1
|
Ciszak L, Kosmaczewska A, Pawlak E, Frydecka I, Szteblich A, Wołowiec D. Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27 Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:11705. [PMID: 39519258 PMCID: PMC11546115 DOI: 10.3390/ijms252111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Beyond the essential role of p27Kip1 and cyclin D2 in cell cycle progression, they are also shown to confer an anti-apoptotic function in peripheral blood (PB) lymphocytes. Although the aberrant longevity and expression of p27Kip1 and cyclin D2 in leukemic cells is well documented, the exact mechanisms responsible for this phenomenon have yet to be elucidated. This study was undertaken to determine the associations between polymorphisms in the CDKN1B and CCND2 genes (encoding p27Kip1 and cyclin D2, respectively) and susceptibility to chronic lymphocytic leukemia (CLL), as well as their influence on the expression of both cell cycle regulators in PB leukemic B cells and non-malignant T cells from untreated CLL patients divided according to the genetic determinants studied. Three CDKN1B single-nucleotide polymorphisms (SNPs), rs36228499, rs34330, and rs2066827, and three CCND2 SNPs, rs3217933, rs3217901, and rs3217810, were genotyped using a real-time PCR system. The expression of p27Kip1 and cyclin D2 proteins in both leukemic B cells and non-malignant T cells was determined using flow cytometry. We found that the rs36228499A and rs34330T alleles in CDKN1B and the rs3217810T allele in the CCND2 gene were more frequent in patients and were associated with increased CLL risk. Moreover, we observed that patients possessing the CCND2rs3217901G allele had lower susceptibility to CLL (most pronounced in the AG genotype). We also noticed that the presence of the CDKN1Brs36228499CC, CDKN1Brs34330CC, CDKN1Brs2066827TT, and CCND2rs3217901AG genotypes shortened the time to CLL progression. Statistically significant functional relationships were limited to T cells and assigned to CDKN1B polymorphic variants; carriers of the polymorphisms rs34330CC and rs36228499CC (determining the aggressive course of CLL) expressed a decrease in p27Kip1 and cyclin D2 levels, respectively. We indicate for the first time that genetic variants at the CDKN1B and CCND2 loci may be considered as a potentially low-penetrating risk factor for CLL and determining the clinical outcome.
Collapse
Affiliation(s)
- Lidia Ciszak
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (L.C.); (E.P.); (I.F.); (A.S.)
| | - Agata Kosmaczewska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (L.C.); (E.P.); (I.F.); (A.S.)
| | - Edyta Pawlak
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (L.C.); (E.P.); (I.F.); (A.S.)
| | - Irena Frydecka
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (L.C.); (E.P.); (I.F.); (A.S.)
| | - Aleksandra Szteblich
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (L.C.); (E.P.); (I.F.); (A.S.)
| | - Dariusz Wołowiec
- Clinical Department of Hematology, Cell Therapies and Internal Diseases, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
2
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
3
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
4
|
Caballero M, Koren A. The landscape of somatic mutations in lymphoblastoid cell lines. CELL GENOMICS 2023; 3:100305. [PMID: 37388907 PMCID: PMC10300552 DOI: 10.1016/j.xgen.2023.100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 07/01/2023]
Abstract
Somatic mutations have important biological ramifications while exerting substantial rate, type, and genomic location heterogeneity. Yet, their sporadic occurrence makes them difficult to study at scale and across individuals. Lymphoblastoid cell lines (LCLs), a model system for human population and functional genomics, harbor large numbers of somatic mutations and have been extensively genotyped. By comparing 1,662 LCLs, we report that the mutational landscape of the genome varies across individuals in terms of the number of mutations, their genomic locations, and their spectra; this variation may itself be modulated by somatic trans-acting mutations. Mutations attributed to the translesion DNA polymerase η follow two different modes of formation, with one mode accounting for the hypermutability of the inactive X chromosome. Nonetheless, the distribution of mutations along the inactive X chromosome appears to follow an epigenetic memory of the active form.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Mateos-Jaimez J, Mangolini M, Vidal A, Kulis M, Colomer D, Campo E, Ringshausen I, Martin-Subero JI, Maiques-Diaz A. Robust CRISPR-Cas9 Genetic Editing of Primary Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma Cells. Hemasphere 2023; 7:e909. [PMID: 37304935 PMCID: PMC10249715 DOI: 10.1097/hs9.0000000000000909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Judith Mateos-Jaimez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maurizio Mangolini
- Department of Hematology and Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| | - Anna Vidal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Pathology Department, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Spain
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Pathology Department, Hospital Clinic, Barcelona, Spain
- University of Barcelona, Spain
| | - Ingo Ringshausen
- Department of Hematology and Cambridge Stem Cell Institute, University of Cambridge, United Kingdom
| | - Jose I. Martin-Subero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alba Maiques-Diaz
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Cui CH, Chang YN, Zhou J, Li CW, Wang HJ, Sun Q, Jia YJ, Li QH, Wang TY, Qiu LG, Yi SH. [Clinical characteristics of 11 patients with chronic lymphocytic leukemia with t (14;19) (q32;q13)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:418-423. [PMID: 37550193 PMCID: PMC10440617 DOI: 10.3760/cma.j.issn.0253-2727.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 08/09/2023]
Abstract
Objective: To analyze the clinicopathological characteristics of 11 cases of chronic lymphocytic leukemia (CLL) with t (14;19) (q32;q13) . Methods: The case data of 11 patients with CLL with t (14;19) (q32;q13) in the chromosome karyotype analysis results of the Blood Diseases Hospital, Chinese Academy of Medical Sciences from January 1, 2018, to July 30, 2022, were retrospectively analyzed. Results: In all 11 patients, t (14;19) (q32;q13) involved IGH::BCL3 gene rearrangement, and most of them were accompanied by +12 or complex karyotype. An immunophenotypic score of 4-5 was found in 7 patients and 3 in 4 cases. We demonstrated that CLLs with t (14;19) (q32;q13) had a mutational pattern with recurrent mutations in NOTCH1 (3/7), FBXW7 (3/7), and KMT2D (2/7). The very-high-risk, high-risk, intermediate-risk, and low-risk groups consisted of 1, 1, 6, and 3 cases, respectively. Two patients died, 8 survived, and 2 were lost in follow-up. Four patients had disease progression or relapse during treatment. The median time to the first therapy was 1 month. Conclusion: t (14;19) (q32;q13), involving IGH::BCL3 gene rearrangement, is a rare recurrent cytogenetic abnormality in CLL, which is associated with a poor prognosis.
Collapse
Affiliation(s)
- C H Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y N Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - C W Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - H J Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Q Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y J Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Q H Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - T Y Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S H Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
7
|
Carrillo‐Tornel S, Chen‐Liang TH, Zurdo M, Puiggros A, Gómez‐Llonín A, García‐Malo MD, Cuenca‐Zamora EJ, Ortuño FJ, López AMH, Espinet B, Jerez A.
NOTCH1
mutation in chronic lymphocytic leukaemia is associated with an enhanced cell cycle
G1
/S transition and specific cyclin overexpression: Preclinical ground for targeted inhibition. Br J Haematol 2022; 201:470-479. [PMID: 36573331 DOI: 10.1111/bjh.18609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
Studies prior to next-generation sequencing (NGS) showed that the frequent indolent course of chronic lymphocytic leukaemia (CLL) is related to most cells remaining quiescent in the G0 -G1 cell cycle phase, due to the expression of dysregulated cyclin genes. Of note, the activating nature of the NOTCH1 mutation in T lymphoblastic leukaemia also drives the dysregulation of cell cycle genes. Our goal was to comprehensively revisit the cell cycle in NOTCH1-mutated CLL (NOTCH1MUT ) to test for potential therapeutic targets. Among 378 NGS-annotated CLL cases, NOTCH1MUT cells displayed a unique transcriptome profile of G0 -G1 cell cycle components, with an overexpression of early-phase effectors, reaching a 38-, 27- and ninefold change increase for the complex elements CCND3, CDK4 and CDK6, respectively. This NOTCH1MUT cells' profile was related to more cells traversing through the cell cycle. In-vitro targeted inhibition of NOTCH1 gamma-secretase and CDK4/6 reversed the distribution of cells through the cycle phases and enhanced the killing of NOTCH1MUT CLL cells, suggesting new therapeutic approaches.
