angiotensin II (Ang II)-induced apoptosis in cultured mouse podocytes. We examined the effects of Ang II (100 nmol/L) on apoptosis, superoxide anions, and cytosol pH in podocytes. For intracellular pH measurements, image analysis was conducted using confocal laser microscopy after incubation with carboxy-seminaphthorhodafluor-1. Superoxide anions and intracellular pH were elevated with Ang II treatment. Apoptotic cell numbers, as measured by TUNEL staining and caspase 3 activity, were also augmented in the Ang II-treated group. Pre-treatment with olmesartan (100 nmol/L, an Ang II type 1-receptor blocker), apocynin (50 μmol/L, NADPH oxidase inhibitor), or 5-N,N hexamethylene amiloride [30 μmol/L, Na⁺/H⁺ exchanger type 1 (NHE-1) inhibitor] abolished Ang II-induced podocyte apoptosis, whereas NHE-1 mRNA and protein expression was not affected by Ang II treatment. Moreover, Ang II increased NHE-1 phosphorylation. These results suggest that superoxide production, NHE-1 activation, and intracellular alkalization were early features prior to apoptosis in Ang II-treated mouse podocytes, and may offer new insights into the mechanisms responsible for Ang II-induced podocyte injury.
Collapse
Affiliation(s)
- Ya Liu
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 2014; 69-70:29-41. [PMID: 24636868 DOI: 10.1016/j.addr.2014.03.001] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.
Collapse
|
41
|
The Odyssey of a Young Gene: Structure–Function Studies in Human Glutamate Dehydrogenases Reveal Evolutionary-Acquired Complex Allosteric Regulation Mechanisms. Neurochem Res 2014; 39:471-86. [DOI: 10.1007/s11064-014-1251-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
|
42
|
Cao L, Li X, Wang S, Li S, Li Y, Yang G. A novel nanogel-based fluorescent probe for ratiometric detection of intracellular pH values. Chem Commun (Camb) 2014; 50:8787-90. [DOI: 10.1039/c4cc03716b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new nanogel indicator (NGI) for ratiometric fluorescent detection of intracellular pH values has been reported. In aqueous solution, the NGI can be used for ratiometric sensing of pH changes with a large hypsochromic shift of 100 nm in the green–red region and reversible. Furthermore, the NGI has been used to calibrate the cytosol pH in living cells.
Collapse
Affiliation(s)
- Lixia Cao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Beijing 100190, China
| | - Xiaoyan Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Beijing 100190, China
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Beijing 100190, China
| | - Shayu Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Beijing 100190, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Beijing 100190, China
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- Beijing 100190, China
| |
Collapse
|
43
|
Sakai C, Tomitsuka E, Miyagishi M, Harada S, Kita K. Type II Fp of human mitochondrial respiratory complex II and its role in adaptation to hypoxia and nutrition-deprived conditions. Mitochondrion 2013; 13:602-9. [PMID: 24008124 DOI: 10.1016/j.mito.2013.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 08/08/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The flavoprotein (Fp) subunit of human mitochondrial succinate-ubiquinone reductase (SQR, complex II) has isoforms (type I, type II). Type II Fp is predominantly expressed in some cancer and fetal tissues and those tissues are often exposed to ischemia. The present study shows that complex II with type II Fp has lower optimal pH than complex II with type I Fp, and type II Fp mRNA expression was induced by ischemia. The result suggests complex II with type II Fp may function in cells with low mitochondrial matrix pH caused by ischemia and its function is related to cellular adaptation to ischemia.
Collapse
Affiliation(s)
- Chika Sakai
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
44
|
Orte A, Alvarez-Pez JM, Ruedas-Rama MJ. Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS NANO 2013; 7:6387-95. [PMID: 23808971 DOI: 10.1021/nn402581q] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
While the use of quantum dot (QD) nanoparticles for bioimaging and sensing has been improved and exploited during the last several years, most studies have used emission intensity-based techniques. Fluorescence lifetime imaging microscopy (FLIM) can also be employed for sensing purposes, overcoming many of the limitations of the aforementioned systems. Herein, we show that the photoluminescence (PL) lifetime of mercaptopropionic acid-capped QDs (MPA-QDs) collected from FLIM images can be used to determine intracellular pH. The PL average lifetime of MPA-QDs varied from 8.7 ns (pH < 5) to 15.4 ns (pH > 8) in media mimicking the intracellular environment. These long decay times of QD nanoparticles make them easily distinguishable from intrinsic cell autofluorescence, improving selectivity in sensing applications. We demonstrate, for the first time, the successful detection of changes in the intracellular pH of different cell types by examining the PL decay time of QDs. In particular, the combination of FLIM methodologies with QD nanoparticles exhibits greatly improved sensitivity compared with other fluorescent dyes for pH imaging. A detailed description of the advantages of the FLIM technique is presented.