Collapse
Affiliation(s)
- Salvador Carrillo‐Tornel
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Tzu Hua Chen‐Liang
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - María Zurdo
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory. Pathology Service Hospital del Mar Barcelona Spain
- Translational Research Group on Hematological Neoplasms Hospital del Mar Research Institute (IMIM) Barcelona Spain
| | - Andrea Gómez‐Llonín
- Molecular Cytogenetics Laboratory. Pathology Service Hospital del Mar Barcelona Spain
- Translational Research Group on Hematological Neoplasms Hospital del Mar Research Institute (IMIM) Barcelona Spain
| | - María Dolores García‐Malo
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Ernesto José Cuenca‐Zamora
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
- CB15/00055‐CIBERER Murcia Spain
| | - Francisco José Ortuño
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Ana María Hurtado López
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory. Pathology Service Hospital del Mar Barcelona Spain
- Translational Research Group on Hematological Neoplasms Hospital del Mar Research Institute (IMIM) Barcelona Spain
| | - Andrés Jerez
- Hematology and Medical Oncology Department Hospital Universitario Morales Meseguer, CRH‐IMIB, Universidad de Murcia Murcia Spain
- CB15/00055‐CIBERER Murcia Spain
| |
Collapse
|
8
|
Silconi ZB, Rosic V, Benazic S, Radosavljevic G, Mijajlovic M, Pantic J, Ratkovic ZR, Radic G, Arsenijevic A, Milovanovic M, Arsenijevic N, Milovanovic J. The Pt(S-pr-thiosal)2 and BCL1 Leukemia Lymphoma: Antitumor Activity In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23158161. [PMID: 35897737 PMCID: PMC9332548 DOI: 10.3390/ijms23158161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
B cell malignancies are, despite the development of targeted therapy in a certain percentage of the patients still a chronic disease with relapses, requiring multiple lines of therapy. Regimens that include platinum-based drugs provide high response rates in different B cell lymphomas, high-risk chronic lymphocytic leukemia (CLL), and devastating complication of CLL, Richter’s syndrome. The aim of this study was to explore the potential antitumor activity of previously synthetized platinum(IV) complex with alkyl derivatives of thyosalicilc acid, PtCl2(S-pr-thiosal)2, toward murine BCL1 cells and to delineate possible mechanisms of action. The PtCl2(S-pr-thiosal)2 reduced the viability of BCL1 cells in vitro but also reduced the growth of metastases in the leukemia lymphoma model in BALB/c mice. PtCl2(S-pr-thiosal)2 induced apoptosis, inhibited proliferation of BCL1 cells, and induced cell cycle disturbance. Treatment of BCL1 cells with PtCl2(S-pr-thiosal)2 inhibited expression of cyclin D3 and cyclin E and enhanced expression of cyclin-dependent kinase inhibitors p16, p21, and p27 resulting in cell cycle arrest in the G1 phase, reduced the percentage of BCL1 cells in the S phase, and decreased expression of Ki-67. PtCl2(S-pr-thiosal)2 treatment reduced expression of phosphorylated STAT3 and downstream-regulated molecules associated with cancer stemness and proliferation, NANOG, cyclin D3, and c-Myc, and expression of phosphorylated NFκB in vitro and in vivo. In conclusion, PtCl2(S-pr-thiosal)2 reduces STAT3 and NFκB phosphorylation resulting in inhibition of BCL1 cell proliferation and the triggering of apoptotic cell death.
Collapse
Affiliation(s)
| | - Vesna Rosic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sasa Benazic
- Department of Transfusiology, Pula General Hospital, 52100 Pula, Croatia;
| | - Gordana Radosavljevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marina Mijajlovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Jelena Pantic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Zoran R. Ratkovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gordana Radic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marija Milovanovic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Jelena Milovanovic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
- Correspondence: ; Tel.: +381-3430-6800
| |
Collapse
|
9
|
Li Q, Xing S, Zhang H, Mao X, Xiao M, Wang Y. IGH Translocations in Chinese Patients With Chronic Lymphocytic Leukemia: Clinicopathologic Characteristics and Genetic Profile. Front Oncol 2022; 12:858523. [PMID: 35720006 PMCID: PMC9201519 DOI: 10.3389/fonc.2022.858523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin heavy chain translocations (IGH-t) have occasionally been reported in Chinese patients with chronic lymphocytic leukemia (CLL). The objective of the present study was to identify the clinicopathologic features of patients with IGH-t CLL and compare them with those of patients with non-IGH-t CLL. We performed fluorescence in situ hybridization (FISH) based on a routine CLL prognostic FISH panel using IGH, IGH-BCL2, BCL3, IGH-CMYC, and BCL6 FISH probes. Furthermore, we retrospectively evaluated the clinical features of 138 newly diagnosed CLL patients via chromosome banding analysis (CBA), FISH, and targeted next-generation sequencing. IGH-t was identified in 25 patients (18.1%). Patients with IGH-t CLL had lower flow scores than those with non-IGH-t CLL. The most frequent translocation was t(14;18) (10 patients), followed by t(14;19) (3 patients), and t(2;14)(p13;q32), t(7;14)(q21.2;q12), t(9;14)(p13;q32) (3 patients). The remaining nine patients included three with abnormal karyotypes without translocation involving 14q32, four with a normal karyotype, and two who failed CBA. The most frequently concomitant FISH-detected aberrations were 13q deletion, followed by +12 and TP53 deletion, while one case involved ATM deletion. Complex karyotypes were detected in five patients with IGH-t CLL, in whom all partner genes were non-BCL2. Available mutational information indicated that KMT2D mutation was the most frequent mutation among tested 70 patients, while TP53 mutation was the most frequent mutation in the IGH-t group. Moreover, the IGH-t group had higher FBXW7 (P=0.014) and ATM (P=0.004) mutations than the non-IGH-t group, and this difference was statistically significant. Our study demonstrates that IGH-t is not uncommon among Chinese CLL patients, and that its partner genes are multiple. The gene mutational profile of the IGH-t group was distinct from that of the non-IGH-t group, and the concomitant chromosomal abnormalities within the IGH-t CLL group differed. Thus, identification of IGH-t and its partner genes in CLL patients may help further refine risk stratification and strengthen the accurate management in CLL patients.
Collapse
Affiliation(s)
- Qinlu Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shugang Xing
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wu JL, Wu HY, Wu SJ, Tsai HY, Weng SH, Lin KT, Lin LI, Yao CY, Zamanova M, Lee YY, Angata T, Tien HF, Chen YJ, Lin KI. Phosphoproteomics Reveals the Role of Constitutive KAP1 Phosphorylation by B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia. Mol Cancer Res 2022; 20:1222-1232. [PMID: 35533307 DOI: 10.1158/1541-7786.mcr-21-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Application of B-cell receptor (BCR) pathway inhibitor ibrutinib for chronic lymphocytic leukemia (CLL) is a major breakthrough, yet the downstream effects following inhibition of BCR signaling and during relapse await further clarification. By comparative phosphoproteomic profiling of B cells from patients with CLL and healthy donors, as well as CLL B cells collected at multiple time points during the course of ibrutinib treatment, we provided the landscape of dysregulated phosphoproteome in CLL and its dynamic alterations associated with ibrutinib treatment. Particularly, differential phosphorylation events associated with several signaling pathways, including BCR pathway, were enriched in patient CLL cells. A constitutively elevated phosphorylation level of KAP1 at serine 473 (S473) was found in the majority of CLL samples prior to treatment. Further verification showed that BCR activation promoted KAP1 S473 phosphorylation, whereas ibrutinib treatment abolished it. Depletion of KAP1 in primary CLL cells decelerated cell cycle progression and ectopic expression of a KAP1 S473 phospho-mimicking mutant accelerated G2/M cell cycle transition of CLL cells. Moreover, temporal phosphoproteomic profiles using a series of CLL cells isolated from one patient during the ibrutinib treatment revealed the dynamic changes of several molecules associated with BCR signaling in the ibrutinib responsive and recurrent stages. Implications: This phosphoproteomic analysis and functional validation illuminated the phosphorylation of KAP1 at S473 as an important downstream BCR signaling event and a potential indicator for the success of ibrutinib treatment in CLL.
Collapse
Affiliation(s)
| | - Hsin-Yi Wu
- National Taiwan University, Taipei, Taipei, Taiwan
| | - Shang-Ju Wu
- National Taiwan University Hospital, Taipei city, Taiwan
| | | | | | | | | | - Chi-Yuan Yao
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
11
|
Rojas Gil AP, Kodonis I, Ioannidis A, Nomikos T, Dimopoulos I, Kosmidis G, Katsa ME, Melliou E, Magiatis P. The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial. Front Oncol 2022; 11:810249. [PMID: 35127522 PMCID: PMC8814521 DOI: 10.3389/fonc.2021.810249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
AIM Oleocanthal and oleacein (OC/OL) have important in vitro and in vivo antitumor properties; however, there is no data about their anticancer activity in humans. The aim of this pilot study was to test if patients at early stage of chronic lymphocytic leukemia (CLL) could adhere to and tolerate an intervention with high OC/OL extra virgin olive oil (EVOO) and if this intervention could lead to any changes in markers related to the disease. METHODS A pilot dietary intervention (DI) was made in patients with CLL in Rai stages 0-II who did not follow any treatment (NCT04215367). In the first intervention (DI1), 20 CLL patients were included in a blind randomized study and were separated into two groups. One group (A) of 10 patients consumed 40 ml/day of high OC/OL-EVOO (416 mg/Kg OC and 284 mg/kg OL) for 3 months. A second group (B) of 10 patients consumed 40 ml/day of low OC/OL (82 mg/kg OC and 33 mg/kg OL) for 3 months. After a washout period of 9-12 months, a second intervention (DI2) only with High OC/OL-EVOO for 6 months was performed with 22 randomly selected patients (16 from the DI1 (8 from each group) and 6 new). Hematological, biochemical, and apoptotic markers were analyzed in the serum of the patients. In addition, cellular proliferation and apoptosis markers were studied in isolated proteins from peripheral blood mononuclear cells. RESULTS The results of the DI1 showed beneficial effects on hematological and apoptotic markers only with High OC/OL-EVOO. During the DI2, a decrease in the white blood cell and lymphocyte count was observed (p ≤0.05), comparing 3 months before the intervention and 6 months after it. After 3 and 6 months of DI2, an increase (p ≤0.05) was observed in the apoptotic markers ccK18 and Apo1-Fas, and also in the cell cycle negative regulator p21, and also a decrease in the antiapoptotic protein Survivin, and in the cellular proliferation marker Cyclin D. CONCLUSIONS This is the first clinical trial with High OC/OL-EVOO that indicates that it could be a promising dietary feature for the improvement of CLL inducing the apoptosis of their cancer cells and improving the metabolism of the patients. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04215367, identifier: NCT04215367.
Collapse
Affiliation(s)
- Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Ioannis Kodonis
- Hematology Department, General Hospital of Lakonia, Sparta, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | | | - Georgios Kosmidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Maria Efthymia Katsa
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Zhang W, Wang B, Lin Y, Yang Y, Zhang Z, Wang Q, Zhang H, Jiang K, Ye Y, Wang S, Shen Z. hsa_circ_0000231 Promotes colorectal cancer cell growth through upregulation of CCND2 by IGF2BP3/miR-375 dual pathway. Cancer Cell Int 2022; 22:27. [PMID: 35033075 PMCID: PMC8760675 DOI: 10.1186/s12935-022-02455-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02455-8.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhen Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Quan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Haoran Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Shan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China.
| |
Collapse
|
13
|
Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HAR, Lütge A, Hüllein J, Wagner L, Giacopelli B, Nadeu F, Delgado J, Campo E, Mangolini M, Ringshausen I, Böttcher M, Mougiakakos D, Jacobs A, Bodenmiller B, Dietrich S, Oakes CC, Zenz T, Huber W. Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. NATURE CANCER 2021; 2:853-864. [PMID: 34423310 PMCID: PMC7611543 DOI: 10.1038/s43018-021-00216-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
Abstract
Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.
Collapse
Affiliation(s)
- Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Ester Cannizzaro
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Sebastian Scheinost
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Peter-Martin Bruch
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Holly AR Giles
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Almut Lütge
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jennifer Hüllein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Lena Wagner
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Jacobs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Sascha Dietrich
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
- Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
14
|
Bagacean C, Iuga CA, Bordron A, Tempescul A, Pralea IE, Bernard D, Cornen M, Bergot T, Le Dantec C, Brooks W, Saad H, Ianotto JC, Pers JO, Zdrenghea M, Berthou C, Renaudineau Y. Identification of altered cell signaling pathways using proteomic profiling in stable and progressive chronic lymphocytic leukemia. J Leukoc Biol 2021; 111:313-325. [PMID: 34288092 DOI: 10.1002/jlb.4hi0620-392r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by significant biologic and clinical heterogeneity. This study was designed to explore CLL B-cells' proteomic profile in order to identify biologic processes affected at an early stage and during disease evolution as stable or progressive. Purified B cells from 11 untreated CLL patients were tested at two time points by liquid chromatography-tandem mass spectrometry. Patients included in the study evolved to either progressive (n = 6) or stable disease (n = 5). First, at an early stage of the disease (Binet stage A), based on the relative abundance levels of 389 differentially expressed proteins (DEPs), samples were separated into stable and progressive clusters with the main differentiating factor being the RNA splicing pathway. Next, in order to test how the DEPs affect RNA splicing, a RNA-Seq study was conducted showing 4217 differentially spliced genes between the two clusters. Distinct longitudinal evolutions were observed with predominantly proteomic modifications in the stable CLL group and spliced genes in the progressive CLL group. Splicing events were shown to be six times more frequent in the progressive CLL group. The main aberrant biologic processes controlled by DEPs and spliced genes in the progressive group were cytoskeletal organization, Wnt/β-catenin signaling, and mitochondrial and inositol phosphate metabolism with a downstream impact on CLL B-cell survival and migration. This study suggests that proteomic profiles at the early stage of CLL can discriminate progressive from stable disease and that RNA splicing dysregulation underlies CLL evolution, which opens new perspectives in terms of biomarkers and therapy.
Collapse
Affiliation(s)
- Cristina Bagacean
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Cristina Adela Iuga
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine-MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anne Bordron
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France
| | - Adrian Tempescul
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine-MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Melanie Cornen
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France
| | | | | | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Hussam Saad
- Department of Hematology, University Hospital of Brest, Brest, France
| | | | | | - Mihnea Zdrenghea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian Berthou
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Yves Renaudineau
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Laboratory of Immunology and Immunotherapy, University Hospital of Brest, Brest, France
| |
Collapse
|
15
|
Zhou H, Lei M, Wang W, Guo M, Wang J, Zhang H, Qiao L, Feng H, Liu Z, Chen L, Hou J, Wang X, Gu C, Zhao B, Izumchenko E, Yang Y, Zhu Y. In vitro and in vivo efficacy of the novel oral proteasome inhibitor NNU546 in multiple myeloma. Aging (Albany NY) 2020; 12:22949-22974. [PMID: 33203800 PMCID: PMC7746380 DOI: 10.18632/aging.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 01/14/2023]
Abstract
Proteasome inhibition demonstrates highly effective impact on multiple myeloma (MM) treatment. Here, we aimed to examine anti-tumor efficiency and underlying mechanisms of a novel well tolerated orally applicable proteasome inhibitor NNU546 and its hydrolyzed pharmacologically active form NNU219. NNU219 showed more selective inhibition to proteasome catalytic subunits and less off-target effect than bortezomib ex vivo. Moreover, intravenous and oral administration of either NNU219 or NNU546 led to more sustained pharmacodynamic inhibitions of proteasome activities compared with bortezomib. Importantly, NNU219 exhibited potential anti-MM activity in both MM cell lines and primary samples in vitro. The anti-MM activity of NNU219 was associated with induction of G2/M-phase arrest and apoptosis via activation of the caspase cascade and endoplasmic reticulum stress response. Significant growth-inhibitory effects of NNU219 and NNU546 were observed in 3 different human MM xenograft mouse models. Furthermore, such observation was even found in the presence of a bone marrow microenvironment. Taken together, these findings provided the basis for clinical trial of NNU546 to determine its potential as a candidate for MM treatment.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wang Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengjie Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Haoyang Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Li Qiao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huayun Feng
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaogang Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Lijuan Chen
- The 1st Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jianhao Hou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Chenxi Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Bo Zhao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.,The 3rd Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.,Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| |
Collapse
|
16
|
Berberine affects mitochondrial activity and cell growth of leukemic cells from chronic lymphocytic leukemia patients. Sci Rep 2020; 10:16519. [PMID: 33020573 PMCID: PMC7536443 DOI: 10.1038/s41598-020-73594-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) results from accumulation of leukemic cells that are subject to iterative re-activation cycles and clonal expansion in lymphoid tissues. The effects of the well-tolerated alkaloid Berberine (BRB), used for treating metabolic disorders, were studied on ex-vivo leukemic cells activated in vitro by microenvironment stimuli. BRB decreased expression of survival/proliferation-associated molecules (e.g. Mcl-1/Bcl-xL) and inhibited stimulation-induced cell cycle entry, irrespective of TP53 alterations or chromosomal abnormalities. CLL cells rely on oxidative phosphorylation for their bioenergetics, particularly during the activation process. In this context, BRB triggered mitochondrial dysfunction and aberrant cellular energetic metabolism. Decreased ATP production and NADH recycling, associated with mitochondrial uncoupling, were not compensated by increased lactic fermentation. Antioxidant defenses were affected and could not correct the altered intracellular redox homeostasis. The data thus indicated that the cytotoxic/cytostatic action of BRB at 10–30 μM might be mediated, at least in part, by BRB-induced impairment of oxidative phosphorylation and the associated increment of oxidative damage, with consequent inhibition of cell activation and eventual cell death. Bioenergetics and cell survival were instead unaffected in normal B lymphocytes at the same BRB concentrations. Interestingly, BRB lowered the apoptotic threshold of ABT-199/Venetoclax, a promising BH3-mimetic whose cytotoxic activity is counteracted by high Mcl-1/Bcl-xL expression and increased mitochondrial oxidative phosphorylation. Our results indicate that, while CLL cells are in the process of building their survival and cycling armamentarium, the presence of BRB affects this process.