Collapse
Affiliation(s)
- Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | | | | |
Collapse
|
45
|
Zaganas I, Pajęcka K, Wendel Nielsen C, Schousboe A, Waagepetersen HS, Plaitakis A. The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases. Metab Brain Dis 2013; 28:127-31. [PMID: 23420347 DOI: 10.1007/s11011-013-9382-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
Abstract
Glutamate dehydrogenase (GDH) uses ammonia to reversibly convert α-ketoglutarate to glutamate using NADP(H) and NAD(H) as cofactors. While GDH in most mammals is encoded by a single GLUD1 gene, humans and other primates have acquired a GLUD2 gene with distinct tissue expression profile. The two human isoenzymes (hGDH1 and hGDH2), though highly homologous, differ markedly in their regulatory properties. Here we obtained hGDH1 and hGDH2 in recombinant form and studied their Km for ammonia in the presence of 1.0 mM ADP. The analyses showed that lowering the pH of the buffer (from 8.0 to 7.0) increased the Km for ammonia substantially (hGDH1: from 12.8 ± 1.4 mM to 57.5 ± 1.6 mM; hGDH2: from 14.7 ± 1.6 mM to 62.2 ± 1.7 mM), thus essentially precluding reductive amination. Moreover, lowering the ADP concentration to 0.1 mM not only increased the K0.5 [NH4 (+)] of hGDH2, but also introduced a positive cooperative binding phenomenon in this isoenzyme. Hence, intra-mitochondrial acidification, as occurring in astrocytes during glutamatergic transmission should favor the oxidative deamination of glutamate. Similar considerations apply to the handling of glutamate by the proximal convoluted tubules of the kidney during systemic acidosis. The reverse could apply for conditions of local or systemic hyperammonemia or alkalosis.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | | | | | | | | |
Collapse
|
46
|
Lee MH, Han JH, Lee JH, Park N, Kumar R, Kang C, Kim JS. Two-Color Probe to Monitor a Wide Range of pH Values in Cells. Angew Chem Int Ed Engl 2013; 52:6206-9. [DOI: 10.1002/anie.201301894] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/22/2013] [Indexed: 11/08/2022]
|
47
|
Lee MH, Han JH, Lee JH, Park N, Kumar R, Kang C, Kim JS. Two-Color Probe to Monitor a Wide Range of pH Values in Cells. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301894] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. ACTA ACUST UNITED AC 2013; 139:415-23. [PMID: 22641636 PMCID: PMC3362525 DOI: 10.1085/jgp.201110767] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
49
|
Poburko D, Demaurex N. Regulation of the mitochondrial proton gradient by cytosolic Ca²⁺ signals. Pflugers Arch 2012; 464:19-26. [PMID: 22526460 DOI: 10.1007/s00424-012-1106-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/02/2012] [Indexed: 12/16/2022]
Abstract
Mitochondria convert the energy stored in carbohydrate and fat into ATP molecules that power enzymatic reactions within cells, and this process influences cellular calcium signals in several ways. By providing ATP to calcium pumps at the plasma and intracellular membranes, mitochondria power the calcium gradients that drive the release of Ca²⁺ from stores and the entry of Ca²⁺ across plasma membrane channels. By taking up and subsequently releasing calcium ions, mitochondria determine the spatiotemporal profile of cellular Ca²⁺ signals and the activity of Ca²⁺-regulated proteins, including Ca²⁺ entry channels that are themselves part of the Ca²⁺ circuitry. Ca²⁺ elevations in the mitochondrial matrix, in turn, activate Ca²⁺-dependent enzymes that boost the respiratory chain, increasing the ability of mitochondria to buffer calcium ions. Mitochondria are able to encode and decode Ca²⁺ signals because the respiratory chain generates an electrochemical gradient for protons across the inner mitochondrial membrane. This proton motive force (Δp) drives the activity of the ATP synthase and has both an electrical component, the mitochondrial membrane potential (ΔΨ(m)), and a chemical component, the mitochondrial proton gradient (ΔpH(m)). ΔΨ(m) contributes about 190 mV to Δp and drives the entry of Ca²⁺ across a recently identified Ca²⁺-selective channel known as the mitochondrial Ca²⁺ uniporter. ΔpH(m) contributes ~30 mV to Δp and is usually ignored or considered a minor component of mitochondria respiratory state. However, the mitochondrial proton gradient is an essential component of the chemiosmotic theory formulated by Peter Mitchell in 1961 as ΔpH(m) sustains the entry of substrates and metabolites required for the activity of the respiratory chain and drives the activity of electroneutral ion exchangers that allow mitochondria to maintain their osmolarity and volume. In this review, we summarize the mechanisms that regulate the mitochondrial proton gradient and discuss how thermodynamic concepts derived from measurements in purified mitochondria can be reconciled with our recent findings that mitochondria have high proton permeability in situ and that ΔpH(m) decreases during mitochondrial Ca²⁺ elevations.
Collapse
Affiliation(s)
- Damon Poburko
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Vancouver, BC, Canada
| | | |
Collapse
|
50
|
Abstract
Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH < ∼6) and green when the medium is more basic (>∼7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.
Collapse
Affiliation(s)
- Cliferson Thivierge
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77841
| | - Junyan Han
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77841
| | - Roxanne M. Jenkins
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77841
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77841
| |
Collapse
|