Collapse
|
17
|
Taylor J, Yeomans AM, Packham G. Targeted inhibition of mRNA translation initiation factors as a novel therapeutic strategy for mature B-cell neoplasms. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:3-25. [PMID: 32924027 PMCID: PMC7116065 DOI: 10.37349/etat.2020.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer development is frequently associated with dysregulation of mRNA translation to enhance both increased global protein synthesis and translation of specific mRNAs encoding oncoproteins. Thus, targeted inhibition of mRNA translation is viewed as a promising new approach for cancer therapy. In this article we review current progress in investigating dysregulation of mRNA translation initiation in mature B-cell neoplasms, focusing on chronic lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma. We discuss mechanisms and regulation of mRNA translation, potential pathways by which genetic alterations and the tumor microenvironment alters mRNA translation in malignant B cells, preclinical evaluation of drugs targeted against specific eukaryotic initiation factors and current progress towards clinical development. Overall, inhibition of mRNA translation initiation factors is an exciting and promising area for development of novel targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Joe Taylor
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| | - Alison M Yeomans
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| |
Collapse
|
18
|
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, Foot N, Jeffries S, Martin K, O'Connor S, Schoumans J, Talley P, Telford N, Stioui S, Zemanova Z, Hastings RJ. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019; 33:1851-1867. [PMID: 30696948 PMCID: PMC6756035 DOI: 10.1038/s41375-019-0378-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Cytogenomic investigations of haematological neoplasms, including chromosome banding analysis, fluorescence in situ hybridisation (FISH) and microarray analyses have become increasingly important in the clinical management of patients with haematological neoplasms. The widespread implementation of these techniques in genetic diagnostics has highlighted the need for guidance on the essential criteria to follow when providing cytogenomic testing, regardless of choice of methodology. These recommendations provide an updated, practical and easily available document that will assist laboratories in the choice of testing and methodology enabling them to operate within acceptable standards and maintain a quality service.
Collapse
Affiliation(s)
- K A Rack
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - E van den Berg
- Department of Genetics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Haferlach
- MLL-Munich Leukemia Laboratory, Munich, Germany
| | - H B Beverloo
- Department of Clinical Genetics, Erasmus MC, University medical center, Rotterdam, The Netherlands
| | - D Costa
- Hematopathology Section, Hospital Clinic, Barcelona, Spain
| | - B Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Grup de Recerca,Translacional en Neoplàsies Hematològiques, Cancer Research Program, imim-Hospital del Mar, Barcelona, Spain
| | - N Foot
- Viapath Genetics laboratories, Guys Hospital, London, UK
| | - S Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - K Martin
- Department of Cytogenetics, Nottingham University Hospital, Nottingham, UK
| | - S O'Connor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - J Schoumans
- Oncogénomique laboratory, Hematology department, Lausanne University Hospital, Vaudois, Switzerland
| | - P Talley
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - N Telford
- Oncology Cytogenetics Service, The Christie NHS Foundation Trust, Manchester, UK
| | - S Stioui
- Laboratorio di Citogenetica e genetica moleculaire, Laboratorio Analisi, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Z Zemanova
- Prague Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - R J Hastings
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK.
| |
Collapse
|
19
|
Gupta R, Li W, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanism for IL-15-Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. THE JOURNAL OF IMMUNOLOGY 2019; 202:2924-2944. [PMID: 30988120 DOI: 10.4049/jimmunol.1801142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Clonal expansion of B cell chronic lymphocytic leukemia (B-CLL) occurs within lymphoid tissue pseudofollicles. IL-15, a stromal cell-associated cytokine found within spleens and lymph nodes of B-CLL patients, significantly boosts in vitro cycling of blood-derived B-CLL cells following CpG DNA priming. Both IL-15 and CpG DNA are elevated in microbe-draining lymphatic tissues, and unraveling the basis for IL-15-driven B-CLL growth could illuminate new therapeutic targets. Using CpG DNA-primed human B-CLL clones and approaches involving both immunofluorescent staining and pharmacologic inhibitors, we show that both PI3K/AKT and JAK/STAT5 pathways are activated and functionally important for IL-15→CD122/ɣc signaling in ODN-primed cells expressing activated pSTAT3. Furthermore, STAT5 activity must be sustained for continued cycling of CFSE-labeled B-CLL cells. Quantitative RT-PCR experiments with inhibitors of PI3K and STAT5 show that both contribute to IL-15-driven upregulation of mRNA for cyclin D2 and suppression of mRNA for DNA damage response mediators ATM, 53BP1, and MDC1. Furthermore, protein levels of these DNA damage response molecules are reduced by IL-15, as indicated by Western blotting and immunofluorescent staining. Bioinformatics analysis of ENCODE chromatin immunoprecipitation sequencing data from cell lines provides insight into possible mechanisms for STAT5-mediated repression. Finally, pharmacologic inhibitors of JAKs and STAT5 significantly curtailed B-CLL cycling when added either early or late in a growth response. We discuss how the IL-15-induced changes in gene expression lead to rapid cycling and possibly enhanced mutagenesis. STAT5 inhibitors might be an effective modality for blocking B-CLL growth in patients.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Wentian Li
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| |
Collapse
|
20
|
Mohr A, Cumin M, Bagacean C, Pochard P, Le Dantec C, Hillion S, Renaudineau Y, Berthou C, Tempescul A, Saad H, Pers JO, Bordron A, Jamin C. The regulatory capacity of B cells directs the aggressiveness of CLL. Oncoimmunology 2019; 8:1554968. [PMID: 30723588 DOI: 10.1080/2162402x.2018.1554968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/29/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is associated with abnormal T-cell responses responsible for defective anti-tumor activities. Intriguingly, CLL B cells share phenotypical characteristics with regulatory B (Breg) cells suggesting that they might negatively control the T-cell activation and immune responses. We elaborated an in vitro co-culture system with T cells to evaluate the Breg capacities of CLL B cells following innate Toll-like receptor 9 (TLR9) engagement. We demonstrated that B cells from half of the patients exhibited regulatory capacities, whilst B cells from the remaining patients were unable to develop a Breg function. The T cell sensitivities of all patients were normal suggesting that defective Breg activities were due to intrinsic CLL B cell deficiencies. Thus, TLR-dedicated gene assays highlighted differential signature of the TLR9 negative regulation pathway between the two groups of patients. Furthermore, correlations of the doubling time of lymphocytosis, the time to first treatment, the mutational status of IgVH and the Breg functions indicate that patients with efficient Breg activities have more aggressive CLL than patients with defective Breg cells. Our in vitro observations may open new approaches for adjusting therapeutic strategies targeting the Breg along with the evolution of the disease.
Collapse
Affiliation(s)
- Audrey Mohr
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France
| | - Marie Cumin
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France
| | - Cristina Bagacean
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Pierre Pochard
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | | | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Christian Berthou
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Département d'Hématologie, CHRU Morvan, Brest, France
| | - Adrian Tempescul
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Département d'Hématologie, CHRU Morvan, Brest, France
| | - Hussam Saad
- Département d'Hématologie, CHRU Morvan, Brest, France
| | | | - Anne Bordron
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France
| | - Christophe Jamin
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, INSERM, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| |
Collapse
|
21
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
22
|
Darwiche W, Gubler B, Marolleau JP, Ghamlouch H. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective. Front Immunol 2018; 9:683. [PMID: 29670635 PMCID: PMC5893869 DOI: 10.3389/fimmu.2018.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Brigitte Gubler
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Laboratoire d'Oncobiologie Moléculaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Service d'Hématologie Clinique et Thérapie cellulaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Hussein Ghamlouch
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1170, Gustave Roussy, Villejuif, France.,Institut Gustave Roussy, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Rogne M, Svaerd O, Madsen-Østerbye J, Hashim A, Tjønnfjord GE, Staerk J. Cytokinesis arrest and multiple centrosomes in B cell chronic lymphocytic leukaemia. J Cell Mol Med 2018. [PMID: 29516674 PMCID: PMC5908127 DOI: 10.1111/jcmm.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis failure leads to the emergence of tetraploid cells and multiple centrosomes. Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in adults and is characterized by clonal B cell expansion. Here, we show that a significant number of peripheral blood CLL cells are arrested in cytokinesis and that this event occurred after nuclear envelope reformation and before cytoplasmic abscission. mRNA expression data showed that several genes known to be crucial for cell cycle regulation, checkpoint and centromere function, such as ING4, ING5, CDKN1A and CDK4, were significantly dysregulated in CLL samples. Our results demonstrate that CLL cells exhibit difficulties in completing mitosis, which is different from but may, at least in part, explain the previously reported accumulation of CLL cells in G0/1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Oksana Svaerd
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Julia Madsen-Østerbye
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Adnan Hashim
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Judith Staerk
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Molecular Highlighting Analysis of Mutational P27 Gene Products in Association with Human T-lymphotropic (HTLV-1) Infection in Tissues from Iraqi Patients with Non-Hodgkin’s lymphoma. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.3.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Koczkodaj D, Filip AA. Chromosome Preparation for Chronic Lymphoid Malignancies. Methods Mol Biol 2016; 1541:33-41. [PMID: 27910012 DOI: 10.1007/978-1-4939-6703-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Conventional cytogenetics is invariably one of the most important methods used in diagnostics of chronic lymphoproliferations. It complements fluorescence in situ hybridization (FISH) and molecular analysis. Presence of particular chromosomal alterations in chronic lymphocytic leukemia enables patients' stratification into appropriate cytogenetic risk groups and influences treatment decisions. In other non-Hodgkin lymphomas cytogenetic analyses are employed also in minimal residual disease assessment.As lymphocytes in chronic lymphoid malignancies are characterized by low proliferation rate in vitro, it is critical to induce their division in the culture properly. Here, we describe methods of lymphocyte isolation from patient's samples, conditions of cell culture, and the most commonly used mitogens for B- and T-lymphocytes in hemato-oncologic analyses.
Collapse
Affiliation(s)
- Dorota Koczkodaj
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland.
| | - Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwiłłowska 11, Lublin, 20-080, Poland
| |
Collapse
|
26
|
Massive and parallel expression profiling using microarrayed single-cell sequencing. Nat Commun 2016; 7:13182. [PMID: 27739429 PMCID: PMC5067491 DOI: 10.1038/ncomms13182] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/11/2016] [Indexed: 01/06/2023] Open
Abstract
Single-cell transcriptome analysis overcomes problems inherently associated with averaging gene expression measurements in bulk analysis. However, single-cell analysis is currently challenging in terms of cost, throughput and robustness. Here, we present a method enabling massive microarray-based barcoding of expression patterns in single cells, termed MASC-seq. This technology enables both imaging and high-throughput single-cell analysis, characterizing thousands of single-cell transcriptomes per day at a low cost (0.13 USD/cell), which is two orders of magnitude less than commercially available systems. Our novel approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to accelerate the study of subtle clonal dynamics and help provide critical insights into disease development and other biological processes. Currently available single-cell transcriptomic analyses are expensive and low throughput. Here, Vickovic et al. describe a new method called MASC-seq that is based on microarray barcoding of expression pattern and of low cost with high robustness.
Collapse
|
27
|
Bruno S, Ledda B, Tenca C, Ravera S, Orengo AM, Mazzarello AN, Pesenti E, Casciaro S, Racchi O, Ghiotto F, Marini C, Sambuceti G, DeCensi A, Fais F. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells. Oncotarget 2016; 6:22624-40. [PMID: 26265439 PMCID: PMC4673187 DOI: 10.18632/oncotarget.4168] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/23/2015] [Indexed: 12/20/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.
Collapse
Affiliation(s)
- Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Bernardetta Ledda
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Claudya Tenca
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacology, University of Genova, Genova, Italy
| | - Anna Maria Orengo
- IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Andrea Nicola Mazzarello
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,The Feinstein Institute for Medical Research, North Shore-Long Island, Experimental Immunology, Manhasset, NY, USA
| | - Elisa Pesenti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Salvatore Casciaro
- Department of Internal Medicine and Medical Specialty, University of Genova, Genova, Italy
| | - Omar Racchi
- Hematology-Oncology Unit - Ospedale Villa Scassi, Genova, Italy
| | - Fabio Ghiotto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Section of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.,Department of Health Science, University of Genova, Genova, Italy
| | - Andrea DeCensi
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy.,Division of Medical Oncology, Ospedali Galliera, Genova, Italy
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| |
Collapse
|
28
|
Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther 2016; 23:327-332. [DOI: 10.1038/cgt.2016.34] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
|
29
|
Potapova TA, Seidel CW, Box AC, Rancati G, Li R. Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53. Mol Biol Cell 2016; 27:3065-3084. [PMID: 27559130 PMCID: PMC5063615 DOI: 10.1091/mbc.e16-05-0268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Tetraploidization, or genome doubling, is a prominent event in tumorigenesis, primarily because cell division in polyploid cells is error-prone and produces aneuploid cells. This study investigates changes in gene expression evoked in acute and adapted tetraploid cells and their effect on cell-cycle progression. Acute polyploidy was generated by knockdown of the essential regulator of cytokinesis anillin, which resulted in cytokinesis failure and formation of binucleate cells, or by chemical inhibition of Aurora kinases, causing abnormal mitotic exit with formation of single cells with aberrant nuclear morphology. Transcriptome analysis of these acute tetraploid cells revealed common signatures of activation of the tumor-suppressor protein p53. Suppression of proliferation in these cells was dependent on p53 and its transcriptional target, CDK inhibitor p21. Rare proliferating tetraploid cells can emerge from acute polyploid populations. Gene expression analysis of single cell-derived, adapted tetraploid clones showed up-regulation of several p53 target genes and cyclin D2, the activator of CDK4/6/2. Overexpression of cyclin D2 in diploid cells strongly potentiated the ability to proliferate with increased DNA content despite the presence of functional p53. These results indicate that p53-mediated suppression of proliferation of polyploid cells can be averted by increased levels of oncogenes such as cyclin D2, elucidating a possible route for tetraploidy-mediated genomic instability in carcinogenesis.
Collapse
Affiliation(s)
| | | | - Andrew C Box
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Alhourani E, Aroutiounian R, Harutyunyan T, Glaser A, Schlie C, Pohle B, Liehr T. Interphase Molecular Cytogenetic Detection Rates of Chronic Lymphocytic Leukemia-Specific Aberrations Are Higher in Cultivated Cells Than in Blood or Bone Marrow Smears. J Histochem Cytochem 2016; 64:495-501. [PMID: 27315825 DOI: 10.1369/0022155416655086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
Banding cytogenetics is still the gold standard in many fields of leukemia diagnostics. However, in chronic lymphocytic leukemia (CLL), GTG-banding results are hampered by a low mitotic rate of the corresponding malignant lymphatic cells. Thus, interphase fluorescence in situ hybridization (iFISH) for the detection of specific cytogenetic aberrations is done nowadays as a supplement to or even instead of banding cytogenetics in many diagnostic laboratories. These iFISH studies can be performed on native blood or bone marrow smears or in nuclei after cultivation and stimulation by a suitable mitogen. As there are only few comparative studies with partially conflicting results for the detection rates of aberrations in cultivated and native cells, this question was studied in 38 CLL cases with known aberrations in 11q22.2, 11q22.3, 12, 13q14.3, 14q32.33, 17p13.1, or 18q21.32. The obtained results implicate that iFISH directly applied on smears is in general less efficient for the detection of CLL-specific genetic abnormalities than for cultivated cells. This also shows that applied cell culture conditions are well suited for malignant CLL cells. Thus, to detect malignant aberrant cells in CLL, cell cultivation and cytogenetic workup should be performed and the obtained material should be subjected to banding cytogenetics and iFISH.
Collapse
Affiliation(s)
- Eyad Alhourani
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (EA, AG, CS, BP, TL)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia (RA, TH)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia (RA, TH)
| | - Anita Glaser
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (EA, AG, CS, BP, TL)
| | - Cordula Schlie
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (EA, AG, CS, BP, TL)
| | - Beate Pohle
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (EA, AG, CS, BP, TL)
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (EA, AG, CS, BP, TL)
| |
Collapse
|
31
|
DE BRAEKELEER MARC, TOUS CORINE, GUÉGANIC NADIA, LE BRIS MARIEJOSÉE, BASINKO AUDREY, MOREL FRÉDÉRIC, DOUET-GUILBERT NATHALIE. Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature. Mol Clin Oncol 2016; 4:682-694. [PMID: 27123263 PMCID: PMC4840758 DOI: 10.3892/mco.2016.793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) represents the most common hematological malignancy in Western countries, with a highly heterogeneous clinical course and prognosis. Translocations involving the immunoglobulin (IG) genes are regularly identified. From 2000 to 2014, we identified an IG gene translocation in 18 of the 396 patients investigated at diagnosis (4.6%) and in 17 of the 275 analyzed during follow-up (6.2%). A total of 4 patients in whom the IG translocation was identified at follow-up did not carry the translocation at diagnosis. The IG heavy locus (IGH) was involved in 27 translocations (77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus (IGL) in 7 (20.0%). The chromosome band partners of the IG translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 2 cases (5.7%), whereas 6 other bands were involved once (2.9% each). At present, 35 partner chromosomal bands have been described, but the partner gene has solely been identified in 10 translocations. CLL associated with IG gene translocations is characterized by atypical cell morphology, including plasmacytoid characteristics, and the propensity of being enriched in prolymphocytes. The IG heavy chain variable region (IGHV) mutational status varies between translocations, those with unmutated IGHV presumably involving cells at an earlier stage of B-cell lineage. All the partner genes thus far identified are involved in the control of cell proliferation and/or apoptosis. The translocated partner gene becomes transcriptionally deregulated as a consequence of its transposition into the IG locus. With the exception of t(14;18)(q32;q21) and its variants, prognosis appears to be poor for the other translocations. Therefore, searching for translocations involving not only IGH, but also IGL and IGK, by banding and molecular cytogenetics is required. Furthermore, it is important to identify the partner gene to ensure the patients receive the optimal treatment.
Collapse
Affiliation(s)
- MARC DE BRAEKELEER
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - CORINE TOUS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NADIA GUÉGANIC
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
| | - MARIE-JOSÉE LE BRIS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - AUDREY BASINKO
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - FRÉDÉRIC MOREL
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NATHALIE DOUET-GUILBERT
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| |
Collapse
|
32
|
Fu C, Wan Y, Shi H, Gong Y, Wu Q, Yao Y, Niu M, Li Z, Xu K. Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis. J Cancer Res Clin Oncol 2016; 142:741-8. [PMID: 26603518 DOI: 10.1007/s00432-015-2077-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, with incidence in Chinese populations also increasing. CLL involves an accumulation of abnormal B cells which result in dysregulation of cell proliferation and apoptosis rates. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) plays a pivotal role in tumorigenicity and cell apoptosis. Here, we investigated the function of CacyBP/SIP in CLL cell proliferation and apoptosis. METHODS CacyBP/SIP expression levels were measured in peripheral blood mononuclear cells from 23 Chinese CLL patients and three healthy donors by western blotting. Correlation analysis was performed to assess associations between CacyBP/SIP expression and clinical stage, chromosome abnormalities and zeta-chain-associated protein kinase 70 (ZAP-70) expression. We silenced CacyBP/SIP expression in MEC-1 cells using a lentivirus system and analyzed cell vitality, cell cycle and tumorigenicity. Apoptosis was also analyzed following the upregulation of CacyBP/SIP expression in MEC-1 cells. RESULTS Downregulation of CacyBP/SIP expression in CLL patients was negatively correlated with CLL clinical stage, but not with patient sex, age, del(13q14) or del(17q-) presence, or ZAP-70 expression. CacyBP/SIP silencing significantly enhanced cell proliferation and tumorigenicity. CacyBP/SIP silencing promoted accumulation of cells in S phase by upregulation of β-catenin, cyclin D1 and cyclin E, and downregulation of p21. Moreover, CacyBP/SIP overexpression facilitated CLL apoptosis through the activation of pro-caspase-3. CONCLUSION CacyBP/SIP is a useful indicator of CLL disease processes and plays an important role in sustaining the balance of cell proliferation and apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Asian People/genetics
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Caspase 3/metabolism
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin E/metabolism
- Down-Regulation
- Enzyme Activation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- S Phase
- Signal Transduction
- Up-Regulation
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Chunling Fu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yan Wan
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Hengliang Shi
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yanqing Gong
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Yao Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
- Blood Diseases Institute or Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
33
|
FU CHUNLING, GONG YANQING, SHI XUANXUAN, SHI HENGLIANG, WAN YAN, WU QINGYUN, XU KAILIN. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity. Oncol Rep 2015; 35:1493-500. [DOI: 10.3892/or.2015.4526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
|
34
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
35
|
CTLA-4 affects expression of key cell cycle regulators of G0/G1 phase in neoplastic lymphocytes from patients with chronic lymphocytic leukaemia. Clin Exp Med 2015; 16:317-32. [PMID: 26003188 PMCID: PMC4969362 DOI: 10.1007/s10238-015-0360-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/14/2015] [Indexed: 10/31/2022]
Abstract
Previously, we showed that cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is overexpressed in chronic lymphocytic leukaemia (CLL) and its expression is correlated with the expression of the major regulators of G1 phase progression: cyclins D2 and D3, and cyclin-dependent kinase inhibitory protein 1 (p27 (KIP1) ). In the present study, we blocked CTLA-4 on the surface of both CLL cells and normal B lymphocytes to investigate the impact of CTLA-4 on the expression of the mentioned G1 phase regulators. We found that in CLL patients and in healthy individuals, the median proportions of cyclin D2-positive cells as well as cyclin D3(+) cells significantly decreased following CTLA-4 blockade. Moreover, CTLA-4 blockade led to an increase in the median frequencies of p27 (KIP1) -positive cells, although this increase was marked only in CLL patients. Our study showed that CTLA-4 affects the expression of the key regulators of G1 phase progression in CLL cells as well as in normal B lymphocytes and may contribute to a better understanding of the role of CTLA-4 in the regulation of G1 phase progression.
Collapse
|
36
|
Lin HS, Gong JN, Su R, Chen MT, Song L, Shen C, Wang F, Ma YN, Zhao HL, Yu J, Li WW, Huang LX, Xu XH, Zhang JW. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression. J Leukoc Biol 2014; 96:1023-35. [PMID: 25258381 DOI: 10.1189/jlb.1a0514-240r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
miRNAs are short, noncoding RNAs that regulate expression of target genes at post-transcriptional levels and function in many important cellular processes, including differentiation, proliferation, etc. In this study, we observed down-regulation of miR-199a-5p during monocyte/macrophage differentiation of HL-60 and THP-1 cells, as well as human CD34(+) HSPCs. This down-regulation of miR-199a-5p resulted from the up-regulation of PU.1 that was demonstrated to regulate transcription of the miR-199a-2 gene negatively. Overexpression of miR-199a-5p by miR-199a-5p mimic transfection or lentivirus-mediated gene transfer significantly inhibited monocyte/macrophage differentiation of the cell lines or HSPCs. The mRNA encoding an ACVR1B was identified as a direct target of miR-199a-5p. Gradually increased ACVR1B expression level was detected during monocyte/macrophage differentiation of the leukemic cell lines and HSPCs, and knockdown of ACVR1B resulted in inhibition of monocyte/macrophage differentiation of HL-60 and THP-1 cells, which suggested that ACVR1B functions as a positive regulator of monocyte/macrophage differentiation. We demonstrated that miR-199a-5p overexpression or ACVR1B knockdown promoted proliferation of THP-1 cells through increasing phosphorylation of Rb. We also demonstrated that the down-regulation of ACVR1B reduced p-Smad2/3, which resulted in decreased expression of C/EBPα, a key regulator of monocyte/macrophage differentiation, and finally, inhibited monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Hai-Shuang Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Nan Gong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Su
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Tai Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Shen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Ni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua-Lu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Wei Li
- Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li-Xia Huang
- First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China; and
| | - Xin-Hua Xu
- Taizhou Cancer Hospital, Zhejiang Province, China
| | - Jun-Wu Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;
| |
Collapse
|
37
|
PKC-β as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical activity in CLL. Blood 2014; 124:1481-91. [PMID: 25001469 DOI: 10.1182/blood-2014-05-574830] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeting B-cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) has been successful with durable remissions observed with several targeted therapeutics. Protein kinase C-β (PKC-β) is immediately downstream of BCR and has been shown to be essential to CLL cell survival and proliferation in vivo. We therefore evaluated sotrastaurin (AEB071), an orally administered potent PKC inhibitor, on CLL cell survival both in vitro and in vivo. AEB071 shows selective cytotoxicity against B-CLL cells in a dose-dependent manner. Additionally, AEB071 attenuates BCR-mediated survival pathways, inhibits CpG-induced survival and proliferation of CLL cells in vitro, and effectively blocks microenvironment-mediated survival signaling pathways in primary CLL cells. Furthermore, AEB071 alters β-catenin expression, resulting in decreased downstream transcriptional genes as c-Myc, Cyclin D1, and CD44. Lastly, our preliminary in vivo studies indicate beneficial antitumor properties of AEB071 in CLL. Taken together, our results indicate that targeting PKC-β has the potential to disrupt signaling from the microenvironment contributing to CLL cell survival and potentially drug resistance. Future efforts targeting PKC with the PKC inhibitor AEB071 as monotherapy in clinical trials of relapsed and refractory CLL patients are warranted.
Collapse
|
38
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|
39
|
The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ 2013; 21:100-12. [PMID: 24076586 DOI: 10.1038/cdd.2013.133] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022] Open
Abstract
Abnormal proliferation, apoptosis repression and differentiation blockage of hematopoietic stem/progenitor cells have been characterized to be the main reasons leading to acute myeloid leukemia (AML). Previous studies showed that miR-29a and miR-29b could function as tumor suppressors in leukemogenesis. However, a comprehensive investigation of the function and mechanism of miR-29 family in AML development and their potentiality in AML therapy still need to be elucidated. Herein, we reported that the family members, miR-29a, -29b and -29c, were commonly downregulated in peripheral blood mononuclear cells and bone marrow (BM) CD34+ cells derived from AML patients as compared with the healthy donors. Overexpression of each miR-29 member in THP1 and NB4 cells markedly inhibited cell proliferation and promoted cell apoptosis. AKT2 and CCND2 mRNAs were demonstrated to be targets of the miR-29 members, and the role of miR-29 family was attributed to the decrease of Akt2 and CCND2, two key signaling molecules. Significantly increased Akt2, CCND2 and c-Myc levels in the AML cases were detected, which were correlated with the decreased miR-29 expression in AML blasts. Furthermore, a feed-back loop comprising of c-Myc, miR-29 family and Akt2 were found in myeloid leukemogenesis. Reintroduction of each miR-29 member partially corrected abnormal cell proliferation and apoptosis repression and myeloid differentiation arrest in AML BM blasts. An intravenous injection of miR-29a, -29b and -29c in the AML model mice relieved leukemic symptoms significantly. Taken together, our finding revealed a pivotal role of miR-29 family in AML development and rescue of miR-29 family expression in AML patients could provide a new therapeutic strategy.
Collapse
|
40
|
Ng YP, Chen Y, Hu Y, Ip FCF, Ip NY. Olean-12-eno[2,3-c] [1,2,5]oxadiazol-28-oic acid (OEOA) induces G1 cell cycle arrest and differentiation in human leukemia cell lines. PLoS One 2013; 8:e63580. [PMID: 23696836 PMCID: PMC3656051 DOI: 10.1371/journal.pone.0063580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/04/2013] [Indexed: 01/01/2023] Open
Abstract
Oleanolic acid (3β-hydroxy-olea-12-en-28-oic acid) is a natural pentacyclic triterpenoic acid found in many fruits, herbs and medicinal plants. In the past decade, increasing evidence has suggested that oleanolic acid exhibits inhibitory activities against different types of cancer including skin cancer and colon cancer, but not leukemia. We report here that a derivative of oleanolic acid, olean-12-eno[2,3-c] [1], [2], [5]oxadiazol-28-oic acid (designated OEOA) effectively blocks the proliferation of human leukemia cells. OEOA significantly reduces cell proliferation without inducing cell death in three types of leukemia cell lines, including K562, HEL and Jurket. Moreover, exposure of K562 cells to OEOA results in G1 cell cycle arrest, with a concomitant induction of cyclin-dependent kinase inhibitor p27 and downregulation of cyclins and Cdks that are essential for cell cycle progression. Interestingly, OEOA also enhances erythroid differentiation in K562 cells through suppressing the expression of Bcr-Abl and phosphorylation of Erk1/2. These findings identify a novel chemical entity for further development as therapeutics against leukemia.
Collapse
Affiliation(s)
- Yu Pong Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yuewen Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- JNU-HKUST Joint Lab, Ji-Nan University, Guangzhou, Guang Dong, China
| | - Yueqing Hu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Fanny C. F. Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- JNU-HKUST Joint Lab, Ji-Nan University, Guangzhou, Guang Dong, China
| | - Nancy Y. Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- JNU-HKUST Joint Lab, Ji-Nan University, Guangzhou, Guang Dong, China
- * E-mail:
| |
Collapse
|
41
|
Wu MY, Dai DQ, Shi Y, Yan H, Zhang XF. Biomarker identification and cancer classification based on microarray data using Laplace naive Bayes model with mean shrinkage. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1649-1662. [PMID: 22868679 DOI: 10.1109/tcbb.2012.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomarker identification and cancer classification are two closely related problems. In gene expression data sets, the correlation between genes can be high when they share the same biological pathway. Moreover, the gene expression data sets may contain outliers due to either chemical or electrical reasons. A good gene selection method should take group effects into account and be robust to outliers. In this paper, we propose a Laplace naive Bayes model with mean shrinkage (LNB-MS). The Laplace distribution instead of the normal distribution is used as the conditional distribution of the samples for the reasons that it is less sensitive to outliers and has been applied in many fields. The key technique is the L1 penalty imposed on the mean of each class to achieve automatic feature selection. The objective function of the proposed model is a piecewise linear function with respect to the mean of each class, of which the optimal value can be evaluated at the breakpoints simply. An efficient algorithm is designed to estimate the parameters in the model. A new strategy that uses the number of selected features to control the regularization parameter is introduced. Experimental results on simulated data sets and 17 publicly available cancer data sets attest to the accuracy, sparsity, efficiency, and robustness of the proposed algorithm. Many biomarkers identified with our method have been verified in biochemical or biomedical research. The analysis of biological and functional correlation of the genes based on Gene Ontology (GO) terms shows that the proposed method guarantees the selection of highly correlated genes simultaneously
Collapse
Affiliation(s)
- Meng-Yun Wu
- Center for Computer Vision and Department of Mathematics, Sun Yat-Sen University,Guangzhou 510275, China.
| | | | | | | | | |
Collapse
|
42
|
Blix ES, Irish JM, Husebekk A, Delabie J, Forfang L, Tierens AM, Myklebust JH, Kolstad A. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma. BMC Cancer 2012; 12:478. [PMID: 23072591 PMCID: PMC3519597 DOI: 10.1186/1471-2407-12-478] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/12/2012] [Indexed: 11/10/2022] Open
Abstract
Background Knowledge about signaling pathways in malignant cells may provide prognostic and diagnostic information in addition to identify potential molecular targets for therapy. B-cell receptor (BCR) and co-receptor CD40 signaling is essential for normal B cells, and there is increasing evidence that signaling via BCR and CD40 plays an important role in the pathogenesis of B-cell lymphoma. The aim of this study was to investigate basal and induced signaling in lymphoma B cells and infiltrating T cells in single-cell suspensions of biopsies from small cell lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL) and marginal zone lymphoma (MZL) patients. Methods Samples from untreated SLL/CLL and MZL patients were examined for basal and activation induced signaling by phospho-specific flow cytometry. A panel of 9 stimulation conditions targeting B and T cells, including crosslinking of the B cell receptor (BCR), CD40 ligand and interleukins in combination with 12 matching phospho-protein readouts was used to study signaling. Results Malignant B cells from SLL/CLL patients had higher basal levels of phosphorylated (p)-SFKs, p-PLCγ, p-ERK, p-p38, p-p65 (NF-κB), p-STAT5 and p-STAT6, compared to healthy donor B cells. In contrast, anti-BCR induced signaling was highly impaired in SLL/CLL and MZL B cells as determined by low p-SFK, p-SYK and p-PLCγ levels. Impaired anti-BCR-induced p-PLCγ was associated with reduced surface expression of IgM and CD79b. Similarly, CD40L-induced p-ERK and p-p38 were also significantly reduced in lymphoma B cells, whereas p-p65 (NF-κB) was equal to that of normal B cells. In contrast, IL-2, IL-7 and IL-15 induced p-STAT5 in tumor-infiltrating T cells were not different from normal T cells. Conclusions BCR signaling and CD40L-induced p-p38 was suppressed in malignant B cells from SLL/CLL and MZL patients. Single-cell phospho-specific flow cytometry for detection of basal as well as activation-induced phosphorylation of signaling proteins in distinct cell populations can be used to identify aberrant signaling pathways.
Collapse
Affiliation(s)
- Egil S Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Weng HY, Huang HL, Zhao PP, Zhou H, Qu LH. Translational repression of cyclin D3 by a stable G-quadruplex in its 5' UTR: implications for cell cycle regulation. RNA Biol 2012; 9:1099-109. [PMID: 22858673 DOI: 10.4161/rna.21210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng-You Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
44
|
The impact of CDK inhibition in human malignancies associated with pronounced defects in apoptosis: advantages of multi-targeting small molecules. Future Med Chem 2012; 4:395-424. [DOI: 10.4155/fmc.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cells in chronic lymphocytic leukemia (CLL) and related diseases are heterogeneous and consist primarily of long-lived resting cells in the periphery and a minor subset of dividing cells in proliferating centers. Both cell populations have different molecular signatures that play a major role in determining their sensitivity to therapy. Contemporary approaches to treating CLL are heavily reliant on cytotoxic chemotherapeutics. However, none of the current treatment regimens can be considered curative. Pharmacological CDK inhibitors have extended the repertoire of potential drugs for CLL. Multi-targeted CDK inhibitors affect CDKs involved in regulating both cell cycle progression and transcription. Their interference with transcriptional elongation represses anti-apoptotic proteins and, thus, promotes the induction of apoptosis. Importantly, there is evidence that treatment with CDK inhibitors can overcome resistance to therapy. The pharmacological CDK inhibitors have great potential for use in combination with other therapeutics and represent promising tools for the development of new curative treatments for CLL.
Collapse
|
45
|
Vigliano I, Palamaro L, Bianchino G, Fusco A, Vitiello L, Grieco V, Romano R, Salvatore M, Pignata C. Role of the common γ chain in cell cycle progression of human malignant cell lines. Int Immunol 2012; 24:159-67. [PMID: 22223761 DOI: 10.1093/intimm/dxr114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The γ-chain (γc) is a transducing element shared between several cytokine receptors whose alteration causes X-linked severe combined immunodeficiency. Recently, a direct involvement of γc in self-sufficient growth in a concentration-dependent manner was described, implying a direct relationship between the amount of the molecule and its role in cell cycle progression. In this study, we evaluate whether γc expression could interfere in cell cycle progression also in malignant hematopoietic cells. Here, we first report that in the absence of γc expression, lymphoblastoid B-cell lines (BCLs) die at a higher extent than control cells. This phenomenon is caspase-3 independent and is associated to a decreased expression of the antiapoptotic Bcl-2 family members. By contrast, increased expression of γc protein directly correlates with spontaneous cell growth in several malignant hematopoietic cell lines. We, also, find that the knockdown of γc protein through short interfering RNA is able to decrease the cell proliferation rate in these malignancies. Furthermore, an increased expression of all D-type cyclins is found in proliferating neoplastic cells. In addition, a direct correlation between the amount of γc and cyclins A2 and B1 expression is found. Hence, our data demonstrate that the amount of the γc is able to influence the transcription of genes involved in cell cycle progression, thus being directly involved in the regulatory control of cell proliferation of malignant hematopoietic cells.
Collapse
Affiliation(s)
- Ilaria Vigliano
- Department of Pediatrics, "Federico II" University, Naples 80131, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Surface IgM stimulation induces MEK1/2-dependent MYC expression in chronic lymphocytic leukemia cells. Blood 2011; 119:170-9. [PMID: 22086413 DOI: 10.1182/blood-2011-07-370403] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although long considered as a disease of failed apoptosis, it is now clear that chronic lymphocytic leukemia (CLL) cells undergo extensive cell division in vivo, especially in progressive disease. Signaling via the B-cell receptor is thought to activate proliferation and survival pathways in CLL cells and also has been linked to poor outcome. Here, we have analyzed the expression of the proto-oncoprotein MYC, an essential positive regulator of the cell cycle, after stimulation of surface IgM (sIgM). MYC expression was rapidly increased after sIgM stimulation in a subset of CLL samples. The ability of sIgM stimulation to increase MYC expression was correlated with sIgM-induced intracellular calcium fluxes. MYC induction was partially dependent on the MEK/ERK signaling pathway, and MYC and phosphorylated ERK1/2 were both expressed within proliferation centers in vivo. Although stimulation of sIgD also resulted in ERK1/2 phosphorylation, responses were relatively short lived compared with sIgM and were associated with significantly reduced MYC induction, suggesting that the kinetics of ERK1/2 activation is a critical determinant of MYC induction. Our results suggest that ERK1/2-dependent induction of MYC is likely to play an important role in antigen-induced CLL cell proliferation.
Collapse
|
47
|
Igawa T, Sato Y, Takata K, Fushimi S, Tamura M, Nakamura N, Maeda Y, Orita Y, Tanimoto M, Yoshino T. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci 2011; 102:2103-7. [PMID: 21790895 PMCID: PMC11158365 DOI: 10.1111/j.1349-7006.2011.02046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The D cyclins are important cell cycle regulatory proteins involved in the pathogenesis of some lymphomas. Cyclin D1 overexpression is a hallmark of mantle cell lymphoma, whereas cyclins D2 and D3 have not been shown to be closely associated with any particular subtype of lymphoma. In the present study, we found that cyclin D2 was specifically overexpressed in the proliferation centers (PC) of all cases of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) examined (19/19). To examine the molecular mechanisms underlying this overexpression, we immunohistochemically examined the expression of nuclear factor (NF)-κB, p15, p16, p18, and p27 in the PC of six patients. Five cases showed upregulation of NF-κB expression, which is known to directly induce cyclin D2 by binding to the promoter region of CCND2. All six PC examined demonstrated downregulation of p27 expression. In contrast, upregulation of p15 expression was detected in five of six PC examined. This discrepancy suggests that unknown cell cycle regulatory mechanisms involving NF-κB-related pathways are also involved, because NF-κB upregulates cyclin D2 not only directly, but also indirectly through c-Myc, which is believed to downregulate both p27 and p15. In conclusion, cyclin D2 is overexpressed in the PC of CLL/SLL and this overexpression is due, in part, to the upregulation of NF-κB-related pathways.
Collapse
Affiliation(s)
- Takuro Igawa
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL. Folia Histochem Cytobiol 2011; 48:534-41. [PMID: 21478095 DOI: 10.2478/v10042-010-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.
Collapse
|
49
|
Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117:6287-96. [PMID: 21422473 DOI: 10.1182/blood-2011-01-328484] [Citation(s) in RCA: 644] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell-specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted.
Collapse
|
50
|
Chromosomal aberrations in chronic lymphocytic leukemia detected by conventional cytogenetics with DSP30 as a single agent: comparison with FISH. Leuk Res 2011; 35:1032-8. [PMID: 21333354 DOI: 10.1016/j.leukres.2011.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/22/2011] [Accepted: 01/23/2011] [Indexed: 02/03/2023]
Abstract
The aim of our study was to estimate the usefulness for conventional cytogenetics (CC) of DSP30 as a single agent (CC-DSP30) for detecting the most important chromosomal aberrations revealed in CLL by FISH and to find other abnormalities possibly existing but undetected by FISH with standard probes. Using CC-DSP30, the metaphases suitable for analysis were obtained in 90% of patients. CC-DSP30 and FISH were similarly efficacious for detecting del(11)(q22) and trisomy 12, whereas FISH was more sensitive for del(13)(q14). Sole del(13)(q14) detected by FISH, in 50% of patients was associated with other aberrations revealed by CC-DSP30. Additionally, the most recurrent anomaly detected by CC-DSP30 were structural aberrations of chromosome 2.
Collapse
|